บทคัดย่อ

ลดน้ำหนักโมเลกุลยางธรรมชาติในสภาวะน้ำยางโดยทำปฏิกิริยากับโพแทสเซียมเปอร์ซัลเฟตและโพ รพาแนล ที่ 60°C เป็นเวลา 40 ชั่วโมง แล้วเตรียมกราฟต์โคพอลิเมอร์ยางธรรมชาติกับมาลิอิกแอนไฮไครค์ หรือยางธรรมชาติมาลิเอต (โดยใช้ปริมาณมาลิอิกแอนไฮไดรด์ 10 phr) ในสภาวะหลอมที่อุณหภูมิ 145°C พบว่ายางธรรมชาติที่ลดน้ำหนักโมเลกุลมีปริมาณการเกาะติดของมาลิอิกแอนไฮไดรด์ที่สูงกว่ายางธรรมชาติไม่ ลดน้ำหนักโมเลกุล หลังจากนั้นนำยางธรรมชาติมาลิเอตผสมสารเคมีเพื่อเตรียมเป็นกาวที่ละลายในสารละลาย ผสมของ โทลูอื่น เอทิลอะซิเตท และเมทิลเอทิลคีโตน อัตราส่วน 1:1:1 โดยปริมาตร แล้วเตรียมไพรเมอร์โดยนำ bis-(triethoxysilylpropyl)tetrasulfide (BTET) และ bis-(trimethoxysilylpropyl)amine (BTMA) มาผสมกันด้วย 3:1 เตรียมชิ้นทคสอบโคยแช่แผ่นเหล็กในสารละลายกรคซัลฟิวริกผสม อัตราส่วน BTET:BTMA โพแทสเซียมไคโครเมตเพื่อกำจัดออกไซค์ที่ผิวของเหล็กหลังจากนั้นพ่นทราย ล้างค้วยโทลูอื่นแล้วทำให้แห้ง ทาไพรเมอร์ปล่อยให้แห้งแล้วทากาวยางธรรมชาติมาลิเอตทับ แล้วนำคอมปาวค์ยางธรรมชาติมาติคกับแผ่น เหล็ก ขึ้นรูปด้วยการอัดเบ้า ที่ 160°C ความคัน 2000 psi ศึกษาผลของน้ำหนัก โมเลกุลของยางธรรมชาติ ปริมาณสารเพิ่มการยึดติด และเมทิลีนไดไอโซไซยาเนต ต่อความสามารถในการประสานของกาว พบว่ายาง ธรรมชาติมาลิเอตที่ลดน้ำหนักโมเลกุล การเพิ่มปริมาณคิวมาโรนอินดีนเรซิน และเมทิลีนไดไอโซไซยาเนต ทำให้ความแข็งแรงในการติดประสานเพิ่มขึ้น นอกจากนี้พบว่าสมบัติการยึดติดของกาวยางธรรมชาติมาถิเอตมี ความแข็งแรงในการติดประสานที่สูงกว่าการใช้กาว Chemlok 252X หลังจากนั้นเตรียมลูกยางดึงอวนเรือที่ใช้ กาวยางธรรมชาติมาลิเอตและกาว Chemlok 252X นำไปทดลองใช้งานจริงในการลากดึงอวนเรือเป็นเวลา ประมาณ 3 เคือน พบว่ากาวทั้ง 3 ชนิค สามารถใช้งานได้ดีในการถากดึงอวนเรือประมงของเรือประมงขนาด ใหญ่

คำสำคัญ: ยางธรรมชาติมาลิเอต ลูกยางคึงอวนเรือ ไพรเมอร์ กาวยาง

Abstract

Reduction of NR molecular weight in latex state was first performed by reacting with potassium persulfate and propanal at 60°C for 40 hr. Graft copolymerization of natural rubber and maleic anhydride (i.e., maleated natural rubber, MNR) with 10 phr of maleic anhydride was then performed in a molten state at 145°C. It was found that higher grafted content was observed in the low molecular weight NR compared with the unmodified one. The MNR was then formulated into the adhesive which thereafter dissolved in mixed solvents of 1:1:1 toluene:ethyl acetate:methyl ethyl ketone. Furthermore, primer based on bis-(triethoxysilylpropyl)tetrasulfide (BTET) and bis-(trimethoxysilylpropyl)amine (BTMA) with the volume ratio of BTET: BTMA = 3:1 was also prepared. Steel substrate was prepared by cleaning and soaking in the solution mixture of sulfuric acid and potassium dichromate. Sand blasting was then performed on the surface and then final washed by dipping in toluene and eventually dry. Thin layer of the primer was then applied and dried and thereafter the layer of the MNR adhesive was applied. The natural rubber compound was then applied to bond with the steel substrate by compressed molding at 160°C and 2000 psi. Influence of molecular weight, concentration tackifier and methylene diisocyanate on adhesion strength of rubber-to-steel was then investigated. It was found that MNR prepared from NR with lower molecular weight to gather with higher concentration of Coumarone indene resin and methylene diisocyanate caused increasing of adhesion strength of rubber-to-steel. Adhesion properties of MNR adhesive with primer (i.e., a mixture of BTET and BTMA) and Chemlok252X adhesive were compared and it was found that the MNR adhesive exhibited higher adhesion strength. Then, the rubber reals for trawl nets based on MNR (based modified and unmodified NR) and Chemlok 252X were then prepared and applied in the field test for approximately 3 months. It was found that all types of adhesive could be practically used in the real of trawl net of the large fishing boat.

Keyword: Maleated natural rubber, Rubber real for Trawl Nets, Primer, Rubber adhesive