บทคัดย่อ

งานวิจัยนี้ได้พัฒนาและประยุกต์ใช้แบบจำลองเครือข่ายประสาทเทียม (Artificial Neural ร่วมกับเจเนติกอัลกอริทึมแบบหลายวัตถุประสงค์ (Multi-Objective ANN) Genetic MOGA) ในการวิเคราะห์หาตำแหน่งทางเข้าและช่องระบายอากาศที่เหมาะสมภายใน Algorithm, แม่พิมพ์ฉีดขึ้นรูปผลิตภัณฑ์ยาง โดยใช้ผลการวิเคราะห์จากคอมพิวเตอร์ช่วยวิเคราะห์ทางวิศวกรรม (Computer-Aided Engineering, CAE) ในการสร้างฟังก์ชันวัตถุประสงค์ ซึ่งจากผลการพิจารณารูปแบบ การใหล (Flow pattern) และตำแหน่งรอยประสาน (Weld line location) ของแบบจำลอง 2D 2.5D และ 3D เมื่อเปรียบเทียบกับผลการทดสอบฉีดขึ้นรูปจริง พบว่า แบบจำลอง 2.5D มีความเหมาะสมต่อการ นำไปใช้วิเคราะห์การไหลสำหรับชิ้นงานผนังบาง เนื่องจากมีรูปแบบการไหลที่สอดคล้องกับการทดสอบ ฉีดจริงมากที่สุด โดยในกรณีศึกษาที่ 1 ได้ศึกษาชิ้นงานกรอบหน้าจอของคอมพิวเตอร์แบบพกพา ที่มี 4 ทางเข้า ซึ่งกำหนดค่าแรงดันฉีดและค่าเบี่ยงเบนมาตรฐานของแรงดันฉีดในแต่ละทางเข้าเป็นฟั้งก์ชัน วัตถุประสงค์ จากผลการทดสอบแสดงให้เห็นว่า การใช้แบบจำลองเครือข่ายประสาทเทียมร่วมกับเจ เนติกอัลกอริทึมแบบหลายวัตถุประสงค์ สามารถทำนายตำแหน่งทางเข้าและช่องระบายอากาศที่มีความ เหมาะสมที่สุดได้ โดยมีความแม่นยำเฉลี่ย 97.12% สำหรับกรณีศึกษาที่ 2 ผู้วิจัยได้พัฒนาแนวทางการ ลดจำนวนของข้อมูลในการฝึกสอน โดยใช้ชิ้นงานที่มี 1 ทางเข้า ซึ่งใช้ค่าแรงดันฉีดและตำแหน่งรอย ประสานเป็นฟังก์ชันวัตถุประสงค์ พบว่า แนวทางที่พัฒนาขึ้นมีความแม่นยำเฉลี่ย 99.39% และใน กรณีศึกษาที่ 3 ผู้วิจัยได้กำหนดเงื่อนไขให้สามารถเพิ่มจำนวนทางเข้าในกรณีที่แรงดันฉีดมีค่าสูงเกิน กว่าที่กำหนด โดยใช้ชิ้นงานที่มี 2 ทางเข้า และใช้ฟังก์ชันวัตถุประสงค์เช่นเดียวกับกรณีศึกษาที่ 2 ใน กรณีศึกษานี้ผู้วิจัยได้ประยุกต์ใช้ระเบียบวิธีแบ่งครึ่งช่วง (Bi-section method) สำหรับการกำหนด ตำแหน่งรอยประสาน เพื่อลดเวลาในการกำหนดตำแหน่งทางเข้าที่เหมาะสม พบว่า แนวทางที่พัฒนาขึ้น สามารถทำนายค่าแรงดันฉีดและตำแหน่งรอยประสานมีความแม่นยำเฉลี่ย 86.39% และนอกจากนี้ ผู้วิจัยได้นำผลการทดสอบของกรณีศึกษาที่ 2 ไปเปรียบเทียบกับผลการทดสอบฉีดขึ้นรูปจริง ซึ่งพบว่า ผลที่ได้มีความสอดคล้องกับการทดสอบฉีดจริง ดังนั้นแนวทางที่ได้จากงานวิจัยจึงสามารถนำไปใช้ใน การกำหนดตำแหน่งและจำนวนของทางเข้าและช่องระบายอากาศได้อย่างมีประสิทธิภาพ เพื่อลดปัญหา รอยประสานที่เกิดขึ้นบนชิ้นงาน

Abstract

In this work, the Artificial Neural Network (ANN) was developed and employed with Multi-Objective Genetic Algorithm (MOGA) in order to optimize the location of gate and air vent in rubber injection mold. The predicted results obtained from Computer Aided Engineering (CAE) program i.e. CADMOLD was utilized to construct the multi-functional objectives. The 2, 2.5, and 3D models was simulated and compared with those obtained from experiments regarding to flow pattern and weld line location. The flow pattern analysis obtained from thinwall moldings indicated that the 2.5D model was in agreement with the experimental result. For the case study 1, the front case of notebook computer, the number of gates used was 4 and the injection pressure and its standard deviations (SD) were specified as multi-functional objectives. The analytical results showed that the ANN incorporated with MOGA can be use for the prediction of gate and air vent locations with the accuracy of 97.12%. For the case study 2, the injection pressure and weld line location were employed as multi-functional objectives and the number of gate used was reduced to 1 gate. The accuracy for the developed model was 99.39%. For the case study 3, the model was developed by using the bi-section method in order to reduce the time consuming during the optimization for weld line location and that can also increased the number of gate used when the maximum injection pressure was reached. It was found that the developed model can predicted the occurred injection pressure and weld line position with the accuracy of 86.39%. In addition, it can also be seen that the predicted results obtained in the case study 2 were in good agreement with those from existing experimental results. Therefore, it can be concluded that the developed model can be employed as a valuable tool for the optimization of the number and location of gate and air vent in order to avoid the weld line problem in rubber injection mold.