บทคัดย่อ

เชื้อแบคทีเรีย Bacillus subtilis สายพันธุ์ MR10 สามารถผลิตเอนไซม์โปรติเอสที่สามารถ กำจัดโปรตีนในน้ำยางพาราสด ซึ่งคาคว่าจะสามารถใช้เตรียมยางโปรตีนต่ำที่ปราศจากโปรตีน ภูมิแพ้ได้ ดังนั้นจึงได้ทำการศึกษาการผลิตโปรติเอสผงจากเชื้อชนิดนี้เพื่อให้เกิดความสะดวกใน การใช้งานระดับอุตสาหกรรม และสามารถเก็บรักษาโปรติเอสได้นานขึ้น ผลการศึกษาพบว่าหลัง กระบวนการเตรียมสารละลายเอนไซม์โปรติเอสที่บริสุทธิ์บางส่วน (Partial purified protease) โดย การตกตะกอนค้วยแอม โมเนียมซัลเฟต (80% Saturation) และการกำจัด ไอออนเกลือค้วยวิธี ไดอะ ไล ซีส (12 kDa cut off) สามารถเก็บเกี่ยวโปรติเอสได้ 15 เปอร์เซ็นต์ ซึ่งมีค่าความบริสุทธิ์เพิ่มขึ้น ประมาณ 10 เท่า จากนั้นนำสารละลายโปรติเอสที่บริสุทธิ์บางส่วนนี้ไปผ่านกระบวนการทำแห้งซึ่ง ผลการศึกษาพบว่า การทำแห้งโปรติเอสด้วยวิธีการทำแห้งแบบเยือกแข็ง (Freeze drving) เป็น วิธีการที่เหมาะสมที่สุด โดยคงค่ากิจกรรมของเอนไซม์ได้สูงถึง 90 เปอร์เซ็นต์ ซึ่งจำเป็นต้องเติม สารสื่อ (Carrier) ลงไปในสารละลายเอนไซม์ด้วยเพื่อลดการเสียสภาพของเอนไซม์ระหว่างการทำ แห้ง และสารสื่อที่เหมาะสมที่สคคือน้ำตาลแมนนิทอลในปริมาณ 1 % (w/v) โปรติเอสผงมีกิจกรรม ลดลงเหลือประมาณ 70 เปอร์เซ็นต์ เมื่อทำการเก็บรักษาเป็นเวลา 2 เดือน ที่อุณหภูมิต่ำตั้งแต่ -20°C ถึง 4°C และในขั้นตอนสุดท้าย ประสิทธิภาพของโปรตีนเอสผงในการกำจัดโปรตีนในน้ำยางพารา สดได้ถูกทดสอบ ผลการทดลองพบว่าปริมาณโปรตีนในเนื้อยางที่ผ่านการเติมโปรติเอสผงมีค่าต่ำ กว่าเนื้อยางที่ไม่มีการเติมโปรติเอสผงถึง 70 เปอร์เซ็นต์ และให้ผลใกล้เคียงกับการใช้โปรติเอสผง ยี่ห้อ Sigma $^{ ext{\tiny IM}}$ นอกจากนี้จากการศึกษาโปรตีนในชั้นซีรั่มด้วยวิธี SDS-PAGE ยังพบว่า โปรตีนที่มี ขนาด โมเลกุลประมาณ 15, 50 และ 80 kDa ได้หายไปหลังจากที่เติมโปรติเอสผงลงไป

Abstract

Bacillus subtilis strain MR10 is able to produce protease enzyme that eliminates protein moiety containing in natural rubber latex. It was expected to be used for a preparation of low protein rubber without allergic protein. Therefore, the production of powdered protease from this strain was studied to be used conveniently and also longer shelf life. The results showed that the percent recovery of protease was 15 percent, while the purification fold of protease was approximately 10 folds after the partial purification process; including protein precipitation using ammonium sulfate (80% saturation) and dialysis (12 kDa cut off). Drying process of the partial purified protease solution was subsequently studied. It was found that freeze drying was the suitable method that retained the protease activity at 90%. Moreover, addition of carrier to the enzyme solution was necessary to prevent the denaturation of enzyme during drying process. We found that the mannitol at 1% (w/v) was the most suitable carrier. The shelf life of powdered protease was studied. It was found that 70% of protease activity was remained after the powder was stored at low temperature $(-20^{\circ}\text{C} - 4^{\circ}\text{C})$ for 2 months. Finally, the efficiency of powdered protease to eliminate the protein content in natural rubber latex was tested. The results showed that the protein content of protease-treated rubber was 70% lower than rubber without protease treatment and similar to the rubber treated with commercial protease (SigmaTM). Moreover, protein molecules with MW approximately 15, 50 and 80 kDa that normally found in rubber serum were disappeared in a protease treated group when SDS-PAGE analysis was used.