

รายงานวิจัยฉบับสมบูรณ์

โครงการค้นหาและพัฒนาสารสนเทศของถนนโบราณ สมัยพระเจ้าชัยวรมันที่ 7 ระยะที่ 2

Living Angkor Road Project Phase II

โดย
พ.อ. ผศ. คร. สุรัตน์ เลิศล้ำ
ผศ. คร. ปานใจ ธารทัศนวงศ์
และคณะ

ชันวาคม 2551

รายงานวิจัยฉบับสมบูรณ์

โครงการค้นหาและพัฒนาสารสนเทศของถนนโบราณ สมัยพระเจ้าชัยวรมันที่ 7 ระยะที่ 2

Living Angkor Road Phase II

คณะผู้วิจัย	สังกัด
1. พ.อ. ผศ. คร. สุรัตน์ เลิศล้ำ	โรงเรียนนายร้อยพระจุลจอมเกล้
2. ผศ. คร. ปานใจ ธารทัศนวงศ์	มหาวิทยาลัยศิลปากร
3. รศ. สุรพล นาถะพินธุ	มหาวิทยาลัยศิลปากร
4. ผศ. คร. วรวุฒิ โลหะวิจารณ์	มหาวิทยาลัยสงขลานครินทร์
5. นายพงศ์ธันว์ สำเภาเงิน	กรมศิลปากร
6. Mr. IM Sokrithy	APSARA Authority

และคณะ

ชุดโครงการระบบสนับสนุนการตัดสินใจ (DSS)

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทสรุปผู้บริหาร

โครงการค้นหาและพัฒนาสารสนเทศของถนนโบราณสมัยพระเจ้าชัยวรมันที่ 7 เป็น โครงการวิจัยในลักษณะสหวิทยาการที่ได้นำความรู้ทางโบราณคดี มานุษยวิทยา เทคโนโลยี ภูมิสารสนเทศ เทคโนโลยีธรณีฟิสิกส์ และเทคโนโลยีสารสนเทศมาประยุกต์ใช้ในการศึกษา เส้นทางโบราณจากเมืองพระนครถึงเมืองพิมาย เพื่อให้ได้มาซึ่งองค์ความรู้เกี่ยวกับเส้นทางโบราณ ทั้งทางค้านกายภาพและทางภูมิสาสตร์ ข้อมูลทางโบราณคดี และของพื้นที่ตามแนวถนนโบราณ ซึ่งวิธีการในการศึกษาของโครงการนี้เป็นไปตามขั้นตอนคังนี้

- 1. ทำการศึกษา ทบทวน หัวข้อวิจัยที่เกี่ยวข้อง เพื่อพิจารณาว่าศาสตร์ใดที่สามารถนำมา ประยุกต์ใช้ในการวิจัยในครั้งนี้ และผลลัพธ์ที่คาดว่าจะได้จากการประยุกต์ศาสตร์นั้นๆ ในการวิจัย ครั้งนี้
 - 2. พัฒนาฐานข้อมูลเบื้องต้นเพื่อใช้ในการวางแผนในการสำรวจ
 - 3. คำเนินการสำรวจภาคสนาม
 - 4. ทำการตรวจสอบทางธรณีฟิสิกส์
 - 5. ทำการขุดค้นทางโบราณคดี
- 6. พัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์จากข้อมูลจากข้อมูลพื้นฐาน ข้อมูลจากการ สำรวจ และการศึกษาด้านต่างๆ เพื่อการวิเคราะห์ร่วมกัน
 - 7. ดำเนินการวิเคราะห์ร่วมกันโดยใช้ผลลัพธ์จากการวิเคราะห์ข้อมูลด้านต่างๆ
 - 8. พิสูจน์สมมติฐานเกี่ยวกับแนวถนนโบราณโดยใช้ผลลัพธ์จากการวิเคราะห์ร่วมกัน

ที่กล่าวมาข้างต้นเป็นขั้นตอนลำดับการดำเนินการของโครงการ การศึกษาในครั้งนี้ถือได้ว่า เป็นการนำสาสตร์ที่เกี่ยวข้องทุกแขนงวิชาที่เกี่ยวข้องมาใช้ในการศึกษาเส้นทางโบราณจากเมือง พระนครถึงเมืองพิมาย ทำให้เกิดการค้นพบองค์ความรู้ใหม่เกี่ยวกับเส้นทางโบราณสายนี้ เช่น จุดประสงค์ของการใช้งานของถนนสายนี้ในสมัยโบราณ สิ่งก่อสร้างที่ถูกสร้างขึ้นตามแนวถนนโบราณ ชุมชนโบราณ ชุมชนปัจจุบันที่มีความสัมพันธ์กับถนนโบราณ ซึ่งองค์ความรู้เหล่านี้ สามารถนำไปขยายการศึกษาในด้านต่างๆ ที่เกี่ยวข้อง เช่น การศึกษาเกี่ยวกับโลหะกรรม การผลิต สังคโลกโบราณ และการศึกษาทางชาติพันธุ์ของกลุ่มชนส่วย เป็นต้น

ข้อมูลที่ได้พัฒนาขึ้นมาจากโครงการนี้ สามารถนำไปใช้ในการศึกษาในด้านต่างๆ เช่น ข้อมูล สารสนเทศภูมิศาสตร์ของโครงการสามารถนำไปใช้ในการศึกษาในด้านการวางแผนการใช้ที่ดิน การเกษตร สิ่งแวคล้อม เป็นต้น ข้อมูลทางโบราณคดี และมานุษยวิทยาสามารถนำไปใช้ใน การศึกษาทางสังคมวิทยา และข้อมูลทั้งหมดยังสามารถนำไปใช้ประโยชน์ในการพัฒนาการ ท่องเที่ยวได้เป็นอย่างดี

กิตติกรรมประกาศ

โครงการวิจัยเรื่อง "ค้นหาและพัฒนาสารสนเทศของราชมรรคาสมัยพระเจ้าชัยวรมันที่ 7 ระยะที่สอง (LIVING ANGKOR ROAD PHASE 2)" สำเร็จลุล่วงได้นั้น ขอขอบคุณสำนักงาน กองทุนสนับสนุนการวิจัย (สกว.) ที่ได้ให้การสนับสนุนทุนการทำวิจัยอย่างต่อเนื่อง

ขอขอบคุณคณะทำงานในพื้นที่ อันประกอบด้วย กองร้อยทหารพรานที่ 2607 คุณสุรวุฒิ อภัยจิตต์ คุณสุรพงษ์ พิราวุธ อดีตศึกษาธิการอำเภอบ้านกรวด คุณครูสุรพล เทวัญรัมย์ คุณครู โรงเรียนบ้านกรวดวิทยาคม และขอขอบคุณเจ้าหน้าที่สำนักงานศิลปากรที่ 12 พิมาย เจ้าหน้าที่ อุทยานประวัติศาสตร์พนมรุ้ง องค์การบริหารส่วนตำบลบ้านกรวด อำเภอบ้านกรวด จังหวัดบุรีรัมย์ ที่ได้อำนวยความสะดวกในการดำเนินการขุดค้นทางโบราณคดีและการจัดกิจกรรมที่สืบเนื่องที่บ้าน เขาดินใต้ ตำบลบ้านกรวด อำเภอบ้านกรวด จังหวัดบุรีรัมย์

ขอขอบคุณสมาคมวัฒนธรรมไทย-กัมพูชา ศาสตราจารย์กาญจนา กาญจนสุต สถาบัน เทคโนโลยีแห่งเอเชีย กรมทหารพรานที่ 26 องค์การโทรศัพท์แห่งประเทศไทย ที่ให้การสนับสนุน ในการจัดกิจกรรมที่สืบเนื่องของโครงการ

สุดท้ายนี้คณะวิจัยขอขอบคุณสถาบันและหน่วยงานของบุคคลากรในโครงการที่ได้ให้การ สนับสนุนและความร่วมมือเป็นอย่างคือนกระทั่งโครงการวิจัยนี้สำเร็จลุล่วงได้ด้วยคื

> พ.อ. ผศ. ดร. สุรัตน์ เลิศล้ำ ผศ. ดร. ปานใจ ธารทัศนวงศ์ หัวหบ้าโดรงการวิจัย

รหัสโครงการ: RDG5000003

ชื่อโครงการ: โครงการค้นหาและพัฒนาสารสนเทศของถนนโบราณสมัยพระเจ้าชัยวรมัน

ระยะที่ 2

Investigators: สุรัตน์ เลิสล้ำ , ปานใจ ชารทัศนวงศ์ , สุรพล นาถะพินชุ , วรวุฒิ โลหะ

วิจารณ์ 3 , พงศ์ธันว์ สำเภาเงิน 4 , IM Sokrithy 5

1โรงเรียนนายร้อยพระจุลจอมเกล้า

²มหาวิทยาลัยศิลปากร

³มหาวิทยาลัยสงขลานครินทร์

⁴กรมศิลปากร

⁵APSARA Authority

E-mail Address: surat@ait.ac.th

Project Duration: 1 เมษายน 2550 – 30 กันยายน 2551

สืบเนื่องจากโครงการ "การค้นหาและพัฒนาสารสนเทศของถนนโบราณสมัยพระเจ้า ชัยวรมันที่ 7" ซึ่งเป็นโครงการวิจัยในลักษณะสหวิทยาการที่ได้นำความรู้ทางโบราณคดี มานุษยวิทยา เทคโนโลยีภูมิสารสนเทศ เทคโนโลยีธรณีฟิสิกส์ และเทคโนโลยีสารสนเทศมา ประยุกต์ใช้ในการศึกษาเส้นทางโบราณจากเมืองพระนครถึงเมืองพิมาย เพื่อให้ได้มาซึ่งองค์ความรู้ เกี่ยวกับเส้นทางโบราณทั้งทางด้านกายภาพและทางภูมิศาสตร์ ข้อมูลทางโบราณคดีของพื้นที่ตาม แนวถนนโบราณ โดยความร่วมมือของคณะนักวิจัยจาก โรงเรียนนายร้อยพระจุลจอมเกล้า มหาวิทยาลัยศิลปากร กรมศิลปากร มหาวิทยาลัยสงขลานครินทร์ และองค์กร APSARA ประเทศ กัมพูชา

การศึกษาจากโครงการดังกล่าวถือได้ว่าเป็นการนำศาสตร์หลากหลายแขนงวิชาซึ่งมีความ เกี่ยวข้องกันมาใช้ในการศึกษาเส้นทางโบราณจากเมืองพระนครถึงเมืองพิมายในลักษณะการศึกษา แบบสหวิทยาการ เป็นผลทำให้ค้นพบองค์ความรู้ใหม่เกี่ยวกับเส้นทางโบราณสายนี้ เช่น การทราบ ถึงวัตถุประสงค์ของการใช้งานของถนนสายนี้ในสมัยโบราณ สิ่งก่อสร้างที่ถูกสร้างขึ้นตามแนว ถนนโบราณ ชุมชนโบราณ ชุมชนปัจจุบันที่มีความสัมพันธ์กับถนนโบราณ ซึ่งองค์ความรู้เหล่านี้ สามารถนำไปขยายการศึกษาในด้านต่างๆ ที่เกี่ยวข้อง เช่น การศึกษาเกี่ยวกับโลหะกรรม การผลิต สังคโลกโบราณ และการศึกษาทางชาติพันธุ์วิทยาของกลุ่มชนส่วย (กูย) เป็นต้น

ข้อมูลที่ถูกพัฒนามาจากโครงการดังกล่าว สามารถนำไปใช้ศึกษาในด้านต่างๆ ได้อย่าง หลากหลาย เช่น ข้อมูลภูมิสารสนเทศของโครงการสามารถนำไปใช้ในการศึกษาด้านการวาง

- 1. ธรรมศาลาหรืออัคนีศาลาสองหลังในประเทศกัมพูชาที่สูญหายไปในประวัติศาสตร์
- 2. สะพานศิลาแลงตลอดแนวถนนโบราณในฝั่งประเทศกัมพูชา
- 3. แหล่งอุตสาหกรรมโบราณตามแนวถนนโบราณทั้งในประเทศไทยและประเทศกัมพูชา
- 4. แหล่งชุมชนโบราณตามแนวถนนโบราณทั้งในประเทศไทยและประเทศกัมพูชา

นอกจากนี้โครงการคังกล่าวยังนำข้อมูลที่ได้จากการวิจัยทั้งหมดมาพัฒนาในระบบแม่ข่าย สารสนเทส เพื่อให้การเข้าถึงข้อมูลวิจัยของโครงการเป็นไปได้โดยสะควก โดยสามารถค้นหาข้อมูลได้จากเว็บไซต์ http://larp.crma.ac.th และ http://larp.su.ac.th นอกจากนี้ยังได้มีการพัฒนาระบบจำลองภาพสามมิติของธรรมศาลา อโรคยาศาลา และสะพานโบราณตามแนวถนนโบราณเพื่อใช้ในการจำลองให้เห็นมุมมองของชีวิตของชุมชนในอดีต และเพื่อใช้เป็นส่วนหนึ่งในการเผยแพร่กวามรู้จากโครงการสู่เยาวชน ซึ่งสมากมวัฒนธรรมไทย-กัมพูชาได้เล็งเห็นความสำคัญของผลการวิจัยของโครงการดังกล่าวจึงได้ให้การสนับสนุนงบประมาณเพื่อขยายการดำเนินการวิจัยในชื่อ "โครงการสืบสานวัฒนธรรมไทย-กัมพูชา" เพื่อนำผลการวิจัยเกี่ยวกับถนนโบราณจากเมืองพระนครถึงเมืองพิมายมาใช้ในการพัฒนาความสัมพันธ์ของชุมชนตามแนวชายแดนโดยการนำองค์ความรู้ที่ได้จากการวิจัยมาใช้เป็นแกนในการพัฒนากวามสัมพันธ์ของชุมชนตามแนวชายแดนโดยการนำองค์ความรู้ที่ได้จากการวิจัยมาใช้เป็นแกนในการพัฒนากวามสัมพันธ์ของชุมชนตามแนวชายแดนโดยการนำองค์ความรู้ที่ได้จากการวิจัยมาใช้เป็นจำหวัดบุรีรัมย์และจังหวัดสุรินทร์ กับพื้นที่จังหวัดอุครมิชัยประเทศโดยเฉพาะอย่างยิ่งพื้นที่ชายแดนในจังหวัดบุรีรัมย์และจังหวัดสุรินทร์ กับพื้นที่จังหวัดอุครมิชัย ประเทศกัมพูชา ซึ่งการทำให้ชุมชนเกิดกวามรัก ความหวงแหนต่อผืนแผ่นดินและแหล่งโบราณกดีในพื้นที่ที่ตนแองเป็นเจ้าของ ซึ่งเป็นสิ่งที่จำเป็นอย่างมาก

การดำเนินการวิจัยโครงการดังกล่าว ในระยะที่สอง ซึ่งสิ้นสุดการดำเนินการในวันที่ 30 กันยายน 2551 เป็นการศึกษารายละเอียดของแหล่งชุมชนโบราณ แหล่งอุตสาหกรรมโบราณตาม แนวถนนโบราณ ซึ่งข้อมูลที่ได้รับสามารถจะนำมาประยุกต์ใช้ในการพัฒนาการท่องเที่ยวเชิง อนุรักษ์ของชุมชนท้องถิ่นในพื้นที่ได้เป็นอย่างดี เช่น แหล่งโลหะกรรมในเขตบ้านเขาดินใต้ อำเภอ บ้านกรวด จังหวัดบุรีรัมย์ โดยมีผลของการวิจัยสามารถสรุปโดยสังเขปได้ดังนี้

- 1. ดำเนินการศึกษาแหล่งอุตสาหกรรมและชุมชนโบราณ บริเวณอำเภอบ้านกรวด จังหวัด บุรีรัมย์ และแหล่งโบราณคดีตามแนวถนนโบราณ โดยเป็นการดำเนินการในลักษณะสหวิทยาการ เป็นการประสานศาสตร์ต่างๆ ที่เกี่ยวข้องซึ่งสามารถนำมาประยุกต์ใช้ร่วมกัน ได้แก่ เทคโนโลยี remote sensing/GIS โบราณคดี และธรณีฟิสิกส์ ซึ่งองค์ความรู้ที่ได้รับจากการศึกษานี้สามารถ นำไปประยุกต์ใช้ศึกษาในพื้นที่อื่นๆ ได้เป็นอย่างดี ในการดำเนินการศึกษาครั้งนี้ทำให้เราได้ทราบ ถึงหลักการของคนโบราณในการเลือกพื้นที่เพื่อการอุตสาหกรรมและเพื่อการอยู่อาศัยตั้งถิ่นฐาน
- 2. ดำเนินการศึกษากลุ่มของแหล่งโบราณกดีที่สำคัญตามแนวถนนโบราณในประเทศ กัมพูชา บริเวณหมู่บ้าน Kol Village จังหวัดเสียมเรียบ ซึ่งเป็นแหล่งชุมชนโบราณขนาดใหญ่ตาม แนวถนนโบราณ โดยดำเนินการศึกษาในด้านต่างๆ อย่างละเอียด เช่น การศึกษา cross section ของ แนวถนนโบราณ การศึกษาสะพานโบราณจากการขุดค้นทางโบราณกดีและจากการวิเคราะห์ ทางค้านวิสวกรรม การศึกษาผังเมืองโบราณจากภาพถ่ายทางอากาส และการสำรวจภาคพื้นใน บริเวณดังกล่าว ทำให้ทราบถึงหลักการตั้งถิ่นฐานของชุมชนโบราณตั้งแต่ระยะเริ่มแรกก่อนสมัย ขอมโบราณเป็นเวลานาน ซึ่งยังไม่เคยมีการศึกษาพื้นที่ดังกล่าวมาก่อนตั้งแต่อดีตจนถึงปัจจุบัน และ ข้อมูลทั้งหมดได้ถูกนำมาพัฒนาเป็นฐานข้อมูลสารสนเทสภูมิสาสตร์ ซึ่งในขั้นต่อไปโครงการจะ คำเนินการศึกษาเปรียบเทียบข้อมูลจากพื้นที่บริเวณหมู่บ้าน Kol Village กับบริเวณพื้นที่บริเวณเชิง เขาพนมรุ้ง ศึกษาอโรคยาสาลหนองบัวลาย ศึกษาธรรมสาลาบ้านบุ ปราสาทเมืองต่ำ จนถึงแหล่ง อุตสาหกรรมโบราณ อำเภอบ้านกรวด เนื่องจากทั้งสองพื้นที่ในประเทสกัมพูชาและประเทสไทยใน ปัจจุบันนี้มีความคล้ายคลึงกันในด้านของกลุ่มชนโบราณขนาดใหญ่ตามแนวถนนโบราณจากเมือง พระนครถึงเมืองพิมาย
- 3. ดำเนินการศึกษาและเก็บข้อมูลทางวัฒนธรรมโดยได้ดำเนินการศึกษาในเชิงลึกเกี่ยวกับ ชุมชนส่วย (กูย) ในประเทศกัมพูชาและประเทศไทย ซึ่งยังคงมีความสัมพันธ์กันระหว่างชุมชนของ ทั้งสองกลุ่ม อันแสดงให้เห็นถึงความสัมพันธ์ของชุมชนตั้งแต่อดีตจนถึงปัจจุบัน

ผลจากการวิจัยและการพัฒนาระบบข้อมูลอย่างมหาศาลเท่าที่เทคโนโลยีในโลกปัจจุบัน สามารถอำนวยได้นั้น ทำให้เห็นได้ว่ากิจกรรมทางวัฒนธรรมในช่วงสมัยวัฒนธรรมเขมรโบราณได้ แผ่ครอบคลุมอาณาบริเวณที่กว้างขวางและเป็นไปอย่างเข้มข้น ดังปรากฏร่องรอยสิ่งก่อสร้างและ แหล่งผลิตอย่างหนาแน่น ซึ่งการใช้ระเบียบวิธีการวิจัยทางโบราณคดี และมานุษยวิทยาวัฒนธรรม สามารถให้ความกระจ่างถึงภาพวิถีชีวิตในอดีตและร่องรอยของกลุ่มชาติพันธุ์ที่ยังคงสืบทอดคติ ความเชื่อดั้งเดิมอยู่จนถึงปัจจุบัน เช่น วิถีชีวิตของชาวกูย นอกจากนั้นยังแสดงให้เห็นเครือข่ายการ ติดต่อแลกเปลี่ยนทั้งทรัพยากร ผลผลิต แรงงาน คติความเชื่อทางศาสนา จนถึงอำนาจทางการเมือง ในระบบรัฐหรืออาณาจักร การขยายเครือข่ายดังกล่าวนี้มีความเป็นไปได้ว่ามีเหตุผลสำคัญประการ

คำหลัก: โบราณคดี, ฐานข้อมูลทางวัฒนธรรม, สหวิทยาการ, เทคโนโลยีสื่อระยะใกล, ราชมรรคา จากเมืองพระนครถึงเมืองพิมาย Project Code: RDG50O0003

Project Title: The identification of historic roadway and human settlement of Khmer

empire and the development of historical, archaeological and cultural

multi-media database Phrase II

Investigators: Surat, L. ¹, Panjai, T. ², Surapol, N. ², Warawutti, L. ³, Pongdhan S. ⁴, Im, S. ⁵

Department of Mathematics and Computer Science, Chulachomklao

Royal Military Academy, Nakon-Nayok, Thailand

²Department of Computer, Faculty of Science, Silpakorn University,

Nakorn Pathom, Thailand

³Department of Physics, Faculty of Science, Prince of Songkla

University, Songkhla, Thailand

⁴The Fine Arts Department, Bangkok, Thailand

⁵APSARA Authority, Siem Reap, Cambodia

E-mail Address: surat@ait.ac.th

Project Duration: 1 April 2007 – 30 September 2008

Currently, there are research studies that demonstrate the usage of integrated technologies for archaeological studies that made new discoveries around the world. In addition, Geo-informatics technology is utilized in the cultural heritage conservation, reservation, management, and research studies in various cases. For example, remote sensing and GIS was utilized as tools for archaeological analysis together with conventional archaeological analysis methods. There are various cases around the world that remote sensing and GIS was used to assist archaeologists to pin point and help to identify archaeological sites. For example, the discovery of the city of Ubar in Sahara desert from the analysis of remote sensing data, ground data and field survey data, or the case of missing China wall that was buried under the ground by analyzing SIR C radar data from space shuttle. From the study of these samples, we had come up with the concept of integrated studies for archaeological study in Thailand and nearby countries. In this project, the archaeological knowledge, anthropological knowledge together with geo-informatics technology, information technology, and geo-physic technology were utilized for the study to identify and pin point the ancient road from Angkor to Phimai that was mentioned in the inscription by the Jayavarman VII, the great king of Cambodia. From archaeological and

historical studies, we had learnt that during his period, the Khmer empire was expanded to cover most of the area of the Southeast Asia.

In this project, we study the detailed of this ancient road, its utilization, the people who lived and used this ancient road, the ancient industries along this ancient road, and the culture that had disappeared, and the one that has been continue to flourish along the royal road until today. The most advance technologies were applied in the field of remote sensing, GIS, archaeology, anthropology, geo-physics. The information systems were developed to gather all information from this study for the scholars to use. In addition, the data that was developed from this project can be further utilized by the other related works in the fields of land cultural management, tourism, etc.

From the studies of this research project, we had discovered evident about the ancient road along this ancient road. The most important items are as follow:

- 1. Two missing Dharmashalas (chapel of rest house)
- 2. Ancient laterite bridges along the ancient road in Cambodia side
- 3. Ancient industry sites along the ancient road in Cambodia and
- 4. Ancient communities along the ancient road in Cambodia and Thailand sides

We had also developed the information servers (larp.crma.ac.th and larp.su.ac.th) to contain all the information from this research project that any scholars can access the information from our research projects. In addition, we had developed 3D models of Dharmashala (chapel of rest house), Arogyashalas (chapel of hospitals), and ancient bridges that will be utilized in the simulation of ancient life along this ancient road. This simulation will be used as a learning tool for younger generation in the near future.

In the second phase of this project, we had studied the detail of ancient communities and ancient industry sites along the royal road, which the result can be utilized for eco-tourism purposes in the area along the royal road, especially, in the area at the border of Thailand and Cambodia. In summary, the results from the second phase of this study are as follow:

1. The multi-disciplinary study on the ancient communities and ancient industry sites along the royal road in Ban Krud, Burirum. Thailand, which results in the understanding of the ancient communities and ancient industries in the studied area.

ix

2. The study on group of ancient sites along the royal road in Cambodia side in Kol Village area, Siem Reap Province, Cambodia. This study is also in the form of multi-disciplinary

study, which includes the remote sensing/GIS, archaeological excavation, civil engineering

analysis, and anothopological study.

3. The detail cultural study on Kuy communities in Cambodia and Thailand.

Keywords: Archaeology, Cultural Database, Multi-disciplinary, Remote Sensing/GIS, Royal

Road from Angkor to Phimai

สารบัญ

	หน้า
บทสรุปผู้	ุ้ บริหารi
กิตติกรร	มประกาศii
บทคัดย่อ)iii
Abstract	vii
สารบัญ .	X
	ารางxiii
	ປxv
บทที่ 1	บทนำ1
	1.1 ภูมิหลังทางประวัติศาสตร์1
	1.2 วัตถุประสงค์ของโครงการ
	1.3 ขอบเขตของโครงการ
	1.4 แผนงานสังเขปตามระยะเวลา
บทที่ 2	การค้นคว้าและวิธีการทางค้าน Remote Sensing และ GIS17
	2.1 จุดประสงค์
	2.2 แผนงาน/กิจกรรม
บทที่ 3	การค้นคว้าและวิธีการทางโบราณคดี
	3.1 แผนงาน
	3.2 การศึกษาและตรวจสอบสมมุติฐานโครงข่ายถนนสายย่อยที่อาจมีขึ้น
	เพื่อเชื่อมโยงแหล่งอุตสาหกรรมสมัยโบราณและศึกษา
	ความสัมพันธ์ระหว่างถนนกับแหล่งชุมชนโบราณที่ปรากฏ
	ศาสนสถาน62

สารบัญ (ต่อ)

	หน้า
	3.3 การศึกษาองค์ประกอบทางเคมี และองค์ประกอบทาง
	กายภาพของภาชนะดินเผาในวัฒนธรรมเขมรโบราณ64
	3.4 การศึกษาการกระจายตัวและเทคโนโลยีการถลุงโลหะ
	ของแหล่งผลิตโลหะตามแนวเส้นทางโบราณและปริมณฑล113
บทที่ 4	การค้นคว้าและวิธีการทางค้านธรณีฟิสิกส์184
	4.1 การค้นคว้าและวิธีการทางด้านธรณีฟิสิกส์บริเวณ
	แหล่งถลุงเหล็กโบราณ บ้านเขาดินใต้
	อำเภอบ้านกรวด จังหวัดบุรีรัมย์184
	4.2 การศึกษาธรณีฟิสิกส์ของจังหวัดบุรีรัมย์
บทที่ 5	การพัฒนาสารสนเทศและสารคดีเพื่อการศึกษา203
	5.1 บทนำ
	5.2 ความรู้เบื้องต้น
	5.3 แผนการดำเนินงาน
	5.4 ผลการดำเนินงาน216
	5.5 สรุป217
บทที่ 6	รายงานการวิจัยจากที่มวิจัยกัมพูชา218
	6.1 Introduction
	6.2 Cultural Study
	6.3 Archaeological Survey
	6.4 Ceramic Study
	6.5 Prehistoric Study
	6.6 Initiate Archaeological Database
	6.7 Application of Remote Sensing and GIS 276

สารบัญ (ต่อ)

		หน้า
	6.8 Communication	. 292
	6.9 Field Research to Thailand	. 293
	6.10 Reporter Trip	. 294
	6.11 General Conclusion	. 295
บทที่ 7	การวิเคราะห์ในลักษณะสหวิทยาการ	. 296
	7.1 บทนำ	. 296
	7.2 วิธีการคำเนินการ	. 296
	7.3 กรณีศึกษา	. 297
	7.4 สรุป	. 303
บทที่ 8	บทสรุป	. 304
บรรณานุก	ารม	.306
ภาคผนวก	n	.314
ภาคผนวก	n	.315
ภาคผนวก	ข	.326
ภาคผนวก	ค	.338
ภาคผนวก	3	. 342
APPEND	IX E	. 349

สารบัญตาราง

	หน้า
ตารางที่ 3-1	แสดงแผนการดำเนินงาน 29
ตารางที่ 3-2	แสดงการจำแนกประเภทแหล่งโบราณคดี
ตารางที่ 3-3	แสดงข้อมูลแหล่งโลหะกรรม41
ตารางที่ 3-4	แสดงข้อมูลของกลุ่มแหล่งโลหะกรรม
ตารางที่ 3-5	แสดงการกระจายของกลุ่มแหล่ง โลหะกรรมในเขตพื้นที่
	ลำห้วยเพื่อใช้ประกอบกับตำแหน่งกลุ่มแหล่งโลหะกรรม52
ตารางที่ 3-6	แสดงจำนวนแหล่งโลหะกรรมที่พบในเขตลำห้วย53
ตารางที่ 3-7	แสดงจำนวนแหล่งโลหะกรรมที่พบตามระดับชั้นความสูง53
ตารางที่ 3-8	แสดงค่าเฉลี่ยของระยะทางจากกลุ่มแหล่งโลหะกรรมถึงลำห้วย55
ตารางที่ 3-9	แสดงระยะทางจากเนินโลหะกรรมถึงที่พักคนเดินทาง (กม.)59
ตารางที่ 3-10	แสดงตารางสรุปลักษณะทางกายภาพของตัวอย่าง
ตารางที่ 3-11	ตารางสรุปปริมาณโบราณวัตถุประเภทตะกรัน
	จากการถลุงเหล็กที่พบในหลุมขุดค้นที่ 1
ตารางที่ 3-12	ตารางสรุปปริมาณโบราณวัตถุประเภทตะกรัน
	จากการถลุงเหล็กที่พบในหลุมขุดค้นที่ 2
ตารางที่ 3-13	ตารางรายละเอียดชิ้นส่วนเตาถลุงเหล็กเพื่อสร้างภาพขนาดเตาฯ
ตารางที่ 3-14	ค่าอายุ Carbon – 14 ของตัวอย่างถ่านพบในการขุคค้น
	แหล่งถลุงเหล็กสมัยโบราณบ้านเขาดินใต้
ตารางที่ 5-1	ตารางแสดงรายละเอียดฐานข้อมูลภาษาที่ใช้แสดง (Language)
ตารางที่ 5-2	ตารางแสดงรายละเอียดฐานข้อมูลประเทศ (Country)207
ตารางที่ 5-3	ตารางแสดงรายละเอียดฐานข้อมูลจังหวัด (Province)208
ตารางที่ 5-4	ตารางแสดงรายละเอียดฐานข้อมูลอำเภอ (District)208
ตารางที่ 5-5	ตารางแสดงรายละเอียดฐานข้อมูลตำบล (Commune)208
ตารางที่ 5-6	ตารางแสดงประเภทของข้อมูลวัฒนธรรม (CultureType)208
ตารางที่ 5-7	ตารางแสดงภาษาที่นำเสนอ (Culture)
ตารางที่ 5-8	ตารางแสดงข้อมูลภาพ (Filelist)
ตารางที่ 5-9	ตารางแสดงฐานข้อมูลวัฒนธรรมของประเทศกัมพูชา (cCulture)209
ตารางที่ 5-10	ตารางแสคงรายละเอียคฐานข้อมูลหมู่บ้าน (Village)

สารบัญตาราง (ต่อ)

	หน้า
ตารางที่ 5-11	ตารางแสดงรายละเอียดฐานข้อมูลหัวข้อข้อมูลการสำรวจ
	(Villagetype)
ตารางที่ 5-12	ตารางแสดงรายละเอียดฐานข้อมูลการสำรวจหมู่บ้าน
	(Village_survey)
ตารางที่ 5-13	ตารางแสคงรายละเอียดฐานข้อมูลรูปภาพจากการสำรวจ
	(Village_gallery)
ตารางที่ 5-14	ตารางแสดงฐานข้อมูลจากการสถานที่จากการสำรวจของหมู่บ้าน
	(vCulture)
ตารางที่ 5-15	ตารางแสดงฐานข้อมูลหมวดหมู่ในการจำแนกวิดีโอ (video_type)211
ตารางที่ 5-16	ตารางแสดงฐานข้อมูลการจัดเก็บไฟล์วีดีโอ (cvideo)212
ตารางที่ 1ง	แสดงเส้นทางเชื่อมต่อไปยังเมืองต่างๆ

สารบัญรูป

	หน้า
รูปที่ 2-1	ภาพแสดงแหล่งโบราณคดีตามแนวถนนโบราณในฝั่งประเทศไทย
รูปที่ 2-2	ภาพแสดงแหล่งโลหะกรรม และแหล่งเตาเผาเครื่องเคลือบโบราณ
	ตามแนวถนนโบราณ : ตำแหน่งแหล่งโลหะกรรม (จุควงกลมสีเหลือง)
	แหล่งเตาเผาเครื่องเคลือบโบราณ (จุดห้าเหลี่ยมสีแคง)
รูปที่ 2-3	ภาพถ่ายทางอากาศ พ.ศ. 2497 บริเวณอำเภอบ้านกรวด
	พร้อมตำแหน่งแหล่งโลหะกรรม
รูปที่ 2-4	ภาพถ่ายทางอากาศ พ.ศ. 2510 บริเวณอำเภอบ้านกรวด
	พร้อมตำแหน่งแหล่งโลหะกรรม21
รูปที่ 2-5	ภาพถ่ายทางอากาศ พ.ศ. 2542 บริเวณอำเภอบ้านกรวค
	พร้อมตำแหน่งแหล่งโลหะกรรมแสดงการขยายตัวของชุมชน21
รูปที่ 2-6	ตัวอย่างภาพถ่ายดาวเทียม ASTER Color Composite (2:3:1 : R:G:B)
	บริเวณอำเภอบ้านกรวด พร้อมด้วยตำแหน่งแหล่งโลหะกรรม
	(จุดวงกลมสีเหลือง) และแหล่งเตาเผาเครื่องเคลือบ โบราณ
	(จุดห้าเหลี่ยมสีแดง)
รูปที่ 2-7	ตัวอย่างผลจากการวิเคราะห์ข้อมูลทางธรณีวิทยาจาก ภาพถ่ายดาวเทียม
	ASTER บริเวณอำเภอบ้านกรวด (Channel 4/5 Index สีอ่อนถึงเข้ม
	หมายถึงมีส่วนประกอบของศิลาแลงสูงถึงต่ำ) พร้อมแสดงตำแหน่ง
	แหล่งโลหะกรรม (จุดวงกลมสีเหลือง) และแหล่งเตาเผาเครื่องเคลือบโบราณ
	(จุดห้าเหลี่ยมสีแดง)
รูปที่ 2-8	ตัวอย่างข้อมูลความสูงจาก SRTM บริเวณอำเภอบ้านกรวด
	(สีอ่อนถึงเข้มหมายถึงพื้นที่ที่มีความสูงมากถึงความสูงต่ำ)
	พร้อมแสดงตำแหน่งแหล่งโลหะกรรม (จุดวงกลมสีเหลือง)
	และแหล่งเตาเผาเครื่องเคลือบโบราณ (จุดห้าเหลี่ยมสีแดง)24
รูปที่ 2-9	ตัวอย่างการแสดงผลจากระบบแม่ง่าย larp.crma.ac.th

	หน้า
รูปที่ 2-10	ตัวอย่างการแสดงผลจากระบบ map server
	ผ่านระบบแม่ง่าย larp.crma.ac.th
รูปที่ 2-11	ตัวอย่างการแสดงผลผ่านระบบ NASA World Wind
รูปที่ 2-12	ตัวอย่างการแสดงผลผ่านระบบ NASA World Wind27
ฎปที่ 2-13	ตัวอย่างการแสดงผลจากระบบ Open layer27
รูปที่ 2-14	ตัวอย่างการแสดงผลจากระบบ Open layer
รูปที่ 2-15	ตัวอย่างการแสดงผลจากระบบ Open layer
รูปที่ 3-1	แสดงการแบ่งพื้นที่สำรวจ
รูปที่ 3-2	แสดงตำแหน่งแหล่งโบราณคดีในพื้นที่สำรวจ
รูปที่ 3-3	แสดงตำแหน่งแหล่งโบราณคดีในเขตอำเภอบ้านกรวด จังหวัดบุรีรัมย์33
รูปที่ 3-4	แผนที่แสดงพื้นที่สำรวจในเขตบ้านหัวสะพาน อำเภอชำนิ จังหวัดบุรีรัมย์ 34
รูปที่ 3-5	แสดงร่องรอยแนวเสาสะพาน และผู้ให้สัมภาษณ์
รูปที่ 3-6	แสดงตัวอย่างชั้นข้อมูลที่นำมาใช้ศึกษา41
รูปที่ 3-7	แสดงชิ้นส่วนกากแร่ และเนินโลหะกรรม ในเขตอำเภอบ้านกรวด
รูปที่ 3-8	แผนที่แสดงตำแหน่งกลุ่มแหล่งโลหะกรรม
รูปที่ 3-9	แผนที่แสดงตำแหน่งกลุ่มแหล่งโลหะกรรม
รูปที่ 3-10	แผนที่แสดงตำแหน่งกลุ่มแหล่งโลหะกรรม
รูปที่ 3-11	แผนที่แสดงตำแหน่งกลุ่มแหล่งโลหะกรรม ประกอบแผนที่ความสูง
รูปที่ 3-12	ภาพแสดงรูปแบบการกระจายตัวแบบเส้นตรง (ก)
	แบบสุ่ม (ข) และแบบวงกลม (ค) - (ง)
ฐปที่ 3-13	แผนที่แสดงความหนาแน่นของแหล่งโลหะกรรม
	ในเขตอำเภอบ้านกรวด จังหวัดบุรีรัมย์
ฐปที่ 3-14	แสดงแผนที่เปรียบเทียบตำแหน่งความหนาแน่นของแหล่งผลิตสองประเภท.56
	แผนที่แสดงความสัมพันธ์ของแหล่งโบราณคดี

หน้	1
รูปที่ 3-16 ภาพถ่ายคาวเทียมแสคงสภาพพื้นที่ปัจจุบัน	,
รูปที่ 3-17 ภาพถ่ายทางอากาศแสดงร่องรอยแนวถนนทางด้านตะวันตกของเมืองพิมาย 62	I
รูปที่ 3-18 แสคงแนวเส้นสมมุติของแนวถนนจากเมืองพิมายถึงปราสาทพนมวัน	
อ.เมือง จ.นครราชสีมา	j
รูปที่ 3-19 แสดงแนวกันดินที่ยังคงสภาพอยู่ในปัจจุบัน	j
รูปที่ 3-20แผนที่แสดงการกระจายตัวของแหล่งถลุงเหล็กและ	
แหล่งเตาผลิตเครื่องปั้นดินเผาสมัยโบราณ ในเขตอำเภอบ้านกรวด	,
รูปที่ 3-21 แสดงสภาพเนินดินที่ตั้งหลุมขุดค้นทางด้านทิศใต้	;
รูปที่ 3-22 แสดงสภาพของเนินดินด้านทิศตะวันตก118	;
รูปที่ 3-23 แสดงศาลตา-ยาย	;
รูปที่ 3-24 แผนผังแสดงเส้นชั้นความสูงและตำแหน่งหลุมขุดค้นที่ 1 และ 2)
รูปที่ 3-25 แสดงตำแหน่งจุดอ้างอิงหลัก)
รูปที่ 3-26 สภาพหลุมขุคค้นก่อนคำเนินการขุคค้นหลุมขุคค้นที่ 1 (ทิศเหนือ)	i
รูปที่ 3-27 สภาพหลุมขุคค้นก่อนคำเนินการขุคค้นหลุมขุคค้นที่ 1 (ทิศตะวันตก) 125	
รูปที่ 3-28 แสคงร่องรอยของคินเผาไฟในพื้นที่ NEQ ในระคับ 80 cm.dt	,
รูปที่ 3-29 แสดงสภาพหลุมขุดค้นก่อนคำเนินการขุดค้นหลุมขุดค้นที่ 2 (ทิศเหนือ) 137	,
รูปที่ 3-30 แสดงเตาถลุงเหล็กหมายเลข 1 หลุมขุดค้าที่ 1 ชั้นทับถมชั้นที่ 2	
(ระคับสมมติ 90-110 cm.dt.) กริค NEQ141	
รูปที่ 3-31 แสดงเตาถลุงเหล็กด้านทิศเหนือ	
รูปที่ 3-32 แสดงเตาถลุงเหล็กหมายเลข 2 หลุมขุดค้าที่ 1 ชั้นทับถมชั้นที่ 2	
(ระคับสมมติ 90-110 cm.dt.) กริค NEQ143	
รูปที่ 3-33 แสดงเตาถลุงเหล็กหมายเลข 3 หลุมขุดค้าที่ 1 ชั้นทับถมชั้นที่ 2	
(ระดับสบบติ 90-110 cm dt) กริด NEO	i

หน้า
รูปที่ 3-34 แสดงภาพถายเส้น และภาพถ่ายของเตาถลุงเหล็กหมายเลข 4
พร้อมภาพแนวตัดขวาง145
รูปที่ 3-35 แสดงภาพถายเส้นและภาพถ่ายบริเวณเตาถลุงเหล็ก
หมายเลข 4 และ 5 ก่อนขุดค้าขยายเพิ่มเติมไปทางทิศตะวันตก
รูปที่ 3-36 แสดงภาพถายเส้นและภาพถ่ายของเตาถลุงเหล็กหมายเลข 5
รูปที่ 3-37 แสดงภาพถายเส้นและภาพลายเส้นของเตาถลุงเหล็กหมายเลข 6
พร้อมภาพลายเส้นแนวตัดขวาง149
รูปที่ 3-38 แสดงภาพถายเส้นและภาพถ่ายของเตาถลุงเหล็กหมายเลข 7
พร้อมภาพลายเส้นตัดขวาง151
รูปที่ 3-39 แสดงภาพลายเส้น ภาพถ่าย และภาพลายเส้นแนวตัดขวางของ
เตาถลุงเหล็กหมายเลข 8
รูปที่ 3-40 แสดงภาพถายเส้นและภาพถ่ายของเตาถลุงเหล็กหมายเลข 9
พร้อมภาพลายเส้นตัดขวาง154
รูปที่ 3-41 แสดงภาพถายเส้นและภาพถ่ายของเตาถลุงเหล็กหมายเลข 10156
รูปที่ 3-42 ภาพถ่ายแสดงเตาหมายเลข 4, 5, 8, 9 และ 10176
รูปที่ 3-43 ภาพลายเส้นแสดงเตาที่พบในบริเวณหลุมขุดค้นที่ 1 NWQ ส่วนขยาย 176
รูปที่ 3-44 ภาพลายเส้นแสดงเตาถลุงภายในหลุมขุดค้น TP 1 NWQ ส่วนขยาย
พร้อมระคับสมมติ ที่พบ177
รูปที่ 3-45 ภาพถ่ายแสดงเตาหมายเลข 6 และ 7 ในบริเวณกริค SWQ
(หมายเลข 6) และ SEQ (หมายเลข 7)177
รูปที่ 3-46 ภาพลายเส้นแสดงเตาหมายเลข 6 และ 7 บริเวณกริค SWQ
และ SEO ของ TP1 178

	٩	าน้ำ
เรูปที่ 3-47	ลักษณะชั้นทับถมทางโบราณคดีที่ประกอบด้วยชั้นตะกรัน	
	จากการถลุงเหล็กสลับกับชั้นดินฉาบเป็นระดับพื้นที่	
	ทำกิจกรรมการถลุงเหล็ก	179
รูปที่ 4-1	ตำแหน่งของพื้นที่ศึกษาในแผนที่ภูมิประเทศ	189
รูปที่ 4-2	แผนที่ความสูงของพื้นที่ศึกษา	190
รูปที่ 4-3	การสำรวจสนามแม่เหล็กโลกในพื้นที่ศึกษา	190
ฐปที่ 4-4	การสำรวจเรดาร์หยั่งความลึกของชั้นดินในพื้นที่ศึกษา	191
รูปที่ 4-5	(ก) แผนที่ระดับความสูง และ (ข) แผนที่ค่าสนามแม่เหล็ก	
	ผิดปกติของพื้นที่ศึกษา	191
รูปที่ 4-6	(ก) ตำแหน่งและรูปทรงของวัตถุผิดปกติทางแม่เหล็ก	
	และค่าผิดปกติทางแม่เหล็กในแนววัด 07E (ข) แผนที่	
	สนามแม่เหล็กผิดปกติของพื้นที่ศึกษาและตำแหน่งของแนววัด 07E	192
รูปที่ 4-7	แผนภาพเรดาร์ของแนววัดที่ 09E, 10E, 11E และ 12E	
	พร้อมตำแหน่งและความลึกของบริเวณที่มีสัญญาณเรคาร์ผิดปกติ	
	(กรอบสี่เหลี่ยมสีแดง) ในบริเวณพื้นที่ศึกษา	192
รูปที่ 4-8	แผนภาพเรดาร์ของแนววัดที่ 13E, 14E, 15E และ 16E	
	พร้อมตำแหน่งและความลึกของบริเวณที่มีสัญญาณเรคาร์ผิดปกติ	
	(กรอบสี่เหลี่ยมสีแดง) ในบริเวณพื้นที่ศึกษา	193
รูปที่ 4-9	แผนภาพเรดาร์ของแนววัดที่ 17E, 18E, 19E และ 20E	
	พร้อมตำแหน่งและความลึกของบริเวณที่มีสัญญาณเรคาร์ผิดปกติ	
	(กรอบสี่เหลี่ยมสีแคง) ในบริเวณพื้นที่ศึกษา	193
รูปที่ 4-10	ตำแหน่งที่สัญญาณเรคาร์มีลักษณะผิดปกติ (แถบสีแคง) และบริเวณ	
	ที่มีสนามแม่เหล็กผิดปกติ (สี่เหลี่ยมสีน้ำเงิน) ในพื้นที่ศึกษา 1	194

		หน้า
รูปที่ 4-11	หลุมขุดค้นทางโบราณคดีหลุมที่ 1 (Tested pit 1) เปรียบเทียบกับ	
	ผลการสำรวจเรดาร์ในแนววัด 04E และ 05E ในพื้นที่ศึกษา	. 194
รูปที่ 4-12	หลุมขุดค้นทางโบราณคดีหลุมที่ 2 (Tested pit 2) เปรียบเทียบกับ	
	ผลการสำรวจเรดาร์ในแนววัด 06E 07E และ 08E ในพื้นที่ศึกษา	195
รูปที่ 4-13	ตำแหน่งของแหล่งหินบะซอลต์ในจังหวัดบุรีรัมย์	. 197
รูปที่ 4-14	แผนที่หน่วยหินของจังหวัดบุรีรัมย์	200
รูปที่ 4-15	(a) แผนที่ธรณีวิทยาของจังหวัดบุรีรัมย์และจังหวัดใกล้เคียง	
	และขอบเขตของบริเวณที่สนามแม่เหล็กผิดปกติมีก่าต่ำ	
	ซึ่งแทนด้วยวงปิดสีขาว (b) แผนที่สนามแม่เหล็กผิดปกติของพื้นที่ศึกษา	
	(c) แผนที่ธรณีวิทยาของจังหวัดบุรีรัมย์	201
รูปที่ 4-16	แสดงขอบเขตของบริเวณสนามแม่เหล็กผิดปกติ	
	(วงปิดสีฟ้าและสีน้ำเงิน) และตำแหน่งของหินบะซอลต์	202
รูปที่ 5-1	ภาพแสดงการทำงานของ Video Streaming Network	204
รูปที่ 5-2	หน้าเว็บเพจแสดงรายชื่อวิดีโอ	212
รูปที่ 5-3	ภาพเว็บเพจเมื่อเลือกหัวข้อ "Burirum I [17-18 October 2005]"	213
รูปที่ 5-4	ภาพแสดงวิดีโอบนหน้าเว็บเพจ	213
รูปที่ 5-5	แสดงระบบ e-Learning ของโครงการฯ ระยะที่ 1	214
รูปที่ 5-6	แสคงระบบ e-Learning ของโครงการฯ ระยะที่ 1 (ต่อ)	215
รูปที่ 5-7	แสดงระบบ e-Learning ของโครงการฯ ระยะที่ 1 ในส่วนของบทคัดย่อ	215
รูปที่ 6-1	Field Work Plan	. 221
รูปที่ 6-2	Kuy Damrei at Surin and Siem Reap	234
รูปที่ 6-3	Kuy Dek , Black Smith at Chomprak [A]	234
รูปที่ 6-3	Kuy Dek at Phnom Dek, Preah Vihear province [B]	234
ราใชี่ 6-4	Prayay Khael at Veal Veng Komnong Thom	235

	1	หน้า
ฐปที่ 6-5	Iron Tools Oblation at Kuy Veal Veng, Kompong Thom	235
รูปที่ 6-6	Passages through Dangrek	238
ฐปที่ 6-7	Ox-cart passage	239
ฐปที่ 6-8	Laterite Steps	239
ฐปที่ 6-9	Kol village_Cross-section Location	240
เรูปที่ 6-10	Cross-Section Pit	241
วูปที่ 6-11	Road structure profile	242
ฐปที่ 6-12	Road structure profile	242
รูปที่ 6-13	Road structure profile	242
เรูปที่ 6-14	Trace of Royal Road from Angkor to Phimai	248
รูปที่ 6-15	Spean Boran, Stone bridges Location	252
.รูปที่ 6-16	Archaeological map of Kol Village	253
.รูปที่ 6-17	South-east view from a tree	254
รูปที่ 6-18	View form North-east	254
รูปที่ 6-19	Ground plan, Current status	255
รูปที่ 6-20	View of retaining wall and wing wall	258
รูปที่ 6-21	West facade elevation view	258
รูปที่ 6-22	Southeastern Facade	259
รูปที่ 6-23	West facade profile	259
รูปที่ 6-24	bridge's head structure	259
รูปที่ 6-25	Compacted soil layers at bridge's head	259
รูปที่ 6-26	Reconstruction to its original structure	261
ฐปที่ 6-27	Reflection to the bridge in Use	261
ฐปที่ 6-28	Reflection on the axis of bridge and road	262
ฐปที่ 6-29	Bridge's head site	264

	หน้า
รูปที่ 6-30 Bridge's head site	264
รูปที่ 6-31 Wing wall site	264
รูปที่ 6-32 Wing wall site	264
รูปที่ 6-33 Archaeological sites	266
รูปที่ 6-34 Bas-relief at Bayon	267
รูปที่ 6-35 Archaeological Map_Kol village	269
รูปที่ 6-36 Water Structures	271
รูปที่ 6-37 Lotus flower	272
รูปที่ 6-38 Pyramid shape	272
รูปที่ 6-39 Buddha image	272
รูปที่ 6-40 Rubbing at Kleang (Plan of Land)	272
รูปที่ 6-41 Translation by G. Coedes	273
รูปที่ 6-42 Lunet de Lajonqu?re, 1904	278
รูปที่ 6-43 Topographic Map 1972, scale 1:250,000	
รูปที่ 6-44 Topographic Map 1960, scale 1:50,000	279
รูปที่ 6-45 Topographic Map 2003 (JICA), scale 1:100,000	279
รูปที่ 6-46 Aerial photo 1945	280
รูปที่ 6-47 Aerial photo 1957	280
รูปที่ 6-48 Aerial photo 1997 and 2004	
รูปที่ 6-49 Spot 2003 with 15m resolution	
รูปที่ 6-50 Landsat ETM 2002 with 30 m resolution	
รูปที่ 6-51 Quickbird 2005 with 60 cm resolution	
รูปที่ 6-52 SRTM with 90m resolution	
รูปที่ 6-53 Design work plan for the field survey	284

	H	เน้า
รูปที่ 6-54	Pinpointing and Plotting Archaeological data collection	
	from the field survey	285
ฐปที่ 6-55	Analyzing the lost part of road traces, Identification the Laterite steps	
	and Ox-cart passages at Dangrek	286
เรูปที่ 6-56	Archaeological Mapping Zoning at Kol village,	
	an Arogyashala community	287
.รูปที่ 6-57	Analyzing Archaeological Features of Kol village on aerial photo 1957	
	Archaeological Mapping Zoning at Kol village,	
	an Arogyashala community	287
ฐปที่ 6-58	Analyzing Archaeological Features of Kol village on aerial photo 2004 2	288
ฐปที่ 6-59	Analyzing Archaeological Features of Kol village on SRTM	288
รูปที่ 6-60	Developing Archaeological and Cultural Database	289
.รูปที่ 6-61	Royal Road and Dharmashala	290
รูปที่ 6-62	Topographic Map of LARP, Scale 1:50 000 (Sheet 1)	291
รูปที่ 6-63	Archaeological Map of Kol village	292
รูปที่ 7-1	ลักษณะแนวถนนในฝั่งกัมพูชา	298
•	ลักษณะสะพานศิลาแลงในฝั่งกัมพูชา	
	กราฟแสดงความสูงของพื้นที่ในฝั่งกัมพูชาและฝั่งไทยจากขอมูล SRT 2	
	แสดงขั้นตอนการดำเนินการ	
	แสดงผังและมาตราส่วนของโบราณสถาน	
	แสดงภาพพื้นผิวของโบราณสถาน	
	แสดงการสร้างภาพ 3 มิติของโบราณสถาน	317
ราไที่ รถ	แสดงการสร้างสภาพแวดล้อง 3 บิติ	110

		หน้า
ฐปที่ 6ศ	การเสนอผลงานแบบ 3D Model	.319
ฐปที่ 7ก	การเสนอผลงานแบบ Movie	.320
ฐปที่ 8ศ	การเสนอผลงานแบบ Interactive Animation บน Web Browser	.321
ฐปที่ 9ก	การเสนอผลงานแบบ Interactive Animation ทำงานอิสระ	.322
รูปที่ 10	ก ภาพธรรมศาลา (อัคนีศาลา) ปราสาทตาเมื่อน	.322
รูปที่ 11	ก ภาพอโรคยาศาลา ปราสาทหนองบัวลาย	.323
รูปที่ 12	ก ภาพอโรคยาศาลา ปราสาทหนองบัวลาย	.323
รูปที่ 13	ก ภาพสะพานโบราณ	.323
รูปที่ 14	ก ภาพเคลื่อนใหวอโรคยาศาลา ปราสาทหนองบัวลาย	. 324
รูปที่ 15	ก ภาพเคลื่อนใหวแบบตอบโต้ ปราสาทหนองบัวลาย	. 324
รูปที่ 1ข	บ แสดงแผนภาพ OpenLayers ที่รองรับการเรียกใช้งานข้อมูล	.327
ฐปที่ 2ข	บ แสดงตัวควบคุมแสดงผล	.329
ฐปที่ 3ข	บ แสดงตัวควบคุมแสดงผลบน Web Browser	.330
รูปที่ 1ง	แผนที่เส้นทางโบราณจากเมืองพระนครถึงเมืองพิมาย	. 346
Fig. 1	Kok Ach Dek	. 391
Fig. 2	Kok Cheng Meng	. 391
Fig. 3	Kok Kjeay	. 391
Fig. 4	Kok Yeay Degn	. 391
Fig. 5	Kok Treas	.391
Fig. 6	Thlok Akong	.391
Fig. 7	Map of Kiln Location	.392
Fig. 8	Map Kilns along the Ancient Road Network	.392
Fig. 9	Loboek Ampil	. 393
Fig. 10	Loboek Svay	. 393
Fig. 11	Svav Khmao	. 393

		หน้า
Fig. 12	Torp Siem	. 393
Fig. 13	Ceramic Anlong Thom	. 393
Fig. 14	Anlong Thom Kiln structure	. 393
Fig. 15	Ceramic Sarsei Kiln	. 394
Fig. 16	Sarsei Kiln Structure	. 394
Fig. 17	Knar Po kiln Structure	. 394
Fig. 18	Tani Kiln structure	. 394

บทที่ 1

บทน้ำ

การดำเนินโครงการวิจัยเพื่อค้นหาและพัฒนาสารสนเทศภูมิศาสตร์ของถนนโบราณสมัย พระเจ้าชัยวรมันที่ 7 ในปีงบประมาณ 2549 ที่ผ่านมาเป็นการวิจัยในเชิงสหวิทยาการที่ประยุกต์ใช้ เทคโนโลยีหลากหลายสาขาวิชาเพื่อการแปลความทางโบราณคดี ซึ่งจากการศึกษาที่ผ่านมาได้ ผลลัพธ์ที่มีความก้าวหน้ามากขึ้นจากการสำรวจเส้นทางสายตะวันตกเฉียงเหนือของนักโบราณคดี นักสำรวจจากสำนักฝรั่งเศสแห่งปลายบูรพทิสที่ค้นคว้าไว้เมื่อเกือบ 1 ศตวรรษที่ผ่านมาโดยสามารถสำรวจตรวจสอบและเข้าถึงแหล่งโบราณคดี จนสามารถกำหนดตำแหน่งที่ตั้งที่ แน่นอนของโบราณสถานที่เรียกว่า "ธรรมศาลา" หรือ "อัคนีศาลา" ได้อย่างครบถ้วนตามที่ปรากฏ ในศิลาจารึกปราสาทพระขรรค์ซึ่งจารึกไว้เมื่อพุทธศตวรรษที่ 18 นอกจากนี้ยังได้ทำการขุดค้นทางโบราณคดีที่บ้านโคกยาง และพื้นที่ที่คาดว่าเป็นเส้นทางที่เคยใช้ในสมัยวัฒนธรรมเขมรโบราณ รวมทั้งสำรวจแหล่งโบราณคดีเพิ่มเติมและจัดทำรายละเอียดบันทึกเป็นเอกสารโดยเฉพาะในแหล่ง ที่ตกสำรวจหรือแหล่งที่เคยมีการสำรวจแต่ยังไม่ได้รับการเผยแพร่และเข้าดำเนินการคุ้มครอง อนุรักษ์ ตามกฎบัตรสากล เช่น แหล่งวัตถุดิบ แหล่งตัดหิน แหล่งตัดศิลาแลง แหล่งโลหะกรรม เป็นต้น

ดังนั้นการศึกษาตามโครงการวิจัยในระยะที่ 2 จึงมุ่งเน้นการวิจัยในระคับลึกลงใน รายละเอียดและจำกัดขอบเขตเฉพาะในพื้นที่ที่ตรวจสอบแล้วพบว่ามีการกระจายตัวของแหล่ง โบราณกดีของวัฒนธรรมเขมรโบราณที่หนาแน่นและหลากหลายประเภท อาทิ แหล่งถลุงโลหะ แหล่งเตาเผาเครื่องเคลือบ โครงข่ายถนน ซึ่งยังไม่เคยได้รับการศึกษาวิเคราะห์ในเชิงลึกมาก่อน ดังนั้นจึงมีความจำเป็นที่ต้องทำความเข้าใจเพิ่มขึ้นมากกว่าการศึกษาเฉพาะโครงสร้างรูปแบบทางศิลปะและสถาปัตยกรรมเขมรที่กำลังนิยมศึกษาอยู่ในปัจจุบัน และเพื่อสร้างองค์ความรู้ของกิจกรรมทางวัฒนธรรมของสังคมระดับรัฐ ที่ปรากฏในช่วงพุทธศตวรรษที่ 17-18

1.1 ภูมิหลังทางประวัติศาสตร์

จดหมายเหตุจีนสมัยราชวงศ์ซุย (พ.ศ. 1132-1161) กล่าวถึงอาณาจักรเขมรในชื่อของเจนละ ซึ่งแต่เดิมเป็นประเทศราชของอาณาจักรฟูนันซึ่งมีศูนย์กลางอยู่บริเวณเมืองจำปาศักดิ์ทางตอนกลาง ของแม่น้ำโขง ต่อมาพระเจ้าภววรมันที่ 1 และเจ้าชายจิตรเสน ได้ทรงเข้ารุกรานอาณาจักรฟูนันและ สามารถมีชัยชนะเหนืออาณาจักรนั้นได้

พระเจ้าภววรมันที่ 1 เสด็จขึ้นครองราชย์ที่เมืองภวปุระ และทรงสร้างศิลาจารึกหลักหนึ่งคือ จารึกพนมบันทายนางจากเมืองมงคลบุรี กล่าวถึงการประคิษฐานศิวลึงค์และศิลาจารึกอีกหลักหนึ่ง เจ้าชายจิตรเสนโปรดให้สร้างขึ้นในรัชกาลของพระเจ้าภววรมันที่ 1 เล่าถึงการประคิษฐานศิวลึงค์ไว้ ตามระยะทางบนฝั่งแม่น้ำโขง ตั้งแต่บริเวณเมืองกระเตี้ย และสตึงเตรง ไปจนถึงทางทิศตะวันตก บริเวณจังหวัดบุรีรัมย์ระหว่างแม่น้ำมูลและทิวเขาคงรักจนถึงบริเวณลุ่มแม่น้ำป่าสัก

ต่อมาประมาณ พ.ศ. 1150 เจ้าชายจิตรเสนได้ขึ้นครองราชย์ต่อจากพระเจ้าภววรมันที่ 1 ทรงพระนามว่าพระเจ้ามเหนทรวรมัน โดยก่อนหน้าที่พระองค์ขึ้นครองราชย์พระองค์โปรดให้ สร้างจารึกอื่นๆ ไว้ในสถานที่ต่างๆ เช่น บริเวณปากแม่น้ำมูล บริเวณลุ่มแม่น้ำโขง และแม้แต่ใน จังหวัดสุรินทร์ ศิลาจารึกเหล่านี้กล่าวถึงการประดิษฐานศิวลึงค์และรูปโคนนทิ เพื่อแสดงการเข้ามา มีอำนาจเหนือดินแดนเหล่านี้

หลังจากสมัยพระเจ้ามเหนทรวรมัน โอรสของพระองค์ทรงพระนามว่าพระเจ้าอิสาณวรมัน ที่ 1 เสด็จขึ้นครองราชย์ทรงโปรดให้สร้างราชธานีขึ้นมีชื่อว่าอิสาณปุระ ในสมัยของพระองค์ สามารถปราบปรามอาณาจักรฟูนันไว้ได้ทั้งหมดและแผ่ขยายอาณาเขตออกไปอย่างกว้างขวางทั้ง ทางทิศใต้และทางทิศตะวันตก

ประวัติศาสตร์เขมรในสมัยก่อนเมืองพระนครนั้น การขยายอำนาจทางการเมือง นับตั้งแต่ รัชกาลของพระเจ้าภววรมันที่ 1 จนกระทั่งถึงรัชกาลพระเจ้าชัยวรมันที่ 1 ก่อนที่เขมรหรือเจนละจะ แตกแยกออกเป็นสองฝ่าย อาจถือ ได้ว่ากษัตริย์เขมรประสบความสำเร็จในการเข้าครอบครอง ดินแคนต่างๆ โดยเฉพาะอาณาจักรฟูนันไว้ได้อย่างสิ้นเชิง ซึ่งปรากฏพบร่องรอยทางโบราณวัตถุ และโบราณสถานอยู่เป็นจำนวนมาก แม้แต่ในภูมิภาคตะวันออกและภาคตะวันออกเฉียงเหนือของ ประเทศไทยที่มีอายุอยู่ในช่วงก่อนเมืองพระนคร และมีลักษณะทางศิลปะแบบสมโบร์ไพรกุกจนถึง กำพงพระมีปรากฏเข้ามาถึงบริเวณจังหวัดสุรินทร์ เช่น ทับหลังแบบสมโบร์ไพรกุก นอกจากนั้นยัง ปรากฏลวดลายภาพสิงห์อยู่ภายในวงโค้งรูปไข่ ซึ่งแตกต่างไปจากลวดลายทับหลังในประเทศ กัมพูชาอีกด้วย ส่วนทับหลังที่ถูกจัดให้อยู่ในแบบสมโบร์ไพรกุกอย่างแท้จริงก็คือ ทับหลังของ ปราสาทเขาน้อย อำเภออรัญประเทศ จังหวัดปราจีนบุรี

ทับหลังปราสาทภูมิโพน อำเภอสังขะ จังหวัดสุรินทร์ ทับหลังปราสาทบ้านน้อย อำเภอ วัฒนานคร จังหวัดปราจีนบุรี ทับหลังที่แก่งสะพื้อ อำเภอพิบูลมังสาหาร จังหวัดอุบลราชธานี ได้รับ การจัดให้อยู่ในรูปแบบศิลปะไพรกเมง (พ.ศ.1180-1251) รูปแบบลวดลายมีวิวัฒนาการมาจากสมัย แรกที่เน้นรูปบุคคลและรูปสัตว์มาเป็นลวดลายพันธุ์พฤกษาที่ทวีจำนวนมากยิ่งขึ้น

อย่างไรก็ตาม แม้ว่าจะมีการพบหลักฐานทางโบราณคดีไม่ว่าจะเป็นชิ้นส่วนประดับอาคาร สถาปัตยกรรม จำพวกทับหลังชิ้นต่างๆ ดังได้กล่าวมาแล้ว และรวมถึงศาสนสถานประเภทปราสาท หรือจารึกของพระเจ้าภววรมันที่ 1 และจารึกหลักอื่นๆ ที่พบไปไกลถึงเมืองศรีเทพบริเวณลุ่ม แม่น้ำป่าสักนั้น อิทธิพลทางด้านศิลปกรรมเขมรได้ขยายเฉพาะเพียงแถบแนวชายแคนด้าน เมื่อประมาณพุทธศตวรรษที่ 13 หลังจากเขมรหรือเจนละแตกแยกออกเป็นสองฝ่าย คือ อาณาจักรเจนละบกและเจนละน้ำ พระเจ้าชัยวรมันที่ 2 ได้เสด็จกลับมาและสามารถรวบรวม อาณาจักรเจนละบกและเจนละน้ำให้เข้าเป็นอันหนึ่งอันเดียวกัน และทรงสร้างราชธานีที่เมือง หริหราลัย ในหมู่บ้านล่อลวยทางตะวันออกเฉียงใต้ของเสียมเรียบในปัจจุบัน

จนถึงรัชกาลของพระเจ้าอินทรวรมันที่ 1 (พ.ศ.1420-1432) และรัชกาลพระเจ้ายโศวรมันที่ 1 (พ.ศ. 1432-1453) อาณาจักรเขมรพ้นจากช่วงศึกสงครามภายในอาณาจักรได้กลับคืนเข้าสู่ความ เข้มแข็งเป็นปึกแผ่นอีกครั้ง ทำให้อิทธิพลศิลปกรรมเขมรแผ่ขยายเข้ามาจนถึงที่ราบสูงโคราชใน จังหวัดนครราชสีมา มากกว่าในช่วงก่อนเกิดสงครามกลางเมือง ศิลาจารึกหลักหนึ่งที่มีอายุอยู่ใน ราวกลางพุทธศตวรรษที่ 15 ถูกค้นพบอยู่ในบริเวณจังหวัดอุบลราชธานีซึ่งมีข้อความกล่าวถึง พระนามของพระเจ้าอินทรวรมัน

ที่ปราสาทหินพนมวันได้พบร่องรอยของศิลปกรรมเป็นทับหลังซึ่งจัดอยู่ในศิลปะร่วมแบบ พะโกที่มีลักษณะเป็นรูปหน้ากาลคายท่อนพวงมาลัยและทับหลังแบบบาแกงที่แสดงภาพพระวิษณุ ทรงครุฑและศิลาจารึกที่พบระหว่างการขุดแต่งโบราณสถานแห่งนี้เมื่อปี พ.ศ. 2541-2545 คำจารึก สลักบนแผ่นศิลาทรายรูปร่างยาว ซึ่งสันนิษฐานว่าเดิมคงจะเป็นส่วนบนของกรอบประตู ข้อความในศิลาจารึกปรากฏพระนามของพระเจ้ายโศวรมันที่มีข้อความเกี่ยวกับพระบรมราชโองการของ พระองค์ให้ขุนนางฉลองห้องพระเพลิงและพระศาลา และในรัชสมัยของพระราชาองค์นี้ได้เริ่มการ ก่อสร้างเทวาลัยในศาสนาฮินดูลัทธิไศวนิกายถวายพระศิขรีศวร (พระศิวะบนยอดเขา) คือที่ ปราสาทเขาพระวิหารระหว่างประเทศกัมพูชาและประเทศไทยในปัจจุบันด้วย

พระเจ้าสูรยวรมันที่ 1 เสด็จขึ้นครองราชย์ ณ เมืองพระนคร (พ.ศ. 1545-1593) ประมาณ ครึ่งแรกของพุทธศตวรรษที่ 16 ในช่วงนี้ได้พบว่าดินแคนบางส่วนในประเทศไทยมีร่องรอยการ แผ่อิทธิพลของเขมรอย่างเห็นได้ชัด หลักฐานบางอย่างถูกค้นพบว่าเข้ามาไกลถึงเขตพื้นที่ภาคกลาง ของประเทศไทยซึ่งน่าจะถือว่าการแผ่ขยายทางวัฒนธรรมมีอาณาเขตที่กว้างขวางอย่างยิ่ง ศิลาจารึก ซึ่งมีอยู่หลายหลักที่เมืองลพบุรี มีอยู่หลักหนึ่งเป็นจารึกของพระเจ้าสูรยวรมันที่ 1 มีอายุอยู่ระหว่าง พ.ศ. 1565-1568 จากจารึกหลักนี้ทำให้ทราบว่าในรัชกาลของพระองค์ มีพระสงฆ์ใน พระพุทธศาสนาทั้งสองลัทธิคือ ลัทธิมหายานและลัทธิสถวีระ รวมทั้งมีพราหมณ์และผู้บำเพ็ญ โยคะอยู่ควบคู่กัน นอกจากนี้ยังมีการสร้างศิลาจารึกขึ้นในศาสนาพราหมณ์ลัทธิไวษณพนิกายจาก จารึกที่พบในเมืองลพบุรีนี้อาจตั้งข้อสังเกตถึงการอยู่ร่วมกันของศาสนาลัทธิต่างๆ แม้ว่าการแผ่ ขยายอิทธิพลทางศาสนาจากเขมร จะเข้ามาจนอาจมองได้ว่าดินแดนแถบนี้ถูกครอบครองจากเขมร

อย่างไรก็ตามในสมัยนี้พื้นที่ต่างๆ ทางภาคตะวันออกเฉียงเหนือของประเทศไทยได้ปรากฏ ว่ามีศาสนสถานแบบเขมรอยู่เป็นจำนวนมาก ซึ่งเป็นศิลปะแบบบาปวนช่วงครึ่งหลังซึ่งตรงกันกับ สมัยของพระเจ้าสูรยวรมันที่ 1 สถาปัตยกรรมที่ถูกจัดอยู่ในแบบศิลปะนี้ได้แก่ ปราสาทบ้านไพร ปราสาทบ้านพลวง จังหวัดสุรินทร์ ปราสาทสระกำแพงใหญ่ จังหวัดศรีสะเกษ ปราสาทหินพนมวัน ปราสาทหินบ้านถนนหัก จังหวัดนครราชสีมา ปราสาทปลายบัด ปราสาทเมืองต่ำ จังหวัดบุรีรัมย์ เป็นต้น สถาปัตยกรรมชิ้นส่วนประดับอาคาร เช่น ทับหลัง ยังพบเป็นจำนวนมากร่วมกับปราสาท หินแห่งต่างๆ เช่น ทับหลังจากปราสาทเมืองต่ำ อำเภอประโคนชัย ทับหลังจากปราสาทพนมวัน

ภาพสลักซึ่งจำหลักลงบนทับหลังในช่วงพุทธศตวรรษที่ 16-17 นี้ แสดงถึงคติในการนับถือ ศาสนาฮินดู ทั้งลัทธิไศวนิกายและลัทธิไวษณพนิกาย ภาพเทพเจ้าที่ปรากฏอยู่ทั้งสองลัทธิได้แก่ ภาพอุมามเหศวร ในลัทธิไศวนิกาย ภาพวิษณุทรงครุฑ และวิษณุอนันตศายิน-ปัทมนาภะหรือ พระนารายณ์บรรทมสินธุ์ ในลัทธิไวษณพนิกาย นอกจากนี้ยังมีภาพเทพเจ้าชั้นรองลงมาได้แก่ พระอินทร์ทรงช้างเอราวัณเศียรเดียว และช้างเอราวัณสามเศียร ภาพพระอินทร์ประทับใน ท่ามหาราชลีลาเหนือหน้ากาลในความหมายของสิงหาสน์ หมายถึงเทพเจ้าแห่งฟ้า-ฝน และเทพ ผู้รักษาทิศตะวันออกไปพร้อมกัน สำหรับคติของเทพผู้รักษาทิศนอกจากเทพผู้รักษาทิศตะวันออก แล้วยังมีภาพพระวรุณผู้ซึ่งเป็นเทพผู้รักษาทิศตะวันตกจำหลักบนทับหลังอยู่ในระยะนี้ด้วยเช่นกัน

เมื่อถึงประมาณพุทธศตวรรษที่ 18 ในสมัยพระเจ้าชัยวรมันที่ 7 (พ.ศ.1724-1761) พระองค์ ทรงทำสงครามกับจามปาที่เข้ามารุกรานเขมรตั้งแต่ก่อนหน้าที่พระองค์จะเสด็จขึ้นครองราชย์ ทรงทำการรบกับกองทัพจามปาหลายครั้ง แต่ครั้งสำคัญที่สุดคือการรบทางเรือ ซึ่งมีการจารึกเหตุการณ์ เป็นภาพสลักอยู่บนผนังระเบียงที่ปราสาทบายนและปราสาทบันทายฉมาร์ การสงครามในครั้งนี้ ทำให้อาณาจักรเขมร สามารถยุติสงครามและปราบปรามจามปาลงได้ ถึงแม้ว่าเขมรจะต้องทำศึก สงครามเน้นหนักไปทางภาคตะวันออกก็ตามแต่ไม่ได้ละเลยที่จะแผ่อำนาจขึ้นไปทางทิศเหนือและ ทิศตะวันตก จารึกเขมรที่ค้นพบทางทิศเหนือสุดในรัชกาลของพระองค์ คือ จารึกที่ทรายฟองบนฝั่ง แม่น้ำโขงตรงข้ามกับเมืองเวียงจันทร์มีศักราชตรงกับ พ.ศ. 1729

ส่วนดินแดนด้านตะวันตกหลักฐานที่พบมีความเกี่ยวข้องกับข้อความในศิลาจารึกที่ ปราสาท พระขรรค์ ซึ่งพระองค์ทรงสร้างพระพุทธรูป 23 พระองค์ มีพระนามว่า "ชัยพุทธมหานาถ" และส่งไปประดิษฐานอยู่ตามเมืองต่างๆ และมีศาสนสถานบางแห่งที่อาจสร้างขึ้นเพื่อประดิษฐาน พระพุทธรูปที่มีพระนามเหมือนพระเจ้าชัยวรมันที่ 7

จารึกปราสาทพระบรรค์ใค้กล่าวถึงคำว่า "บ้านซึ่งมีไฟ" หรือที่พักคนเดินทาง 121 แห่ง ตั้งอยู่ห่างกันประมาณ 15 กิโลเมตร โดยสร้างขึ้นตามเส้นทางเดินที่มีอยู่ในอาณาจักรเขมร การสร้าง ศิลปกรรมในสมัยนี้ถือเป็นศิลปะเขมรยุคสุดท้ายที่เคยค้นพบในประเทศไทย ประมาณ พุทธศตวรรษที่ 18 ซึ่งตรงกับศิลปะแบบบายนและปรากฏอย่างแพร่หลาย โดยเฉพาะในภาค ตะวันออกเฉียงเหนือของประเทศไทย โบราณสถานที่สำคัญได้แก่ อโรคยาศาลประจำเมืองพิมาย กู่บ้านแดง อำเภอวาปีปทุม จังหวัดมหาสารคาม ปราสาทเมืองสิงห์ จังหวัดกาญจนบุรี ศาสนสถาน ภายในวัดกำแพงแลง จังหวัดเพชรบุรี เป็นต้น

จากภาพรวมข้างต้นแสดงให้เห็นถึงการแผ่ขยายอิทธิพลทางศาสนา การเมือง รวมทั้ง รูปแบบของงานศิลปกรรมจากศูนย์กลางอาณาจักรกัมพูชาในสมัยโบราณไปสู่ดินแดนทางตะวันตก โดยมีหลักฐานทางโบราณคดีที่พบเป็นจำนวนมาก ดังตัวอย่างที่กล่าวมาแล้ว

เหตุการณ์และความสำคัญในสมัยพระเจ้าชัยวรมันที่ 7

เรื่องราวของพระเจ้าชัยวรมันที่ 7 ปรากฏอยู่ในจารึกหลายหลักโดยเฉพาะจารึกที่ปราสาท ตาพรหม ปราสาทพระขรรค์ และปราสาทบันทายฉมา นอกจากนี้ยังมีปรากฏในจารึกที่อโรคยาศาล และฐานปราสาทพิมานอากาศ ในราชวังหลวง เมืองนครธม กับจารึกจามที่ไมชอน (Mai Son) และ ในประเทศไทย ได้แก่ จารึกปราสาทตาเมียนโตจ จารึกปราสาท จารึกพิมาย จารึกด่านประคำ

พระองค์สืบสายเลือดจากพระบิดาซึ่งครองราชย์ระยะสั้นในปี พ.ศ. 1698 พระองค์เป็น พระญาติของพระเจ้าสุริยวรมันที่ 2 ซึ่งเคยขยายอาณาเขตเข้าไปในอ่าวตังเกี๋ย แล้วโปรดเกล้าให้ สถาปนาเทวสถานนครวัด ฝ่ายมารดาสืบเชื้อสายมาจากเชื้อพระวงศ์กัมพูชาซึ่งมาจากต่างแดน (ชัยทิตยปุระ) ในราวพุทธศตวรรษที่ 16 พระองค์ประสูติประมาณปี พ.ศ. 1663-1668 ในรัชกาล พระเจ้าสุริยวรมันที่ 2 ได้อุปภิเษกกับเจ้าหญิงชัยเทวีตั้งแต่ทรงพระเยาว์ และพระมเหสีของพระองค์ ดูเหมือนจะมีอิทธิพลต่อพระองค์อย่างมาก

พระองค์ได้เข้าร่วมสงคราม เข้าร่วมป้องกันเมืองวิชัยปุระ (คือเมืองบิญคินในปัจจุบัน) จาก การรุกรานเข้าโจมตีอาณาจักรจามปาตั้งแต่ทรงพระเยาว์ ทำให้พระนางชัยเทวีทรงเศร้าโศกเป็น อย่างมากจารึกหลักหนึ่งที่พระขนิษฐาของพระนางโปรดให้เขียนไว้บนแผ่นหินที่ฐานพระราชวัง หลวง กล่าวว่า

"ภรรยาต้องอาบน้ำตา โศกสลดเช่นสีดาที่รอคอยพระสวามี ได้แต่สวดวิงวอนให้พระองค์ กลับคืนมา ตามพิธีกรรมของพราหมณ์ แต่ในที่สุดพระนางได้พบวิธีฝึกสมาธิตามแบบ พระพุทธศาสนา"

พระนางจันทรเทวีบันทึกไว้ว่า

"พระพุทธศาสนาได้สอนให้พระนางรู้ว่าจะทำอย่างไรในการแก้ไขความทุกข์โศกที่ เหมือนกับการเดินอยู่บนเปลวเพลิงและทะเลแห่งความโศกสลด"

ระหว่างการรบที่ประเทศจามปา พระราชบิคา คือ พระเจ้าธรนินทรวรมันที่ 2 ได้ สิ้นพระชนม์ลง พระญาติคือพระเจ้ายโศวรมันที่ 2 เข้าครองราชย์บัลลังก์ จารึกและภาพจำหลักที่ ปราสาทบันทายฉมา กล่าวว่า เรื่องนี้เหมือนจินตนิยายเพราะเจ้ายโศวรมันที่ 2 ถูกพระราหูเข้าปล้น พระราชมณเฑียรแต่ราชโอรสของพระเจ้าชัยวรมันที่ 7 ได้เข้าแก้ไขได้สำเร็จ

พระเจ้ายโศวรมันที่ 2 ครองราชย์สืบต่อมาแต่เพียงไม่กี่เดือนพระองค์ได้เสียอำนาจให้ขุน นาง-ขุนพล คนใหม่เข้ายึดอำนาจต่อ ทรงพระนามว่า พระเจ้าตรีภูวนาทิตย์ ซึ่งเป็นเจ้าแห่งสามโลก

เมื่อข่าวการแย่งราชสมบัติไปถึงเมืองจามปา สมเด็จพระเจ้าชัยวรมันที่ 7 ได้เร่งรีบถอนทัพ กลับคืนเมืองพระนครหลวงเพื่อช่วยพระเจ้ายโศวรมันที่ 2 หรือพระองค์ต้องการทวงคืนราชสมบัติ และราชบัลลังก์ซึ่งเคยเป็นของพระราชบิดาของพระองค์ แต่การเดินทางช้าเกินไป เมื่อพระองค์ มาถึงเมืองพระนคร ราชอำนาจได้ตกแก่พระตรีภูวนาทิตย์ไปเรียบร้อยแล้ว

พระเจ้าชัยวรมันที่ 7 ไม่กลับไปเมืองจามปาอีก แต่พระองค์ซ่อนเร้นอยู่ในแผ่นคินของ พระองค์นอกเขตเมืองพระนครถึง 15 ปี

เจ้าหญิงชัยเทวีได้สวดอ้อนวอนและรอคอยการกลับมาของพระสวามีจนกระทั่งเธอ สิ้นพระชนม์ไป ตั้งแต่ พ.ศ. 1709

พระเจ้าชัยอินทรวรมันแห่งจามปาทรงเป็นกษัตริย์ที่แข็งกล้า ได้ส่งทูตไปเฝ้าพระจักรพรรดิ ตี อาง ตัน (Ti Anl Ton) ในอ่าวตังเกี๋ย ในปี พ.ศ. 1713 จนแน่ใจว่าจะไม่มีการรุกรานจากทิศเหนือ กษัตริย์จามจึงมุ่งที่จะขยายอาณาเขตเข้ากัมพูชา เพื่อแก้แล้นและเข้ายึดครองกัมพูชา

ภาพของพระเจ้าชัยอินทรวรมันในผนังที่นครธม เปรียบเสมือนกองทัพทศกัณฑ์ในเรื่อง รามเกียรติ์ที่ทรงราชรถมาเข้าโจมตีเมือง พระองค์เข้าโจมตีกัมพูชาโดยกองทัพเรือ ในปี พ.ศ. 1720 ราชนาวีจามได้เลาะชายฝั่งทะเล นำร่องโดยต้นหนจีน ได้ผ่านปากน้ำโขงเข้ามาในแผ่นดินล่องขึ้น ไปตามลำน้ำ เลี้ยวซ้ายเข้าสู่ทะเลสาบ โดยที่เขมรไม่ทันรู้ตัว กองทัพจามได้ขึ้นบกริมกำแพงเมือง ยโสธรปุระ ซึ่งตั้งอยู่ริมน้ำทะเลสาบ เข้ายึดพระราชวัง จับตรีภูวนาทิตย์ประหารชีวิตและกองทัพบก จามเข้าปล้นเมืองยโสธรปุระ ริบทรัพย์สมบัติไปมากมายมหาสาล

การกู้เอกราชกองทัพจาม

พระราชบัลลังก์แห่งกัมพูชาว่างลงทันทีพระเจ้าชัยวรมันที่ 7 เห็นโอกาสมาถึง แต่ก่อนที่จะ สถาปนาพระองค์เป็นกษัตริย์ครองราชย์บัลลังก์กัมพูชา พระองค์กลับยกทัพเข้าโจมตีราชอาณาจักร จาม ทรงนำทัพเข้าประจันกับกองทัพจามครั้งแล้วครั้งเล่า ไม่เฉพาะแต่การเตรียมสงครามในทะเล

การสถาปนานครชมเป็นเมืองหลวงแห่งใหม่

สันติภาพกลับมายังประเทศกัมพูชาอีกครั้งหนึ่ง และพระองค์ได้ขึ้นเป็นกษัตริย์ในปี พ.ศ. 1724 ในขณะเดียวกันก็ทำการซ่อมแซมพระนครยโสธรปุระตกแต่งพระนคร มีการเฉลิมฉลองขึ้น ครองราชย์อย่างอีกทึก พระองค์โปรดให้สร้างเมืองใหม่ที่พระนครหลวง (Angkor Thom) โดยมี ปราสาทบายนเป็นศูนย์กลาง

จากการรุกรานของจามในปี พ.ศ. 1720 ม้าตวนหลิน นักประวัติศาสตร์จีนบันทึกไว้ว่า พระองค์ต้องรอนแรมอยู่อย่างยากลำบากถึง 15 ปี พระองค์ได้เจ้าชายจามซึ่งลี้ภัยเพราะการยึดอำนาจ ของเจ้าชายอินทรวรมันมาเป็นทหารคู่บัลลังค์ เจ้าชายซึ่งลี้ภัยการเมืองจากจามปามาพึ่งพระบรม โพธิสมภารเจ้าชายไร้บัลลังค์แห่งกัมพูชา

"จารึกภาษาจามที่ปราสาทใมชอนกล่าวว่า เจ้าชายวิทยนันท์ ใค้เดินทางเข้ามาในประเทศ กัมพูชาในปี พ.ศ. 1725 พร้อมค้วยนักแสวงโชค 34 คน พระเจ้าชัยวรมันที่ 7 สอนให้คนเหล่านั้น รู้จักศิลปะแห่งการต่อสู้ ซึ่งขณะนั้นในประเทศกัมพูชามีหมู่บ้านหนึ่งเรียกว่า บ้านมาลยัง (Malyang) ซึ่งคนในหมู่บ้านนั้นได้ก่อการกบฎต่อต้านอำนาจพระราชากัมพูชา พระเจ้าชัยวรมันที่ 7 ได้โปรด ให้เจ้าชายวิทยานันท์คุมทัพออกไปปราบปรามชาวมาลยัง เจ้าชายทำการสำเร็จ สมเด็จพระเจ้าชัยวรมันที่ 7 จึงโปรดพระราชทานสมญานามใหม่ให้ว่า พระยุพราช และได้รับพระทานรางวัลยิ่งกว่าชาว กัมพูชาจะสามารถรับได้"

แบ่งอาณาจักรจามปาออกเป็น 2 ส่วน

ในปี พ.ศ. 1733 พระองค์ได้ทำสัญญาผูกสัมพันธไมตรีกับพระเจ้าหลีเถาโตนแห่งอาณาจักร ไดเวียต เพื่อเตรียมทำศึกกับอาณาจักรจามปาเพียงด้านเดียว และพระองค์ทรงนำกองทัพบุกเข้ายึด อาณาจักรจามปาได้สำเร็จ ทรงขนย้ายเอาทรัพย์สินและสิวลึงค์ไปหมดสิ้น การแก้แค้นบุกเข้ายึด อาณาจักรจามปากรั้งนี้ พระองค์ทรงมอบให้เจ้าชายวิทยานันทนะเป็นผู้ควบคุมกองทัพไป และ เจ้าชายก็ได้เข้ายึดราชธานีจามคือเมืองวิชัยไว้ได้ รวมทั้งพระราชาจาม คือพระเจ้าชัยอินทรวรมันซึ่ง ถูกส่งเป็นเชลยไปยังอาณาจักรขอม แล้วเจ้าชายวิทยานันทนะก็ทรงแต่งตั้งให้เจ้าชายอิน พี่หรือ น้องเขยของพระเจ้าชัยวรมันที่ 7 ขึ้นครองราชย์แทน โดยทรงพระนามว่า สุริยชัยวรมเทพ ส่วน เจ้าชายเองนั้น ได้ตั้งอาณาจักรขึ้นใหม่ทางทิศใต้แถบเมืองปาณฑุรังค์ ทรงขึ้นครองราชย์โดยทรง พระนามว่า สุริยวรมเทพ เพราะเหตุนี้อาณาจักรจามปา จึงถูกแบ่งออกเป็นสองส่วน คือ ส่วนหนึ่ง พระเจ้าสุริยชัยวรมเทพผู้เป็นญาติกับอาณาจักรขอมปกครอง อีกส่วนหนึ่งมีพระเจ้าสุริยวรมเทพ

ระหว่าง พ.ศ. 1736-1737 พระเจ้าชัยวรมันที่ 7 ได้พยายามปราบอาณาจักรจามปาอีก แต่ไม่ สำเร็จ จนถึง พ.ศ. 1746 พระบิตุลาของพระองค์จึงสามารถปราบอาณาจักรจามปาลงได้สำเร็จ ส่วน พระเจ้าวิทยานันทะหรือสุริยวรมเทพ ไม่อาจขอความช่วยเหลือจากอาณาจักรไดเวียตได้ พระองค์จึง หลบหนีและหายสาบสูญไป อาณาจักรจามปาจึงกลายเป็นเพียงแคว้นหนึ่งของอาณาจักรขอม

แม้พระเจ้าชัยวรมันที่ 7 จำต้องมีภาระอยู่กับบ้านเมืองทางทิศตะวันออก แต่ก็มิได้ขัดขวาง ต่อการแผ่อำนาจขึ้นไปทางทิศเหนือและทิศตะวันตกของพระองค์ จารึกปราสาทพระขรรค์ของ พระเจ้าชัยวรมันที่ 7 ใน พ.ศ. 1734 กล่าวว่า "น้ำสรงประจำวันของพระองค์นั้นมาจากพราหมณ์ ซึ่งเริ่มต้นด้วยท่านสุริยภัฏฐ์ จากพระราชาแห่งชวา ยวนะ และพระราชาสององค์แห่งอาณาจักร จามปา" แสดงถึงว่า ประเทศเหล่านั้นเป็นประเทศราชของอาณาจักรขอมด้วยนั้น คือการแสดงให้ เห็นถึงการแผ่อำนาจของพระองค์ไปในทิศเหล่านั้น

นักประวัติศาสตร์จีนในสมัยนั้นกล่าวว่า พระองค์ได้เข้าครอบครองส่วนหนึ่งของแหลม มลายูเข้าขยายอำนาจไปทางภาคตะวันตกได้ครอบครองเมืองพุกาม รามัญไว้ในอำนาจ

จารึกที่ปราสาทพระขรรค์บรรยายได้ว่าพระองค์โปรดเกล้าให้ปุโรหิตสุริยปัตตะ (Suryabhatta) และพราหมณ์อื่นๆ ทำพิธีมูรธาภิเษก โดยมีกษัตริย์จากชวา และ 2 กษัตริย์จากจามปา อยู่ในพิธีนั้นด้วย

เจ้าชายชวาทรงเป็นจักรพรรดิเวียดนาม (Annam) และกษัตริย์จาม 2 องค์ คือ เจ้าชายจาก เมืองวิชัยปุระ และเจ้าชายแห่งเมืองปัญทุรังค์

ส่วนพิธีมูรธาภิเษก คือ พิธีสรงน้ำพระมหากษัตริย์นั้นแสดงถึงความจงรักภักดีของบรรคา เมืองประเทศราช ซึ่งประเพณีดังกล่าวนี้ยังคงสืบทอดต่อกันมาในประเทศกัมพูชาและประเทศไทย ตราบเท่าทุกวันนี้

นอกจากพิธีมูรธาภิเษกแล้ว จารึกที่ปราสาทพระขรรค์ยังกล่าวว่าสมเด็จพระเจ้าชัยวรมันที่ 7 ยังพระราชทานพระราชธิดาให้แก่เมืองประเทศราชของพระองค์ด้วย โดยกาดหวังว่าระบบ เครือญาติเช่นนี้จะสร้างความเป็นปึกแผ่น และความจงรักภักดีต่อราชอาณาจักรกัมพูชาในอนาคต

ภายหลังจากที่พระมเหสีที่นับถือพุทธศาสนาสิ้นพระชนม์ลง พระองค์ได้อุปภิเษกกับ พระขนิษฐาองค์โตของพระมเหสืองค์เดิม ซึ่งทรงชำนาญในด้านวรรณกรรมและรัฐศาสตร์ พระเจ้าชัยวรมันที่ 7 สิ้นพระชนม์เมื่อไรไม่ปรากฏชัด แต่คงจะเป็นปี พ.ศ.1762 ซึ่งเป็นปีที่ เจริญมายุมายาวนาน ตลอดระยะเวลายาวนานที่พระองค์ครองราชย์ มีกรณียกิจมากมายที่ควรแก่ การศึกษา เช่น

การพัฒนาระบบสังคม

เมื่อขึ้นครองราชย์พระองค์ทรงแก้ไขประเพณีการแบ่งชั้นวรรณะ ซึ่งพราหมณ์มหาครูใน อดีตได้กำหนดไว้ ฉะนั้นตลอดรัชกาลอันยาวนานของมหาราชย์พระองค์นี้ ประชาชนชาวกัมพูชา ได้หันมานับถือพระพุทธศาสนา แต่พิธีกรรมทางพราหมณ์หรือฮินดูยังคงมีอิทธิพลในราชสำนัก พระเจ้าชัยวรมันที่ 7 ทรงเป็นองค์อุปถัมภกพระพุทธศาสนาลัทธิมหายานตามที่ได้มีการค้นพบ ประติมากรรมและวัดในพุทธศาสนาหลายแห่ง แต่พระองค์ก็ได้ให้การสนับสนุนศาสนาพราหมณ์ เช่นเดียวกัน ฉะนั้นพระพุทธเจ้า พระศิวะ และพระนารายณ์ ได้รับการกราบไหว้อยู่เป็นนิตย์

พระเจ้าศรีวีรกุมารราชโอรสของพระเจ้าชัยวรมันที่ 7 กับพระนางราเชนทรเทวี ซึ่งได้ ครองราชย์ในเวลาต่อมา ได้บรรยายพระราชกรณียกิจในแผ่นดินสมเด็จพระเจ้าชัยวรมันที่ 7 ไว้อย่าง น่าสนใจว่า

ในรัชกาลของพระองค์วรรณกรรมภาษาสันสกฤต ได้รับการนิยมแพร่หลาย จารึกหลาย หลักทั้งภาพจำหลักจำนวนมาก ได้แสดงให้เห็นว่านิยายอันเกี่ยวกับเรื่องมหาภารตะและวรรณคดี เรื่องรามเกียรติ์เป็นที่นิยมกันแพร่หลาย รวมทั้งสนับสนุนการศึกษาของบรรดาลูกขุนนาง พระองค์ พระราชทานทรัพย์จำนวนมหาศาล เพื่อสนับสนุนการศึกษาในราชสำนัก และอุทิศทรัพย์จำนวน มากเพื่อการรักษาโรคภัยไข้เจ็บของราษฎร

จารึกเปรียบเทียบระหว่างพระรามในวรรณคดีอันเกี่ยวกับพระองค์ไว้ว่า "พระรามและ พระเจ้าแผ่นดินพระองค์นี้ต่างได้ทรงทำงาน เพื่อพระเจ้าและเพื่อนมนุษย์เป็นผลสำเร็จ ทั้งสอง พระองค์ทรงมีพระราชหฤทัยที่มีความจงรักภักดีต่อพระบิดาเต็มที่...พระองค์แรก (พระราม) ได้ ทรงสร้างถนนด้วยหินเพื่อว่าพลบริวาร สามารถข้ามมหาสมุทรไปได้ ในขณะที่องค์หลังได้สร้าง ถนนสายหนึ่งด้วยทอง เพื่อ ทำให้มนุษย์ข้ามห้วงมหรรณพแห่งสังสารวัฏไปได้

ในการสนับสนุนงานศิลปกรรม ศิลาจารึกกล่าวว่า

"พระองค์โปรดให้สร้างเมืองชัยศรี (เมืองแห่งนครธม) ไว้เป็นอนุสรณ์ในการชนะกองทัพ จาม ที่นำทัพเรือเข้ามาตีนครยโสธรปุระ เพื่อให้นครแห่งนี้มีความศักดิ์สิทธิ์เช่นเดียวกับเมือง ประยงค์ (อาลหลบัด) ในประเทศอินเคีย ซึ่งเป็นที่แม่น้ำคงคาและยมุนามาบรรจบกัน โดยการสร้าง (น่าจะปรับปรุงมาจากของเก่า) บาราย (สระน้ำขนาดมหึมา) 3 สระ คือ

- บารายตะวันตก
- บารายตะวันออก และ

สระเสรงหรือบารายแห่งปราสาทพระขรรค์

ณ ปราสาทพระบรรค์ พระเจ้าชัยวรมันได้สร้างอุทิศรูปพระโพธิสัตว์อวโลกิเตศวร รูปหนึ่ง ไว้ ณ ที่นี้ ปี พ.ศ.1734 มีนามศรีชัยวนมันเมศวรเป็นพระราชธิดาของพระองค์ รอบๆ รูป ประติมากรรม อวโลกิเตศวรที่อยู่ตรงกลาง พระองค์โปรดให้สร้างเทวรูป 283 องค์

ในอาการรูปกากบาทด้านตะวันออกโปรดให้สร้างเทวรูป 3 องค์ องค์แรก คือ พระศรีตรีภูวนวรเมศวร ซึ่งเป็นรูปศักดิ์สิทธิ์ของพระเจ้ามหาบรมนิรวาณบท เทพธิดาศรีมหิธรราช จุฬา-มณี

ในอาคารค้านทิศใต้ โปรคให้สร้างเทวรูป 32 องค์ ประดิษฐานรูปพระศรียโศวรเมศวร

ในอาการทางทิศตะวันตก โปรดให้ตั้งเทวรูป 30 องค์ไว้ เริ่มต้นด้วยภาพพระศรีจามเมศวร เป็นภาพพระราม พระลักษณ์ พระสีดา

เทวรูปองค์หนึ่งอยู่ในยุ้งข้าว อยู่ตรงทางรอบๆ ที่บูชา 10 องค์ อยู่ในศาลาที่พัก 4 องค์ อยู่ที่ โรงพยาบาล 3 องค์ เทวรูป 24 องค์ อยู่ในประตูทางออก 4 จุด รวมทั้งหมด 430 องค์

พระองค์ได้พระราชทาน ข้างสุก งา ถั่ว เนยเหลว นมข้น น้ำผึ้ง น้ำอ้อย น้ำมันงา น้ำมัน ผลไม้ ผ้าสักหลาดสีขาวและสีแดง สำหรับแต่งรูปพระโพธิสัตว์ พร้อมด้วยผ้าสำหรับคลุมเตียงและ เก้าอื่

นอกจากนี้ศิลาจารึกยังกล่าวต่อมีการแจกจ่ายให้โดยไม่กิดมูลค่าแก่ผู้ที่อยู่ในบ้านของครู อาจารย์และนักเรียนเป็นส่วนบุคคลในเวลามีงานเทศกาลสงกรานต์และงานนักขัตฤกษ์ ทั้งจะโปรด ให้ตั้งโรงทาน ประกอบด้วยข้าวสุกคุณภาพดีเยี่ยม งา ถั่ว นมข้น น้ำผึ้ง น้ำมันงา

จารึกเล่าถึงเครื่องมือเครื่องใช้และอาหารในเทศกาลประเพณีไว้หลายอย่าง เช่น "มุ้งแพรจิน หมอนอิง เสื่อจีน พริกไทย ขี้ผึ้ง เกลือ ไม้จันทน์ การบูร เส้นไหม ห่วงทอง โค ภิกษุ(?) ทอง กระป้อง คนโทใส่น้ำ อ่างทำด้วยทองแดง หีบจีน หนังวัวสี น้ำตาล รองเท้าไม้ และเขาสัตว์หุ้มทอง ผ้าคลุมผ้าสีต่างๆ ช้าง ทาสหญิง ควาย"

นอกจากนี้ยังมีสิ่งของที่ทำด้วยทอง เพชรพลอย (หินสีต่างๆ) ทองแดง ทองสัมฤทธิ์ ชาม ทอง ดีบุก ตะกั่ว เหล็ก ฯลฯ

การก่อสร้างเมืองนครหมหรือพระนครหลวง

เป็นเมืองหลวงแห่งใหม่ที่พระเจ้าชัยวรมันที่ 7 โปรดให้สร้างขึ้น โดยถมแนวปรับปรุงเมือง ซ้อนลงบนยโสธรปุระจารึกเรียกว่านครชัยศรี เป็นเมืองรูปสี่เหลี่ยมจัตุรัส กว้างยาวด้านละ 3 กิโลเมตร เป็นพื้นที่ 9 ตารางกิโลเมตร หรือ 14,400 ไร่ กำแพงแต่ละด้านก่อด้วยศิลาแลงสูง มีคูน้ำ จากประตูแต่ละด้านจะมุ่งตรงไปยังศูนย์กลางเมืองเลียนแบบยโสธรปุระที่มีหลักเมืองหรือ พระเทวราชประดิษฐานอยู่กลางเมือง แต่เปลี่ยนเป็นวัดในศาสนามหายาน คือปราสาทบายน

การเปลี่ยนเทวราชเป็นพุทธราช

กิจการนี้เป็นความพยายามอย่างจริงใจของพระเจ้าชัยวรมันที่ 7 ที่จะบรรลุถึงพระสัมญาณ โดยทางใสยสาสตร์ ตามความคิดเห็นโบราณของชาวอินเดียลักษณะของแต่ละบุคคลย่อมขึ้นแก่ "นามและรูป" ของเขา ดังนั้นจึงเชื่อกันว่าเขาอาจจะยกตนเองเป็นเทพเจ้าองค์นั้นและโดยการจารึก นามของเขาเองไว้กับพระนามของเทพเจ้า พระเจ้าชัยวรมันที่ 7 ได้สร้างรูปหลายรูปซึ่งผสม พระพักตร์ของพระองค์เข้าไว้กับลักษณะพระพุทธองค์ และจารึกรูปเหล่านี้ไว้ด้วยนามว่า "ชัยพุทธ มหานาล" พระนามของพระองค์เข้าไว้กับพระพุทธรูป พระองค์ได้ทรงส่งพุทธรูปเหล่านี้ไปยังเมือง ต่างๆ ในพระราชอาณาจักร รวมทั้งลพบุรี สุพรรณบุรี เพชรบุรี และสิงห์บุรี พระพุทธรูป "พุทธราช" ซึ่งประดิษฐานไว้แทนศิวลึงค์ทองในราชธานีนั้น ไม่ได้เป็นแต่เพียงเครื่องหมายการยก พระเจ้าชัยวรมันที่ 7 เป็นพระพุทธราชประทับบนขนดพระยานาคเท่านั้นแต่หมายถึงความช่วยเหลือ ของ "ญาณนาค" ซึ่งได้เชื่อถือกันมานานแล้วว่าเป็นของจำเป็นสำหรับความเจริญมั่งคั่งของประเทส ด้วย

พระเจ้าชัยวรมันที่ 7 ยังได้ทรงยกพระองค์เองและบรรพบุรุษของพระองค์เสมอเหมือน พระโพธิสัตว์อวโลกิเตศวร และบรรพบุรุษของพระองค์เสมอเหมือนนางปัญญาบารมี เจ้านายอื่นๆ ในราชวงศ์ ขุนนางผู้ใหญ่ก็ทำตามอย่าง รูปจารึกที่แสดงการเสมอเหมือนเหล่าปรับการประดิษฐาน ไว้ เพื่อเป็นวัตถุสำหรับการเคารพบูชา และมีทาสคอยกระทำลัทธิบูชาอันนี้ การเคารพบูชาบุคคล ดังนี้ไม่ใช่ของใหม่ประเทศกัมพูชา แต่เป็นของที่เจริญถึงขีดสุดในรัชกาลนี้

เมื่อประติมากรรมเป็นแก่นกลางของลัทธิบูชาบุคคลดังนี้ ศิลปะในการสร้างรูปก็สำคัญ ยิ่งขึ้นกว่าแต่ก่อน พระพุทธรูปที่เป็นแบบดีที่สุดในรัชกาลนี้สวมเครื่องนักบวชยิ่งกว่าเครื่องกษัตริย์ พระเนตรมองลงต่ำคล้ายอยู่ในท่าสมาธิ และพระโอษฐ์เผยยิ้มอย่างน้อยๆ (นี้เป็นแบบที่เกือบเรียกว่า สูญหายไปจากประเทศกัมพูชาภายหลังสมัยเจินละ แต่กี่ยังคงเป็นแบบที่ทำสืบต่อมาในประเทศไทย ซึ่งเป็นแหล่งที่พระพุทธศาสนายังคงเจริญรุ่งเรืองอยู่ในขณะที่เสื่อมลงในประเทศกัมพูชา) รูปเหล่านี้มักจะสร้างขึ้นเป็นชุดมี 3 องค์ ตรงกลางมีพระพุทธรูปประทับบนหลังนาคราชมี พระโพธิสัตว์อวโลกิเตศวรและนางปัญญาบารมีอยู่ข้างพระองค์ รูปกลางมักแสดงถึงผู้สร้างหรือครู ของเขา ในขณะที่อีก 2 รูปแสดงถึงพ่อและแม่ ช่างจำหลักศิลาและช่างหล่อสำริดในถิ่นต่างๆ ทั่ว ราชอาณาจักรโดยเฉพาะที่ลพบุรีได้ทำพระพุทธรูปขึ้นไว้เป็นจำนวนมากบางรูปก็ประทับอยู่บน

การทำนุบำรุงศาสนสถาน

พระเจ้าชัยวรมันที่ 7 ทรงเป็นพระราชาที่มีงานก่อสร้างมากที่สุดพระองค์หนึ่งใน ประวัติสาสตร์เขมร พระองค์ได้ทรงสร้างสาสนสถานต่างๆ เป็นจำนวนมาก ที่สำคัญที่สุดคือ ปราสาทบายน ภูเขากลางเมืองหลวงราชธานีของพระองค์ ปราสาทนี้เป็นสถานที่บูชารวม ไม่ได้ ประดิษฐานแต่เฉพาะพระพุทธราชเท่านั้น แต่ยังมีรูปเจ้านายในราชวงส์อีกหลายร้อยรวมทั้งบรรพบุรุษของเจ้านายเหล่านั้นด้วย และยังเป็นรูปจำลองของรูปต่างๆ ที่ได้รับการเคารพในถิ่นทั่ว พระราชอาณาจักร ปราสาทอยู่บนฐานที่ยกพื้นสูงใหญ่ทั้งสี่ด้าน ปราสาททำเป็นหน้ามนุษย์ขนาด ใหญ่สลักอยู่บนหินเป็นรูปจำลองพระพักตร์ของพระเจ้าแผ่นดินและในขณะเดียวกันเป็นรูปพระ โพธิสัตว์อวโลกิเตสวร สมันตมุขพระ โพธิสัตว์ผู้มีพระพักตร์อยู่ทุกทิส ใบหน้าอันยิ่งใหญ่เช่นนี้ ได้รับการจำหลักเช่นเดียวกับบนประตูเมือง แสดงถึงการสถิตอยู่ทุกแห่งในเวลาเดียวกันภาพ พระโพธิสัตว์บนซุ้มประตูนี้ก็มีการจำหลักเป็นพระอินทร์กำลังทรงช้าง 3 ตัวอยู่ด้วยเช่นเดียวกัน ทั้งนี้เพราะตัวเมืองเองนั้นได้รับการสมมุติว่าเป็นสวรรค์ กำแพงเมืองนั้นคือลาดเขาพระสุเมรูและ คูเมืองก็คือทะเล เมื่อจะเข้าเมืองจำต้องจำมลูโดยทางเข้าทางหนึ่งทางใดซึ่งมีลูกกรงทำเป็นรูปนาค นาคเหล่านี้หมายถึงรุ้งกินน้ำ ซึ่งเป็นสะพานจากโลกไปสู่สวรรค์ ในขณะเดียวตัวนาคเหล่านี้จะ เดือนให้ระลึกถึง "การกวนเกษียรสมุทร" ซึ่งจะได้น้ำอมฤตและอาจพรมโปรยไปทั่วในแผ่นดินได้ได้ได้ได้ได้ได้ได้

การปรับปรุงระบบสุขศาลา-โรงพยาบาล

เชื่อกันว่าพระเจ้าชัยวรมันที่ 7 ทรงเป็นโรคเรื้อนดังนั้นจึงทรงสนพระทัยเป็นพิเศษใน สุขภาพของประชากร พระองค์ทรงวางแผนการสาธารณสุขอย่างกว้างขวาง มีโรงพยาบาลหลาย หลัง ซึ่งคนใช้ทั้ง 4 วรรณะ อาจเข้าไปรับการรักษาได้นอกจากโรงพยาบาลใหญ่ๆ ในราชธานีเอง แล้ว พระองค์ยังคงสร้างโรงพยาบาลขนาดเล็ก อีกกว่า 100 แห่ง ในส่วนภูมิภาคทุกแห่งสร้างตาม แผนที่วางไว้เป็นระเบียบเดียวกัน

โรงพยาบาลส่วนภูมิภาคเหล่านี้สร้างด้วย ไม้และอุทิศถวายแค่พระ ไภสัชยคุรุ ไวฑูรยประภา พระ โพธิสัตว์ผู้รักษา โรคและ โรงพยาบาลแต่ละแห่งมีอัตราเจ้าหน้าที่ต่อ ไปนี้คือ แพทย์ 2 คน ผู้ช่วย แพทย์ 6 คน (ชาย 2 คน หญิง 4 คน) ผู้รักษายา 2 คน คนครัว 2 คน คนใช้สำหรับเตรียมเครื่องสังเวย พระพุทธรูป 2 คน พยาบาลชาย 14 คน หญิง 6 คน สำหรับต้มยำและบดยา หญิง 2 คน สำหรับตำ

การสร้างทางหลวงเชื่อมอินโดจีน

พระองค์ได้ทรงสร้างสถานทางศาสนาและการก่อสร้างอื่นๆ อีกเป็นจำนวนมากในถิ่นต่างๆ ทั่วราชอาณาจักร พระองค์ทรงสร้างทางหลวงเหนือระดับน้ำท่วม ครอบคลุมไปทั่วราชอาณาจักร ทางหลวงบางแห่งสูง 5 หรือ 6 เมตร ณ ที่ข้ามแม่น้ำก็มีสะพานหินกว้าง 7 เมตร มีรูปกรงสะพาน สลักเป็นรูปนาคตามถนนสายต่างๆ เหล่านี้มีทุก 15 กิโลเมตร มีบ้านพักก่อด้วยหิน (ธรรมศาลา) สำหรับผู้เดินทางแห่งหนึ่ง และมี 17 แห่ง ระหว่างเมืองนครหลวง และพิมาย 57 แห่งระหว่างเมือง นครหลวง และราชธานีของประเทศจามปา เป็นต้น

จารึกกล่าวว่า

- 1. บนถนนของยโสธรปุระไปสู่เมืองหลวงของจามปา พระองค์ได้ทรงสร้างที่พักเป็น ตอนๆ ไว้ 57 แห่งมีไฟพร้อม
 - 2. จากเมืองหลวงไปยังเมืองพิมาย มีที่พักพร้อมด้วยไฟ 17 แห่ง
- 3. จากเมืองหลวงไปยังเมืองชัยวตี จากชัยวตีไปยังชัยสิงหวตีจากชัยสิงหวตีไปยังชัยราชคีรี จากชัยราชคีรีไปยังศรีสุวีระบุรี จากเมืองสุวีระบุรีไปยังเมืองยโสธรปุระมีที่พักพร้อมด้วยไฟ 14 แห่ง มี 1 แห่งที่ศรีศูรยบรรณวัต อยู่ที่ศรีวิชยาทิตยปุระแห่งหนึ่งอยู่ที่กัลยะณสิทธิกะแห่ง 1 รวม ทั้งสิ้น 121 แห่ง

การขยายอำนาจทางการเมืองเข้าไปในดินแดนทิศตะวันตก

ความน่าสนใจนั้นตรงที่คำจารึกที่เรียกว่า ชาวพุกามและรามัญ อาณาจักรพุกามนั้นคงจะ หมายถึงชาวพม่าซึ่งครั้งแผ่นดินพระเจ้าอนิรุทธ์มหาราช ประมาณ พ.ศ. 1570 เศษ ได้ยกกองทัพ ขยายอาณาเขตเข้ามาในดินแดนสุวรรณภูมิ รวมทั้งเมืองนครปฐม ในลุ่มแม่น้ำท่าจีน และแม่น้ำ กลอง แต่ในปี พ.ศ. 1724 นั้น อำนาจของพุกามเสื่อมโทรมมากแล้ว และอำนาจของขอมทางด้าน เหนือเท่าที่ปรากฏหลักฐานนั้น น่าจะไม่พ้นดินแดนเมืองศรีสัชนาลัย จ.สุโขทัย จารึกหลักหนึ่งที่พบ ที่เมืองสุโขทัย กล่าวว่า "ฟ้าเมืองยโสธรปุระได้พระราชทานพระขรรค์ชัยศรี พระนางศิขรมหาเทวี และตำแหน่งกมรเตงอัญศรีบดินทราทิตย์ แต่พ่อขุนผาเมืองเจ้าเมืองราด"

ใต้เมืองสุโขทัยลงมา จารึกเอ่ยนามเมืองสำคัญด้านทิศตะวันตกของอาณาจักรกัมพูชาว่า มี เมือง...ละโวทยปุระ สุวรรณปุระ ศามภูกปัฏิถูนะ ชัยราชบุรี ศรีชัยสิงห์ปุระ ศรีชัยวัชระบุรี ศรีชัย-

มหาราชแห่งกัมพูชาเป็นเทพราชแห่งลุ่มน้ำมูล

การเติบโตของสังคมกัมพูชาในบริเวณเขมรสูงภาคตะวันออกเฉียงเหนือตอนใต้ควบคู่ไป กับการพัฒนาและปรับปรุงเมืองพระนครใจกลางศาสนาศิลปะและวัฒนธรรมในคินแคนเขมรต่ำ เราได้พบการก่อสร้างต่อเติมพุทธศาสนาสถานทั้งตัวพุทธศาสนาและศาสนาฮินดูหลายแห่งใน ดินแคนประเทศไทยเฉพาะแหล่งสำคัญที่เห็นได้ชัด คือ

ในเมืองลพบุรี โบราณสถานปรางค์สามยอด ได้รับการซ่อมแซมปรับปรุงใหม่ มีหน้ากาล และหน้าคนปูนปั้นประดับปรางค์ 3 ยอด การค้นพบเศียรเทวรูปเป็นหลักฐานที่สำคัญ รวมไปถึง บรรคาประติมากรรมรูปเคารพแบบต่างๆ

ในเทวาลัยพนมรุ้ง จังหวัดบุรีรัมย์ เราพบว่าพระเศียรนาคราชบริเวณสะพานทางขึ้นเทวาลัย ทำเป็นรูปนาค 7 เศียร มีรัศมีแผ่พังพานที่เป็นศิลปะที่นิยมแพร่หลายในรัชกาลของพระองค์

ในเมืองพิมาย ได้พบเทวรูปในอาคารสร้างด้วยศิลาแลงหลังหนึ่งคือปรางค์พรหมทัต ซึ่ง เป็นสิ่งก่อสร้างเพิ่มเติมขึ้นในรัชกาลของพระองค์ แสดงให้เห็นว่าในขณะนั้นเมืองพิมายมี ความสำคัญ นักปราชญ์หลายท่านเสนอว่า พิมายในขณะนั้นไม่ใช่เพียงแต่เป็นศาสนสถาน หากยัง เป็นเมืองอุปราชของขอมในลุ่มน้ำมูล-ชี อีกด้วย

สิ้นแผ่นดินสมเด็จพระเจ้าชัยวรมันที่ 7 พระเจ้าอินทรวรมันที่ 2 ซึ่งเป็นราชโอรสได้ทรง ครองราชย์สืบต่อมา พระองค์พยายามรักษาพระราชอำนาจแห่งราชอาณาจักรสืบต่อจากพระราช บิดา ประเทศได้หันไปนับถือสาสนาฮินดูอีกครั้งหนึ่ง พวกพราหมณ์ยุยงชาวพื้นเมืองให้ทำลายวัดวา อาราม และรูปเคารพในพุทธศาสนาลงเป็นจำนวนมาก แล้วนำเอาศิวลึงค์ไปดั้งแทน อย่างไรก็ตาม ด้วยคำสอนของพระพุทธศาสนาแบบตันตระได้ปลดปล่อยฐานะของไพร่ฟ้าประชาชนให้เป็นอิสระ หลุดพ้นจากการเป็นทาส และชนชั้นของฮินดูสืบต่อกันมาลงได้บ้าง แม้ในทางสังคมและการ ปกครองระบบพราหมณ์ผสมพุทธมีการค้าทาสยังคงถือปฏิบัติสืบต่อมา แต่การชะลอการเกณฑ์ แรงงานไปทำการก่อสร้างศาสนาและเทวาลัยในศาสนาฮินดู ชาวกัมพูชาได้มีโอกาสในการใช้ แรงงานในการผลิตอาหาร เพื่อชีวิตของตนเองและครอบครัวได้มากขึ้น การได้พบกับชีวิตที่มีความ เสมอภาคทางสังคม และการยึดมั่นในคำสอนของพระพุทธเจ้าได้ค่อยๆ เปลี่ยนแปลงวิถีชีวิตและ สังคมฮินดูมาเป็นพุทธศาสนาเพิ่มขึ้นทีละน้อย และอิทธิพลของพุทธศาสนาได้แทรกเข้าสู่ระบบ กษัตริย์ บทบาทของพราหมณ์ไม่ว่าในสกุลศิวะไกรวัลย์หรือสกุลทิวากรบัณฑิตลดความสำคัญลง และพระสงฆ์ผู้สืบทอดพระธรรมวินัยได้เข้าไปมีบทบาทในพิธีกรรมต่างๆ มากขึ้นตามลำดับ

บรรคาเมืองบริวารของอาณาจักรกัมพูชา ไม่ว่าจะเมืองเพชรบุรี สิงห์บุรี ลพบุรี พิมาย หรือ ที่ห่างออกไป เช่น สุโขทัย ศรีสัชนาลัย หรือพระเวียง-หลวงพระบาง เริ่มเติบโตทางการเมืองและ กลายเป็นศูนย์การปกครองอิสระของคนเผ่าไทย-ลาวมากขึ้นตามลำดับ

หมายเหตุ

เรียบเรียงจาก

ศิลปากร, กรม. จารึกพระเจ้าชัยวรมันที่ 7, หอสมุดแห่งชาติ. กรุงเทพ : กรุงสยามการพิมพ์, 2528.

ศิลปากร, กรม. ประวัติศาสตร์ โบราณคดี-กัมพูชา, กรุงเทพ : บริษัท ประชาชน จำกัด, 2536.

1.2 วัตถุประสงค์ของโครงการ

เพื่อขยายการคำเนินการวิจัยของโครงการฯ ในระยะที่หนึ่งในหัวข้อต่อไปนี้

- 1. เพื่อศึกษากิจกรรมทางวัฒนธรรมของสังคมระดับรัฐ ที่ปรากฏขึ้นในช่วงพุทธศตวรรษที่ 17-18 ในพื้นที่จังหวัดบุรีรัมย์และพื้นที่เกี่ยวเนื่องในเขตประเทศกัมพูชา
- 2. เพื่อศึกษาและรวบรวมข้อมูล บันทึกสภาพ แหล่งโบราณคดี ในการรองรับแผนพัฒนา ฐานข้อมูลทางโบราณคดีในพื้นที่โครงการ
- 3. เพื่อศึกษาความสัมพันธ์ระหว่างถนนโบราณกับแหล่งโลหะกรรมและแหล่งชุมชนร่วม สมัย

1.3 ขอบเขตของโครงการ

การคำเนินโครงการในระยะที่ 2 มีขอบเขตการศึกษาแบ่งเป็น 2 พื้นที่ ได้แก่

- 1. การศึกษาโดยละเอียดของแนวถนนโบราณในเขตอำเภอบ้านกรวด จังหวัดบุรีรัมย์ และ พื้นที่เกี่ยวเนื่องจังหวัดสุรินทร์ โดยมุ่งศึกษาและเก็บตัวอย่างด้วยวิธีการขุดค้นทางโบราณคดี วิธีการ สำรวจทางธรณีฟิสิกส์ ร่วมกับการศึกษาโดยใช้เทคโนโลยี Remote Sensing และ GIS
- 2. การศึกษาบริเวณพื้นที่แนวถนนโบราณและพื้นที่แนวกันชนจากการสำรวจในการ ดำเนินโครงการระยะที่ 1 ทั้งในเขตราชอาณาจักรไทย และราชอาณาจักรกัมพูชา โดยทำการศึกษา เก็บตัวอย่าง และบันทึกสภาพหลักฐานทางโบราณคดีด้วยวิธีการสำรวจภาคพื้นดินร่วมกับการศึกษา โดยใช้เทคโนโลยี Remote Sensing และ GIS

การดำเนินโครงการในระยะที่ 2 มีขอบเขตการศึกษาย้อนกลับไปในอดีตระหว่างคาบเวลา ตั้งแต่พุทธศตวรรษที่ 17 ถึง ประมาณพุทธศตวรรษที่ 18 เป็นหลัก โดยมีประเด็นการศึกษา ดังนี้

- 1. ประเด็นการค้นคว้าและวิธีการทางด้าน Remote Sensing และ GIS
- 2. ประเด็นการค้นคว้าและวิธีการทางโบราณคดี
- 3. ประเด็นการค้นคว้าและวิธีการทางค้านธรณีฟิสิกส์
- 4. ประเด็นการพัฒนาสารสนเทศและสารคดีเพื่อการศึกษาเกี่ยวกับถนนโบราณสมัย พระเจ้าชัยวรมันที่ 7

1.4 แผนงานสังเขปตามระยะเวลา

สามารถแสดงได้โดยตารางต่อไปนี้

หมายเหตุ 1 ช่วงเวลา = 6 เดือน

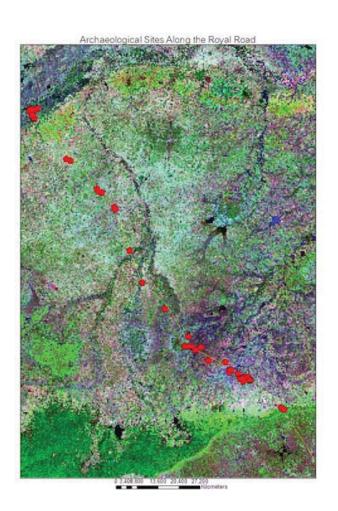
0304	ช่วงเวลา	ช่วงเวลา	ช่วงเวลา
งาน	1	2	3
1. การพัฒนาระบบสารสนเทศพื้นฐาน	X		
2. การสำรวจทางค้าน Archaeology / Remote Sensing/ GIS	X	X	
3. การพัฒนาระบบสารสนเทศจากการสำรวจ		X	
4. การสำรวจและเก็บข้อมูลทางวัฒนธรรม	X	X	
5. การพัฒนาฐานข้อมูลทางวัฒนธรรม		X	х
6. การวิเคราะห์ทางโบราณคดี	X	X	
7. การวิเคราะห์เชิงสหวิทยา			х
8. การพัฒนาฐานข้อมูลสื่อผสมของข้อมูลทางโบราณคดีและ		X	Х
วัฒนธรรม			

บทที่ 2

การค้นคว้าและวิธีการทางด้าน Remote Sensing และ GIS

2.1 จุดประสงค์

ในการศึกษาวิจัยที่ผ่านมาในส่วนของงาน Remote Sensing และ GIS ได้ทำการวิเคราะห์ ข้อมูลทางด้าน Remote Sensing และ GIS ทำให้สามารถกำหนดทำแหน่งพื้นที่ในการสำรวจได้ อย่างแม่นยำ โดยสามารถค้นพบธรรมศาลาหรืออัคนีศาลาเพิ่มเติมในฝั่งกัมพูชา และตำแหน่งแนว ถนนโบราณที่ใช้ข้ามช่องตาเมือน กิ่งอำเภอพนมดงรัก จังหวัดสุรินทร์ ต่อมายังสามารถทำการ วิเคราะห์และขยายผลการสำรวจทางภาคพื้นดินซึ่งทำให้เกิดการขยายผลในการศึกษาวิจัยได้เป็น อย่างมาก สำหรับโครงการปัจจุบันได้ดำเนินการวิจัยทางด้าน Remote Sensing และ GIS โดยใช้ ประสบการณ์จากการคำเนินการวิจัยที่ผ่านมาทำการปรับปรุงวิธีการตีความข้อมูล ซึ่งทำให้ได้ ผลลัพธ์จากการวิเคราะห์ข้อมูลในการวิจัยด้านต่างๆ ของโครงการมีความสอดคล้องกันมากยิ่งขึ้น เป็นตัวอย่างหนึ่งของการศึกษาวิจัยในลักษณะสหวิทยาการอย่างแท้จริง เนื่องจากการวิจัยในด้าน ต่างๆ มีความเกื้อหนุนซึ่งกันและกันเป็นอย่างมาก ทำให้มีประสิทธิภาพในการดำเนินการมากยิ่งขึ้น ซึ่งการศึกษาทางด้าน Remote Sensing และ GIS มีแผนการดำเนินงานโดยรวมดังนี้


- 1. จัดทำฐานข้อมูลแหล่งโบราณคดีและระบบข้อมูลจำเพาะของแหล่ง
- 2. จัดทำแผนที่ข้อมูลพื้นฐานรายละเอียดสูงสำหรับพื้นที่ศึกษาและวิเคราะห์การ เปลี่ยนแปลงสภาพพื้นที่ในพื้นที่ศึกษาจากข้อมูลหลายช่วงเวลา
 - 3. วิเคราะห์ข้อมูลเพื่อศึกษาแหล่งอุตสาหกรรมโบราณตามแนวถนนโบราณ
 - 4. พัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์ของโครงการ
 - 5. พัฒนาระบบแม่ข่ายสารสนเทศภูมิศาสตร์ของโครงการผ่านเครือข่ายอินเทอร์เนต

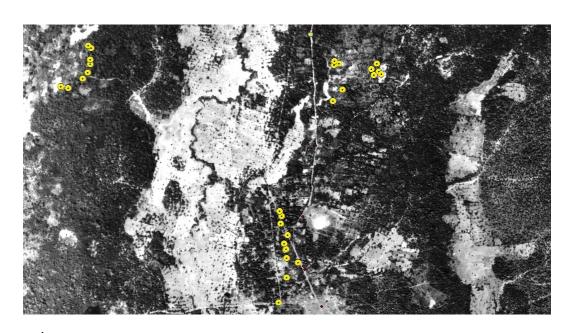
2.2 แผนงาน / กิจกรรม

สำหรับการศึกษาทางด้าน Remote Sensing และ GIS ได้ทำการดำเนินการศึกษาในหัวข้อ ต่อไปนี้

 จัดทำฐานข้อมูลแหล่งโบราณคดีและระบบข้อมูลจำเพาะของแหล่ง ได้แก่ พิกัด ภูมิศาสตร์ เขตการปกครอง ลักษณะของแหล่ง โดยใช้ข้อมูลที่ได้จากการสำรวจในโครงการระยะที่
 เป็นพื้นฐาน และดำเนินการสำรวจเพิ่มเติม

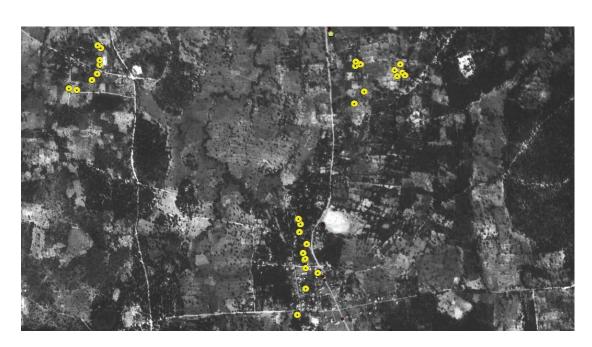
ในการดำเนินการวิจัยนี้ ได้ดำเนินการสำรวจแหล่งโลหะกรรม และแหล่งผลิต เครื่องปั้นคินเผาตามแนวถนนโบราณเพิ่มเติมจากที่ได้ดำเนินการในช่วงระยะเวลาก่อน โครงการได้ ดำเนินการพัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์ของแหล่งเหล่านี้อย่างสมบูรณ์ ซึ่งสามารถใช้ใน การจัดทำแผนที่แหล่งโบราณคดีและระบบข้อมูลจำเพาะของแหล่งโบราณคดีตามแนวถนนโบราณ เพื่อนำมาวิเคราะห์หาความสัมพันธ์ของแหล่งโบราณคดีเหล่านี้กับแนวถนนโบราณร่วมกับข้อมูล ในด้านอื่นๆ เช่นข้อมูลทางโบราณคดี ข้อมูลทางธรณีวิทยา และข้อมูลทางมานุษยวิทยา นอกจากนี้ ทีมนักวิจัย APSARA ได้ทำการสำรวจและทำแผนที่ของแหล่งโบราณคดีในพื้นที่ Kol Village (กรุณาดูรายละเอียดการดำเนินวิจัยในประเทศกัมพูชาในบทที่ 6 ประกอบ) ซึ่งเป็นพื้นที่สำคัญตาม แนวถนนโบราณจากเมืองพระนครถึงเมืองพิมายในฝั่งกัมพูชา ซึ่งข้อมูลจากการดำเนินการนี้มี ความสำคัญช่วยในการตีความเรื่องเกี่ยวกับการจัดสร้างและการใช้ถนนโบราณเส้นนี้เป็นอย่างมาก ซึ่งรวมไปถึงการพัฒนาระบบชลประทานโบราณในพื้นที่ศึกษาทั้งฝั่งไทยและกัมพูชาตามแนวถนนโบราณเส้นนี้

รูปที่ 2-1 ภาพแสดงแหล่งโบราณคดีตามแนวถนนโบราณในฝั่งประเทศไทย

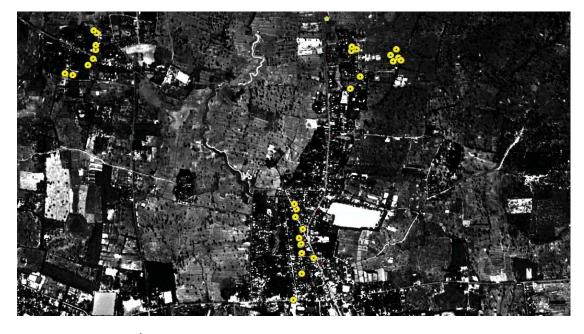

รูปที่ 2-2 ภาพแสดงแหล่งโลหะกรรม และแหล่งเตาเผาเครื่องเคลือบโบราณตามแนวถนนโบราณ :
ตำแหน่งแหล่งโลหะกรรม (จุดวงกลมสีเหลือง) แหล่งเตาเผาเครื่องเคลือบโบราณ
(จุดห้าเหลี่ยมสีแดง)

เมื่อนำข้อมูลจากแหล่งโบราณคดีต่างๆ นำมาวิเคราะห์ร่วมกับข้อมูล Remote Sensing และ GIS ของโครงการ ทำให้สามารถประเมินหลักการและเหตุผลของคนโบราณในการ ตั้งแหล่งอุตสาหกรรม แหล่งชุมชนโบราณได้เป็นอย่างดี เนื่องจากแหล่งต่างๆ เหล่านี้มีรูปแบบของ การจัดตั้งที่ขึ้นอยู่กับปัจจัยทางด้านสิ่งแวดล้อม และทรัพยากรธรรมชาติเป็นหลัก ซึ่งถึงแม้เวลาจะ ได้ผ่านไปเป็นเวลาเกือบพันปี แต่เราก็ยังสามารถตรวจสอบได้โดยตรงและ โดยอ้อมจากข้อมูล Remote Sensing ข้อมูลทางโบราณคดี ข้อมูลทางธรณีฟิสิกส์ของโครงการ

2. จัดทำแผนที่ข้อมูลพื้นฐานรายละเอียดสูงสำหรับพื้นที่ศึกษาและวิเคราะห์การ เปลี่ยนแปลงสภาพพื้นที่ในพื้นที่ศึกษาจากข้อมูลหลายช่วงเวลา เป็นการคำเนินการพัฒนาข้อมูล และทำการศึกษาโดยใช้การศึกษาเปรียบเทียบข้อมูลภาพถ่ายทางอากาศของพื้นที่ศึกษาในหลาย ช่วงเวลาประกอบกับการศึกษาร่วมกับข้อมูลภาพถ่ายคาวเทียมรายละเอียดสูง เพื่อตรวจสอบความ เปลี่ยนแปลงของพื้นที่ในช่วงเวลาต่างๆ เพื่อเปรียบเทียบสภาพของพื้นที่ปรากฏในปัจจุบันและ สภาพในช่วงเวลาที่ผ่านมา


วิธีการ

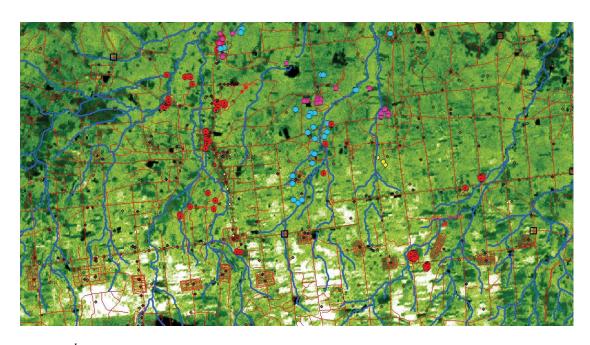
ในการดำเนินการวิจัยนี้ ได้ดำเนินการ โดยการทำการ geo-reference ภาพถ่ายทาง อากาศของพื้นที่ศึกษาตามช่วงเวลาในลักษณะ time series ดังนี้ พ.ศ. 2497 พ.ศ. 2510 พ.ศ. 2542 กับ



รูปที่ **2-3** ภาพถ่ายทางอากาศ พ.ศ. 2497 บริเวณอำเภอบ้านกรวดพร้อมตำแหน่งแหล่งโลหะกรรม

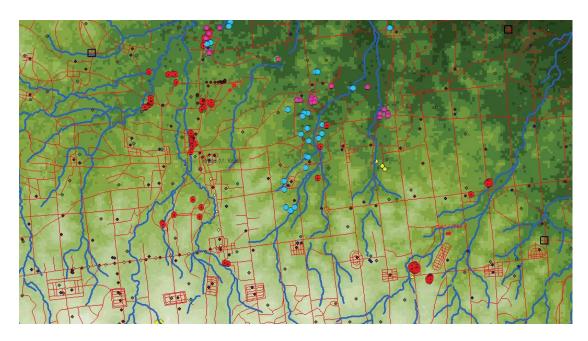
3. วิเคราะห์ข้อมูลเพื่อศึกษาแหล่งอุตสาหกรรมโบราณตามแนวถนนโบราณ โดยทำการ วิเคราะห์ข้อมูลทางด้าน Remote Sensing และ GIS ร่วมกับข้อมูลด้านอื่นๆ ของโครงการเพื่อศึกษา รายละเอียดของแหล่งอุตสาหกรรมโบราณตามแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมาย เส้นนี้ เช่น สาเหตุของการเลือกพื้นที่สำหรับดำเนินการ แหล่งวัตถุดิบที่ใช้ พื้นที่ตั้งของชุมชน โบราณ เป็นต้น

รูปที่ 2-4 ภาพถ่ายทางอากาศ พ.ศ. 2510 บริเวณอำเภอบ้านกรวดพร้อมตำแหน่งแหล่งโลหะกรรม



รู**ปที่ 2-5** ภาพถ่ายทางอากาศ พ.ศ. 2542 บริเวณอำเภอบ้านกรวด พร้อมตำแหน่งแหล่งโลหะกรรมแสดงการขยายตัวของชุมชน

ในการดำเนินการวิจัยนี้ โครงการได้ดำเนินการวิเคราะห์ข้อมูลจากภาพถ่าย คาวเทียม ASTER ในช่วงคลื่น Visible-NIR (Channel 1, 2, 3) เพื่อศึกษาลักษณะพื้นที่และ สิ่งแวคล้อม และ Short Wave Infrared (Channel 4, 5) เพื่อศึกษาทางธรณีวิทยาร่วมกับข้อมูลอื่นๆ เช่น ข้อมูลความสูงจาก SRTM และข้อมูลจากการวิจัยในด้านอื่นๆ เพื่อใช้ข้อมูลทำการศึกษาในด้าน สภาพสิ่งแวคล้อม แหล่งทรัพยากรธรรมชาติของพื้นที่ศึกษาทั้งอดีตและปัจจุบัน และศึกษาทาง ธรณีวิทยาของพื้นที่ศึกษาร่วมกับแผนที่ทางธรณีวิทยา (กรุณาดูรายละเอียคการวิเคราะห์ทางธรณี ฟิสิกส์และธรณีวิทยาในบทที่ 4 ประกอบ) เพื่อศึกษาความสัมพันธ์ของแหล่งอุตสาหกรรมโบราณ และแหล่งวัตถุดิบและสภาพแวคล้อม ซึ่งในขั้นตอนปัจจุบันได้ดำเนินการศึกษาเปรียบเทียบผลจาก การวิเคราะห์ทางธรณีวิทยาจากการวิเคราะห์ Thresholding จาก Channel 4/5 Index ของข้อมูลภาพ ถ่ายดาวเทียม ASTER และข้อมูลทางธรณีวิทยาจากการสำรวจและแผนที่ธรณีวิทยา เนื่องจากการ ตีความจากการวิเคราะห์ข้อมูลจากภาพถ่ายดาวเทียม ASTER เพียงอย่างเดียว โดยไม่มีการวิเคราะห์ ร่วมกับข้อมูลทางธรณีวิทยาจากการสำรวจสามารถทำให้เกิดข้อผิดพลาดได้ เนื่องจากผลกระทบ ของสิ่งปกคลุมพื้นดิน เช่น พืชมีผลต่อการวิเคราะห์ทางธรณีวิทยาจาก Channel 4/5 Index จากข้อมูล ASTER


รูปที่ 2-6 ตัวอย่างภาพถ่ายคาวเทียม ASTER Color Composite (2:3:1 : R:G:B)
บริเวณอำเภอบ้านกรวด พร้อมด้วยตำแหน่งแหล่งโลหะกรรม (จุดวงกลมสีเหลือง)
และแหล่งเตาเผาเครื่องเคลือบโบราณ (จุดห้าเหลี่ยมสีแดง)

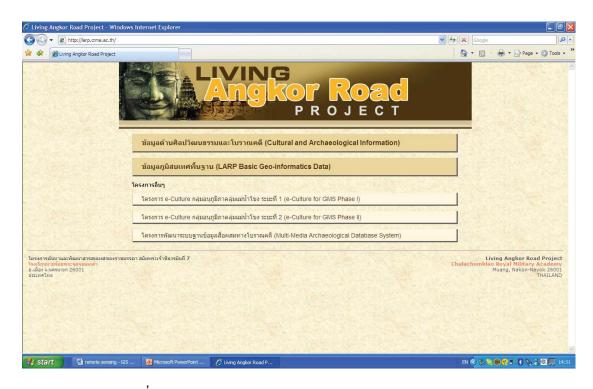
ร**ูปที่ 2-7** ตัวอย่างผลจากการวิเคราะห์ข้อมูลทางธรณีวิทยาจากภาพถ่ายดาวเทียม ASTER บริเวณอำเภอบ้านกรวด (Channel 4/5 Index สีอ่อนถึงเข้มหมายถึงมีส่วนประกอบของ ศิลาแลงสูงถึงต่ำ) พร้อมแสดงตำแหน่งแหล่งโลหะกรรม (จุดวงกลมสีเหลือง) และแหล่งเตาเผาเครื่องเคลือบโบราณ (จุดห้าเหลี่ยมสีแดง)

จากการวิเคราะห์ Thresholding ของ Channel 4/5 Index จากข้อมูลภาพถ่าย คาวเทียม ASTER และข้อมูลทางธรณีวิทยาจากการสำรวจและแผนที่ธรณีวิทยา ในพื้นที่อำเภอ บ้านกรวด จังหวัดบุรีรัมย์ ซึ่งมีแหล่งถลุงโลหะโบราณอยู่เป็นจำนวนมาก และพื้นที่ตลอดแนวของ ถนนโบราณจากเมืองพระนครถึงเมืองพิมาย ทำให้เรามีข้อมูลเบื้องต้นว่าพื้นที่อำเภอบ้านกรวดเป็น พื้นที่ที่มีศิลาแลงกระจายอยู่อย่างหนาแน่น ซึ่งศิลาแลงเหล่านี้เมื่อทางโครงการทำการวิเคราะห์ องค์ประกอบแล้วพบว่ามีปริมาณแร่เหล็กอยู่เป็นจำนวนสูง ซึ่งอาจจะสามารถนำมาเป็นวัตถุดิบใน การถลุงเหล็ก เนื่องจากเราไม่พบเหมืองแร่เหล็กในพื้นที่รอบๆ แหล่งถลุงเหล็กเหล่านี้ ต่างจาก แหล่งถลุงเหล็กโบราณในประเทศกัมพูชาที่ได้มีการค้นพบเหมืองแร่เหล็กอยู่ในบริเวณไม่ไกลจาก แหล่งถลุงเหล่านั้น (จากข้อมูลของคณะวิจัยองค์การ APSARA)

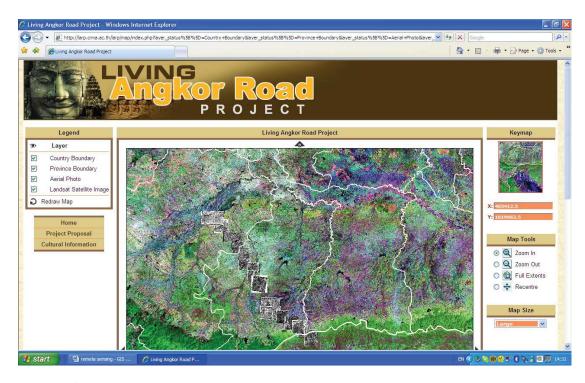
นอกจากนี้แล้ว หลังจากที่ทำการวิเคราะห์ข้อมูล Remote sensing และ GIS ร่วมกับ ข้อมูลด้านอื่นๆ เช่น ข้อมูลความสูงจาก SRTM ทำให้พบว่าแหล่งถลุงเหล็กโบราณ และแหล่ง เตาเผาเครื่องเคลือบโบราณ ตั้งอยู่บนเนินริมที่ราบที่น้ำท่วมถึง (Flood Plain) ทั้งสิ้น ซึ่งทำให้ สามารถคาดคะเนได้ว่าน่าจะมีแหล่งอุตสาหกรรมโบราณเหล่านี้ ขยายตัวไปทางอำเภอละหารทราย จังหวัดบุรีรัมย์ ซึ่งมีลักษณะของสภาวะแวดล้อมทางธรรมชาติ ลักษณะเดียวกับบริเวณอำเภอ บ้านกรวด จังหวัดบุรีรัมย์

รูปที่ 2-8 ตัวอย่างข้อมูลความสูงจาก SRTM บริเวณอำเภอบ้านกรวค (สีอ่อนถึงเข้มหมายถึงพื้นที่ ที่มีความสูงมากถึงความสูงต่ำ) พร้อมแสดงตำแหน่งแหล่งโลหะกรรม (จุดวงกลมสีเหลือง) และแหล่งเตาเผาเครื่องเคลือบโบราณ (จุดห้าเหลี่ยมสีแดง)

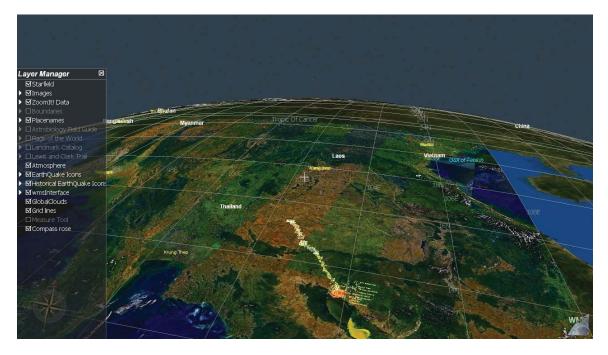
4. พัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์ของโครงการ เพื่อเก็บรวบรวมข้อมูลทั้งหมดใน รูปแบบฐานข้อมูลสารสนเทศภูมิศาสตร์ของโครงการ

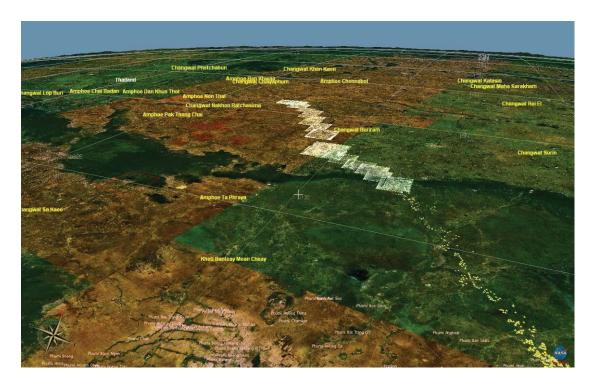

วิธีการ

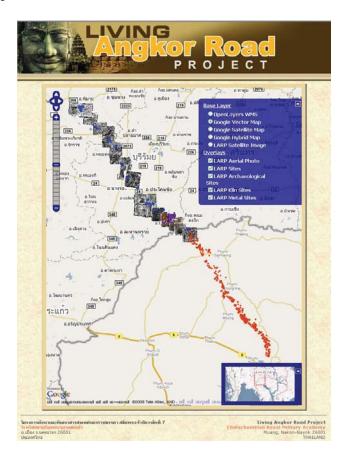
โครงการ ได้ขยายการพัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์ของโครงการจาก ข้อมูลที่ได้ทำการพัฒนาเพิ่มขึ้นดังที่ได้กล่าวมาแล้วข้างต้น ได้แก่


ฐานข้อมูลสารสนเทศภูมิศาสตร์พื้นฐานตามแนวถนนโบราณ

- 1. ฐานข้อมูลสารสนเทศภูมิศาสตร์ของแหล่งอุตสาหกรรมโบราณในพื้นที่แนว ชายแคนประเทศไทยและกัมพูชาในแนวถนนโบราณ
 - 2. ฐานข้อมูลภาพถ่ายทางอากาศ
 - 3. ฐานข้อมูลภาพถ่ายคาวเทียม ASTER


จากที่คณะทำงานได้ขยายการพัฒนาระบบสารสนเทศภูมิศาสตร์ของโครงการผ่าน เครือข่ายอินเทอร์เน็ตเพิ่มเติมในด้านของข้อมูลที่เพิ่มขึ้น และในด้านของระบบได้มีการพัฒนา ระบบเชื่อมโยงฐานข้อมูลสารสนเทศภูมิศาสตร์ผ่านเครือข่ายอินเทอร์เน็ตของโครงการกับระบบ NASA World Wind ซึ่งทำให้การแสดงผลข้อมูลสารสนเทศภูมิศาสตร์ของโครงการมีความ น่าสนใจในการแสดงผลมากขึ้นในลักษณะเดียวกับข้อมูลที่แสดงผลจากระบบ Google Earth และ ได้พัฒนาระบบสามมิติของโบราณสถานตามแนวถนนโบราณเพื่อใช้ประกอบการนำเสนอต่อ เขาวชนและผู้สนใจแล้วนั้น ปัจจุบันคณะทำงานได้พัฒนาการใช้ระบบ Open Layer ในการพัฒนา ระบบแสดงผล ซึ่งทำให้การแสดงผลผ่านเครือข่ายอินเทอร์เน็ตสามารถดำเนินการได้อย่างดียิ่งขึ้น นอกจากนั้นยังทำให้สามารถนำเข้าข้อมูลและนำเสนอข้อมูลได้สะดวกยิ่งขึ้น และได้มีการพัฒนา ภาพจำลองระบบสามมิติขยายต่อจากการดำเนินการที่ผ่านมา (ภาคผนวก ก และ ข)


รูปที่ 2-9 ตัวอย่างการแสดงผลจากระบบแม่ข่าย larp.crma.ac.th


รูปที่ 2-10 ตัวอย่างการแสดงผลจากระบบ map server ผ่านระบบแม่ข่าย larp.crma.ac.th

รูปที่ 2-11 ตัวอย่างการแสดงผลผ่านระบบ NASA World Wind

รูปที่ 2-12 ตัวอย่างการแสดงผลผ่านระบบ NASA World Wind

รูปที่ 2-13 ตัวอย่างการแสดงผลจากระบบ Open layer

รูปที่ 2-14 ตัวอย่างการแสดงผลจากระบบ Open layer

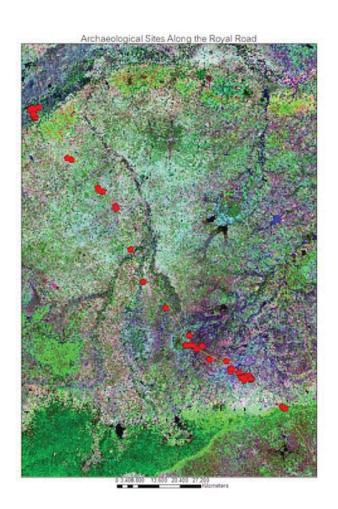
รูปที่ 2-15 ตัวอย่างการแสดงผลจากระบบ Open layer

บทที่ 2

การค้นคว้าและวิธีการทางด้าน Remote Sensing และ GIS

2.1 จุดประสงค์

ในการศึกษาวิจัยที่ผ่านมาในส่วนของงาน Remote Sensing และ GIS ได้ทำการวิเคราะห์ ข้อมูลทางด้าน Remote Sensing และ GIS ทำให้สามารถกำหนดทำแหน่งพื้นที่ในการสำรวจได้ อย่างแม่นยำ โดยสามารถค้นพบธรรมศาลาหรืออัคนีศาลาเพิ่มเติมในฝั่งกัมพูชา และตำแหน่งแนว ถนนโบราณที่ใช้ข้ามช่องตาเมือน กิ่งอำเภอพนมดงรัก จังหวัดสุรินทร์ ต่อมายังสามารถทำการ วิเคราะห์และขยายผลการสำรวจทางภาคพื้นดินซึ่งทำให้เกิดการขยายผลในการศึกษาวิจัยได้เป็น อย่างมาก สำหรับโครงการปัจจุบันได้ดำเนินการวิจัยทางด้าน Remote Sensing และ GIS โดยใช้ ประสบการณ์จากการคำเนินการวิจัยที่ผ่านมาทำการปรับปรุงวิธีการตีความข้อมูล ซึ่งทำให้ได้ ผลลัพธ์จากการวิเคราะห์ข้อมูลในการวิจัยด้านต่างๆ ของโครงการมีความสอดคล้องกันมากยิ่งขึ้น เป็นตัวอย่างหนึ่งของการศึกษาวิจัยในลักษณะสหวิทยาการอย่างแท้จริง เนื่องจากการวิจัยในด้าน ต่างๆ มีความเกื้อหนุนซึ่งกันและกันเป็นอย่างมาก ทำให้มีประสิทธิภาพในการดำเนินการมากยิ่งขึ้น ซึ่งการศึกษาทางด้าน Remote Sensing และ GIS มีแผนการดำเนินงานโดยรวมดังนี้


- 1. จัดทำฐานข้อมูลแหล่งโบราณคดีและระบบข้อมูลจำเพาะของแหล่ง
- 2. จัดทำแผนที่ข้อมูลพื้นฐานรายละเอียดสูงสำหรับพื้นที่ศึกษาและวิเคราะห์การ เปลี่ยนแปลงสภาพพื้นที่ในพื้นที่ศึกษาจากข้อมูลหลายช่วงเวลา
 - 3. วิเคราะห์ข้อมูลเพื่อศึกษาแหล่งอุตสาหกรรมโบราณตามแนวถนนโบราณ
 - 4. พัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์ของโครงการ
 - 5. พัฒนาระบบแม่ข่ายสารสนเทศภูมิศาสตร์ของโครงการผ่านเครือข่ายอินเทอร์เนต

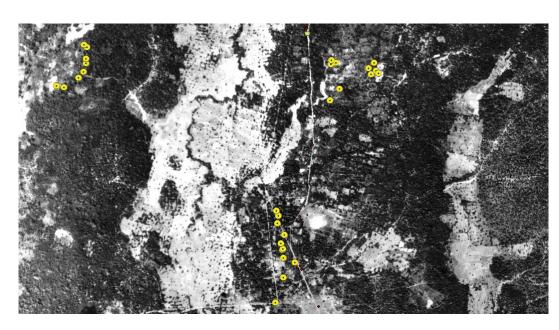
2.2 แผนงาน / กิจกรรม

สำหรับการศึกษาทางด้าน Remote Sensing และ GIS ได้ทำการดำเนินการศึกษาในหัวข้อ ต่อไปนี้

 จัดทำฐานข้อมูลแหล่งโบราณคดีและระบบข้อมูลจำเพาะของแหล่ง ได้แก่ พิกัด ภูมิศาสตร์ เขตการปกครอง ลักษณะของแหล่ง โดยใช้ข้อมูลที่ได้จากการสำรวจในโครงการระยะที่
 เป็นพื้นฐาน และดำเนินการสำรวจเพิ่มเติม

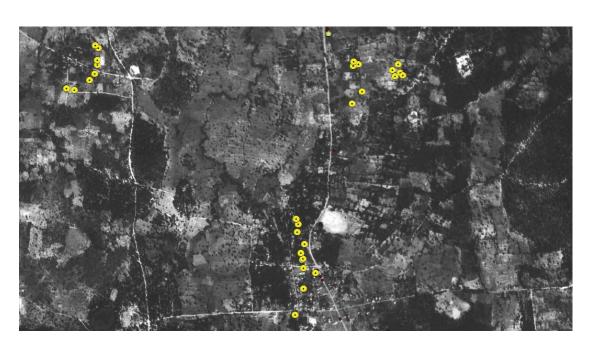
ในการดำเนินการวิจัยนี้ ได้ดำเนินการสำรวจแหล่งโลหะกรรม และแหล่งผลิต เครื่องปั้นดินเผาตามแนวถนนโบราณเพิ่มเติมจากที่ได้ดำเนินการในช่วงระยะเวลาก่อน โครงการได้ ดำเนินการพัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์ของแหล่งเหล่านี้อย่างสมบูรณ์ ซึ่งสามารถใช้ใน การจัดทำแผนที่แหล่งโบราณคดีและระบบข้อมูลจำเพาะของแหล่งโบราณคดีตามแนวถนนโบราณ เพื่อนำมาวิเคราะห์หาความสัมพันธ์ของแหล่งโบราณคดีเหล่านี้กับแนวถนนโบราณร่วมกับข้อมูล ในด้านอื่นๆ เช่นข้อมูลทางโบราณคดี ข้อมูลทางธรณีวิทยา และข้อมูลทางมานุษยวิทยา นอกจากนี้ ทีมนักวิจัย APSARA ได้ทำการสำรวจและทำแผนที่ของแหล่งโบราณคดีในพื้นที่ Kol Village (กรุณาดูรายละเอียดการดำเนินวิจัยในประเทศกัมพูชาในบทที่ 6 ประกอบ) ซึ่งเป็นพื้นที่สำคัญตาม แนวถนนโบราณจากเมืองพระนครถึงเมืองพิมายในฝั่งกัมพูชา ซึ่งข้อมูลจากการดำเนินการนี้มี ความสำคัญช่วยในการตีความเรื่องเกี่ยวกับการจัดสร้างและการใช้ถนนโบราณเส้นนี้เป็นอย่างมาก ซึ่งรวมไปถึงการพัฒนาระบบชลประทานโบราณในพื้นที่ศึกษาทั้งฝั่งไทยและกัมพูชาตามแนวถนนโบราณเส้นนี้

รูปที่ 2-1 ภาพแสดงแหล่งโบราณคดีตามแนวถนนโบราณในฝั่งประเทศไทย

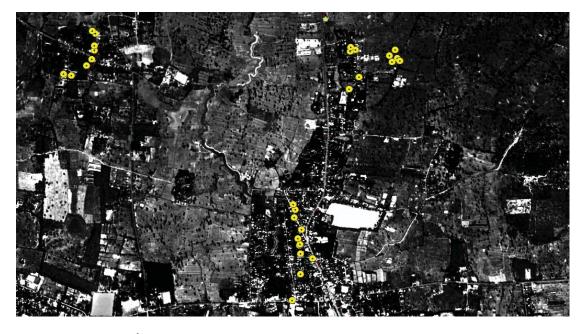

รูปที่ 2-2 ภาพแสดงแหล่งโลหะกรรม และแหล่งเตาเผาเครื่องเคลือบโบราณตามแนวถนนโบราณ : ตำแหน่งแหล่งโลหะกรรม (จุดวงกลมสีเหลือง) แหล่งเตาเผาเครื่องเคลือบโบราณ (จุดห้าเหลี่ยมสีแดง)

เมื่อนำข้อมูลจากแหล่งโบราณคดีต่างๆ นำมาวิเคราะห์ร่วมกับข้อมูล Remote Sensing และ GIS ของโครงการ ทำให้สามารถประเมินหลักการและเหตุผลของคนโบราณในการ ตั้งแหล่งอุตสาหกรรม แหล่งชุมชนโบราณได้เป็นอย่างดี เนื่องจากแหล่งต่างๆ เหล่านี้มีรูปแบบของ การจัดตั้งที่ขึ้นอยู่กับปัจจัยทางด้านสิ่งแวดล้อม และทรัพยากรธรรมชาติเป็นหลัก ซึ่งถึงแม้เวลาจะ ได้ผ่านไปเป็นเวลาเกือบพันปี แต่เราก็ยังสามารถตรวจสอบได้โดยตรงและโดยอ้อมจากข้อมูล Remote Sensing ข้อมูลทางโบราณคดี ข้อมูลทางธรณีฟิสิกส์ของโครงการ

2. จัดทำแผนที่ข้อมูลพื้นฐานรายละเอียดสูงสำหรับพื้นที่ศึกษาและวิเคราะห์การ เปลี่ยนแปลงสภาพพื้นที่ในพื้นที่ศึกษาจากข้อมูลหลายช่วงเวลา เป็นการคำเนินการพัฒนาข้อมูล และทำการศึกษาโดยใช้การศึกษาเปรียบเทียบข้อมูลภาพถ่ายทางอากาศของพื้นที่ศึกษาในหลาย ช่วงเวลาประกอบกับการศึกษาร่วมกับข้อมูลภาพถ่ายดาวเทียมรายละเอียดสูง เพื่อตรวจสอบความ เปลี่ยนแปลงของพื้นที่ในช่วงเวลาต่างๆ เพื่อเปรียบเทียบสภาพของพื้นที่ปรากฏในปัจจุบันและ สภาพในช่วงเวลาที่ผ่านมา


วิธีการ

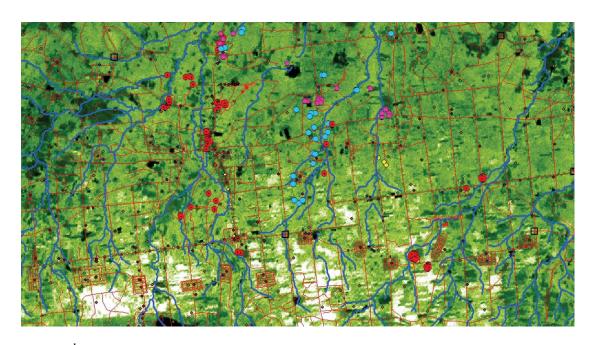
ในการดำเนินการวิจัยนี้ได้ดำเนินการโดยการทำการ geo-reference ภาพถ่ายทาง อากาศของพื้นที่ศึกษาตามช่วงเวลาในลักษณะ time series ดังนี้ พ.ศ. 2497 พ.ศ. 2510 พ.ศ. 2542 กับ



รูปที่ **2-3** ภาพถ่ายทางอากาศ พ.ศ. 2497 บริเวณอำเภอบ้านกรวดพร้อมตำแหน่งแหล่งโลหะกรรม

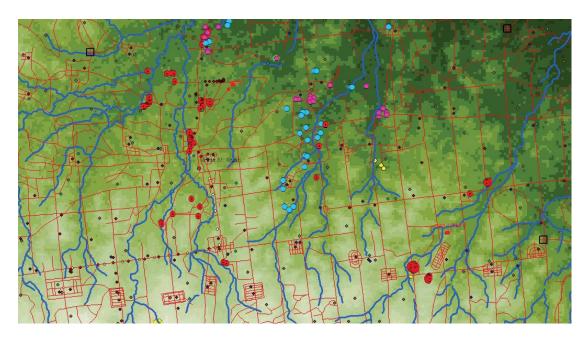
3. วิเคราะห์ข้อมูลเพื่อศึกษาแหล่งอุตสาหกรรมโบราณตามแนวถนนโบราณ โดยทำการ วิเคราะห์ข้อมูลทางด้าน Remote Sensing และ GIS ร่วมกับข้อมูลด้านอื่นๆ ของโครงการเพื่อศึกษา รายละเอียดของแหล่งอุตสาหกรรมโบราณตามแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมาย เส้นนี้ เช่น สาเหตุของการเลือกพื้นที่สำหรับดำเนินการ แหล่งวัตถุดิบที่ใช้ พื้นที่ตั้งของชุมชน โบราณ เป็นต้น

รูปที่ 2-4 ภาพถ่ายทางอากาศ พ.ศ. 2510 บริเวณอำเภอบ้านกรวดพร้อมตำแหน่งแหล่งโลหะกรรม



รู**ปที่ 2-5** ภาพถ่ายทางอากาศ พ.ศ. 2542 บริเวณอำเภอบ้านกรวด พร้อมตำแหน่งแหล่งโลหะกรรมแสดงการขยายตัวของชุมชน

ในการดำเนินการวิจัยนี้ โครงการได้ดำเนินการวิเคราะห์ข้อมูลจากภาพถ่าย คาวเทียม ASTER ในช่วงคลื่น Visible-NIR (Channel 1, 2, 3) เพื่อศึกษาลักษณะพื้นที่และ สิ่งแวคล้อม และ Short Wave Infrared (Channel 4, 5) เพื่อศึกษาทางธรณีวิทยาร่วมกับข้อมูลอื่นๆ เช่น ข้อมูลความสูงจาก SRTM และข้อมูลจากการวิจัยในด้านอื่นๆ เพื่อใช้ข้อมูลทำการศึกษาในด้าน สภาพสิ่งแวคล้อม แหล่งทรัพยากรธรรมชาติของพื้นที่ศึกษาทั้งอดีตและปัจจุบัน และศึกษาทาง ธรณีวิทยาของพื้นที่ศึกษาร่วมกับแผนที่ทางธรณีวิทยา (กรุณาดูรายละเอียดการวิเคราะห์ทางธรณี ฟิสิกส์และธรณีวิทยาในบทที่ 4 ประกอบ) เพื่อศึกษาความสัมพันธ์ของแหล่งอุตสาหกรรมโบราณ และแหล่งวัตถุดิบและสภาพแวคล้อม ซึ่งในขั้นตอนปัจจุบันได้ดำเนินการศึกษาเปรียบเทียบผลจาก การวิเคราะห์ทางธรณีวิทยาจากการวิเคราะห์ Thresholding จาก Channel 4/5 Index ของข้อมูลภาพ ถ่ายดาวเทียม ASTER และข้อมูลทางธรณีวิทยาจากการสำรวจสามารถทำให้เกิดข้อผิดพลาดได้ เนื่องจากผลกระทบ ของสิ่งปกคลุมพื้นดิน เช่น พืชมีผลต่อการวิเคราะห์ทางธรณีวิทยาจาก Channel 4/5 Index จากข้อมูล ASTER


รูปที่ 2-6 ตัวอย่างภาพถ่ายคาวเทียม ASTER Color Composite (2:3:1 : R:G:B)
บริเวณอำเภอบ้านกรวค พร้อมค้วยตำแหน่งแหล่งโลหะกรรม (จุควงกลมสีเหลือง)
และแหล่งเตาเผาเครื่องเคลือบโบราณ (จุดห้าเหลี่ยมสีแคง)

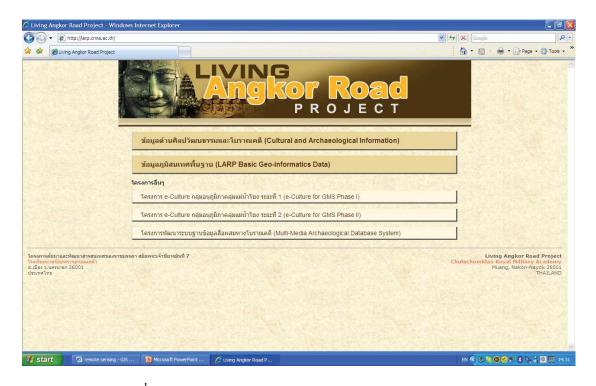
ร**ูปที่ 2-7** ตัวอย่างผลจากการวิเคราะห์ข้อมูลทางธรณีวิทยาจากภาพถ่ายดาวเทียม ASTER บริเวณอำเภอบ้านกรวด (Channel 4/5 Index สีอ่อนถึงเข้มหมายถึงมีส่วนประกอบของ ศิลาแลงสูงถึงต่ำ) พร้อมแสดงตำแหน่งแหล่งโลหะกรรม (จุดวงกลมสีเหลือง) และแหล่งเตาเผาเครื่องเคลือบโบราณ (จุดห้าเหลี่ยมสีแดง)

จากการวิเคราะห์ Thresholding ของ Channel 4/5 Index จากข้อมูลภาพถ่าย คาวเทียม ASTER และข้อมูลทางธรณีวิทยาจากการสำรวจและแผนที่ธรณีวิทยา ในพื้นที่อำเภอ บ้านกรวด จังหวัดบุรีรัมย์ ซึ่งมีแหล่งถลุงโลหะโบราณอยู่เป็นจำนวนมาก และพื้นที่ตลอดแนวของ ถนนโบราณจากเมืองพระนครถึงเมืองพิมาย ทำให้เรามีข้อมูลเบื้องต้นว่าพื้นที่อำเภอบ้านกรวดเป็น พื้นที่ที่มีศิลาแลงกระจายอยู่อย่างหนาแน่น ซึ่งศิลาแลงเหล่านี้เมื่อทางโครงการทำการวิเคราะห์ องค์ประกอบแล้วพบว่ามีปริมาณแร่เหล็กอยู่เป็นจำนวนสูง ซึ่งอาจจะสามารถนำมาเป็นวัตถุดิบใน การถลุงเหล็ก เนื่องจากเราไม่พบเหมืองแร่เหล็กในพื้นที่รอบๆ แหล่งถลุงเหล็กเหล่านี้ ต่างจาก แหล่งถลุงเหล็กโบราณในประเทศกัมพูชาที่ได้มีการค้นพบเหมืองแร่เหล็กอยู่ในบริเวณไม่ไกลจาก แหล่งถลุงเหล่านั้น (จากข้อมูลของคณะวิจัยองค์การ APSARA)

นอกจากนี้แล้ว หลังจากที่ทำการวิเคราะห์ข้อมูล Remote sensing และ GIS ร่วมกับ ข้อมูลด้านอื่นๆ เช่น ข้อมูลความสูงจาก SRTM ทำให้พบว่าแหล่งถลุงเหล็กโบราณ และแหล่ง เตาเผาเครื่องเคลือบโบราณ ตั้งอยู่บนเนินริมที่ราบที่น้ำท่วมถึง (Flood Plain) ทั้งสิ้น ซึ่งทำให้ สามารถคาดคะเนได้ว่าน่าจะมีแหล่งอุตสาหกรรมโบราณเหล่านี้ ขยายตัวไปทางอำเภอละหารทราย จังหวัดบุรีรัมย์ ซึ่งมีลักษณะของสภาวะแวดล้อมทางธรรมชาติ ลักษณะเดียวกับบริเวณอำเภอ บ้านกรวด จังหวัดบุรีรัมย์

รูปที่ 2-8 ตัวอย่างข้อมูลความสูงจาก SRTM บริเวณอำเภอบ้านกรวด (สีอ่อนถึงเข้มหมายถึงพื้นที่ ที่มีความสูงมากถึงความสูงต่ำ) พร้อมแสดงตำแหน่งแหล่งโลหะกรรม (จุดวงกลมสีเหลือง) และแหล่งเตาเผาเครื่องเคลือบโบราณ (จุดห้าเหลี่ยมสีแดง)

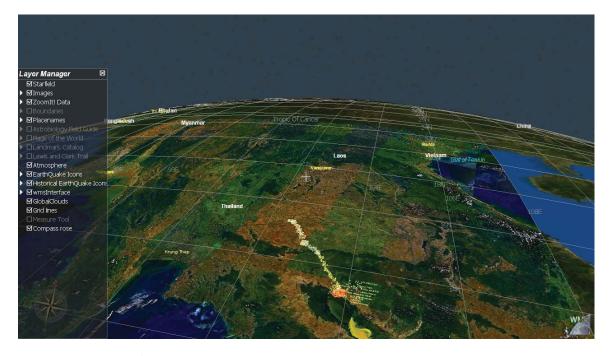
4. พัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์ของโครงการ เพื่อเก็บรวบรวมข้อมูลทั้งหมดใน รูปแบบฐานข้อมูลสารสนเทศภูมิศาสตร์ของโครงการ

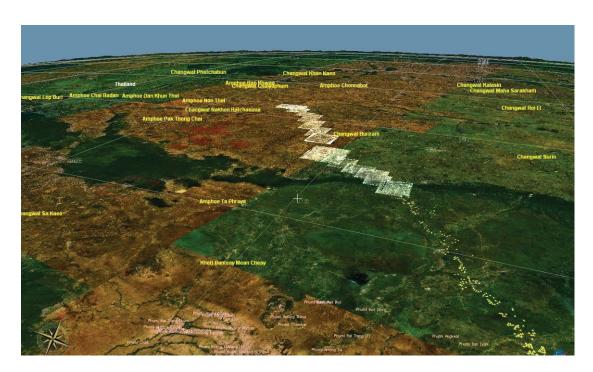

วิธีการ

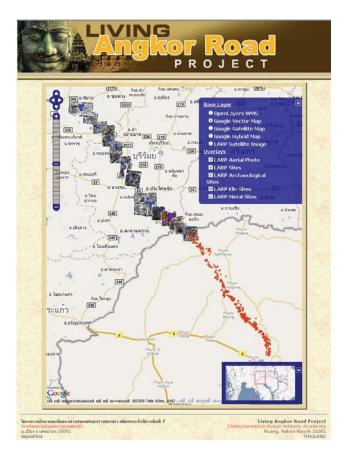
โครงการ ได้ขยายการพัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์ของโครงการจาก ข้อมูลที่ได้ทำการพัฒนาเพิ่มขึ้นดังที่ได้กล่าวมาแล้วข้างต้น ได้แก่

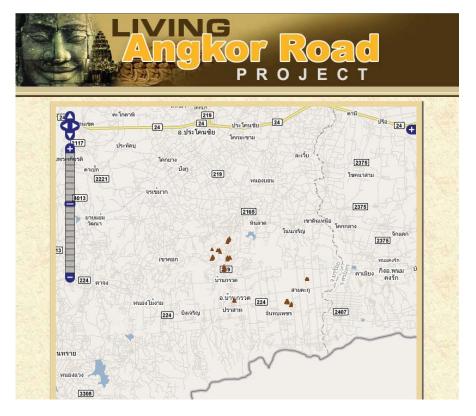
ฐานข้อมูลสารสนเทศภูมิศาสตร์พื้นฐานตามแนวถนนโบราณ

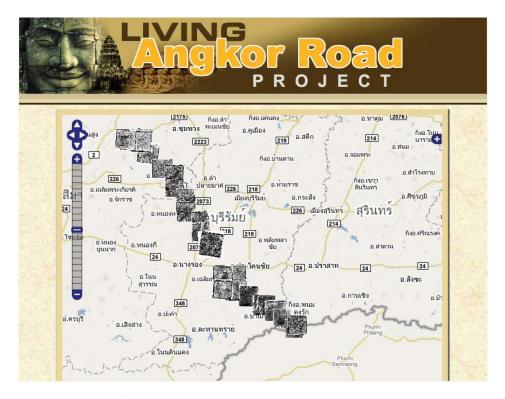
- 1. ฐานข้อมูลสารสนเทศภูมิศาสตร์ของแหล่งอุตสาหกรรมโบราณในพื้นที่แนว ชายแคนประเทศไทยและกัมพูชาในแนวถนนโบราณ
 - 2. ฐานข้อมูลภาพถ่ายทางอากาศ
 - 3. ฐานข้อมูลภาพถ่ายคาวเทียม ASTER


จากที่คณะทำงานได้ขยายการพัฒนาระบบสารสนเทศภูมิศาสตร์ของโครงการผ่าน เครือข่ายอินเทอร์เน็ตเพิ่มเติมในด้านของข้อมูลที่เพิ่มขึ้น และในด้านของระบบได้มีการพัฒนา ระบบเชื่อมโยงฐานข้อมูลสารสนเทศภูมิศาสตร์ผ่านเครือข่ายอินเทอร์เน็ตของโครงการกับระบบ NASA World Wind ซึ่งทำให้การแสดงผลข้อมูลสารสนเทศภูมิศาสตร์ของโครงการมีความ น่าสนใจในการแสดงผลมากขึ้นในลักษณะเดียวกับข้อมูลที่แสดงผลจากระบบ Google Earth และ ได้พัฒนาระบบสามมิติของโบราณสถานตามแนวถนนโบราณเพื่อใช้ประกอบการนำเสนอต่อ เขาวชนและผู้สนใจแล้วนั้น ปัจจุบันคณะทำงานได้พัฒนาการใช้ระบบ Open Layer ในการพัฒนา ระบบแสดงผล ซึ่งทำให้การแสดงผลผ่านเครือข่ายอินเทอร์เน็ตสามารถดำเนินการได้อย่างดียิ่งขึ้น นอกจากนั้นยังทำให้สามารถนำเข้าข้อมูลและนำเสนอข้อมูลได้สะดวกยิ่งขึ้น และได้มีการพัฒนา ภาพจำลองระบบสามมิติขยายต่อจากการดำเนินการที่ผ่านมา (ภาคผนวก ก และ ข)


รูปที่ 2-9 ตัวอย่างการแสดงผลจากระบบแม่ข่าย larp.crma.ac.th


รูปที่ 2-10 ตัวอย่างการแสดงผลจากระบบ map server ผ่านระบบแม่ข่าย larp.crma.ac.th


รูปที่ 2-11 ตัวอย่างการแสดงผลผ่านระบบ NASA World Wind


รูปที่ 2-12 ตัวอย่างการแสดงผลผ่านระบบ NASA World Wind

รูปที่ 2-13 ตัวอย่างการแสดงผลจากระบบ Open layer

รูปที่ 2-14 ตัวอย่างการแสดงผลจากระบบ Open layer

รูปที่ 2-15 ตัวอย่างการแสดงผลจากระบบ Open layer

บทที่ 3

การค้นคว้าและวิธีการทางโบราณคดี

3.1 แผนงาน

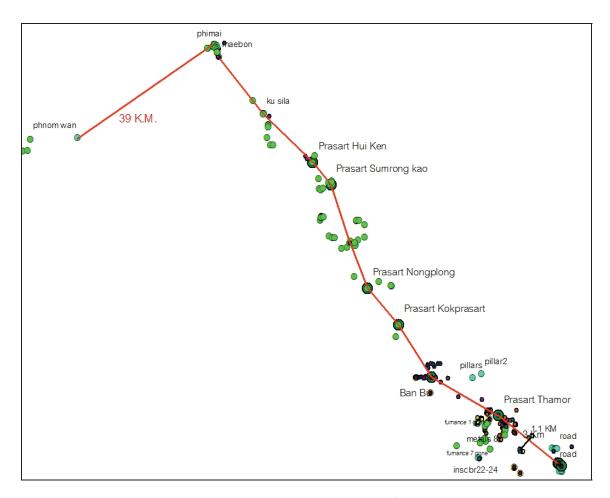
- 1. ศึกษาการกระจายตัวของแหล่งโบราณคดีในวัฒนธรรมเขมรและจัดลำดับสมัย โดยใช้ วิธีการสำรวจตามแนวถนนโบราณและพื้นที่กันชน
- 2. ศึกษาและตรวจสอบสมมุติฐานโครงข่ายถนนสายย่อยที่อาจมีขึ้นเพื่อเชื่อมโยงแหล่ง อุตสาหกรรมสมัยโบราณและศึกษาความสัมพันธ์ระหว่างถนนกับแหล่งชุมชนโบราณที่ปรากฏ ศาสนสถานประจำโรงพยาบาล (อโรคยาศาลา) โดยวิธีการสำรวจและขุดค้นทางโบราณคดี
- 3. ดำเนินการศึกษาองค์ประกอบทางเคมี และองค์ประกอบทางกายภาพของภาชนะดินเผา ในวัฒนธรรมเขมรโบราณ
- 4. ศึกษาการกระจายตัวและเปรียบเทียบเทคโนโลยีการถลุงโลหะของแหล่งผลิตโลหะตาม แนวถนนโบราณและปริมณฑล

ตารางที่ 3-1 แสดงแผนการดำเนินงาน

หัวข้อ	วิธีการ	ผล
ตำแหน่งสิ่งก่อสร้าง และลำดับสมัย	ประวัติศาสตร์ศิลปะ GIS	แผนที่ความสัมพันธ์ระหว่างการกระจาย ตัวของแหล่งกับลำดับสมัย
ตรวจสอบถนนสายย่อย และ โครงข่ายคมนาคม	การขุดค้น GIS, Geo-Physic	ความรู้ด้านกายภาพตำแหน่งของถนน สายย่อยและหน้าที่การใช้งาน
การศึกษาแหล่งโลหะกรรม	การขุดค้น LAB, Geo-Physic	ความรู้ค้านกายภาพของเตาถลุง เทคโนโลยีการผลิตเปรียบเทียบทั้งสองฝั่ง
การศึกษาคุณสมบัติทางเคมี ของเครื่องถ้วยเขมร	LAB	ความรู้ด้านกายภาพองค์ประกอบทางเคมี ของเครื่องถ้วย เทคโนโลยีการผลิต เปรียบเทียบทั้งสองฝั่ง

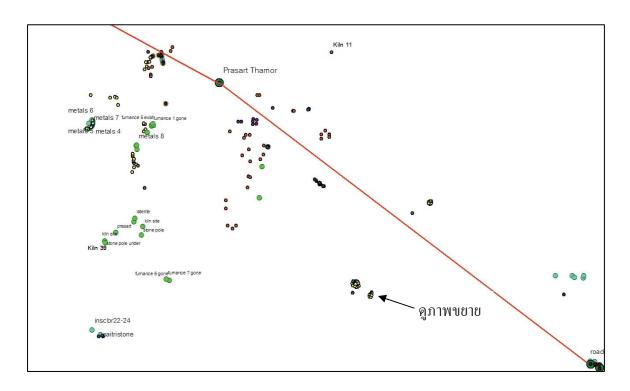
1. การศึกษาการกระจายตัวของแหล่งโบราณคดีในวัฒนธรรมเขมรและจัดลำดับสมัย โดยใช้วิธีการสำรวจตามแนวถนนโบราณและพื้นที่กันชน

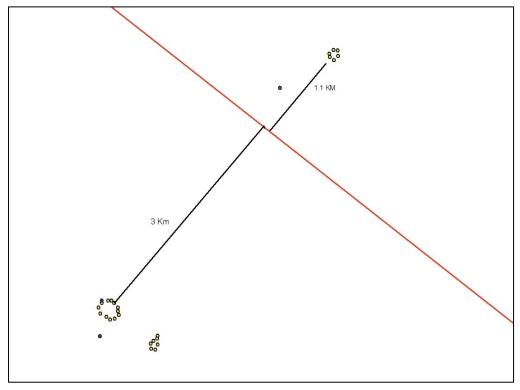
คำเนินการสำรวจทางโบราณคดีในพื้นที่จังหวัดสุรินทร์ บุรีรัมย์ นครราชสีมา ตามขอบเขต พื้นที่ของโครงการ โดยใช้วิธีการสำรวจจากเอกสาร สำรวจภาคพื้นดิน การเดินสำรวจเข้าถึงแหล่ง


รูปที่ 3-1 แสดงการแบ่งพื้นที่สำรวจ

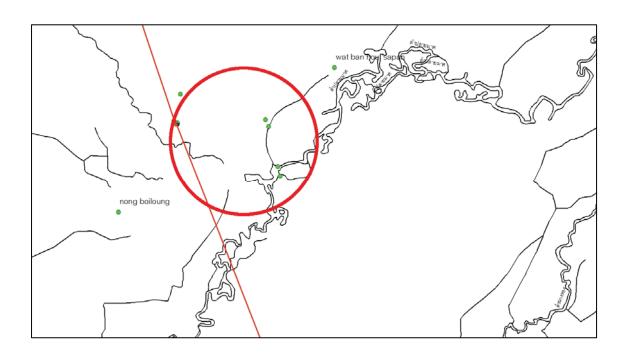
1.1 รวบรวมข้อมูลด้านประวัติของแหล่ง ตำแหน่งที่ตั้งแหล่งโบราณคดีโดยจำแนก ตามประเภทของสิ่งก่อสร้าง หน้าที่การใช้งาน การสำรวจได้กำหนดตำแหน่งที่ตั้งของแหล่ง โบราณคดี ทั้งแหล่งที่เคยสำรวจแล้วและแหล่งที่ยังไม่สำรวจรวมถึงแหล่งโบราณคดีที่พบใหม่ โดยมีจำนวนทั้งหมด 215 ตำแหน่ง

ตารางที่ 3-2 แสดงการจำแนกประเภทแหล่ง โบราณคดี


ประเภทแหล่ง	จำนวน
ศาสนสถาน	18
อโรคยาศาลา	4
ธรรมศาลา	9
เตาเผาเครื่องถ้วย	40
เนินถลุงโลหะ	67
ชุมชนโบราณ (สมัยก่อนประวัติศาสตร์)	9
หลักหิน	10
สระน้ำ	22
ประตูเมือง	3
ท่าน้ำ	1
สะพานไม้	1
รวม	215


ในจำนวนนี้มีตำแหน่งของแหล่งโบราณคดีสมัยก่อนประวัติศาสตร์ซึ่งอยู่ก่อนถึง บ้านไผทรินทร์ มีลักษณะเป็นเนินดินเก่า ปรากฏเศษภาชนะดินเผาความร้อนอุณหภูมิต่ำกระจายอยู่ ทั่วไปและแนวทางเดินเก่าในบริเวณปราสาทสำโรงเก่า นายชาติชาย ใหญ่เลิศ อายุ 50 ปี บ้านเลขที่ 96 หมู่ 10 บ้านสำโรงเก่า ให้ข้อมูลตำแหน่งทางเกวียนที่ใช้เดินทาง เป็นทางมาจากอำเภอชำนิตัดเข้า หมู่บ้านใช้เดินทางต่อไปยังเมืองพิมาย

รูปที่ 3-2 แสดงตำแหน่งแหล่งโบราณคดีในพื้นที่สำรวจ


ตามแนวเส้นสมมุติที่เชื่อมระหว่างที่พักคนเดินทางแต่ละแห่ง ปรากฏแหล่ง โบราณคดีหลายประเภทกระจายอยู่ตั้งแต่พิมายถึงปราสาทตาเมือน โดยพื้นที่ที่มีแหล่งโบราณคดี ปรากฏอยู่หนาแน่นที่สุดอยู่ในเขตอำเภอบ้านกรวด ซึ่งนอกจากจะพบศาสนสถานหรือเทวาลัยใน วัฒนธรรมเขมรแล้วยังปรากฏแหล่งอุตสาหกรรมสมัยโบราณ ได้แก่ แหล่งผลิตภาชนะดินเผา ซึ่งได้ ทำการบันทึกตำแหน่งทั้งแหล่งที่ยังคงสภาพและแหล่งที่ถูกทำลายไปแล้วซึ่งยังมีผู้ชี้จุดได้ชัดเจน มี จำนวนทั้งหมด 40 แหล่ง และแหล่งโลหะกรรมซึ่งเป็นเนินดินขนาดใหญ่จำนวนทั้งสิ้น 67 แหล่ง กระจายอยู่ในเขตบ้านเขาดินใต้ บ้านโคกยาง บ้านหนองจิก บ้านสายโทสิบเหนือ และบ้านสายโท แปดใต้ ซึ่งในแต่ละเนินโลหะกรรมเป็นแหล่งถลุงเหล็กจากเตาถลุงหลายๆ เตา ตามที่ได้มีการขุดค้น เนินโลหะกรรมในเขตบ้านเขาดินใต้ในขณะนี้

ร**ูปที่ 3-3** แสดงตำแหน่งแหล่งโบราณคดีในเขตอำเภอบ้านกรวด จังหวัดบุรีรัมย์

การสำรวจในพื้นที่บ้านหัวสะพาน ต.ช่อผกา อ.ชำนิ จ.บุรีรัมย์ ซึ่งตามตำแหน่งของ หมู่บ้านอยู่ในแนวเส้นสมมุติและมีปราสาทเทพสถิตย์ตั้งอยู่ใกล้เคียง รวมทั้งชื่อหมู่บ้านชื้นำให้ สมมุติฐานว่าในพื้นที่หมู่บ้านอาจเคยมีร่องรอยแนวถนนโบราณ และสะพานที่ใช้ข้ามลำปลายมาศ

รูปที่ 3-4 แผนที่แสดงพื้นที่สำรวจในเขตบ้านหัวสะพาน อำเภอชำนิ จังหวัดบุรีรัมย์

35

จากการสำรวจได้มีการสัมภาษณ์ชุมชนในพื้นที่บ้านหัวสะพานได้รายละเอียด ข้อมูลดังต่อไปนี้

Interview about the bridge

Mr. Noi Pi rak sa Age 67 yrs old

7 Mu 4

Name: Mr. Tawee Pasano Age 60 yrs old

Address: Tambon Chopaka Amphoe Chamni

1. Was there the ancient bridge?

Yes, there was. We used the bridge about 50 years ago. When I was young about 8 years old, I moved to live in this village with my family, the first time I saw, this bridge was too old. People could pass but not for the ox-cart.

2. How was the size of the bridge?

About 16 meters wide, built with a big pieces of wood (name; Jik / or Ton Jik) and the pillars at both sides were the frame of this bridge. What was the maximum water level? Sometime the bridge was flooded. How did you passed when the bridge was out of use? We drove the cart to cross the stream nearby here whereas the water still high and our cart floated like a boat.

3. Is the name of village original name?

Absolutely yes, in the past when we used this way to travel by walk and the village was located nearby the spirit house but the villager moved out to present place after the new road was constructed and the old road was disserted.

4. Please tell me where were the places that you walked pass to Samrong Kao or to Nang Rong.

I walked along the way through the villages, Ban Nong Hua Chang nearby Ban Samrong Kao. How many people had joined your trip? 2-3 people. Because at that time, this area covered with forest and wild animals such as wild monkeys, small deers. How did you pass the stream? We walked across that stream. How did you travel to Nang Rong? I woke up about 02.00 A.M. and started to traveled by foot passed Kok Kwei, Laluad, Ban Singha and every people usually stopped at Ban Tak Dad, I reached there on the morning about 06.00 AM, we had spent about 4 Hrs to get there and took about 1.30 hr. to Nang Rong.

จากการสำรวจได้มีการเก็บข้อมูล แหล่งโบราณคดีในพื้นที่ตามแนวถนนโบราณ ซึ่งมีรายละเอียดข้อมูลดังต่อไปนี้

Archaeological Sites									
No.	NAME	VILLGE	DIST	PROV	ТҮРЕ	DATE_			
1	Prasat Phimai		Phimai	NR	Temple	11 A.D.			
2	Men Promtat		Phimai	NR	Stupa	Ayudhya			
					Ancient				
3	Ban Suai	Ban Suai	Phimai	NR	Village	Iron Age			
4	South gate		Phimai	NR	City Gate	12-13 A.D.			
5	Kuti Risi		Phimai	NR	Arogayasala	13 A.D.			
6	Traces of Temple		Phimai	NR	Disturbed	ND			
7	Traces of Temple		Phimai	NR	Disturbed	ND			
8	Tanang Sapom		Phimai	NR	Port	12-13 A.D.			
9	kusila		Huei Talang	NR	Rest House	13 A.D.			
		Ban Muang			Ancient	2000-1300			
10	Muang Plabpla	Plabpla	Huei Talang	NR	Village	BP.			
		Ban Muang							
11	Sim Watplabtong	Plabpla	Huei Talang	NR	Temple	Lao style			
12	Prasat Hueikan	Ban Huai Kan	Huei Talang	NR	Rest House	13 A.D.			
13	1401 Mound	Patailin	Lamplymas	Burirum	Potsherd area	Prehistoric			
14	Moat of Patailin	Patailin	Lamplymas	Burirum	Moat Site	Prehistoric			
15	Moat of Patailin	Patailin	Lamplymas	Burirum	Moat Site	Prehistoric			
	Prasat Samrong								
16	Kao	Samrong Kao	Lamplymas	Burirum	Rest House	13 A.D.			
17	Samrong Kao	Samrong Kao	Lamplymas	Burirum	Moat Site	Prehistoric			
	Moat of Mueng								
18	Fai	Muang Fai	Lamplymas	Burirum	Moat Site	Prehistoric			
19	Ban Prasat Tong	Ban Prasattong	Nong hong	Burirum	Moat Site	Prehistoric			
20	Prasat Kutanob	Muang Fai	Nong hong	Burirum	Temple	11-12 A.D.			
21	Prasat Klang Ban	Ku Muang	Muang Fai	Burirum	Brick Temple	11-12 A.D.			

		Ar	chaeological Sites	S		
No.	NAME	VILLGE	DIST	PROV	TYPE	DATE_
22	Prasat Tong	Prasat Tong	Muang Fai	Burirum	Brick Temple	12-13 A.D.
					Trace of	
23	Kok Prasat	Kok Prasat	Nong Hong	Burirum	Temple	ND
24	Prasat Thepsatit	Thepsatit	Chamni	Burirum	Resthouse	13 A.D.
25	Sapan	Hua Sapan	Chamni	Burirum	Old Bridge	70 BP
	Prasat Nong					
26	Plong	Nong Plong	Chamni	Burirum	Rest House	13 A.D.
27	Moat of Prasat	Prasat porn	Chamni	Burirum	Part of Temple	11 A.D.
28	Prasat Porn	Prasatporn	Chamni	Burirum	Brick Temple	11-12 A.D.
29	Kok Prasat	Nongjok	Nang Rong	Burirum	Rest House	13 A.D.
					Trace of	
30	Prasat	Prasat Tepsatit	Chamni	Burirum	Temple	unknown
31	Prasat Silium	Nongtao	Chamni	Burirum	Temple	12 A.D.
					Pediment of	
32	Kuti Risi	Nongtao	Chamni	Burirum	Temple	11 A.D.
33	Prasat	Nongtao	Chamni	Burirum	Brick Temple	11-12 A.D.
34	Bung Noi	Ban Bung Noi	Ban Kruad	Burirum	Burial Site	Prehistoric
35	Kok Prasat	Ban Prasat	Ban Kruad	Burirum	Kiln	9-12 A.D.
			Chalerm			
36	Phnom Rung		Prakiet	Burirum	Temple	10-12 A.D.
37	Kuti Risi	Nong Bua Lai	Prakon Chai	Burirum	Arogayasala	13 A.D.
38	Ban Bu	Ban Bu	Prakon Chai	Burirum	Rest house	13 A.D.
39	Kuti Risi	Muang Tam	Prakon Chai	Burirum	Arogayasala	13 A.D.
40	Prasat Muang Tam	Jarakemak	Prakon Chai	Burirum	Temple	11 AD
		Lahansaikao,				
41	Prasat Tamor	Hinlad	Bankruad	Burirum	Rest House	13 A.D.
42	Prasat Tong	Ban Kruad	Bankruad	Burirum	Brick Temple	10-11 A.D.
			Prasat,			
43	Tamnoppra	Ban Kok Raka	Bankruad	Burirum	Temple Ruin	ND

	Archaeological Sites									
No.	NAME	VILLGE	DIST	PROV	TYPE	DATE_				
			Phnom Dong							
44	Prasat Tong	Nong Kana	Rak	Surin	Temple	11-12 A.D.				
	Phnom Dong									
45	Prasat Tameun Toj	Nong Kana	Rak	Surin	arogayasala	13 A.D.				
			Phnom Dong							
46	Prasat Tamuen	Nong Kana	Rak	Surin	Rest House	13 A.D.				
	Prasat Tamuen		Phnom Dong							
47	Thom	Nong Kana	Rak	Surin	Temple	11 A.D.				

1.2 ศึกษาหลักฐานที่ระบุอายุสมัย และกำหนดอายุสมัยของโบราณสถาน เพื่อจัดเรียงสมัย ทางวัฒนธรรมของแหล่งที่อยู่ในพื้นที่โครงการ

การศึกษาหลักฐานที่ระบุอายุสมัย และกำหนดอายุสมัยของแหล่งโบราณคดี เพื่อจัดเรียง สมัยทางวัฒนธรรมของแหล่งที่อยู่ในพื้นที่โครงการ โดยมุ่งศึกษาแหล่งโบราณคดีประเภทต่อไปนี้

- 1. ศาสนสถาน
- 2. อโรคยาศาลา
- 3. ธรรมศาลา
- 4. ชุมชนโบราณ

แหล่งโบราณคดีทั้ง 4 ประเภท ได้มีการศึกษาและกำหนดอายุเปรียบเทียบโดยอาศัย หลักฐาน ดังนี้

- 1. รูปแบบทางสถาปัตยกรรม
- 2. ลวคลายบนหน้าบัน ทับหลัง เสาประดับกรอบประตู และลวคลายประดับ อาคาร
 - 3. ภาชนะคินเผา หรือผลการขุดค้นทางโบราณคดี

ข้อมูลจากตารางเป็นข้อมูลแหล่งโบราณคดีที่จัดเรียงลำดับตามตำแหน่งที่สัมพันธ์กับ ตำแหน่งธรรมศาลา โดยเริ่มต้นจากพิมายจนถึงปราสาทตาเมือน ซึ่งชี้ให้เห็นว่ามีร่องรอย ศาสนสถานที่สร้างขึ้นในช่วงระหว่างคริสต์ศตวรรษที่ 10-13 โดยปราสาทพนมรุ้ง และปราสาท ทองในเขตบ้านหนองคันนา จังหวัดสุรินทร์ มีหลักฐานที่กำหนดอายุเริ่มต้นขึ้นในช่วงศตวรรษที่ 10

1.3 การศึกษาการกระจายตัวของแหล่งโบราณคดีในวัฒนธรรมเขมร

ความนำ

โดยทั่วไปแหล่งโบราณคดีเกือบทุกขุคสมัยมักมีตำแหน่งที่ตั้งของแหล่งสัมพันธ์ กับสภาพทางกายภาพของธรรมชาติซึ่งขึ้นอยู่กับความเหมาะสมและความจำเป็น ณ ช่วงเวลานั้นๆ และในหลายๆ กรณีมักพบว่าพื้นที่ตั้งของแหล่งมีการปรับเปลี่ยนสภาพภูมิประเทศ การทำความ เข้าใจเพื่อศึกษาด้านตำแหน่งที่ตั้งของแหล่งโบราณคดี หรือการกระจายตัวของแหล่งโบราณคดีจึง จำเป็นต้องจำแนกองค์ประกอบและเงื่อนไขต่างๆ เพื่อตรวจสอบแนวโน้มความหนาแน่นของแหล่ง

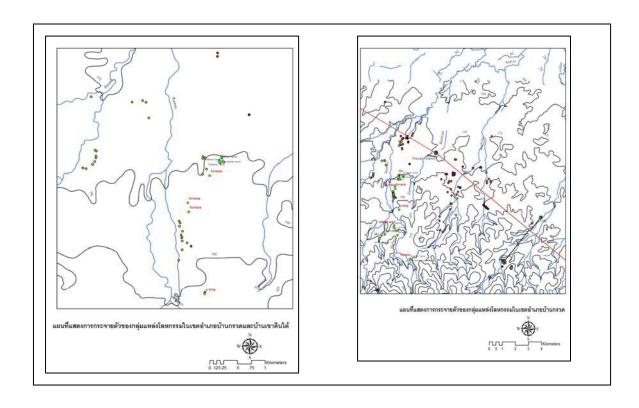
การศึกษาการกระจายตัวของแหล่งโบราณคดีในวัฒนธรรมเขมรนี้เป็นส่วนหนึ่ง ของการคำเนินโครงการค้นหาและพัฒนาสารสนเทศภูมิศาสตร์ของถนนโบราณสมัยพระเจ้า ชัยวรมันที่ 7 ซึ่งการสำรวจตามโครงการระยะที่ 2 ในพื้นที่คำเนินโครงการ และสามารถกำหนด ตำแหน่งที่ตั้งของแหล่งโบราณคดีประเภทแหล่งอุตสาหกรรมสมัยโบราณได้เป็นจำนวนมากใน เขตอำเภอบ้านกรวด จังหวัดบุรีรัมย์ ดังนั้นจึงมุ่งทำการศึกษาในขอบเขตพื้นที่ดังกล่าวโดยมีเนื้อที่ ประมาณ 140 ตารางกิโลเมตร ซึ่งเป็นที่ตั้งของแหล่งโลหะกรรมที่เกี่ยวข้องกับวัฒนธรรมเขมร และ มีวัตถุประสงค์ คือ

- 1. เพื่อตรวจสอบข้อมูลแหล่งอุตสาหกรรมสมัยโบราณทั้งที่ยังปรากฏซากและที่ สิ้นสภาพแต่ยังสามารถระบุตำแหน่งได้เพื่อรวบรวมเป็นข้อมูลองค์ความรู้ของคนในชาติ
- 2. เพื่อศึกษาและประเมินคุณลักษณะของปัจจัยที่มีผลต่อตำแหน่งที่ตั้งแหล่ง โบราณคดี

การวิเคราะห์

ดำเนินการศึกษาบนฐานข้อมูลที่จัดทำขึ้นจากการสำรวจทางโบราณคดีในพื้นที่ อำเภอบ้านกรวด จังหวัดบุรีรัมย์ โดยสามารถค้นพบและระบุตำแหน่งแหล่งโลหะกรรมได้เป็น จำนวนทั้งสิ้น 67 แหล่ง กระจายอยู่ในเขตหมู่บ้านต่างๆ ดังนี้

บ้านกรวด	จำนวน 12 แหล่ง
บ้านเขาดินใต้	จำนวน 11 แหล่ง
บ้านหนองเอียน	จำนวน 1 แหล่ง
บ้านหนองจิก	จำนวน 10 แหล่ง
บ้าน โคกยาง	จำนวน 6 แหล่ง
บ้านสายโทสองใต้	จำนวน 2 แหล่ง
บ้านสายโทสิบเหนือ	จำนวน 6 แหล่ง
บ้านสายโทแปดใต้	จำนวน 19 แหล่ง


ข้อมูลของแหล่งประกอบด้วยรายละเอียด ดังนี้

- รหัส
- ชื่อแหล่ง
- พิกัด UTM
- พิกัด LAT/LON
- หมู่บ้าน
- อำเภอ
- จังหวัด
- ประเภทแหล่ง
- อายุสมัย

ซึ่งนำไปใช้วิเคราะห์ร่วมกับชั้นข้อมูลสารสนเทศภูมิศาสตร์ ชั้นข้อมูลแผนที่ ได้แก่

- แผนที่ทหาร มาตราส่วน 1:50000 ระวาง 5637 IV
- ชั้นข้อมูลเส้นชั้นความสูง
- ชั้นข้อมูลแสดงรายละเอียดลำน้ำ
- ชั้นข้อมูลแสดงตำแหน่งธรรมศาลาในเขตประเทศไทย

โดยข้อมูลหลักที่นำมาใช้ในการศึกษาประกอบด้วยข้อมูลตำแหน่งของแหล่ง โบราณคดี ระดับความสูง แนวลำน้ำ และข้อมูลตำแหน่งของแหล่งจะแสดงผลเป็น Point data

รูปที่ 3-6 แสดงตัวอย่างชั้นข้อมูลที่นำมาใช้ศึกษา

ตารางที่ 3-3 แสดงข้อมูลแหล่งโลหะกรรม

หมายเลข	ชื่อแหล่ง	หมู่บ้าน	อำเภอ	จังหวัด	ประเภท	อายุ
1	นางแสวง ฮาประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
2	นายสมพงษ์ คงประ โคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
3	นางสุวรรณี วัฒนานุ กูลกิจ	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
4	นายเวิน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
5	นางบาง เพ็ญเดิมพัน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
6	นางบาง เพ็ญเดิมพัน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
7	นายจิน พรมประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
8	นายทุม พรมประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND

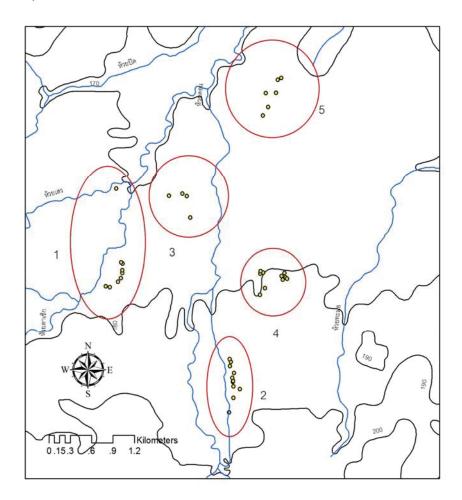
หมายเลข	ชื่อแหล่ง	หมู่บ้าน	อำเภอ	จังหวัด	ประเภท	อายุ
9	นางชาม คงพลปาน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
10	นายโพรง จาบประ โคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
11	นายโพรง จาบประ โคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
12	นางเจียม เหื่อประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
13	นางเจียม เหื่อประโคน	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
14	นายเพชร แฟ้นประ โคน	บ้านเขาคินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
15	นายคลอน นาคประ โคน	บ้านเขาคินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
16	นายเสมียน ยานมณี	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
17	นายแกะ เสือประโคน	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
18	นายตูม กลมยา	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
19	นายตูม กลมยา	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
20	นางปราณี ยอดเพชร	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
21	Furnace	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
22	Furnace	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
23	นางเขียน นาคประ โคน	บ้านเขาคินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
24	นายทุม พรมประโคน	บ้านหนอง เอียน	Ban Kruad	Burirum	Iron Furnace site	ND
25	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
26	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
27	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND

หมายเลข	ชื่อแหล่ง	หมู่บ้าน	อำเภอ	จังหวัด	ประเภท	อายุ
28	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
29	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
30	นายสมอาจ กลมประ โคน	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
31	นายสมอาจ กลมประ โคน	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
32	นายสมอาจ กลมประ โคน	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
33	ยายเนื่อง ท่าประโคน	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
34	นายอุทัย	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
35	นายชอบ ทิรัมย์	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
36	furnance 1 gone	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
37	furnance 2 exist	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
38	furnance 3 exist	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
39	furnance 4 exist	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
40	furnance 5 exist	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
41	furnance 6 gone	บ้านสายโท สองใต้	Ban Kruad	Burirum	Iron Furnace site	ND

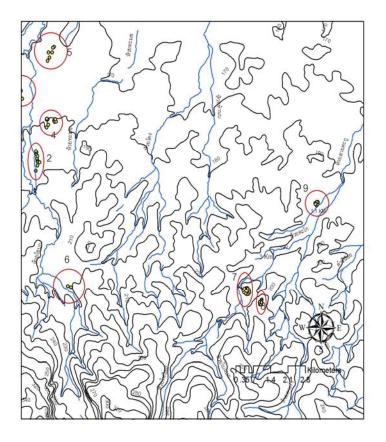
หมายเลข	ชื่อแหล่ง	หมู่บ้าน	อำเภอ	จังหวัด	ประเภท	อายุ
42	furnance 7 gone	บ้านสายโท สองใต้	Ban Kruad	Burirum	Iron Furnace site	ND
43	furnance 1	สายโทสิบ เหนือ สาย ตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
44	furnance 2	สายโทสิบ เหนือ สาย ตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
45	furnance 3	สายโทสิบ เหนือ สาย ตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
46	furnance 4	สายโทสิบ เหนือ สาย ตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
47	furnance 5	สายโทสิบ เหนือ สาย ตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
48	furnance 6	สายโทสิบ เหนือ สาย ตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
49	furnance 1	สายโทแปค ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND
50	furnance 2	สายโทแปด ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND
51	furnance 3	สายโทแปค ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND

หมายเลข	ชื่อแหล่ง	หมู่บ้าน	อำเภอ	จังหวัด	ประเภท	อายุ
		สายโทแปด				
52	furnance 4	ใต้ จันทบ	Ban Kruad	Burirum	Iron Furnace site	ND
		เพษา				
		สายโทแปด				
53	furnance 5	ใต้ จันทบ	Ban Kruad	Burirum	Iron Furnace site	ND
		เพชร				
		สายโทแปด				
54	furnance 6	ใต้ จันทบ	Ban Kruad	Burirum	Iron Furnace site	ND
		เพษร				
		สายโทแปค				
55	furnance 7	ใต้ จันทบ	Ban Kruad	Burirum	Iron Furnace site	ND
		เพษว				
		สายโทแปค				
56	furnance 1	ใต้ จันทบ	Ban Kruad	Burirum	Iron Furnace site	ND
		เพษร				
		สายโทแปค				
57	furnance 2	ใต้ จันทบ	Ban Kruad	Burirum	Iron Furnace site	ND
		เพชว				
		สายโทแปด				
58	furnance 3	ใต้ จันทบ	Ban Kruad	Burirum	Iron Furnace site	ND
		เพชร				
		สายโทแปด				
59	furnance 4	ใต้ จันทบ	Ban Kruad	Burirum	Iron Furnace site	ND
		เพษร				
		สายโทแปด				
60	furnance 5	ใต้ จันทบ	Ban Kruad	Burirum	Iron Furnace site	ND
		เพษร				

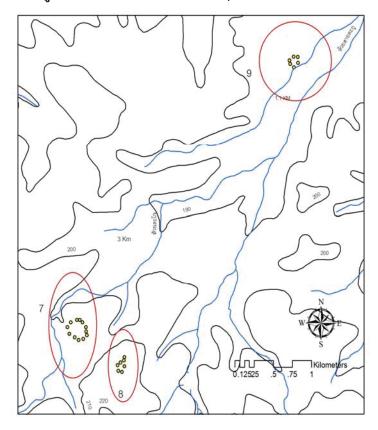
หมายเลข	ชื่อแหล่ง	หมู่บ้าน	อำเภอ	จังหวัด	ประเภท	อายุ
61	furnance 6	สายโทแปด ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND
62	furnance 7	สายโทแปด ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND
63	furnance 8	สายโทแปค ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND
64	furnance 9	สายโทแปค ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND
65	furnance 10	สายโทแปค ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND
66	furnance 11	สายโทแปด ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND
67	furnance 12	สายโทแปด ใต้ จันทบ เพชร	Ban Kruad	Burirum	Iron Furnace site	ND

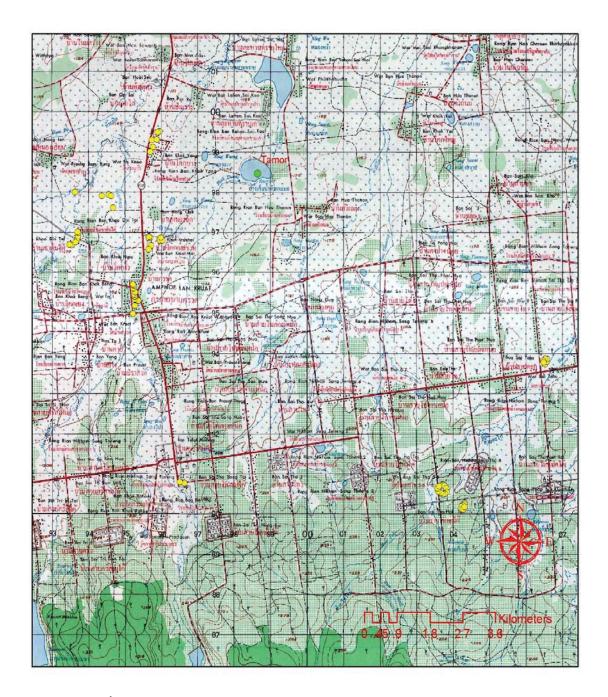


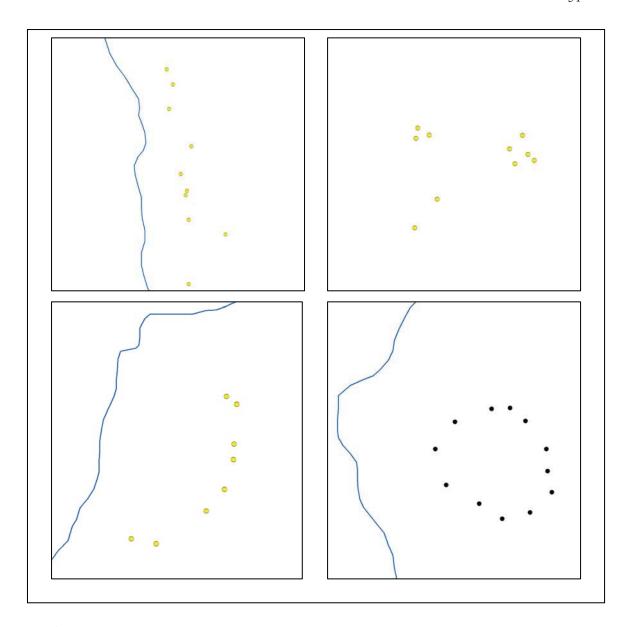
รูปที่ 3-7 แสดงชิ้นส่วนกากแร่ และเนินโลหะกรรม ในเขตอำเภอบ้านกรวด


ตำแหน่งที่ตั้งแหล่งโบราณคดี (Site Locations)

ตำแหน่งที่ตั้งของแหล่งอุตสาหกรรมสมัยโบราณซึ่งแสดงผลเป็น Point Data บางข้อมูลเป็นตำแหน่งของแหล่งที่มีการค้นพบมาก่อน พ.ศ. 2540 และได้ดำเนินงานอีกครั้ง ระหว่าง พ.ศ. 2550-2551 ได้พบแหล่งโลหะกรรม จำนวนทั้งสิ้น 67 แหล่ง กระจายอยู่เป็นกลุ่ม ในพื้นที่สำรวจประมาณ 140 ตารางกิโลเมตร หรือครอบคลุมเขตหมู่บ้านต่างๆ คือ บ้านกรวด บ้าน เขาดินใต้ บ้านหนองเอียน บ้านหนองจิก บ้านโคกยาง บ้านสายโทสองใต้ บ้านสายโทสิบเหนือ บ้านสายโทแปดใต้ และครอบคลุมพื้นที่ลุ่มน้ำสาขาของลำชี ได้แก่ ห้วยเสว ห้วยดอน ห้วยโอบก ห้วยสายตะกู และห้วยตะโก ซึ่งไหลผ่านอำเภอบ้านกรวดตามแนวทิสเหนือ-ใต้ โดยมีห้วยเสวเป็น ลำสาขาที่สำคัญมีต้นน้ำต้นน้ำเกิดจากบริเวณเทือกเขาทางตอนใต้ของอำเภอบ้านกรวดมีพื้นที่รับ


การสำรวจและวิเคราะห์ข้อมูลตำแหน่งที่ตั้งของแหล่งโลหะกรรมพบว่าเกือบ ทั้งหมดตั้งอยู่เป็นกลุ่มในพื้นที่ลุ่มน้ำต่างๆ โดยสามารถจัดจำแนกกลุ่มแหล่งโลหะกรรมทั้งหมด ออกเป็น 9 กลุ่ม ตามภาพต่อไปนี้


รูปที่ 3-8 แผนที่แสดงตำแหน่งกลุ่มแหล่งโลหะกรรม


รูปที่ 3-9 แผนที่แสดงตำแหน่งกลุ่มแหล่งโลหะกรรม

รูปที่ 3-10 แผนที่แสดงตำแหน่งกลุ่มแหล่งโลหะกรรม

รูปที่ 3-11 แผนที่แสดงตำแหน่งกลุ่มแหล่งโลหะกรรม ประกอบแผนที่ความสูง

รูปที่ 3-12 ภาพแสดงรูปแบบการกระจายตัวแบบเส้นตรง (ก) แบบสุ่ม (ข) และแบบวงกลม (ค)-(ง)

กลุ่มแหล่งโลหะกรรมทั้งหมดนี้ในแต่ละเนินมีรูปแบบการกระจายตัว ดังต่อไปนี้

- การกระจายในแบบเส้นซึ่งมีตำแหน่งขนานกับลำน้ำได้แก่ กลุ่มแหล่ง
 โลหะกรรมหมายเลข 2 ซึ่งปรากฏเนินมีที่ตั้งขนานกับหัวยดอน
- 2. การกระจายแบบสุ่ม ได้แก่ กลุ่มเตาหมายเลข 3 หมายเลข 4 และหมายเลข 5 กลุ่มเนินที่มีการกระจายตัวรูปแบบนี้พบตั้งอยู่ในพื้นที่ที่ห่างจากแนวลำน้ำหรือพบอยู่ในพื้นที่ ตอนกลางที่ขนาบด้วยลำน้ำสองสายไหลผ่าน
- 3. การกระจายแบบวงกลม ได้แก่ กลุ่มเตาหมายเลข 1 หมายเลข 7 หมายเลข 8 และ หมายเลข 9 ในกลุ่มการกระจายตัวรูปแบบนี้มีลักษณะที่ปรากฏในปัจจุบันมักเป็นเนินโลหะกรรม

ในด้านตำแหน่งที่ตั้งของแหล่งโลหะกรรมส่วนใหญ่ตั้งอยู่ใกล้ลำห้วยซึ่งพบว่า มีปริมาณหนาแน่นต่างกันในพื้นที่ลุ่มน้ำ โดยปรากฏว่าพื้นที่ลำห้วยดอนมีแหล่งโลหะกรรมตั้งอยู่ มากที่สุดถึงร้อยละ 37.31 และมีการใช้พื้นที่สูงกว่าพื้นที่ลำห้วยอื่นถึงร้อยละ 49.21 คิดเป็นเนื้อที่ที่ ใช้ในการโลหะกรรมประมาณ 151,053.11 ตารางเมตร กลุ่มเนินที่ตั้งอยู่ในเขตลำห้วยดอนนี้พบทั้ง ที่มีการกระจายตัวแบบเส้นตามแนวลำห้วยและแบบ

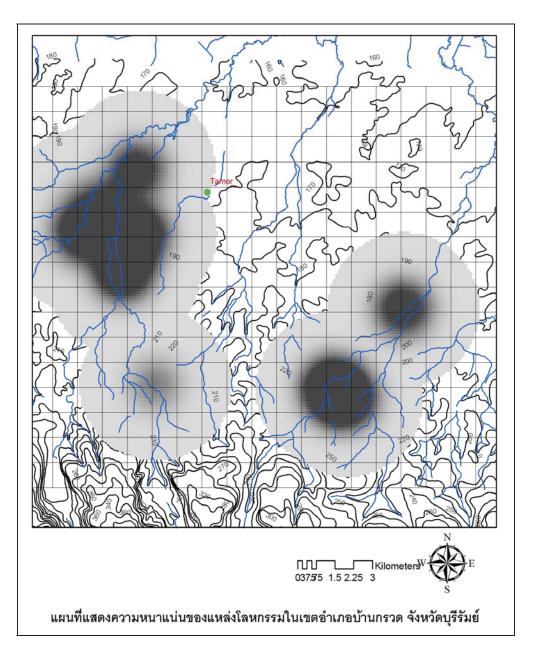
ตารางที่ 3-4 แสดงข้อมูลของกลุ่มแหล่งโลหะกรรม

กลุ่ม	1	2	3	4	5	6	7	8	9
จำนว									
น	9	11	4	10	6	2	12	7	6
เนิน									
เนื้อที่	50,773.	43,560.	44,409.	63,082.	38,962.	4,134.	43,558.	8,864.	9,588.
ตร.ม.	86	87	60	65	37	58	00	86	11
ระคั									
บ	170	180	170	170-	170	200	200	210	190
ความ	1/0	100	1/0	180	1/0	200	200	210	190
ត្ ូរ									

ตารางที่ 3-5 แสดงการกระจายของกลุ่มแหล่งโลหะกรรมในเขตพื้นที่ลำห้วยเพื่อใช้ประกอบกับ ตำแหน่งกลุ่มแหล่งโลหะกรรม

ห้วยเสว	ห้วยดอน	ระหว่างแหล่งน้ำ	ห้วยโอบก	ห้วยตะโก	ห้วยสายตะกู
1	2	5	6	7	9
	3			8	
	4				

ตารางที่ 3-6 แสดงจำนวนแหล่งโลหะกรรมที่พบในเขตลำห้วย


	ห้วยเสว	ห้วยคอน	ระหว่าง แหล่งน้ำ	ห้วยโอ บก	ห้วยตะโก	ห้วยสาย ตะกู	รวม
จำนวนแหล่ง	9	25	6	2	19	6	67
%	13.43	37.31	8.96	2.99	28.36	8.96	100
เนื้อที่ (ตร.ม.)	50,773.86	151,053.11	38,962.37	4,134.58	52,422.86	9,588.11	306,934.89
%	16.54	49.21	12.69	1.35	17.08	3.12	100.00

ตารางที่ 3-7 แสดงจำนวนแหล่งโลหะกรรมที่พบตามระดับชั้นความสูง

	170	9	7	6				22	
	180		18					18	
จำนวน	190						6	6	
	200				2	12		14	
	210					7		7	
		ห้วย	ห้วย	ระหว่าง	ห้วยโอบก	ห้วย	ห้วยสาย		
	contour	เสว	ดอน	แหล่งน้ำ	น ของอาก	ตะโก	ตะกู	67	
	170	13.43	10.45	8.96				32.84	
	180		26.87					26.87	
ร้อยละ	190						8.96	8.96	
	200				2.99	17.91		20.90	
	210					10.45		10.45	

สุ่มจำนวน 25 แหล่ง ในขณะที่แหล่งที่ตั้งอยู่ใกล้ลำห้วยตะ โกได้แก่ กลุ่มที่ 7 และ 8 ในเขตบ้านสาย โทแปดใต้ ซึ่งมีรูปแบบการกระจายตัวเป็นแบบวงกลมมีทั้งสิ้น 19 เนิน ใช้พื้นที่ใน การโลหะกรรมประมาณร้อยละ 17.08 คิดเป็นเนื้อที่ประมาณ 52422.86 ตารางเมตร และกลุ่มแหล่ง โลหะกรรมที่ตั้งอยู่ใกล้ลำห้วยเสวที่ติดต่อกับห้วยดอนมีกลุ่มเนินที่อยู่ในเขตบ้านเขาดินใต้ซึ่งมีเนิน โลหะกรรมกระจายเป็นรูปครึ่งวงกลมมีแหล่งตั้งอยู่ร้อยละ 13.43 ดังนั้นจากตำแหน่งที่ตั้งซึ่งได้ จำแนกลักษณะออกตามสภาพพื้นที่เห็นได้ว่าห้วยดอนเป็นบริเวณที่ปรากฏแหล่งโลหะกรรม หนาแน่นที่สุด

นอกจากนี้ ยังพบว่าแหล่งโลหะกรรมปรากฏหนาแน่นที่สุดในบริเวณชั้นความสูง ที่ 170 ถึงร้อยละ 32.84 จำนวน 22 แหล่งครอบคลุมพื้นที่ลำห้วยเสว ห้วยคอนและพื้นที่ระหว่าง

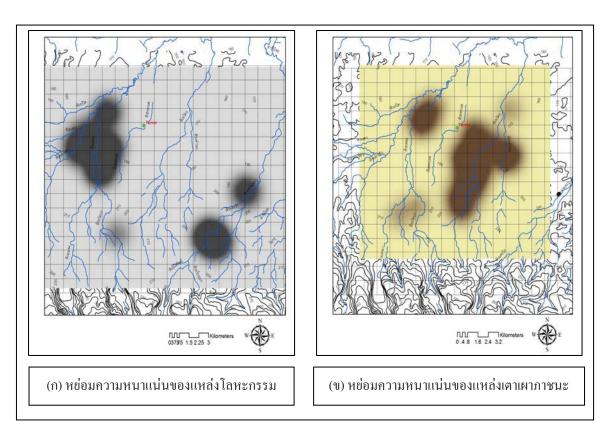
ร**ูปที่ 3-13** แผนที่แสดงความหนาแน่นของแหล่งโลหะกรรมในเขตอำเภอบ้านกรวด จังหวัดบุรีรัมย์

ตารางที่ 3-8 แสดงค่าเฉลี่ยของระยะทางจากกลุ่มแหล่ง โลหะกรรมถึงลำห้วย

		กลุ่มแหล่งโลหะกรรม							
	1	2	3	4	5	6	7	8	9
ระยะทาง เฉลี่ย (ม.)	202.014	107.128	502.848	797.333	865.286	148.031	325.619	755.63	81.563

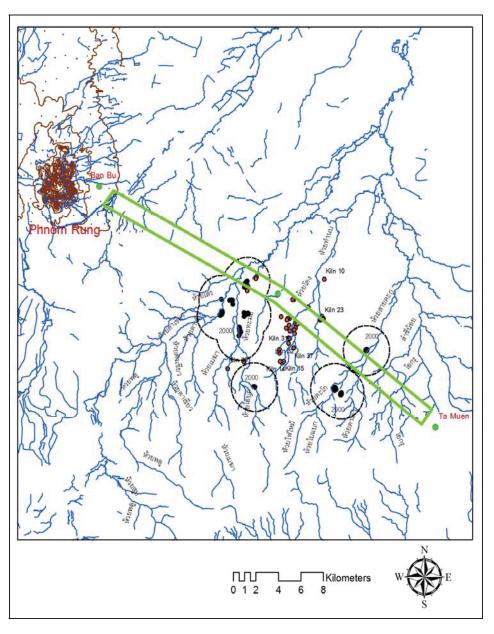
MAX. = 865.286 MIN = 81.563 Median = 325.619 STDEV = 316.817 MEAN = 420.605

จากตารางแสดงค่าระยะทางเฉลี่ยของกลุ่มแหล่งโลหะกรรมทั้งหมด 9 กลุ่มจาก ข้อมูลระยะทางของเนินแหล่งโบราณคดีทั้ง 67 แหล่งถึงลำห้วยต่างๆ เห็นได้ว่าทั้งหมดตั้งอยู่ใน ตำแหน่งที่ไม่ห่างจากลำน้ำมากกว่า 1 กิโลเมตร ซึ่งค่าเฉลี่ยระยะทางไกลที่สุดคือ 865.286 เมตร ระยะใกล้แหล่งน้ำมากที่สุด 81.563 เมตร และทั้ง 9 กลุ่มมีค่าระยะทางเฉลี่ยคือ 420.605 เมตร โดย กลุ่มเนินหมายเลข 1 2 6 7 9 มีระยะห่างจากแหล่งน้ำไม่เกิน 350 เมตร แต่กลุ่มเนินหมายเลข 4 และ 5 เป็นกลุ่มเนินโลหะกรรมที่อยู่ห่างจากลำน้ำมากที่สุดคือ 797.333 และ 865.286 เมตร


ระยะห่างระหว่างกลุ่มแหล่งทั้งหมดกับลำห้วยต่างๆ อาจมีความสัมพันธ์กับ รูปแบบการกระจายตัว โดยเห็นว่ากลุ่มที่มีค่าเฉลี่ยระยะทางใกล้ลำน้ำมากกว่ากลุ่มอื่น ได้แก่ กลุ่มที่ และกลุ่มที่ 6 มีระยะทางห่างจากแหล่ง 107.128 เมตร และ 148.03 เมตร เป็นกลุ่มแหล่ง โลหะกรรมที่กระจายตัวเป็นเส้นขนานไปกับลำน้ำ แต่ในกลุ่มที่ 9 ซึ่งเป็นกลุ่มที่อยู่ใกล้ลำน้ำมาก ที่สุดคือ 81.563 เมตร เป็นกลุ่มเดียวที่มีเนินโลหะกรรมกระจายตัวแบบวงกลม ทั้งหมด 6 เนิน จึง อาจส่งผลให้ต้องจำกัดการใช้พื้นที่ในการผลิต หรือไม่สามารถขยายเนื้อที่เพื่อเพิ่มกำลังการผลิตและ ในกลุ่มที่ 3, 4 และ 5 ซึ่งเป็นกลุ่มที่อยู่ห่างจากลำน้ำมากกว่า 500 เมตร เป็นกลุ่มที่มีเนินโลหะกรรม กระจายตัวในรูปแบบสุ่มและน่าสนใจว่าในกลุ่มที่ 8 กลับมีการกระจายของเนินโลหะกรรมเป็น รูปแบบวงกลมทั้งยังตั้งอยู่ในบริเวณชั้นความสูงที่ 210 ซึ่งเป็นพื้นที่สูงที่สุดที่พบแหล่งโลหะกรรม

ความสัมพันธ์ด้านตำแหน่งที่ตั้งของแหล่งโบราณคดี

เนื่องจากเทคโนโลยีในกระบวนการผลิตในด้านการจัดหาวัตถุดิบนำมาถลุงโลหะ เป็นข้อจำกัดที่ทำให้คณะผู้วิจัยยังไม่สามารถระบุตำแหน่งที่ตั้งของแหล่งวัตถุดิบที่แน่นอน การศึกษาในประเด็นนี้จึงไม่สามารถตรวจสอบความสัมพันธ์ระหว่างที่ตั้งแหล่งโบราณคดีกับแหล่ง แร่หรือแหล่งวัตถุดิบที่นำมาใช้ในการผลิต


ในพื้นที่อำเภอบ้านกรวด จังหวัดบุรีรัมย์เป็นอาณาบริเวณที่พบแหล่งโบราณคดี เป็นจำนวนมาก นอกจากแหล่งโลหะกรรมที่สามารถระบุตำแหน่งได้แล้วนั้น พื้นที่ดังกล่าวยัง ปรากฏแหล่งผลิตภาชนะดินเผา ศาสนสถาน แหล่งตัดหิน แหล่งตัดศิลาแลง จึงทำให้ในเขตนี้อาจมี สถานะเป็นแหล่งผลิตที่สำคัญที่สนับสนุนผลผลิตป้อนให้อาณาจักรเขมรโบราณทั้งระบบและมี บทบาทสำคัญต่อการขยายขอบเขตอาณาจักรได้อย่างกว้างขวาง

การศึกษาด้านตำแหน่งที่ตั้งของแหล่งโลหะกรรมและแหล่งโบราณคดีอื่นๆ อาจ แปลความได้ว่ามีความเป็นไปได้ที่มีการแบ่งโซนพื้นที่เพื่อการผลิต โดยได้พบว่ากลุ่มกระจายตัว ของแหล่งโลหะกรรมจะปรากฏความหนาแน่นในอาณาบริเวณหนึ่งในขณะที่กลุ่มการกระจายตัว ของแหล่งผลิตภาชนะดินเผาปรากฏความหนาแน่นในอีกพื้นที่หนึ่งซึ่งปัจจัยการเลือกที่ตั้งของ แหล่งทั้งสองประเภทต้องอาศัยปัจจัยร่วมกันที่สำคัญคือ แหล่งน้ำ

รูปที่ 3-14 แสดงแผนที่เปรียบเทียบตำแหน่งความหนาแน่นของแหล่งผลิตสองประเภท

จากภาพแผนที่แสดงการเปรียบเทียบตำแหน่งความหนาแน่นของแหล่งผลิตทั้ง สองประเภทคือ แหล่งโลหะกรรมและแหล่งเตาเผาภาชนะจะเห็นได้ว่ากลุ่มแหล่งโลหะกรรมจะพบ ความหนาแน่นในเขตห้วยเสวและลำสาขาของห้วยสายตะกู ในขณะที่แหล่งเตาจะพบมากในเขต ห้วยโตงซึ่งเป็นลำสาขาของห้วยทำนบที่ไหลอยู่ระหว่างห้วยเสวทางด้านตะวันตกและห้วยสายตะกู ทางด้านทิสตะวันออก มีเพียงไม่กี่แหล่งที่อยู่ในพื้นที่เดียวกับแหล่งโลหะกรรมแถบห้วยเสว ซึ่ง แหล่งเตาเผาเครื่องถ้วยนี้พบมีตำแหน่งที่ตั้งกระจายครอบคลุมลำห้วยทำนบและลำสาขาเป็นพื้นที่ กว้างถึงประมาณ 20 ตารางกิโลเมตร ดังนั้นกิจกรรมการเผาภาชนะตามกระบวนการผลิตจึงดำเนิน ไปท่ามกลางการถลุงโลหะที่เกิดขึ้นอย่างต่อเนื่อง

รูปที่ 3-15 แผนที่แสดงความสัมพันธ์ของแหล่งโบราณคดี

แหล่งอุตสาหกรรมนับร้อยแห่งที่อยู่ในเขตนี้มีเพียงบางแห่งที่มีผลการกำหนดอายุ ได้แก่ เตานายเจียน ซึ่งตัวอย่างหมายเลข *OAEP-960* มีค่าอายุในช่วงพุทธศตวรรษที่ 15-17 (กรมศิลปากร 2532: 90) ซึ่งร่วมสมัยกับปราสาทพนมรุ้ง ปราสาทเมืองต่ำ ที่อยู่ห่างออกไปประมาณ 18 กิโลเมตร ทางทิศตะวันตก และศาสนสถานอื่นๆ อีกเป็นจำนวนมากทั้งที่อยู่ในเขตนี้และ ที่ห่างใกลออกไป การเกิดขึ้นของศาสนสถานในวัฒนธรรมเขมรโบราณควรมีควบคู่กับแหล่ง ชุมชน ข้อความในจารึกหลายหลักบอกให้ทราบว่ามีความจำเป็นต้องใช้ทรัพยากรเป็นจำนวนมาก ทั้งแรงงาน ที่ดิน เครื่องอุปโภค บริโภคในการหล่อเลี้ยงเทพเจ้าประจำศาสนสถานนั้นๆ และ จำนวนศาสนสถานที่เพิ่มมากขึ้นตั้งแต่พุทธศตวรรษที่ 16 จนถึงรัชกาลพระเจ้าชัยวรมันที่ 7 ยังส่งผลให้ต้องเพิ่มกำลังในการผลิตให้สูงขึ้นอีกเป็นเงาตามตัว

ข้อความในจารึกปราสาทพระขรรค์บอกให้ทราบว่า พระเจ้าชัยวรมันที่ 7 โปรคให้ สร้างที่พักคนเดินทางไว้ตามถนนสายต่างๆ ที่ควรมีมาก่อนหน้ารัชสมัยของพระองค์ ข้อมูลตำแหน่ง ที่ตั้งแหล่งโลหะกรรมที่ปรากฏในแผนที่แสดงความสัมพันธ์ของแหล่งโบราณคดีประกอบข้อมูล ตำแหน่งที่พักคนเดินทางที่ใช้เป็นที่หมายในการกำหนดแนวถนนโบราณโดยประมาณ และข้อมูล ้เส้นประวงรัศมี 2,000 เมตร เป็นสมมุติฐานให้แหล่งผลิตมีขอบเขตพื้นที่บริการในระยะ 2 กิโลเมตร ในการจัดหาทรัพยากรที่นำมาใช้ผลิตและลำเลียงผลผลิตออกจากแหล่ง แม้ว่าข้อเท็จจริงพื้นที่ บริการอาจมีรัศมีใกลกว่านั้นมากแต่จะเห็นได้ว่าศูนย์กลางการถลุงโลหะและผลิตเครื่องถ้วยอยู่ใน แนวเส้นทางการเดินทางระหว่างเมืองพิมายและเมืองพระนคร และตามข้อเท็จจริง การขุดค้นทาง โบราณคดีและการบูรณะศาสนสถานแบบเขมรทุกแหล่งทั้งที่พิมาย และแหล่งอื่น โดยกรมศิลปากร ใค้มีการพบเครื่องถ้วยทั้งที่สมบูรณ์และเศษชิ้นส่วน รวมทั้งเครื่องมือเหล็กทั้งที่เป็นอาวุธและ เครื่องมือที่ใช้ก่อสร้างศาสนสถานประเภทหินอยู่เป็นจำนวนมากทั้งที่ไม่ปรากฏแหล่งผลิต แหล่งถลุงโลหะขนาดใหญ่ในย่านนั้นๆ จึงเป็นไปได้ว่าผลผลิตจากศูนย์กลางแห่งนี้ถูกลำเลียงไป ตามเส้นทางนี้เพื่อป้อนเข้าสู่ชุมชนและศาสนสถานต่างๆ และยังมีความเป็นไปได้อีกว่าอาจมีการ ขนส่งผลผลิตบางส่วนไปยังเมืองพระนครผ่านช่องตาเมือนที่มีการปรับพื้นที่เป็นทางเดินศิลาแลง ลดชั้นเป็นลานตะพักลงไปยังคินแคนเขมรต่ำ ซึ่งการสำรวจจากการคำเนินโครงการในระยะที่ 1 ได้ มีการพบเครื่องมือเหล็ก ใบหอก มีค หลายรายการในบริเวณปราสาทจานในเขตประเทศกัมพูชา

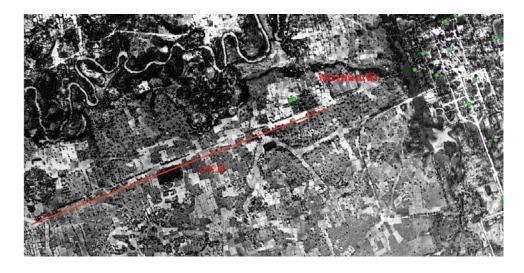
ข้อมูลระยะทางที่ปรากฏในตารางข้างล่างนี้ แสดงระยะทางจากแหล่งโลหะกรรม ทั้ง 67 แหล่งถึงที่พักคนเดินทางแห่งต่างๆ ซึ่งคำนวณตามระยะทางตรงเพื่อให้ใกล้เคียงกับแนว เชื่อมต่อระหว่างที่พักคนเดินทางที่คาดว่าควรเป็นถนนดังนั้นค่าระยะทางนี้จึงเป็นค่าโดยประมาณ เห็นได้ว่าที่พักคนเดินทางที่อยู่ใกล้แหล่งโลหะกรรม รวมถึงแหล่งเตาเผามากที่สุดคือปราสาทถมอ และปราสาทตาเมือน ซึ่งหมายความว่าเป็นระยะทางที่สั้นมากที่จะใช้ลำเลียงผลผลิตลงไปยัง ดินแคนเขมรต่ำ ในทางกลับกันยังสามารถลำเลียงผลผลิตไปยังเมืองพิมายหรือชุมชนอื่นๆ โดยผ่าน ตามถนนที่ยังคงปรากฏร่องรอยที่ชัดเจนในเขตบ้านตาปาง อำเภอบ้านกรวดบุรีรัมย์ ซึ่งผลการ

ตารางที่ 3-9 แสดงระยะทางจากเนินโลหะกรรมถึงที่พักคนเดินทาง (กม.)

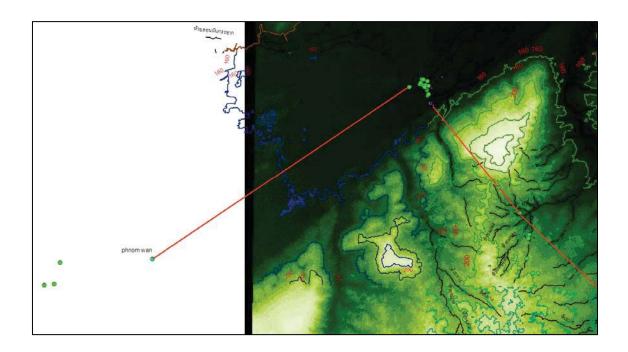
Furnace		Huai	Samrong	Nong	Nong	Kok	Ban		Ta
No.	Kukosi	Kan	Kao	Tapleng	Plong	Prasat	Bu	Tamor	Muen
0	89.92	74.26	67.92	53.71	42.87	31.63	17.47	4.55	19.02
1	89.96	74.31	67.97	53.75	42.91	31.67	17.49	4.70	19.06
2	90.09	74.44	68.10	53.87	43.02	31.78	17.59	4.88	19.03
3	89.84	74.18	67.84	53.62	42.79	31.55	17.38	4.59	19.12
4	89.78	74.12	67.78	53.57	42.74	31.50	17.34	4.56	19.15
5	89.78	74.12	67.78	53.56	42.73	31.49	17.33	4.55	19.15
6	89.73	74.07	67.73	53.52	42.69	31.45	17.29	4.53	19.18
7	89.69	74.03	67.69	53.48	42.65	31.41	17.26	4.47	19.19
8	89.59	73.92	67.58	53.38	42.55	31.31	17.16	4.45	19.28
9	89.54	73.88	67.54	53.33	42.51	31.27	17.13	4.40	19.30
10	89.50	73.84	67.50	53.30	42.47	31.23	17.09	4.39	19.33
11	87.73	72.10	65.77	51.51	40.64	29.40	15.20	5.40	21.27
12	87.69	72.06	65.73	51.47	40.59	29.35	15.15	5.45	21.32
13	87.72	72.08	65.75	51.50	40.64	29.40	15.22	5.21	21.18
14	87.73	72.10	65.77	51.52	40.65	29.41	15.23	5.27	21.20
15	87.67	72.03	65.70	51.46	40.60	29.36	15.19	5.17	21.20
16	87.65	72.00	65.67	51.43	40.58	29.34	15.17	5.16	21.21
17	87.58	71.93	65.60	51.36	40.51	29.27	15.11	5.13	21.25
18	87.55	71.90	65.57	51.33	40.48	29.24	15.08	5.14	21.28

Furnace		Huai	Samrong	Nong	Nong	Kok	Ban		Ta
No.	Kukosi	Kan	Kao	Tapleng	Plong	Prasat	Bu	Tamor	Muen
19	87.22	71.53	65.18	51.02	40.25	29.01	14.99	4.30	21.11
20	87.30	71.61	65.26	51.11	40.35	29.11	15.12	4.11	20.96
21	87.37	71.67	65.32	51.17	40.42	29.18	15.19	4.05	20.89
22	87.63	71.94	65.59	51.43	40.67	29.43	15.41	4.05	20.70
23	86.70	71.03	64.69	50.49	39.68	28.44	14.36	5.02	21.80
24	88.84	73.13	66.78	52.65	41.90	30.67	16.67	3.34	19.45
25	88.82	73.11	66.76	52.63	41.88	30.65	16.65	3.39	19.48
26	88.80	73.09	66.74	52.61	41.86	30.63	16.63	3.37	19.49
27	89.02	73.31	66.96	52.83	42.07	30.84	16.82	3.42	19.32
28	89.05	73.35	67.00	52.86	42.09	30.86	16.83	3.53	19.34
29	86.89	71.11	64.75	50.76	40.17	28.97	15.37	2.88	20.65
30	86.87	71.10	64.74	50.74	40.15	28.95	15.34	2.92	20.68
31	86.92	71.15	64.79	50.78	40.16	28.95	15.29	3.02	20.71
32	87.00	71.23	64.87	50.86	40.26	29.05	15.41	2.89	20.60
33	87.08	71.32	64.96	50.94	40.31	29.10	15.41	2.94	20.58
34	87.13	71.37	65.01	50.98	40.34	29.13	15.41	2.99	20.58
35	89.03	73.31	66.96	52.84	42.11	30.88	16.90	3.14	19.20
36	89.08	73.36	67.01	52.89	42.16	30.93	16.96	3.10	19.14
37	89.07	73.36	67.01	52.89	42.16	30.92	16.95	3.15	19.16
38	89.10	73.39	67.03	52.92	42.19	30.96	16.99	3.09	19.11
39	89.02	73.30	66.94	52.83	42.11	30.87	16.91	3.08	19.18
40	94.36	78.76	72.44	58.13	47.19	35.97	21.67	7.98	16.39
41	94.26	78.67	72.34	58.04	47.09	35.87	21.56	7.97	16.51
42	98.06	82.15	75.76	62.15	51.85	40.75	27.42	9.21	8.83
43	98.05	82.15	75.75	62.14	51.86	40.76	27.44	9.23	8.83
44	97.99	82.09	75.70	62.09	51.81	40.71	27.40	9.19	8.88
45	97.96	82.05	75.66	62.05	51.77	40.67	27.35	9.14	8.92
46	97.96	82.05	75.66	62.05	51.76	40.65	27.33	9.12	8.93
47	97.99	82.09	75.70	62.08	51.79	40.69	27.36	9.15	8.89

Furnace	Kukosi	Huai	Samrong	Nong	Nong	Kok	Ban	Tamor	Та
No.	IXUNOSI	Kan	Kao	Tapleng	Plong	Prasat	Bu	1 amoi	Muen
48	99.32	83.52	77.14	63.22	52.62	41.41	27.53	9.98	8.84
49	99.35	83.54	77.16	63.24	52.65	41.43	27.55	10.00	8.83
50	99.34	83.54	77.16	63.23	52.63	41.42	27.53	10.00	8.86
51	99.34	83.54	77.17	63.24	52.63	41.42	27.52	10.01	8.89
52	99.40	83.60	77.22	63.29	52.69	41.47	27.57	10.07	8.86
53	99.44	83.64	77.26	63.33	52.73	41.51	27.62	10.10	8.81
54	99.41	83.60	77.23	63.30	52.70	41.49	27.60	10.07	8.80
55	98.59	82.79	76.42	62.48	51.88	40.66	26.77	9.26	9.57
56	98.61	82.81	76.44	62.51	51.90	40.69	26.80	9.28	9.53
57	98.66	82.86	76.48	62.55	51.95	40.73	26.85	9.33	9.49
58	98.77	82.97	76.60	62.66	52.06	40.84	26.95	9.44	9.41
59	98.73	82.93	76.56	62.62	52.02	40.80	26.92	9.40	9.43
60	98.81	83.01	76.64	62.70	52.09	40.88	26.99	9.49	9.39
61	98.82	83.02	76.65	62.71	52.09	40.88	26.98	9.50	9.42
62	98.79	83.00	76.62	62.68	52.06	40.84	26.94	9.48	9.47
63	98.74	82.94	76.57	62.62	52.00	40.79	26.88	9.42	9.53
64	98.66	82.87	76.49	62.54	51.93	40.71	26.80	9.35	9.61
65	98.58	82.79	76.41	62.47	51.85	40.63	26.73	9.27	9.65
66	98.56	82.77	76.39	62.45	51.84	40.62	26.73	9.24	9.63


สรุป

จากการศึกษาในครั้งนี้ คณะผู้วิจัยมีความเห็นว่าผลที่ได้รับที่สำคัญมากที่สุดคือ แหล่งโบราณคดีซึ่งเป็นมรดกทางวัฒนธรรมของมนุษย์ได้รับการอนุรักษ์จากการที่สามารถ ตรวจสอบพิสูจน์ทราบตำแหน่งและการมีอยู่อย่างเกือบสมบูรณ์และครบถ้วนซึ่งสามารถใช้เป็น ข้อมูลพื้นฐานในการเข้าไปดำเนินการขั้นต่อไป เพื่อทำการอนุรักษ์ทางกายภาพหรือศึกษาวิจัยเพื่อ ขยายฐานความรู้ต่อไปในอนาคตซึ่งยังคงมีอีกหลายประเด็นศึกษาที่น่าสนใจอีกเป็นจำนวนมาก ทั้งในด้านการใช้พื้นที่แหล่งปัจจัยในการกำหนดการกระจายตัวของเนินโลหะกรรมที่มี รูปแบบเฉพาะ แหล่งวัตถุดิบ ปริมาณผลผลิตที่สามารถผลิตได้


3.2 ศึกษาและตรวจสอบสมมุติฐานโครงข่ายถนนสายย่อยที่อาจมีขึ้นเพื่อเชื่อมโยงแหล่ง อุตสาหกรรมสมัยโบราณและศึกษาความสัมพันธ์ระหว่างถนนกับแหล่งชุมชนโบราณที่ ปรากฏศาสนสถาน

รูปที่ 3-16 ภาพถ่ายดาวเทียมแสดงสภาพพื้นที่ปัจจุบัน

รูปที่ 3-17 ภาพถ่ายทางอากาศแสดงร่องรอยแนวถนนทางด้านตะวันตกของเมืองพิมาย

รูปที่ 3-18 แสดงแนวเส้นสมมุติของแนวถนนจากเมืองพิมายถึงปราสาทพนมวัน อ.เมือง จ.นครราชสีมา

การศึกษาเพื่อตรวจสอบโครงข่ายถนนสายย่อยที่ดำเนินการต่อจากโครงการระยะที่ 1 ได้ พบร่องรอยแนวคันดินจากการตรวจสอบภาพถ่ายทางอากาศขนาดกว้างประมาณ 1 เมตร ยาว ประมาณ 3 กิโลเมตร ซึ่งมีแนวตัดตรงออกจากด้านตะวันตกของเมืองพิมาย โดยมีแนวเริ่มต้นจาก บริเวณที่เรียกว่า สระเพลงแห้ง ซึ่งเป็นสระน้ำโบราณที่อยู่นอกเมืองพิมายและมีแนวต่อไปในเขต บ้านขามและบ้านสูงซึ่งเป็นแหล่งโบราณคดีสมัยก่อนประวัติศาสตร์ในสมัยเหล็ก ในปัจจุบัน แนวคันดินนี้ถูกรบกวนจากการขยายพื้นที่นาทำให้ร่องรอยถูกทำลายเป็นส่วนมากตามที่ปรากฏใน ภาพที่ 3-16

รูปที่ 3-19 แสดงแนวคันคินที่ยังคง สภาพอยู่ในปัจจุบัน ร่องรอยแนวแนวคันดินนี้ อาจเป็นส่วนหนึ่งของถนนโบราณที่มีรูปแบบที่ชัดเจนที่สุด ในเขตประเทศไทย ซึ่งการตรวจสอบด้านตำแหน่งที่ตั้งและทิศทางพบว่ามีแนวที่สามารถเชื่อมต่อ กับปราสาทพนมวัน ในเขตอำเภอเมือง จังหวัดนครราชสีมา ซึ่งห่างออกไปทางทิศตะวันตกเฉียงใต้ ประมาณ 39 กิโลเมตร ทั้งปราสาทพิมาย และปราสาทพนมวันมีที่ตั้งอยู่ในเขตภูมิศาสตร์ แบบเดียวกัน คือ อยู่ในที่ราบลุ่มแม่น้ำมูลซึ่งเป็นที่ราบน้ำท่วมถึง ดังปรากฏในแผนที่ความสูง ในภาพที่ 3-18 ซึ่งเป็นสภาพที่ตั้งที่มีความแตกต่างอย่างเห็นได้ชัดกับสภาพพื้นที่ระหว่างเมืองพิมาย ถึงปราสาทตาเมือนธมซึ่งเป็นพื้นที่สูงกว่า ดังนั้นสภาพแวดล้อมและความสูงของพื้นที่อาจเป็น ปัจจัยหลักในการสร้างถนน ข้อมูลเส้นทางระหว่าง พิมายถึงพนมวันหรือเส้นทางสายตะวันตกจาก เมืองพิมายปรากฏอยู่ในเขตที่ราบน้ำท่วมถึง จึงมีความจำเป็นต้องก่อสร้างพูนดินขึ้นเพื่อรักษา เส้นทางให้ใช้ได้ตลอดปี เช่นเดียวกับเงื่อนไขแบบเดียวกันในเขตกัมพูชา ที่แนวถนนยังคงปรากฏ อยู่อย่างชัดเจน

3.3 การศึกษาองค์ประกอบทางเคมี และองค์ประกอบทางกายภาพของภาชนะดินเผาใน วัฒนธรรมเขมรโบราณ

ความนำ

แนวทางการศึกษาหลักฐานทางโบราณคดีแบ่งได้เป็น 2 แนวทางใหญ่ๆ ได้แก่ แนวทางการศึกษาทางกายภาพ และแนวทางวิทยาศาสตร์ ซึ่งแนวทางการศึกษาทางวิทยาศาสตร์ในปัจจุบันนี้ มีแนวโน้มเพิ่มขึ้นจากเดิมและเป็นการเพิ่มพูนองค์ความรู้ จากการศึกษาเฉพาะทางกายภาพที่มักจะมี แต่ประสบการณ์เฉพาะ หรือความรู้ของนักโบราณคดีผู้ศึกษาเพียงอย่างเดียว แต่เมื่อเรานำศาสตร์อื่น มาช่วยสนับสนุนประสบการณ์ของนักโบราณคดีจะสามารถทำให้ข้อมูลการวิเคราะห์ที่ได้มีความ น่าเชื่อถือมากยิ่งขึ้น และปัจจุบันนี้งานทางด้านโบราณคดีได้ยอมรับในความแม่นยำของการ วิเคราะห์หลักฐานทางโบราณคดีด้วยวิธีทางวิทยาศาสตร์ อาทิ เครื่องปั้นดินเผาโดยใช้วิธีศิลาวรรณา (Petrography Analysis) โบราณวัตถุที่เป็นสำริด และเหล็ก ฯลฯ สามารถวิเคราะห์ได้ด้วยวิธี Scanning Electron Microscope (S.E.M) เป็นต้น ซึ่งวิธีการประยุกต์ทางวิทยาศาสตร์เหล่านี้สามารถ นำข้อมลจากการวิเคราะห์เพื่อตอบคำถามหรือได้องค์ความรู้ในระดับลึกได้มากยิ่งขึ้น

ผลจากการศึกษาทางวิทยาศาสตร์นั้นมีทั้งข้อดีและข้อด้อย ในส่วนข้อดีของการศึกษา แนวทางวิทยาศาสตร์ คือ สะควก รวคเร็ว แม่นยำ ค่าความคลาดเคลื่อนน้อย เหมาะสมที่จะนำมาใช้ ในงานโบราณคดี ส่วนข้อเสียคือ ในด้านค่าใช้จ่ายในการวิเคราะห์บางวิธีการค่อนข้างสูงมาก และ เทคนิคบางวิธีใช้เวลานานในการวิเคราะห์ และเมื่อนำมาตีความทางโบราณคดี ถ้านักโบราณคดีไม่มี ความรู้พื้นฐานเกี่ยวกับวิธีการนั้นเลย จะทำให้แปลความไม่ได้และจะไม่เกิดประโยชน์เลย การศึกษาแนวทางวิทยาศาสตร์ประยุกต์เพื่อศึกษาและวิเคราะห์หลักฐานทางโบราณคดี จำนวน 20 ตัวอย่าง อันได้แก่ เศษภาชนะดินเผาที่ได้จากการสำรวจในครั้งนี้ คือใช้วิธีศิลาวรรณา (Petrography Analysis) เพื่อหาจุลสัณฐานของตัวอย่างโบราณวัตถุทั้งหมด

ข้อมูลและวิธีการศึกษาตัวอย่าง

โบราณวัตถุจำนวน 6 กลุ่มตัวอย่าง ตัวอย่างนี้ใช้วิธีทางกายภาพศึกษาด้วยตาเปล่าและวิธี ศิลาวรรณา (Petrography Analysis) มาจากเศษภาชนะดินเผาจากแหล่งเตาในประเทศกัมพูชา คือ

แหล่งเตา	จำนวนตัวอย่าง (เตา)
Thlok A kong klin	3
Thlok ktum klin	2
Kok Cheng Meng Kiln	4
Kok Yeay Deng	7
Kok Treas Kiln	2
Kok kjeay kiln	2
รวม	20

จุดมุ่งหมายในการศึกษาโบราณวัตถุประเภทเศษภาชนะดินเผา มีจุดมุ่งหมายหรือ ความต้องการที่จะวิเคราะห์และแปลความทางโบราณคดีในเรื่องสำคัญ ดังต่อไปนี้

- 1. องค์ประกอบของเนื้อดินสามารถบอกถึงแหล่งที่มา หรือแหล่งผลิตได้
- 2. เทคโนโลยีการผลิต เช่น วัตถุดิบ การขึ้นรูป ส่วนผสม การตกแต่ง อุณหภูมิการเผา

การวิเคราะห์ทางกายภาพและทางวิทยาศาสตร์ของโบราณวัตถุประเภทเศษภาชนะดินเผานี้ มีจุดประสงค์เพื่อใช้เป็นข้อมูลพื้นฐานของการสำรวจแหล่งโบราณคดีและสามารถนำไปศึกษา เปรียบเทียบข้อมูลในเรื่องเคียวกันนี้จากแหล่งโบราณคดีอื่นๆ ภายในพื้นที่เคียวกันและในระดับ ภูมิภาคต่อไปได้ในอนาคต

ขั้นตอนการวิเคราะห์และวิธีการศึกษา

ตัวอย่างที่นำไปวิเคราะห์รวมทั้งสิ้นจำนวน 20 ตัวอย่างนั้น นำไปสู่กระบวนการ 4 ขั้นตอน ดังนี้

ขั้นตอนที่ 1 การตรวจสอบและจดบันทึกลักษณะทางกายภาพของตัวอย่าง ได้แก่ วัดขนาด รูปร่าง ศึกษาลักษณะเนื้อดินและตรวจสอบสีดิน รวมทั้งการตกแต่งภายนอกที่ผิวภาชนะ

ขั้นตอนที่ 2 การเตรียมตัวอย่าง โดยการทำสไลด์แผ่นบาง (Thin section) สามารถ สรุปเป็นขั้นตอนการเตรียมตัวอย่างได้ดังนี้

- นำเศษภาชนะดินเผาที่ได้คัดเลือกไว้แล้วมาทำความสะอาด เรียงตามหมายเลข ใส่ลงในกล่องพลาสติก บุอย่างดี สำหรับใส่ตัวอย่าง
 - 2. นำตัวอย่างเสษภาชนะดินเผาดังกล่าวใส่ตู้อบเพื่อไล่ความชื้น
 - 3. เตรียมน้ำยาเพื่อหล่อตัวอย่าง
 - 4. เทน้ำยาหล่อตัวอย่างลงในกล่องตัวอย่างที่เตรียมไว้
- 5. นำกลักฟิล์มเข้าตู้ดูดอากาศเพื่อดูดฟองอากาศออกจากตัวอย่างและทำให้น้ำยา ซึมเข้าตัวอย่าง
- 6. นำออกจากตู้คูดอากาศและใส่ไว้ในตู้คูดกลิ่น ทิ้งไว้ให้น้ำยาแข็งตัวประมาณ 2-3 อาทิตย์
- 7. ระหว่างที่รอให้ตัวอย่างแข็งตัว ต้องคอยเติมน้ำยาหล่อตัวอย่างให้ท่วมตัวอย่าง อยู่เสมอจนน้ำยาอยู่ในระดับคงที่จึงปล่อยให้แข็งตัวเอง
- 8. เมื่อตัวอย่างแข็งคีแล้วนำออกจากตู้ดูดกลิ่นและแกะออกจากกล่อง ใช้เครื่องตัด ตัวอย่างให้ได้ตามขนาดที่ต้องการ (เฉพาะในขั้นตอนนี้ได้นำตัวอย่างไปตัดที่กรมธรณีวิทยา)
 - 9. ขัดหน้าตัวอย่างให้เรียบเพื่อจะนำมาติดกับกระจก
 - 10. ผสมน้ำยาสำหรับติดตัวอย่างเข้ากับกระจก
 - 11. นำตัวอย่างมาติดกับกระจกโดยใช้น้ำยาเชื่อมแล้วปล่อยให้แห้ง
 - 12. นำตัวอย่างที่ติดกับกระจกไปตัดเพื่อให้ได้ความบางตามที่ต้องการ
- 13. นำตัวอย่างที่ตัดแล้วมาขัดด้วยผงขัดเพื่อให้หน้าตัดเรียบและได้ความบางตามที่ ต้องการ
 - 14. ตรวจสอบด้วยกล้องเพื่อให้ได้ความบางของตัวอย่างเท่ากับ 0.3 ใมครอน
- 15. นำตัวอย่างดังกล่าวมาทำความสะอาดด้วยแอลกอฮอล์ และนำใส่ตู้อบเพื่อไล่ ความชื้นและน้ำมัน

16. นำตัวอย่างมาปิดด้วยกระจกบางอีกชั้นหนึ่งโดยเชื่อมด้วยน้ำยาเพื่อป้องกัน ความเสียหายที่จะเกิดขึ้นกับตัวอย่างในภายหลัง

ขั้นตอนที่ 3 การวิเคราะห์ทางกายภาพ (Physical Analysis) ด้วยวิธีศิลาวรรณา (Petrographic Analysis)

การวิเคราะห์ทางกายภาพ ด้วยวิธีศิลวรรณา เป็นการศึกษาทางกายภาพหรือทาง ฟิสิกส์ เพื่อวิเคราะห์แร่ธาตุที่อยู่ในภาชนะดินเผา โดยประยุกต์เทคนิควิธีการวิเคราะห์ทางธรณีวิทยา ที่นำมาใช้อธิบาย และจำแนกหินศึกษา โดยใช้กล้อง microscope ชนิคพิเศษเรียกว่า petrographic หรือ polarizing microscope วิธี Petrography ใกล้ชิดและสัมพันธ์กับ petrology เป็นวิธีการวิเคราะห์ ที่ใช้ศึกษาตัวอย่าง ดิน หิน เศษภาชนะดินเผา และองค์ประกอบต่างๆ เช่น อินทรียวัตถุที่ปะปนอยู่ ในดินนำมาประยุกต์เพื่อให้ใช้กับการศึกษาภาชนะดินเผาในทางโบราณคดี

ข**ั้นตอนที่ 4** การแปลความจากผลการศึกษาทางโบราณคดีและสรุปผลข้อมูล

อุปกรณ์และเครื่องมือที่ใช้ในการวิเคราะห์ตัวอย่างและบันทึกภาพ

อุปกรณ์และเครื่องมือที่ใช้ในการศึกษาด้วยวิธีศิลาวรรณานั้น ได้ใช้อุปกรณ์ประเภท กล้องขยายเพื่อตรวจสอบคุณสมบัติต่างๆ ของตัวอย่าง ดังนี้

- 1. กล้อง Stereo Microscope ของ Nikon รุ่น SMZ-U zoom 110 สามารถ ตรวจสอบตัวอย่างได้ด้วยลำแสงทั้งสองแบบ คือ การดูตัวอย่างที่มีความโปร่งใส ลำแสงสามารถ ผ่านตัวอย่างได้ (Transmitted light) และตัวอย่างที่ทึบแสงลำแสงไม่สามารถส่องผ่านตัวอย่างได้ จึงจำเป็นต้องใช้อุปกรณ์ช่วยสะท้อนแสง (Reflecting light) คือ เครื่องกำเนิดแสงแบบงวงช้าง Nikon NEX-35
- 2. กล้อง Microscope ของ Olympus C35AD สามารถตรวจตรวจสอบตัวอย่างที่มี ความโปร่งใสลำแสงสามารถผ่านตัวอย่างได้ (Transmitted light)

คำนิยามศัพท์เฉพาะ

Amorphous organic fine material: สารอสันฐานของอินทรียวัตถุเนื้อละเอียด

Basic mineral components : องค์ประกอบแร่พื้นฐาน

Basic organic component : องค์ประกอบพวกอินทรียวัตถุ (พืช)

B-fabic of the micromass : ลักษณะการจัดเรียงตัวของแร่เนื้อละเอียด

Cementing : ตัวประสานเนื้อหินทราย

Channel void : ช่องว่างที่มีลักษณะเป็น โพรง เกิดกับพืชพบตาม

ธรรมชาติ

Clastic texture : ลักษณะของเนื้อหินทรายที่เกิดจากหินตะกอนพัดพา

และทับถมกันมาไม่ว่าจะเป็นทราย, ทรายแป้ง และดิน

เหนียว

Close porphyric : เนื้อคอกชิด

Coarse fraction : องค์ประกอบของแร่เนื้อหยาบ

Elongate shape : ช่องว่างที่มีลักษณะเป็นแนวยาว

Fine fraction : องค์ประกอบของแร่เนื้อละเอียด

Groundmass : ความสัมพันธ์ระหว่างแร่เนื้อหยาบและแร่เนื้อละเอียค

Open porphyric : เนื้อดอกห่างๆ

Parallel striated : เป็นเส้นต่อเนื่องไปในทิศทางเดียวกัน

Rock fragment : เศษหินที่ปะปนอยู่ในเนื้อดิน

Transmitted light : แสงผ่าน

Undifferentiated : มืดทีบ (มองไม่เห็นการจัดเรียงตัว)

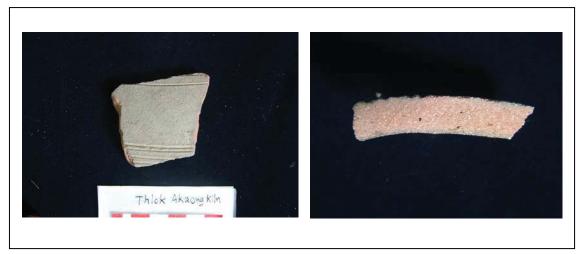
Void pattern : ลักษณะช่องว่างในดิน

Vesicles : ช่องว่างลักษณะกลมคล้ำยฟองอากาศเกิดจากอุณหภูมิ

ความร้อนในการเผาใหม้

คำอธิบายขนาดของอนุภาค (Bullock, and others 1985 : 21)

ดินเหนียว (clay) = 2 ใมครอน ทรายแป้ง (silt) = 2-50 ใมครอน


เม็ดทรายละเอียดมาก = 50-100 ใมครอน เม็ดทรายละเอียด = 100-200 ใมครอน

เม็ดทรายขนาดปานกลาง = 200-500 ใมครอน เม็ดทรายหยาบ = 500-1000 ใมครอน

เม็คทรายหยาบมาก = 1000-2000 ใมครอน

คุณสมบัติทางกายภาพของตัวอย่าง

ตัวอย่างที่ 1-1 แหล่ง Thlok A kong klin

Stoneware / body

Surface ภาชนะเนื้อแกร่งไม่เคลือบ สี 2.5 YR 6/1 reddish gray การตกแต่งด้วยการขีดเป็นเส้นหนักๆ 2เส้น

Inner surface ด้านในสีเทา 2.5YR 6/1 reddish gray

inner surface in the eventual 2.3 Tre of Freduish

Cross-section surface 2.5YR6/6 Light red

ความหนาของหน้าตัด 7.17 มิลลิเมตร มีรูพรุนในเนื้อเครื่องปั้นคินเผา เป็นจุดปะ ส่วนผสม ในเนื้อเป็นพวกทรายแป้งขนาด 0.1-0.3 มิลลิเมตร

เทคนิกการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง สุดท้ายเป็นการเผาแบบรมควัน ในสภาวะ Reduced โดยใช้น้ำมันจากใบพืช มาจับที่ผิวภาชนะ

ความแข็งของเนื้อภาชนะ น้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่1.2 แหล่ง Thlok A kong klin

Stoneware / neck
Surface ภาชนะเนื้อแกร่งเคลือบ สี 10YR 2/1 black
เคลือบแก้วที่บหนาราว0.5มิลลิเมตร
Inner surface ด้านในสีเทา 7.5YR 6/1 gray

Cross-section surface 7.5YR5/1 gray

ความหนาของหน้าตัด 14.71 มิลลิเมตร มีแร่เหล็กขนาด 0.5-1มิลลิเมตร 3-5 เปอร์เซ็นต์และ มีแร่สีขาวขนาดทรายแป้ง 0.05-0.2 มิลลิเมตร กระจายอยู่ทั่วไปราว 3-5 เปอร์เซ็นต์

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 1.3 แหล่ง Thlok A kong klin

Stoneware (White ware)/ body

Surface ภาชนะเนื้อแกร่งเคลือบใส สี10YR 9/1White

เคลือบแก้วใส หนาราว 0.2 มิลลิเมตร

Inner surface ด้านในสีเทา 10YR 9/1 white ผนังด้านในเป็นลอนคลื่น เป็นการขึ้นรูปด้วย วิธีขคคิน (coiling)

Cross-section surface 10YR 9/1 white

ความหนาของหน้าตัด 3.63-3.78 มิลลิเมตร มีกลุ่มแร่สีขาวขนาดทรายแป้ง 0.05-0.1 มิลลิเมตร ประมาณ 2-3 เปอร์เซ็นต์และมีจุดปะสีดำขนาด 0.05 มิลลิเมตร ประมาณ 0.5-1 เปอร์เซ็นต์

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะ น้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 2.1 แหล่ง Thlok Ktum Klin

Stoneware / neck

Surface ภาชนะเนื้อแกร่งเคลือบ สี 10YR 2/1 black

เคลือบแก้วทึบแสงหนาราว 0.2-1.0 มิลลิเมตร

Inner surface ด้านในสีเทา 10YR 7/2-7/3 light gray – very pale brown

เคลือบค้านหนา 0.2 มิลลิเมตร ที่ผิวพบเส้นรอบวงเรียงซ้อนกันการตกแต่งผิวค้านในใช้ แป้นหมุน

Cross-section surface 10YR7/1 Light grey

ความหนาของหน้าตัด 4.46-5.81 มิลลิเมตร พบจุดปะสีน้ำตาลปนดำ ขนาด 0.05-0.1 มิลลิเมตรราว 2-3 เปอร์เซนต์

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง แต่เนื้อดินมีอินทรียวัตถุเนื่องจาก แกนกลางของหน้าตัดมีสีเทาคำ

ความแข็งของเนื้อภาชนะ น้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 2.2 แหล่ง Thlok Ktum Klin

Stoneware / base

Surface ภาชนะเนื้อแกร่งเคลือบลาน สีผิว 5GY 9/1 Light Green เคลือบหนาราว 0.2-0.5 มิลลิเมตร

Inner surface ด้านในสีผิว 5GY 9/1 Light Green เคลือบหนาเท่ากัน

Cross-section surface 10YR8/1-7/1White-Light gray

ความหนาของหน้าตัด 9.92-12.61 มิลลิเมตร มีจุดปะสีเทาดำขนาด 0.5-1 มิลลิเมตร 2-3 เปอร์เซ็นต์ และมีแร่สีขาวขุ่นขนาดทรายแป้ง 0.05-0.2 มิลลิเมตร กระจายอยู่ทั่วไปราว 1-2 เปอร์เซ็นต์

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูงแต่เนื้อดินมีอินทรียวัตถุเนื่องจาก แกนกลางของหน้าตัดมีสีเทาดำ

ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 3.1 แหล่ง Kok Cheng Meng Klin

Stoneware / rim

Surface ภาชนะเนื้อแกร่งไม่เคลือบผิวเรียบ สี 7.5YR 6/3 Light brown

Inner surface สี 7.5YR 6/3 Light brown ผนังที่ผิวพบเส้นรอบวงเรียงซ้อนกันการตกแต่ง ผิว ด้านในโดยใช้แป้นหมุน

Cross-section surface 7.5YR 7/3Pink และ 10YR4/1 dark gray

ความหนาของหน้าตัด 5.91-13.87 มิลลิเมตร มีกลุ่มแร่สีขาวขนาคทรายแป้ง 0.05-0.1 มิลลิเมตร ประมาณ 3-5 เปอร์เซ็นต์และมีจุดปะสีดำขนาด 0.02-0.05 มิลลิเมตร ประมาณ 1-2 เปอร์เซ็นต์

เทคนิคการเผาในเตาเผาในสภาวะ Oxidized อุณหภูมิสูงแต่เนื้อดินมีอินทรียวัตถุเนื่องจาก แกนกลางของหน้าตัดมีสีเทาดำ

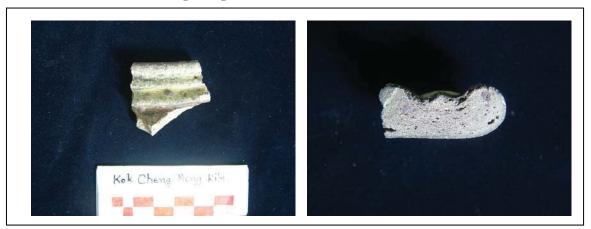
ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 3.2 แหล่ง Kok Cheng Meng Klin

Stoneware / shoulder

Surface ภาชนะเนื้อแกร่งไม่เคลือบผิวเรียบ สี 10YR 5/1 gray ผนังที่ผิวพบเส้นรอบวง เรียงซ้อนกันการตกแต่งผิวด้านในโดยใช้แป้นหมุน

Inner surface สี 10YR 5/1 gray


ผนังที่ผิวลักษณะเป็นลอนคลื่นการปั้นโดยวิธีขดดินและพบเส้นรอบวงเรียงซ้อนกันตกแต่ง ผิวด้านในโดยใช้แป้นหมุน

Cross-section surface 10YR 6/1 gray

ความหนาของหน้าตัด 7.22-8.40 มิลลิเมตร มีกลุ่มแร่สีขาวขุ่นขนาคทรายแป้ง 0.05-0.1 มิลลิเมตร ประมาณ 2-5 เปอร์เซ็นต์และมีจุดปะสีน้ำตาลคำขนาค 0.02-0.05 มิลลิเมตร ประมาณ 1 เปอร์เซ็นต์

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 3.3 แหล่ง Kok Cheng Meng Klin

Stoneware / rim

Surface ภาชนะเนื้อแกร่งเคลือบด้าน สีผิว สีเทา 5GY 5/1 Greenish grey
เคลือบแก้วทึบแสงหนาราว 0.2-1.0 มิลลิเมตรขอบปากตกแต่งด้วยเครื่องมือปลายแหลมกด
เป็นร่องคลื่นในแนวนอนหมุนวนโดยรอบเกิดเป็นส่วนโค้งนูนและโค้งเว้าขนาดต่างๆ กัน

Inner surface ด้านในสีเทา 7.5YR 5/3 brown ขัดผิวที่ผิวพบเส้นรอบวงเรียงซ้อนกันการตกแต่งผิวด้านในใช้แป้นหมุน

Cross-section surface 7.5YR5/1 gray

ความหนาของหน้าตัด 6.98-9.37 มิลลิเมตร พบจุดปะสีดำ ขนาด 0.05-0.1 มิลลิเมตรราว 1-2 เปอร์เซ็นต์ และมีแร่สีขาวขุ่นขนาดทรายแป้ง 0.05-0.1 มิลลิเมตร กระจายอยู่ทั่วไปราว 1-2 เปอร์เซ็นต์

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 3.4 แหล่ง Kok Cheng Meng Klin

Stoneware (Cream ware) / body Surface ภาชนะเนื้อแกร่งเคลือบใส สีผิว 2.5Y 7/4 Pale yellow เคลือบแก้วใสลาน หนาราว 0.1-0.2 มิลลิเมตร

Inner surface ด้านในสี 2.5Y 7/4 Pale yellow ผนังด้านในเป็นลอนคลื่น เป็นการขึ้นรูปด้วย วิธีขดดิน (coiling)

Cross-section surface 2.5Y 9/1 white และ 2.5Y7/1 light gray

ความหนาของหน้าตัด 4.36-5.70 มิลลิเมตร มีจุดปะสีดำขนาด 0.05-0.1 มิลลิเมตร ประมาณ 1 เปอร์เซ็นต์ เนื้อดินหดตัวมีรูกลมขนาดเล็ก

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะ น้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 4.1 แหล่ง Kok Yeay Deng

Stoneware / rim

Surface ภาชนะเนื้อแกร่งผิวเรียบ สี 7.5YR 8/4 Pink ที่ขอบปากและคอขัดแต่งผิวเป็นเส้นรอบวงเรียงซ้อนกัน โดยใช้แป้นหมุนขัดแต่งผิว

Inner surface ด้านในสี 7.5YR 8/4 Pink

ขัดผิวที่ผิวพบเส้นรอบวงเรียงซ้อนกันการตกแต่งผิวด้านในใช้แป้นหมุน

Cross-section surface สี 7.5YR 8/4 Pink

ความหนาของหน้าตัด 6.81-11.98 มิลลิเมตร พบจุดปะสีน้ำตาล ขนาด 0.05-0.2 มิลลิเมตร ราว 5-7 เปอร์เซ็นต์ พบช่องว่างในเนื้อดินเป็นแนวยาว

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 4.2 แหล่ง Kok Yeay Deng

Stoneware / body

Surface ภาชนะเนื้อแกร่งเคลือบ สี 10YR 3/1 Very dark gray
เคลือบแก้วทึบหนาราว 0.5 มิลลิเมตรผิวตกแต่งด้วยลายขีดเป็นเส้นขนาน (เส้นที่ขีดบาง)
Inner surface ด้านในไม่เคลือบสี 10YR 5/1 gray

ผนังที่ผิวลักษณะเป็นลอนคลื่นการปั้นโดยวิธีขคคินและพบเส้นรอบวงเรียงซ้อนกัน ตกแต่งผิวค้านในโดยใช้แป้นหมุน

Cross-section surface 10R5/1-6/1Reddish gray

ความหนาของหน้าตัด 8.20-8.54 มิลลิเมตร มีแร่สีขาวขนาดทรายแป้ง 0.05-0.1 มิลลิเมตร กระจายอยู่ทั่วไปราว 2-5 เปอร์เซ็นต์

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 4.3 แหล่ง Kok Yeay Deng

Stoneware / body
Surface ภาชนะเนื้อแกร่งเคลือบ สี 10YR 2.5/1 reddish black
เคลือบแก้วที่บหนาราว 0.5 มิลลิเมตร ผิวตกแต่งด้วยลายขีดเป็นเส้นขนาน (เส้นที่ขีดบาง)
Inner surface ด้านในไม่เคลือบสี 10YR 5/3-6/4 weak red – peal red
ผนังที่ผิวพบเส้นรอบวงเรียงซ้อนกัน ตกแต่งผิวด้านในโดยใช้แป้นหมุน
Cross-section surface 7.5YR6/4 Pale red และ 10YR5/1Weak red
ความหนาของหน้าตัด 11.17-15.49 มิลลิเมตร
เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูงเนื้อดินมีอินทรียวัตถุปนอยู่
ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 4.4 แหล่ง Kok Yeay Deng

Stoneware / shoulder

Surface ภาชนะเนื้อแกร่งเคลือบ สี 10YR 7/6 Yellow และ 10YR2/1 Black เคลือบแก้วทึบหนาราว 0.5 มิลลิเมตร ผิวตกแต่งด้วยลายขีดเป็นเส้นขนาน Inner surface ด้านในไม่เคลือบสี 10YR 8/2 Very peal brown ผนังด้านในเป็นลอนคลื่น เป็นการขึ้นรูปด้วยวิธีขคดิน (coiling)

Cross-section surface 10YR7/1Light gray ความหนาของหน้าตัด 11.57-14.59 มิลลิเมตร

พบจุดปะสีน้ำตาลปนคำ ขนาด 0.05-0.1 มิลลิเมตรราว 1 เปอร์เซนต์ และมีแร่สีขาวขุ่น ขนาดทรายถึงแป้ง 0.05-5.10 มิลลิเมตร กระจายอยู่ทั่วไปราว 2-3 เปอร์เซ็นต์

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 4.5 แหล่ง Kok Yeay Deng

Stoneware / body

Surface ภาชนะเนื้อแกร่งเคลือบ สี 10YR 5/3 brown และสี 10YR2/1 black เคลือบแก้วที่บหนาราว 0.8 มิลลิเมตร เคลือบแก้วสีดำไหลลงมาทั้งแนวคิ่งและแนวนอน Inner surface ด้านในเคลือบด้านสี 5YR 7/3 pink

ผนังที่ผิวลักษณะเป็นลอนคลื่นการปั้นโดยวิธีขคคินและพบเส้นรอบวงเรียงซ้อนกัน ตกแต่งผิวค้านในโดยใช้แป้นหมุน

Cross-section surface 10YR7/1Light gray

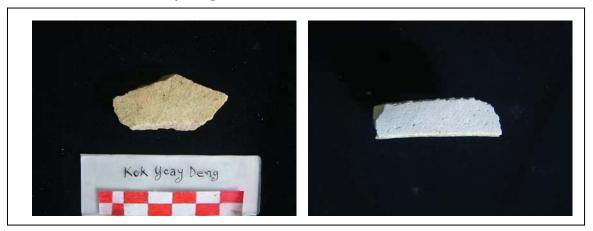
ความหนาของหน้าตัด 5.88-6.93 มิลลิเมตร มีจุดปะสีน้ำตาลปนดำขนาด 0.05-0.1 มิลลิเมตร ประมาณ 2-3 เปอร์เซ็นต์ และมีแร่สีขาวขุ่นขนาดทรายถึงแป้ง 0.05-0.1 มิลลิเมตร กระจายอยู่ทั่วไปราว 1 เปอร์เซ็นต์เนื้อดินหดตัวมีรูกลมขนาดเล็ก

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูงเนื้อคินมีอินทรียวัตถุปนอยู่ ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 4.6 แหล่ง Kok Yeay Deng

Stoneware / body

Surface ภาชนะเนื้อแกร่งเคลือบลาน สีผิว 5GY 8/1 Light Greenish gray เคลือบหนาราว 0.2-0.5 มิลลิเมตร


Inner surface ด้านในสีผิว 5GY 8/1 Light Greenish gray เคลือบหนาเท่ากัน

Cross-section surface 10Y8/1 Light Greenish gray

ความหนาของหน้าตัด 6.00-6.12 มิลลิเมตร มีจุดปะสีเทาคำขนาด 0.5-1 มิลลิเมตร 1 เปอร์เซ็นต์ และมีแร่สีขาวขุ่นขนาดทรายแป้ง 0.05-0.2 มิลลิเมตร กระจายอยู่ทั่วไปราว 1-2 เปอร์เซ็นต์

ผนังด้านในเป็นลอนคลื่น เป็นการขึ้นรูปด้วยวิธีขดดิน (coiling) เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 4.7 แหล่ง Kok Yeay Deng

Stoneware / body

Surface ภาชนะเนื้อแกร่งเคลือบลาน สีผิว 10Y 8/1 Light Greenish gray เคลือบหนาราว 0.2-0.5 มิลลิเมตร

Inner surface ด้านในสีผิว 10Y 8/1 Light Greenish gray เคลื่อบหนาเท่ากัน

Cross-section surface 10Y8/1 Light Greenish gray

ความหนาของหน้าตัด 7.8-6.9 มิลลิเมตร มีจุดปะสีเทาคำขนาด 0.2-0.3 มิลลิเมตร 1 เปอร์เซ็นต์และมีแร่สีขาวขุ่นขนาดทรายแป้ง 0.05-0.2 มิลลิเมตร กระจายอยู่ทั่วไปราว 1-2 เปอร์เซ็นต์

ผนังที่ผิวพบเส้นรอบวงเรียงซ้อนกัน ตกแต่งผิวค้านในโคยใช้แป้นหมุน เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 5.1 แหล่ง Kok Treas Klin

Stoneware / shoulder

Surface ภาชนะเนื้อแกร่งเคลือบด้านผิวสี 2.5Y 3/1Very dark gray ผนังที่ผิวพบเส้นนูน ตกแต่งรอบวงเรียงซ้อนกันผนัง เป็นลอนคลื่น เป็นการขึ้นรูปด้วยวิธีขดดิน

Inner surface สี 2.5Y 3/1Very dark gray ผนังที่ผิวลักษณะเป็นลอนคลื่นการปั้น โดยวิธีขดดิน

Cross-section surface N 8/1white

ความหนาของหน้าตัด 9.23-11.92 มิลลิเมตร มีกลุ่มแร่สีขาวขุ่นขนาคทรายแป้ง 0.1-1.95 มิลลิเมตร ประมาณ 2-3 เปอร์เซ็นต์ และมีจุดปะสีดำขนาด 0.02-0.05 มิลลิเมตร ประมาณ 1 เปอร์เซ็นต์พบช่องว่างในเนื้อดินรูปร่างกลมและยาว

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 5.2 แหล่ง Kok Treas Klin

Stoneware / body

Surface ภาชนะเนื้อแกร่งเคลือบลาน สีผิว 10Y 8/1 Light Greenish gray เคลือบหนาราว 0.2-0.5 มิลลิเมตร

Inner surface ด้านในสีผิว 10Y 8/1 Light Greenish gray เคลือบหนาเท่ากัน

Cross-section surface 10Y8/1 Light Greenish gray

ความหนาของหน้าตัด 7.8-6.9 มิลลิเมตร มีจุดปะสีเทาคำขนาด 0.05 มิลลิเมตร 1 เปอร์เซ็นต์และมีแร่สีขาวขุ่นขนาดทรายแป้ง 0.05-0.1 มิลลิเมตร กระจายอยู่ทั่วไปราว 1-2 เปอร์เซ็นต์

ผนังที่ผิวลักษณะเป็นลอนคลื่นการปั้น โดยวิธีขดดิน เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 6.1 แหล่ง Kok Kjeay Kiln

Stoneware / rim

Surface ภาชนะเนื้อแกร่งผิวเรียบ สี 7.5YR 8/3 Pink

ที่ขอบปากตกแต่งด้วยการกดเป็นเส้นถึกเกิดลอนหลายลอน และคอขัดแต่งผิวเป็นเส้นรอ บวงเรียงซ้อนกัน โดยใช้แป้นหมุนขัดแต่งผิวไหล่กดเป็นเส้นลึกและตื้นยกเป็นสัน

Inner surface ด้านในสี 7.5YR 8/4 Pink

ขัดผิวที่ผิวพบเส้นรอบวงเรียงซ้อนกันการตกแต่งผิวค้านในใช้แป้นหมุน

Cross-section surface สี 7.5YR 8/4 Pink และ 7.5YR7/1 light gray

ความหนาของหน้าตัด 6.85-15.78 มิลลิเมตร พบจุคปะสีดำ ขนาด 0.05-0.4 มิลลิเมตร ราว 3-5 เปอร์เซ็นต์ พบช่องว่างในเนื้อดินเป็นแนวยาว

เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูงมีแถบสีเทาอยู่ที่แกนกลางเนื้อคิน มีอินทรียวัตถุ

ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตัวอย่างที่ 6.2 แหล่ง Kok Kjeay Kiln

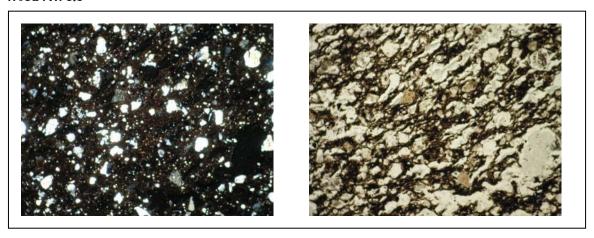
Stoneware / body ฝาตลับ

Surface ภาชนะเนื้อแกร่งเคลือบลาน สีผิว 10Y 8/1 Light Greenish gray เคลือบหนาราว 0.2-0.5 มิลลิเมตร

Inner surface ค้านในสีผิว 10Y 8/1 Light Greenish gray เคลือบหนาเท่ากัน

Cross-section surface 10Y8/1 Light Greenish gray

ความหนาของหน้าตัด 6.70-8.32 มิลลิเมตร มีจุดปะสีเทาคำขนาด 0.05 มิลลิเมตร 1-2 เปอร์เซ็นต์ และมีแร่สีขาวขุ่นขนาดทรายแป้ง 0.05-0.1 มิลลิเมตร กระจายอยู่ทั่วไปราว 1-2 เปอร์เซ็นต์


ผนังที่ผิวลักษณะเป็นลอนคลื่นการปั้นโดยวิธีขดดิน เทคนิคการเผาในเตาเผา ในสภาวะ Oxidized อุณหภูมิสูง ความแข็งของเนื้อภาชนะน้อยกว่าหรือเท่ากับ 5

ตารางที่ 3-10 แสดงตารางสรุปลักษณะทางกายภาพของตัวอย่าง

Sample	Thickness	COLOUR			TEXTURE		
		Outter	Inner		very		
No.	mm.	surface	surface	Core	fine	fine	medium
1.1	7.17	2.5Y8/1	2.5Y6/1	2.5Y6/6	*		*
1.2	14.71	10YR2/1	7.5YR6/1	7.5YR5/1	*	$\sqrt{}$	*
1.3	3.63-3.78	10Y9/1	10Y9/1	10Y9/1		*	*
			10YR7/2-				
2.1	4.46-5.81	10YR2/1	7/3	10YR7/1		*	*
	9.92-						
2.2	12.61	5GY9/1	5GY9/1	10YR8/1-7/1		*	*
				7.5YR7/3-			
3.1	5.91	7.5YR6/3	7.5YR6/3	10YR4/1		*	*
3.2	7.22-8.40	10YR5/1	10YR5/1	10YR6/1		*	*
3.3	6.98-9.37	5GY5/1	7.5YR5/3	7.5YR5/1		*	*
3.4	4.36-5.70	2.5Y7/2	2.5Y7/4	2.5Y9/1		*	*
4.1	6.81	7.5YR8/4	7.5YR8/4	7.5YR8/4	V	*	*
4.2	8.20-8.54	10YR3/1	10YR5/1	10R5/1-6/1		*	*
	11.17-		10YR5/3-	7.5YR6/4-			
4.3	15.49	10YR2.5/1	6/4	10YR5/1		*	*
	11.57-		10YR5/3-				
4.4	14.59	10YR7/1-2/1	6/4	10YR7/1		*	*
4.5	5.88-6.93	10YR5/3-2/1	5YR7/3	10YR7/1		*	*
4.6	6.00-6.12	5GY8/1	5GY8/1	10Y8/1	*	$\sqrt{}$	*
4.7	6.90-7.80	10Y 8/1	10Y8/1	10Y8/1	*	$\sqrt{}$	*
	9.23-						
5.1	11.92	2.5Y3/1	2.5YR3/1	N8/1	*	$\sqrt{}$	*
5.2	6.90-7.80	10Y 8/1	10Y8/1	10Y8/1		*	*
6.1	6.85	7.5YR8/3	7.5YR8/4	7.5YR8/4-7/1	V	*	*
6.2	6.70-8.32	10Y 8/1	10Y8/1	10Y8/1		*	*

ผลการวิเคราะห์

ตัวอย่างที่ 1.1

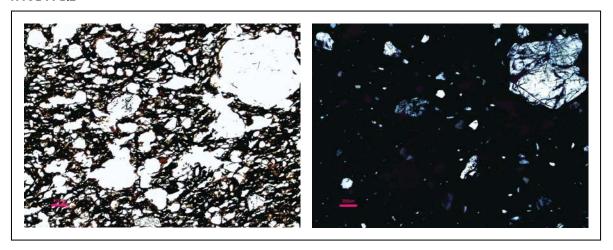
<u>คำบรรยาย</u>

Basic mineral components

C/ f limit at $10 \mu m.$, c/f ratio 25:75

Coarse fraction: The mineral grains are mainly single quartz grains, silt size to medium sand size almost angular and few grains are sub round. Chert fragment are frequent fine sand to medium sand size, few pedorelicts (probably artifacts) sized 500 μ m, brown to dark brown in color, rare zircon; poorly sorted the iron oxide nodules, various size, present about 5-7 %.

Fine fraction: Grayish brown, clay to fine silt size material, dotted appear under transmitted light.


Basic organic components: none present.

Ground mass: the c/f related distribution pattern is opened to close porphyric,

The b- fabric of the micro mass is undifferentiated.

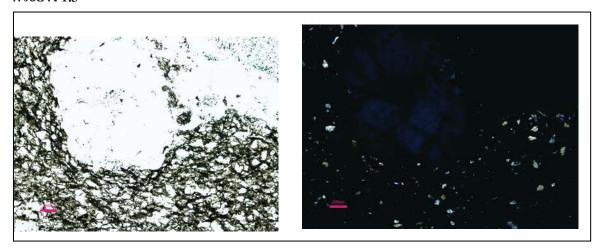
Void patterns: Vughs and channel are dominant and generally show parallel orientation. Estimated total void spaces 40 % of the area of thin section.

ตัวอย่าง 1.2

Basic mineral components

C/ f limit at $10 \mu m.$, c/f ratio 30:70

Coarse fraction: The mineral grains are dominant in single quartz grains, sized up to 700 μ m very fine sand to coarse sand size and usually are angular, few pedorelicts sized up to 1500 μ m, the iron oxide nodules generally are manganiferous nodules and present about 5- 7 %.


Fine fraction: Dark brown, clay size material, under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is open to close porphyric, The b-fabric of the micro mass is undifferentiated.

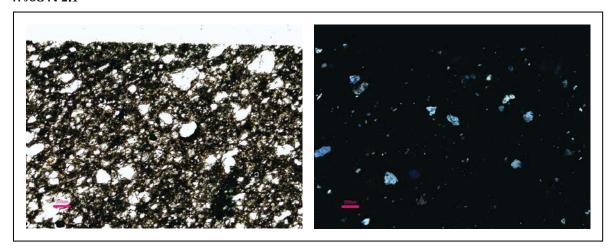
Void patterns: Vughs and channel are dominant and generally show parallel orientation. The voids spaces are slightly decrease to cover about 30% of the area of the thin section.

ตัวอย่าง 1.3

Basic mineral components

C/f limit at 10 µm., c/f ratio 90:10

Coarse fraction: The mineral grains mostly are single quartz grains, generally are fine sand size to silt size and usually angular, a few chert fragments which are in fine sand size, few magnetite and very few leucoxene rare broken quartz sized $2000 \, \mu m$.


Fine fraction: Pale grayish brown, clay to fine silt size, dotted appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric, The b- fabric of the micro mass is weakly stipple speckled to undifferentiated.

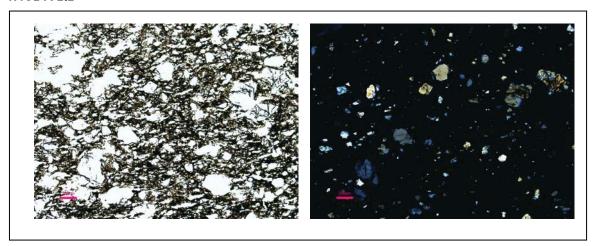
Void patterns: Nearly massive, few vughs and not interconnected. Estimated total about 5-7% of the area of the thin section.

ตัวอย่าง 2.1

Basic mineral components

C/f limit at 10 µm, c/f ratio 25:75

Coarse fraction: The mineral grains are almost in single quartz grains, silt size to medium sand size and usually are angular to sub round. Chert fragment are few, fine sand to medium sand size, rare polycrystalline quartz and zircon; poorly sorted. The iron oxide nodules, various size, present about 10 %.


Fine fraction: Pale grayish brown. Clay to fine silt size material, dotted appear under transmitted light.

Basic organic components: none present.

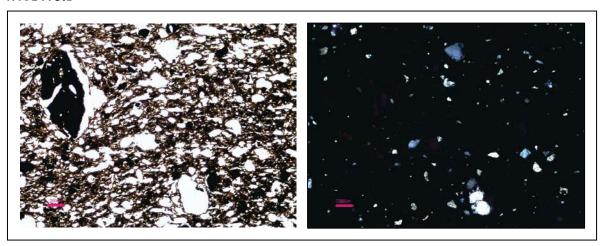
Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micro mass is weakly stipple speckled to undifferentiated.

Void patterns: A few vughs and not interconnected. Estimated total about 5-7% of the area of the thin section.

ตัวอย่าง 2.2

C/f limit at 10 µm., c/f ratio 40:60

Coarse fraction: The mineral grains almost are in single quartz grains, silt size to medium sand size and usually are angular to sub rounded, chert fragment are few, fine sand to medium sand size, rare polycrystalline quartz and zircon; poorly sorted. The iron oxide nodules, various sizes, present about 10 %.


Fine fraction: Pale grayish brown, clay to fine silt size material, dotted appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micro mass is weakly stipple speckled to undifferentiated.

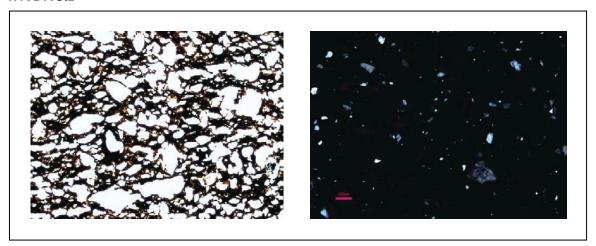
Void patterns: Estimated total void space about 10-15 % of the area of the thin section, generally are short planar voids and vughs.

ตัวอย่าง 3.1

Basic mineral components

C/f limit at 10 µm., c/f ratio 20:80

Coarse fraction: The mineral grains dominant in single quartz grains, silt to medium sand size, angular to sub rounded. Common iron oxide nodules, sized 50-250 μ m. Chert fragment are frequent few polycrystalline quartz and metamorphic quartz rare biotite; and iron oxide impregnative nodules sized 2500 μ m with sharp boundaries.


Fine fraction: Brown, clay to fine silt size material, cloudy appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is open to close porphyric, The b-fabric of the micro mass is undifferentiated.

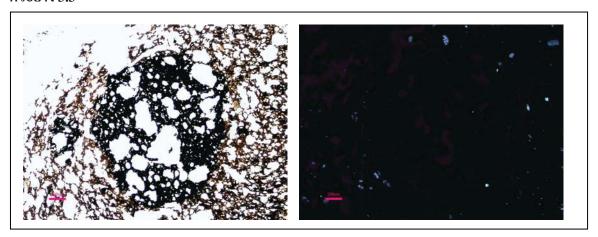
Void patterns: Generally are channel (100-200 μm width) and short planar voids usually show parallel orientation. Estimated total void spaces 15% of the area of thin section.

ตัวอย่าง 3.2

Basic mineral components

C/f limit at 10 µm., c/f ratio 15:85

Coarse fraction: The mineral grains mostly are single quartz grains, generally are silt size to medium sand size and angular. The iron oxide nodules, sized 100- 200 μ m are frequents (10%), chert fragment are frequent poorly sorted.


Fine fraction: Dark brown, clay sized material, cloudy appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is open porphyric, The b- fabric of the micro mass is undifferentiated.

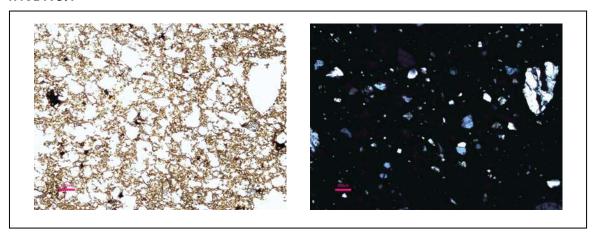
Void patterns: Vughs and channels are dominant estimated total void space 20 %.

ตัวอย่าง 3.3

Basic mineral components

C/f limit at 10 µm., c/f ratio 15:85

Coarse fraction: The mineral grains are mostly single quartz grains, generally are silt size to medium sand size and angular. The iron oxide nodules, sized 1500 μ m are frequents (10%), chert fragment are frequent poorly sorted.


Fine fraction: Dark brown, clay sized material, cloudy appear under transmitted light.

Basic organic components: none present.

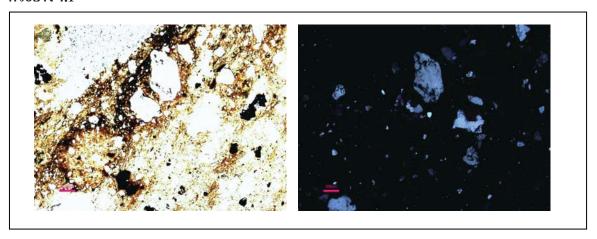
Ground mass: The c/f related distribution pattern is open porphyric, The b- fabric of the micro mass is undifferentiated.

Void patterns: Vughs and channels are dominant estimated total void space 20%.

ตัวอย่าง 3.4

C/ f limit at 10 µm., c/f ratio 25:75

Coarse fraction: The mineral grains almost are angular in single quartz grains, silt size to very coarse sand size, few polycrystalline quartz, chert fragment very few and rare zircon; poorly sorted. The iron oxide nodules could not be observed.


Fine fraction: Pale grayish brown. Clay to fine silt size material, limpid appear under transmitted light.

Basic organic components: none present.

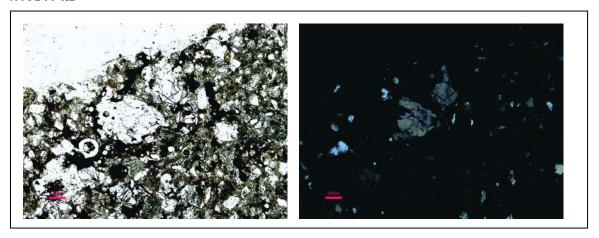
Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micro mass is undifferentiated .

Void patterns: The material is nearly massive, very few vughs. Estimated total void space is about 2-5% of the area of the thin section.

ตัวอย่าง 4.1

C/ f limit at 10 μ m., c/f ratio 25:75

Coarse fraction: The mineral grains are dominant in single quartz grains, silt size to medium sand size and usually are angular to sub rounded frequent polycrystalline quartz which are in medium sand size, highly weathered biotite, iron oxide nodules sized 50-500 μ m, very few granite rock fragments sized 500 μ m; poorly sorted.


Fine fraction: Pale brown, clay to fine silt size material, speckled appear under transmitted light.

Basic organic components: none present.

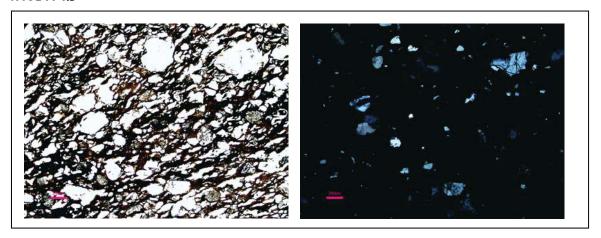
Ground mass: The c/f related distribution pattern is open to close porphyric, the b-fabric of the micromass is stipple speckled grading to parallel striated.

Void patterns: A few vughs, estimated total void space about 2-5% of the area of the thin section.

ตัวอย่าง 4.2

C/f limit at 10 µm., c/f ratio 35:65

Coarse fraction: The mineral grains are dominant in single quartz grains, silt size to medium sand size and usually are angular to sub angular, few metamorphic quartz, polycrystalline quartz and zircon. The broken quartz is very few and is in very coarse sand size. The manganese oxide nodules, various size and shape, present about 15-20%.


Fine fraction: Pale grayish brown, grading to dark brown and locally grading to olive green and show fibrous aggregates of chlorite, sometime associated with magnetite. Clay to fine silt size material, limpid appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micromass is undifferentiated, locally show stipple speckled b- fabric.

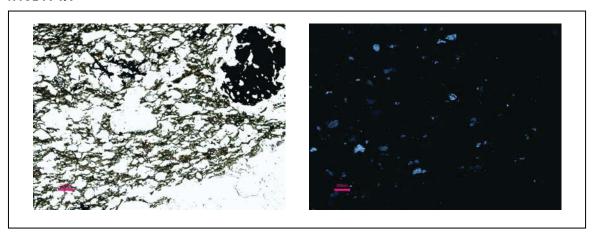
Void patterns: voids generally are vesicles (100-200 μ m in diameter) and cover about 5% of the area of the thin section.

ตัวอย่าง 4.3

Basic mineral components

C/ f limit at 10 µm., c/f ratio 20:80

Coarse fraction: The mineral grains generally are angular single quartz grains, silt size to medium sand size, rare polycrystalline quartz, which are quartz sand size. The iron oxide typic nodules, and manganese oxide nodules, size $50-200 \mu m$, present about 2-5%, rare zircon.


Fine fraction: Brown .grading to dark brown, clay sized material, cloudy appear under transmitted light.

Basic organic components: none present.

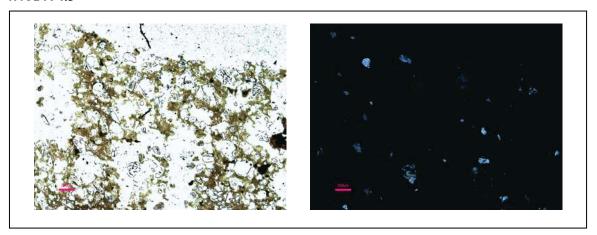
Ground mass: The c/f related distribution pattern is open to close porphyric, the b-fabric of the micromass is generally show parallel striated b- fabric.

Void patterns: voids generally are short planer voids and usually have orientation, few vughs. Estimated void space in total is about 30 % of the area of the thin section.

ตัวอย่าง 4.4

C/f limit at 10 μ m., c/f ratio 25:75

Coarse fraction: The mineral grains generally are angular single quartz grains, silt size to medium sand size, few chert frequents and metamorphic quartz. The broken quartz, coarse to very coarse sand size, and very few, rare tourmaline. The iron oxide nodule, sized 50-1000 μ m, present about 5-7%.


Fine fraction: Pale grayish brown, clay to fine silt size material, dotted appear under transmitted light.

Basic organic components: none present.

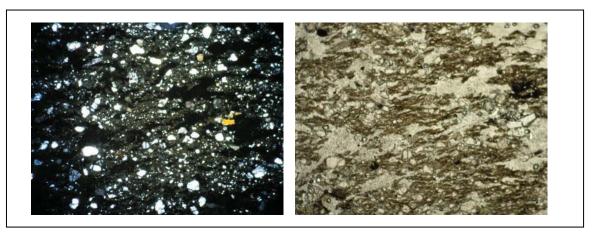
Ground mass: The c/f related distribution pattern is open to close porphyric, the b-fabric of the micro mass is parallel striated b- fabric.

Void patterns: voids generally are vesicles (100-200 μ m in diameter) and cover about 5% of the area of the thin section Iron oxide mottle 1-2%, Quartz very fine and fine-medium, Feldspar, Chert.

ตัวอย่าง 4.5

C/ f limit at 10 µm., c/f ratio 25:75

Coarse fraction: The mineral grains are dominant in single quartz grains, silt size to medium sand size and usually are angular to sub angular, few metamorphic quartz, polycrystalline quartz and zircon. The broken quartz are very few and are in very coarse sand. The manganese oxide nodules, various size and shape, present about 15% and mainly are vughs, few vesicles.


Fine fraction: Pale grayish brown, grading to dark brown and locally grading to olive green and show fibrous aggregates of chlorite, sometime associated with magnetite. Clay to fine silt size material, limpid appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close to open porphyric, the b-fabric of the micro mass is undifferentiated, locally show stipple speckled b- fabric.

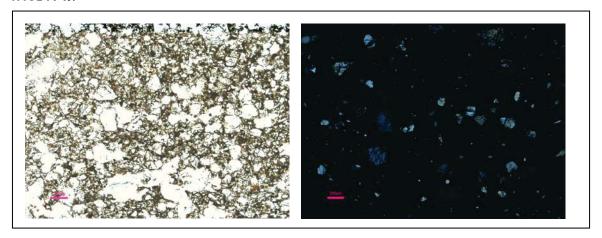
Void patterns: voids mainly are vughs, few vesicles and cover about 15% of the area of the thin section.

ตัวอย่าง 4.6

Basic mineral components

C/f limit at 10 μ m., c/f ratio 50:50

Coarse fraction: The grains mostly are single quartz grains, silt size to medium sand size, poorly sorted.


Fine fraction: Grayish brown, clay to fine silt size material, cloudy appear under transmitted light.

Basic organic components: none present.

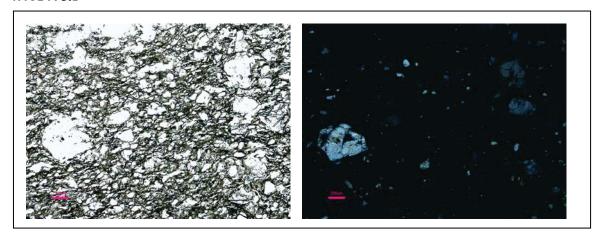
Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micro mass is undifferentiated.

Void patterns: generally are short planar voids which show parallel orientation.

ตัวอย่าง 4.7

C/ f limit at 10 μ m., c/f ratio 80:20

Coarse fraction: The grains almost are angular quartz grains, silt size to medium sand size, poorly sorted; few broken quartz which are in coarse sand size, very few chert fragments and rare zircon, and metamorphic quartz.


Fine fraction: Pale grayish brown, fine silt size material, limpid appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micro mass is stipple speckled b- fabric.

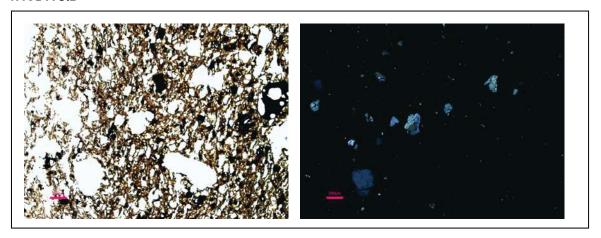
Void patterns: Generally are vughs, not interconnected, and occupy about 10% of the area of the thin section.

ตัวอย่าง 5.1

Basic mineral components

C/ f limit at 10 µm., c/f ratio 60:40

Coarse fraction: The grains mainly are angular quartz grains, silt size to medium sand size, few broken quartz which are in coarse sand size, poorly sorted; very few metamorphic quartz and chert frequents. The manganeses nodules, sized $50-300 \mu m$, present about 2%.


Fine fraction: Grayish brown, clay to fine silt size material, limpid appear under transmitted light.

Basic organic component: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micro mass is weakly stipple speckled b- fabric.

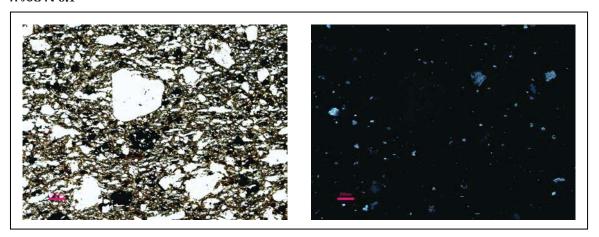
Void patterns: Generally are vughs and vesicles (diameter up to 300 μ m) cover about 10% of the area of the thin section.

ตัวอย่าง 5.2

Basic mineral components

C/ f limit at 10 µm., c/f ratio 60:40

Coarse fraction: The grains mainly are angular quartz grains, silt size to medium sand size, few broken quartz which are in coarse sand size, poorly sorted; very few metamorphic quartz and chert frequents. The manganeses nodules, sized $50-300 \mu m$, present about 2%.


Fine fraction: Grayish brown, clay to fine silt size material, limpid appear under transmitted light.

Basic organic component: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micro mass is weakly stipple speckled b- fabric.

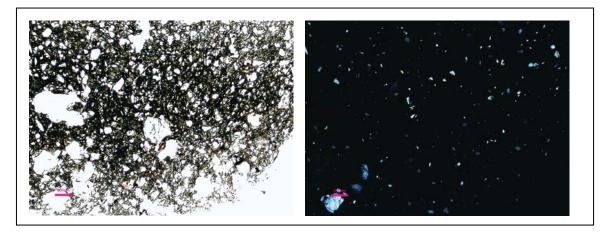
Void patterns: Generally are vughs and vesicles (diameter up to $300~\mu m$) cover about 10% of the area of the thin section.

ตัวอย่าง 6.1

Basic mineral components

C/ f limit at 10 μ m., c/f ratio 30:70

Coarse fraction: The mineral grains are dominant in angular quartz grains, silt size to medium sand size, few broken quartz grains are in coarse sand size, and chert frequents (sized \approx 700 μ m); poorly sorted the manganiferous nodules, various shape and size, present about 25%.


Fine fraction: Brown, clay to fine silt size material, speckled appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micro mass is undifferentiated, locally show stipple speckled b- fabric.

Void patterns: Generally are short planar voids, usually have parallel orientation, few vuqhs; Estimated total void space 20%.

ตัวอย่าง 6.2

Basic mineral components

C/ f limit at 10 µm., c/f ratio 60:40

Coarse fraction: The grains mainly are angular quartz grains, silt size to medium sand size, few broken quartz which are in coarse sand size, poorly sorted; very few metamorphic quartz and chert frequents. The manganeses nodules, sized $50-300 \mu m$, present about 2%.

Fine fraction: Grayish brown, clay to fine silt size material, limpid appear under transmitted light.

Basic organic component: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b- fabric of the micro mass is weakly stipple speckled b- fabric.

Void patterns: Generally are vughs and vesicles (diameter up to $300~\mu m$) cover about 10% of the area of the thin section.

การแปลความโบราณวัตถูเศษภาชนะดินเผา

ผลการวิเคราะห์ภาชนะดินเผาทางฟิสิกส์ด้วยวิธีศิลาวรรณา จากการทำสไลด์แผ่นบาง (Thin Section) วิเคราะห์ตรวจสอบตัวอย่างเนื้อภาชนะดินเผาภายใต้กล้องจุลทรรศน์ชนิดโพลาไรซ์ (Microscopic study) เพื่อตรวจสอบคุณสมบัติทางแสงของแร่เนื้อหยาบ และแร่เนื้อละเอียดจาก ตัวอย่างทั้งหมด 20 ตัวอย่าง สามารถนำมาวิเคราะห์และสรุปแยกดังนี้

ผลวิเคราะห์ตามอัตราส่วนผสมระหว่างแร่เนื้อหยาบและแร่เนื้อละเอียด

องค์ประกอบของแร่เนื้อหยาบของเนื้อภาชนะคินเผาส่วนใหญ่เป็นแร่ควอตซ์เม็คเคี่ยวๆ (single quartz) ที่พบกระจายทั่วไปในเนื้อภาชนะ ขนาคของอนุภาคที่มีความหลากหลาย ตั้งแต่ ทรายแป้ง (silt size) ทรายขนาคปานกลาง (medium sand size) ทรายเนื้อละเอียคมาก (very fine sand size) ไปจนถึงทรายหยาบมาก (very coarse sand size) เช่น ตัวอย่างหมายเลข 3.4 แสคงถึงการ คัดขนาคยังไม่ดีนัก

ส่วนรูปร่างของแร่พบว่า มีมุมแหลมคมไปจนถึงกลมมน ส่วนแร่อื่นๆ ที่พบ กลุ่มที่เป็น ภาชนะที่เป็นส่วนลำตัวพบว่ามี เศษแร่ไมกา (แร่ไบโอไทค์ มัสโคไวต์) แร่ทั่วมารีน เป็นเศษแร่ที่ ปะปนอยู่ในเนื้อคินเพียงเล็กน้อยเท่านั้น ซึ่งจากลักษณะของแร่เนื้อหยาบนี้อาจสันนิษฐานได้ว่าวัตถุ ต้นกำเนิด น่าจะเป็นคินที่มาจากคินตะกอนลำน้ำที่ถูกน้ำพัดพามาทับถม

วิเคราะห์ตามองค์ประกอบของแร่เนื้อหยาบ

แร่เนื้อหยาบที่พบว่าคล้ายคลึงกันทั้ง 20 ตัวอย่าง คือ แร่ควอตซ์ (Quartz) ที่พบกระจายอยู่ ทั่วไปในเนื้อภาชนะดินเผา โดยมีลักษณะรูปร่างบริเวณขอบของแร่คล้ายกัน คือ มีมุมแหลมคม จนถึงขนาดค่อนข้างกลม ส่วนในด้านอนุภาคของแร่นั้นมีตั้งแต่ ขนาดทรายแป้งไปจนถึงเม็ดทราย ขนาดกลางและพบเม็ดทรายหยาบบ้างจากตัวอย่างหมายเลข 3.4 จากแหล่ง Kok cheng meng klin แสดงถึงระดับการคัดขนาดปานกลาง ซึ่งผลจากการวิเคราะห์ อาจจะสันนิษฐานได้ว่าช่างปั้นน่าจะมี ความรู้ในการคัดเลือกดินที่จะนำมาผลิตภาชนะเพราะเนื้อดินมีขนาดใกล้เคียงกัน

การผลิตภาชนะดินเผาในปัจจุบัน พบว่าการใช้ ควอตซ์ หรือ หินเขี้ยวหนุมาน เป็นวัตถุดิบ ที่ทำหน้าที่เหมือนโครงกระดูกของภาชนะดินเผา ส่วนเนื้อดินทำหน้าที่เสมือนเป็นเนื้อและส่วน อื่นๆ ของภาชนะดินเผา ทั้งนี้เพราะควอตซ์ ช่วยทำให้ภาชนะแข็งแรงไม่โค้งงอและยังช่วยการ ขยายตัวก่อนและหลังเผาของภาชนะลดน้อยลง ส่วนเสษแร่อื่นๆ ที่พบในเนื้อภาชนะดินเผานั้น เป็น องค์ประกอบส่วนน้อยมากในแร่เนื้อหยาบซึ่งพบเพียงแร่เซอร์คอนเท่านั้น

วิเคราะห์ตามองค์ประกอบของแร่เนื้อละเอียด

องค์ประกอบของแร่เนื้อละเอียด ภายในเนื้อภาชนะดินเผามีลักษณะขุ่นมัวที่เป็นเช่นนี้ อาจจะมีสาเหตุมาจากอนุภาคของอินทรียวัตถุตามธรรมชาติที่มีการสถายตัวโดยธรรมชาติ จาก จุลินทรีย์ ความชื้น ความร้อน จนเน่าเปื่อยผุพังและสถายตัวจนมีอนุภาคขนาดขนาดเล็กและยัง สามารถมองเห็นได้โดยมีลักษณะเป็นสารแขวนลอยกระจายปะปนอยู่ในเนื้อดินตามธรรมชาติ ส่งผลให้เกิดลักษณะขุ่นมัว

วิเคราะห์ลักษณะช่องว่างในดิน

จากการศึกษาตัวอย่างเสษภาชนะดินเผาทั้ง 20 ตัวอย่าง พบว่าปริมาณช่องว่างในดินของ ตัวอย่างทั้งหมดกล้ายกลึงกัน คือมีช่องว่างในดินประมาณ 15-20% จากเปอร์เซ็นต์ช่องว่างนี้น่าจะ แสดงถึงกรรมวิธีในการผลิตภาชนะและส่วนผสมจัดอยู่ในเกณฑ์ก่อนข้างดี มีการควบคุมไม่ให้เกิด การแตกรานหรือรั่วซึมได้ แม้ว่าช่างปั้นไม่ได้ใส่วัสดุเพื่อลดการเกิดช่องว่างหรือการแตกรานในดิน ปั้น หรือเนื้อดินอาจจะเป็นดินที่เหมาะสมในการทำภาชนะ หรืออาจจะมาจากอุณหภูมิการเผา ภาชนะที่พอเหมาะ ไม่ทำให้เกิดการแตกราน

ส่วนรูปแบบช่องว่างในคินเหมือนกันคือ ช่องว่างแบบ channels และ ช่องว่างแบบแนวยาว หลายขนาดโดยช่องว่างนี้ขนานไปในทิศทางเดียวกัน รวมทั้งยังพบช่องว่างแบบไม่ต่อเนื่องด้วย

ข้อสังเกตประการหนึ่งในเรื่องของช่องว่างในดินนั้นพบว่าจะเกิดขึ้นใน 2 ลักษณะ คือ

- 1. เกิดโดยธรรมชาติ
- 2. เกิดจากการกระทำของมนุษย์

จากการที่เกิดช่องว่างในดินนี้ อาจจะมีสาเหตุเนื่องจากการยืดหดตัวของอนุภาคดินเหนียวที่ ได้รับความร้อนในอุณหภูมิที่แตกต่างกัน ทำให้เนื้อดินเกิดช่องว่างหรือโพรงแบบคล้ายๆ กันขึ้นมา ช่องว่างแบบ channels ที่พบนั้นน่าจะเกิดโดยธรรมชาติ แต่ช่องว่างแบบแนวยาวที่ขนานไปกับ เนื้อภาชนะและช่องว่างแบบ vesicles ที่มีลักษณะคล้ายกับลักษณะของฟองอากาศ (air bubble) ซึ่ง เมื่อได้รับความร้อนฟองอากาศเหล่านั้นจะขยายตัวและดันเป็นโพรงผนังช่องว่างออก ตามตัวอย่างที่

วิเคราะห์ตามความสัมพันธ์ระหว่างแร่เนื้อหยาบและแร่เนื้อละเอียด และลักษณะการ จัดเรียงตัวของแร่เนื้อละเอียด

จากการวิเคราะห์ส่วนผสมของทั้ง 20 ตัวอย่าง คล้ายคลึงกันคือ เป็นแบบเนื้อคอกห่างๆ ไป จนถึงเนื้อคอกชิค (close to open porphyric) ซึ่งสัมพันธ์กับสัดส่วนของแร่เนื้อหยาบและเนื้อ ละเอียคที่พบ เช่น อัตรา 20 : 80 แสคงถึงปริมาณของแร่เนื้อหยาบมีมากถึง 20% โอกาสที่จะเป็นเนื้อ ดินแบบเนื้อคอกก็มีมากตามไปด้วย ซึ่งขนาดต่างๆ กันของแร่เนื้อหยาบมีส่วนทำให้เนื้อดินเป็น แบบเนื้อคอก หรือหากมีปริมาณแร่เนื้อหยาบน้อย เช่น มีจำนวนแร่เนื้อหยาบเพียง 1% ก็จะทำให้ เนื้อดินมีลักษณะเหมือนกับเป็นดินเหนียวล้วนๆ และยังสัมพันธ์กับระดับการคัดขนาดด้วยคือ ระดับปานกลาง อีกด้วย

ลักษณะการจัดเรียงตัวของแร่เนื้อละเอียด (b-fabric of the micromass) โดยส่วนใหญ่มอง ไม่เห็นการจัดเรียงตัวของเนื้อดิน (undifferentiated) ซึ่งอาจสัมพันธ์กับปริมาณอินทรียวัตถุที่อยู่ใน เนื้อดินปั้นและไม่ถูกเผาใหม้จากอุณหภูมิการเผาภาชนะและทำให้เนื้อของภาชนะมีระดับสีเข้มอ่อน ต่างกันไป

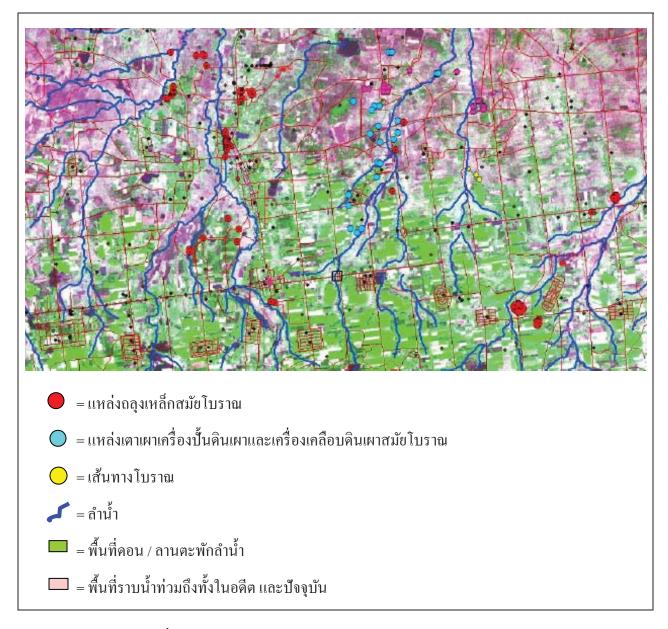
ผลการวิเคราะห์ทางเคมี Wet chemical analysis (ICP) Ceramic samples from Cambodia

Sample No.	Sio ₂	Al_2O_3	Fe ₂ O ₃	CaO	Na ₂ O	K ₂ O	MgO ₂	TiO ₂	MnO ₂
1.1	69.7	17.4	5.1	0.15	0.51	2.0	0.61	0.43	0.03
1.2	69.9	16.7	5.3	1.0	0.29	1.8	0.59	0.55	0.02
1.3	75.8	14.8	1.4	1.1	0.36	2.0	0.46	0.48	ND
2.1	70.2	15.5	3.6	0.96	0.33	2.3	0.60	0.55	ND
2.2	81.6	11.2	0.73	0.32	0.08	1.0	0.24	0.55	ND
3.1	65.2	16.2	5.7	0.11	0.16	2.8	1.1	0.45	ND
3.2	64.1	17.9	5.4	0.10	0.25	2.9	1.1	0.54	0.01
3.3	61.7	15.4	5.9	0.37	0.35	3.5	1.1	0.57	0.01
3.4	75.7	11.5	0.92	0.64	0.12	1.5	0.43	0.55	0.03
4.1	75.5	11.6	4.5	0.61	0.57	0.25	0.20	0.89	0.37
4.2	71.4	16.5	4.3	0.29	0.30	1.9	0.65	0.47	0.03
4.3	69.7	18.6	3.7	0.63	0.48	1.5	0.53	0.42	0.02
4.4	73.0	14.6	3.3	1.5	0.34	2.1	0.65	0.48	0.04

Sample No.	Sio ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	Na ₂ O	K ₂ O	MgO ₂	TiO ₂	MnO ₂
4.5	69.5	18.7	3.7	0.85	0.43	1.6	0.55	0.50	0.02
4.6	75.3	14.0	1.2	2.9	0.14	1.0	0.45	0.53	ND
4.7	80.3	9.7	0.72	1.5	0.17	1.3	0.44	0.45	ND
5.1	73.3	14.0	2.7	1.5	0.19	2.2	0.82	0.57	0.01
5.2	78.3	14.4	1.3	1.2	0.32	1.9	0.39	0.49	ND
6.1	66.2	19.4	4.3	0.06	0.15	1.7	0.66	0.40	ND
6.2	72.2	14.2	1.2	0.85	0.19	1.7	0.47	0.55	0.02
2.1	52.6	9.7	11.2	21.3	1.0	1.3	0.81	0.48	0.01
(Glaze)									

3.4 การศึกษาการกระจายตัวและเทคโนโลยีการถลุงโลหะของแหล่งผลิตโลหะตามแนว เส้นทางโบราณและปริมณฑล

การศึกษาแหล่งโลหะกรรมสมัยโบราณที่พบกระจายตัวตามแนวเส้นทางและในพื้นที่ ปริมณฑลของแนวเส้นทางโบราณจากเมืองเสียมเรียบถึงเมืองพิมาย ที่ดำเนินการในการวิจัยครั้งนี้ ได้ดำเนินการสำรวจแหล่งถลุงเหล็กสมัยโบราณรวมทั้งสิ้น 67 แหล่ง และได้ดำเนินการขุดค้นที่ แหล่งถลุงเหล็กสมัยโบราณบ้านเขาดินใต้ ตำบลบ้านกรวด อำเภอบ้านกรวด จังหวัดบุรีรัมย์ รายละเอียดของผลการดำเนินการ มีดังนี้


3.4.1 การสำรวจแหล่งถลุงเหล็กสมัยโบราณ

ผลการสำรวจได้พบว่าในเขตอำเภอบ้านกรวด จังหวัดบุรีรัมย์ มีแหล่งถลุงเหล็กสมัยโบราณ อย่างน้อย 67 แหล่ง ดังตารางต่อไปนี้

หมายเลข	ชื่อ	หมู่บ้าน	อำเภอ	จังหวัด	ประเภท	สมัย
1	นางแสวง ฮาประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
2	นายสมพงษ์ คงประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
3	นางสุวรรณี วัฒนานุกูลกิจ	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
4	นายเวิน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
5	นางบาง เพ็ญเดิมพัน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
6	นางบาง เพ็ญเดิมพัน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
7	นายจิน พรมประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
8	นายทุม พรมประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
9	นางชาม คงพลปาน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
10	นายโพรง จาบประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
11	นายโพรง จาบประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
12	นางเจียม เหือประโคน	บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
13	นางเจียม เหือประโคน	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
14	นายเพชร แฟ็นประโคน	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
15	นายคลอน นาคประโคน	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
16	นายเสมียน ยานมณี	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
17	นายแกะ เสือประโคน	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
18	นายตูม กลมยา	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
19	นายตูม กลมยา	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
20	นางปราณี ยอดเพชร	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
21	Furnace	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
22	Furnace	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
23	นางเขียน นาคประโคน	บ้านเขาดินใต้	Ban Kruad	Burirum	Iron Furnace site	ND
24	นายทุม พรมประโคน	บ้านหนองเอียน	Ban Kruad	Burirum	Iron Furnace site	ND
25	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
26	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
27	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
28	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
29	Furnace	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
30	นายสมอาจ กลมประโคน	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
31	นายสมอาจ กลมประโคน	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
32	นายสมอาจ กลมประโคน	บ้านโดกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
33	ยายเนื่อง ท่าประโคน	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
34	นายอุทัย	บ้านโดกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND
35	นายช่อบ ทิรัมย์	บ้านโคกยาง บ้านกรวด	Ban Kruad	Burirum	Iron Furnace site	ND

หมายเลข	ชื่อ	หมู่บ้าน	อำเภอ	จังหวัด	ประเภท	สมัย
36	furnance 1 gone	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
37	furnance 2 exist	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
38	furnance 3 exist	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
39	furnance 4 exist	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
40	furnance 5 exist	บ้านหนองจิก กระชาย	Ban Kruad	Burirum	Iron Furnace site	ND
41	furnance 6 gone	บ้านสายโทสองใต้	Ban Kruad	Burirum	Iron Furnace site	ND
42	furnance 7 gone	บ้านสายโทสองใต้	Ban Kruad	Burirum	Iron Furnace site	ND
43	furnance 1	สายโทสิบเหนือ สายตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
44	furnance 2	สายโทสิบเหนือ สายตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
45	furnance 3	สายโทสิบเหนือ สายตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
46	furnance 4	สายโทสิบเหนือ สายตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
47	furnance 5	สายโทสิบเหนือ สายตะภู	Ban Kruad	Burirum	Iron Furnace site	ND
48	furnance 6	สายโทสิบเหนือ สายตะกู	Ban Kruad	Burirum	Iron Furnace site	ND
49	furnance 1	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
50	furnance 2	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
51	furnance 3	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
52	furnance 4	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
53	furnance 5	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
54	furnance 6	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
55	furnance 7	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
56	furnance 1	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
57	furnance 2	สายโทแปดใต้จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
58	furnance 3	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
59	furnance 4	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
60	furnance 5	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
61	furnance 6	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
62	furnance 7	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
63	furnance 8	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
64	furnance 9	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
65	furnance 10	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
66	furnance 11	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND
67	furnance 12	สายโทแปดใต้ จันทบเพชร	Ban Kruad	Burirum	Iron Furnace site	ND

โครงการวิจัยครั้งนี้ ได้ใช้ภาพถ่ายจากดาวเทียมและข้อมูลสารสนเทศภูมิสาสตร์มาจัดทำ แผนที่แสดงการกระจายตัวของแหล่งถลุงเหล็กสมัยโบราณทั้ง 35 แหล่งซึ่งเห็นได้ว่าแหล่งถลุง เหล็กสมัยโบราณกระจายอยู่ในพื้นที่หลายหมู่บ้านของอำเภอบ้านกรวด ทั้งนี้ เห็นได้ว่า แหล่งถลุง เหล็กส่วนใหญ่กระจายตัวอยู่แยกจากแหล่งเตาเผาเครื่องปั้นดินเผาและเครื่องเคลือบดินเผาสมัยโบราณ แต่ก็มีบางแหล่งที่ได้พบว่าแหล่งเกี่ยวข้องกับอุตสาหกรรมทั้ง 2 ชนิดปรากฏอยู่ที่ทำเล เดียวกัน อย่างไรก็ตามเห็นได้ชัดเจนว่าแหล่งเกี่ยวข้องกับอุตสาหกรรมสมัยโบราณทั้ง 2 ประเภท ส่วนใหญ่ตั้งอยู่ในพื้นที่ราบลุ่มต่ำ ซึ่งจัดเป็นที่ราบน้ำท่วมถึง (Floodplain) และตั้งอยู่ใกล้แนวลำน้ำ ธรรมชาติสายต่างๆ และขนาดต่างๆ ที่มีอยู่ในพื้นที่นี้ โดยพบว่าแหล่งเหล่านี้ตั้งอยู่ห่างลำน้ำ ธรรมชาติระหว่าง 30-400 เมตร ทั้งนี้คงเป็นเพราะพื้นที่ราบลุ่มใกล้ลำน้ำเป็นทั้งแหล่งดินสำหรับใช้ ในการทำเตาถลุงเหล็ก รวมทั้งเป็นแหล่งดินสำหรับทำทั้งเตาเผาเครื่องปั้นดินเผาและตัว เครื่องปั้นดินเผา

รูปที่ 3-20 แผนที่แสดงการกระจายตัวของแหล่งถลุงเหล็ก และแหล่งเตาผลิตเครื่องปั้นคินเผาสมัยโบราณ ในเขตอำเภอบ้านกรวด

3.4.2 การขุดค้นทางโบราณคดีที่แหล่งถลุงเหล็กสมัยโบราณบ้านเขาดินใต้ อ.บ้านกรวด จ.บุรีรัมย์

บ้านเขาดินใต้เป็นหมู่บ้านหนึ่งในเขตการปกครองของหมู่ที่ 7 ตำบลบ้านกรวด อำเภอ บ้านกรวด จังหวัดบุรีรัมย์ โดยตั้งอยู่ห่างจากตัวอำเภอบ้านกรวดไปทางตะวันออกเฉียงเหนือเป็น ระยะทางประมาณ 3 กิโลเมตร ใน พ.ศ. 2530 โครงการโบราณคดีประเทศไทย (ภาคตะวันออกเฉียงเหนือ) กองโบราณคดี กรมศิลปากร สำรวจพบว่าในพื้นที่ของอำเภอบ้านกรวคมีเนินดินรูปร่างไม่สม่ำเสมอ ตั้งอยู่ภายใน หมู่บ้านเขาดินใต้ และที่เนินเหล่านี้พบโบราณวัตถุที่เกี่ยวข้องกับการถลุงเหล็ก ได้แก่ ตะกรันจาก การถลุงเหล็กกระจายอยู่บนผิวดิน จากการสำรวจดังกล่าวจึงเริ่มทราบกันว่าบ้านเขาดินใต้เป็นแหล่ง โบราณคดีประเภทแหล่งถลุงเหล็กสมัยโบราณแห่งหนึ่งในภาคตะวันออกเฉียงเหนือของประเทศ ไทย

ใน พ.ศ. 2548 โครงการวิจัยเรื่องการค้นหาและพัฒนาสารสนเทศภูมิศาสตร์ของถนน โบราณสมัยพระเจ้าชัยวรมันที่ 7 ได้สำรวจเพิ่มเติมที่แหล่งถลุงเหล็กสมัยโบราณที่บ้านเขาดินใต้ รวมทั้งที่แหล่งถลุงเหล็กและแหล่งเตาภาชนะดินเผาสมัยโบราณที่พบกระจายอยู่ในเขตอำเภอบ้าน กรวด

ต่อมาใน พ.ศ. 2550 โครงการวิจัยเรื่องการก้นหาและพัฒนาสารสนเทศภูมิศาสตร์ของถนน โบราณสมัยพระเจ้าชัยวรมันที่ 7 ระยะที่สอง จึงได้เริ่มดำเนินการขุดก้นทางโบราณคดีที่แหล่งถลุง เหล็กสมัยโบราณบ้านเขาดินใต้

ตำแหน่งที่ตั้งของแหล่งโบราณคดี

• ตำแหน่งที่ตั้งตามเขตการปกครองของแหล่งถลุงเหล็กสมัยโบราณบ้านเขาดินใต้

แหล่งโบราณคดีแห่งนี้อยู่ในเขตที่ดินของนางจีม เหื่อประโคน หมู่ที่ 9 บ้านเขาดิน ใต้ ตำบลบ้านกรวด อำเภอบ้านกรวด จังหวัดบุรีรัมย์

• ตำแหน่งทางภูมิศาสตร์ของแหล่งถลุงเหล็กสมัยโบราณบ้านเขาดินใต้

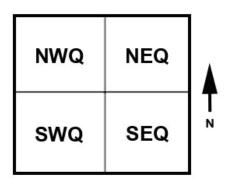
ตำแหน่งทางภูมิศาสตร์ของแหล่งถลุงเหล็กสมัยโบราณบ้านเขาคินใต้ มี รายละเอียดดังนี้

เส้นรุ้ง 14 องศา 26 ลิปดา 27 ฟิลิปดาเหนือ
เส้นแวง 103 องศา 04 ลิปดา 81 ฟิลิปดาตะวันออก
ความสูงจากระดับน้ำทะเลปานกลาง ประมาณ 196 เมตร
สภาพทั่วไปของแหล่งโบราณคดี

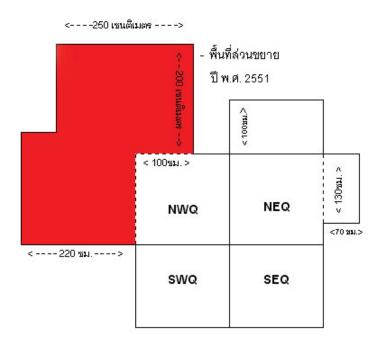
มีลักษณะเป็นเนินคินสูงประมาณ 7 เมตร ขนาดเส้นผ่าศูนย์กลางประมาณ 50 เมตร สภาพทั่วไปมีต้นไม้ปกกลุมไม่หนาแน่นมากนัก บนเนินเป็นที่ตั้งของศาลตา-ยาย ซึ่งเจ้าของพื้นที่ได้ สร้างไว้เป็นที่เคารพสักการะบนผิวคิน พบก้อนตะกรันจากการถลุงแร่เหล็กกระจายไปทั่วพื้นที่

รูปที่ 3-21 แสดงสภาพเนินดินที่ตั้งหลุมขุดค้น ทางด้านทิศใต้

รูปที่ 3-22 แสดงสภาพของเนินดิน ด้านทิศตะวันตก

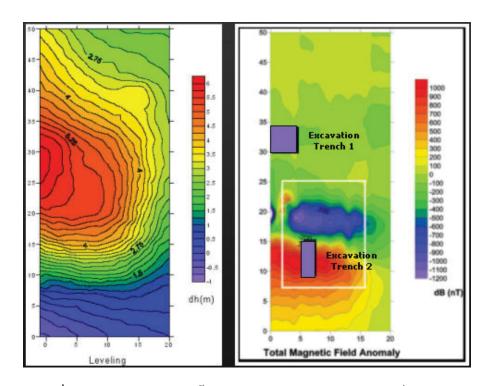

รูปที่ 3-23 แสดงศาลตา-ยาย

• กระบวนการดำเนินงานทางโบราณคดี


การคำเนินงานขุดค้นทางโบราณคดี บ้านเขาดินใต้ อ.บ้านกรวด จ.บุรีรัมย์ คำเนินการแยกเป็น 2 ช่วง คือในระหว่างวันที่ 1-31 พฤษภาคม พ.ศ. 2550 และระหว่างวันที่ 22 กุมภาพันธ์ - 22 มีนาคม 2551 รวมเวลาคำเนินการ 2 เดือน โดยได้ทำการขุดค้นพื้นที่จำนวน 2 หลุม ขุดค้น มีรายละเอียดการคำเนินงาน ดังนี้

การวางผังหลุมขุดค้น หลุมขุดค้นที่ 1

กำหนดพื้นที่หลุมขุดค้นรูปสี่เหลี่ยมจัตุรัส ขนาดกว้าง 3 เมตร ยาว 3 เมตร วางตัว ตามแนวทิศเหนือ-ใต้ ในการขุดค้นชั้นหลักฐานทางโบราณคดีได้ดำเนินการโดยแบ่งพื้นที่หลุมขุดค้น ออกเป็น 4 ส่วนเท่าๆ กัน แต่ละส่วนมีขนาดกว้าง 1.50 เมตร ยาว 1.50 เมตร เรียกชื่อแต่ละส่วนตาม แนวทิศคือ NEQ (Northeast Quadrant), SEQ (Southeast Quadrant), NWQ (Northwest Quadrant) และ SWQ (Southwest Quadrant) คังภาพต่อไปนี้



ส่วนในการขุดค้นระหว่างวันที่ 22 กุมภาพันธ์ - 22 มีนาคม 2551 ได้ทำการขุด ขยายเพิ่มเติมในพื้นที่ NWQ ไปทางทิศเหนือ และทางทิศตะวันตก ดังภาพต่อไปนี้

หลุมขุดค้นที่ 2

กำหนดพื้นที่หลุมขุดค้นขนาดกว้าง 1.5 เมตร ยาว 6 เมตร วางตัวตามแนวทิส เหนือ-ใต้ ในการขุดค้นชั้นหลักฐานทางโบราณคดีในหลุมขุดค้นนี้ ได้ดำเนินการโดยแบ่ง พื้นที่หลุมขุดค้นออกเป็น 3 ส่วนเท่าๆ กัน แต่ละส่วนมีขนาดกว้าง 1.50 เมตร ยาว 2.00 เมตร โดย เรียกพื้นที่ที่แบ่งออกเป็นพื้นที่ A พื้นที่ B และ พื้นที่ C เรียงลงมาตามลำคับ จากเหนือไปใต้

ร**ูปที่ 3-24** แผนผังแสดงเส้นชั้นความสูงและตำแหน่งหลุมขุดค้นที่ 1 และ 2 (Excavation Trench 1 and 2)

ทั้งนี้ ได้กำหนดให้เสาของศาลบนเนินเป็นระนาบอ้างอิงสมมุติ (Datum Plain) มีค่าระดับสมมุติ 0.00 cm.dt. ระนาบอ้างอิงสมมุตินี้ อยู่สูงจากระดับผิวดินที่บริเวณดังกล่าว 5.8 เซนติเมตร

รูปที่ 3-25 แสดงตำแหน่งจุดอ้างอิงหลัก

วิธีการขุดค้นประกอบด้วยการขุดลอกชั้นทับถมทางโบราณคดื่ออกที่ละชั้นตาม ระดับชั้นสมมุติ โดยกำหนดล่วงหน้าให้แต่ละชั้นทับถมทางโบราณคดีสมมุติ มีความลึกชั้นละ 10 เซนติเมตร และกำหนดชื่อเรียกแต่ละชั้นสมมุติเป็นหมายเลขเรียงลำดับจากชั้นทับถมทางโบราณคดี สมมุติบนสุด ไปจนถึงชั้นล่างสุดที่ไม่ปรากฏโบราณศิลปวัตถุ (artefact) ใดๆ หรือเป็นชั้นที่ไม่ ปรากฏร่องรอยของกิจกรรมมนุษย์ (Sterile Layer)

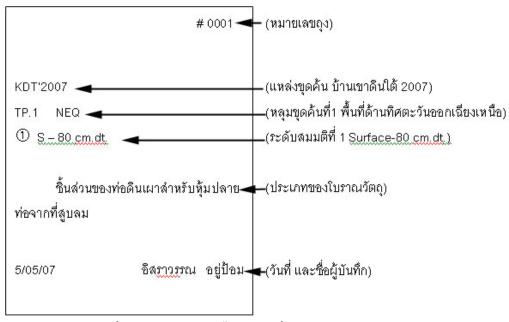
ในหลุมขุดค้นที่ 1 ได้ทำการขุดค้นทั้งสิ้น 33 ระดับ คือ ระดับชั้นสมมุติที่ 1 (ระดับ ผิวดิน - 80 cm.dt.) ถึงระดับสมมุติที่ 33 (390- 400 cm.dt.) ชั้นสมมุติต่างๆ มีความลึกจากระนาบ อ้างอิงสมมุติ ดังตารางต่อไปนี้

ระดับสมมติ	ระดับจาก Datum Plain	ระดับสมมติ	ระดับจาก Datum Plain
ระดับสมมติที่ 1	0-80	ระดับสมมติที่ 18	240 -250
ระดับสมมติที่ 2	80-90	ระดับสมมติที่ 19	250-260
ระดับสมมติที่ 3	90-100	ระดับสมมติที่ 20	260-270
ระดับสมมติที่ 4	100-110	ระดับสมมติที่ 21	270-280
ระดับสมมติที่ 5	110-120	ระดับสมมติที่ 22	280-290
ระดับสมมติที่ 6	120-130	ระดับสมมติที่ 23	290-300
ระดับสมมติที่ 7	130-140	ระดับสมมติที่ 24	300-310
ระดับสมมติที่ 8	140-150	ระดับสมมติที่ 25	310-320
ระดับสมมติที่ 9	150-160	ระดับสมมติที่ 26	320-330
ระดับสมมติที่ 10	160-170	ระดับสมมติที่ 27	330-340
ระดับสมมติที่ 11	170-180	ระดับสมมติที่ 28	340-350
ระดับสมมติที่ 12	180-190	ระดับสมมติที่ 29	350-360
ระดับสมมติที่ 13	190-200	ระดับสมมติที่ 30	360-370
ระดับสมมติที่ 14	200-210	ระดับสมมติที่ 31	370-380
ระดับสมมติที่ 15	210-220	ระดับสมมติที่ 32	380-390
ระดับสมมติที่ 16	220-230	ระดับสมมติที่ 33	390-400
ระดับสมมติที่ 17	230-240		

สำหรับหลุมขุดค้นที่ 2 นั้น ทำการขุดค้นทั้งสิ้น 51 ระดับ โดยกำหนดให้ชื่อเป็น ระดับสมมติที่ 1 (ระดับผิวดิน - ความลึก 220 cm.dt) ถึงระดับสมมติที่ 51 (710-720 cm.dt.) ชั้น สมมุติต่างๆ มีความลึกจากระนาบอ้างอิงสมมุติ ดังตารางต่อไปนี้

ระดับสมมติ	ระดับจาก Datum	ระดับสมมติ	ระดับจาก Datum Plain
			(cm.dt.)
ระดับสมมติที่ 1	0-220	ระดับสมมติที่ 27	470-480
ระดับสมมติที่ 2	220-230	ระดับสมมติที่ 28	480-490
ระดับสมมติที่ 3	230-240	ระดับสมมติที่ 29	490-500
ระดับสมมติที่ 4	240-250	ระดับสมมติที่ 30	500-510
ระดับสมมติที่ 5	250-260	ระดับสมมติที่ 31	510-520
ระดับสมมติที่ 6	260-270	ระดับสมมติที่ 32	520-530
ระดับสมมติที่ 7	270-280	ระดับสมมติที่ 33	530-540
ระดับสมมติที่ 8	280-290	ระดับสมมติที่ 34	540-550
ระดับสมมติที่ 9	290-300	ระดับสมมติที่ 35	550-560
ระดับสมมติที่ 10	300-310	ระดับสมมติที่ 36	560-570
ระดับสมมติที่ 11	310-320	ระดับสมมติที่ 37	570-580
ระดับสมมติที่ 12	320-330	ระดับสมมติที่ 38	580-590
ระดับสมมติที่ 13	330-340	ระดับสมมติที่ 39	590-600
ระดับสมมติที่ 14	340-350	ระดับสมมติที่ 40	600-610
ระดับสมมติที่ 15	350-360	ระดับสมมติที่ 41	610-620
ระดับสมมติที่ 16	360-370	ระดับสมมติที่ 42	620-630
ระดับสมมติที่ 17	370-380	ระดับสมมติที่ 43	630-640
ระดับสมมติที่ 18	380-390	ระดับสมมติที่ 44	640-650
ระดับสมมติที่ 19	390-400	ระดับสมมติที่ 45	650-660
ระดับสมมติที่ 20	400-410	ระดับสมมติที่ 46	660-670
ระดับสมมติที่ 21	410-420	ระดับสมมติที่ 47	670-680
ระคับสมมติที่ 22	420-430	ระดับสมมติที่ 48	680-690
ระดับสมมติที่ 23	430-440	ระดับสมมติที่ 49	690-700
ระดับสมมติที่ 24	440-450	ระดับสมมติที่ 50	700-710
ระดับสมมติที่ 25	450-460	ระดับสมมติที่ 51	710-720
ระคับสมมติที่ 26	460-470		

การบันทึกข้อมูลและจัดเก็บหลักฐานทางโบราณคดี


ในการขุดค้นชั้นหลักฐานทางโบราณคดี ได้ทำการบันทึกรายละเอียดการ ปฏิบัติงานและข้อมูลทางโบราณคดีที่พบด้วยวิธีการต่างๆ ดังนี้

- การบันทึกข้อมูลประจำวัน (Diary record) ระหว่างการขุดค้นในแต่ละวัน ประกอบด้วยการบันทึกรายละเอียดเกี่ยวกับวิธีการปฏิบัติงาน และรายละเอียดของข้อมูลต่างๆ ที่พบ ในการขุดค้นในแต่ละวัน และแยกบันทึกลงในแบบบันทึกต่างๆ ได้แก่ แบบบันทึกผลการ ปฏิบัติงานประจำวัน เพื่อสรุปงานที่ปฏิบัติและหลักฐานที่พบในแต่ละวัน แบบบันทึกร่องรอย กิจกรรมมนุษย์ (Features) ซึ่งเป็นแบบบันทึกรายละเอียดของหลักฐานทางโบราณคดีประเภท ร่องรอยที่เกิดจากการทำกิจกรรมของมนุษย์ที่พบในแต่ละชั้นทับถมทางโบราณคดี โดยบันทึกทั้ง เป็นแผนผัง และคำบรรยายลักษณะ ขนาด องค์ประกอบ และลักษณะดินของร่องรอยกิจกรรม มนุษย์แต่ละรอย

- การบันทึกภาพ ทำโดยการบันทึกภาพตั้งแต่ ก่อนการขุดค้น ตลอดจนในขณะที่ ทำการขุดค้น และเมื่อมีการเปลี่ยนแปลงของชั้นทับถมทางโบราณคดี หรือพบโบราณวัตถุชิ้นพิเศษ หรือพบร่องรอยกิจกรรมมนุษย์ หรือเมื่อมีการเปลี่ยนแปลงระดับการขุดค้นตามชั้นดินสมมุติ หรือ เมื่อการขุดค้นสิ้นสุดลง รวมทั้งบันทึกภาพสภาพแหล่งโบราณคดีภายหลังการกลบหลุมที่ทำการขุด ค้นเสร็จสิ้นแล้ว และมีการบันทึกรหัสของภาพถ่ายไว้ในแบบบันทึกการถ่ายภาพเพื่อสะควกต่อการ ใช้ข้อมูล

- การจัดเก็บโบราณวัตถุที่ได้จากการขุดค้น ใช้แบบบันทึกทะเบียนถุงโบราณวัตถุ ประกอบการบันทึกรายละเอียดของโบราณวัตถุแต่ละประเภทที่พบจากการขุดค้น โดยจัดจำแนก ตามระดับสมมุติ ประเภทของโบราณวัตถุ และพื้นที่ที่พบโบราณวัตถุ

ตัวอย่างการเขียนกุงเก็บโบราณวัตกุ

ข้อมูลที่พบในแต่ละระดับชั้นสมมุติที่ขุดค้น

หลุมขุดค้นที่ 1 (TP.1)

ระดับผิวดิน

ทำการวัดและบันทึกระดับผิวดินก่อนการขุดค้นทั่วทั้งพื้นที่หลุมขุดค้น เพื่อทำการปรับระดับผิวดินก่อนคำเนินการขุดค้น

-31 cm.dt.	-54 cm	ı.dt.	-78.5 cm.dt
	NWQ	NEQ	
	-2 cm.dt.	-56 cm.dt	
		-32 cm.dt.	
	SWQ	SEQ	
+24 cm.dt.	- 4 cm	.dt.	-39 cm.dt.

- พบตะกรันจากการถลุงเหล็ก กระจายตัวทั่วทั้งหลุมขุดค้น ประกอบค้วยก้อนตะกรันขนาดประมาณ 2-15 เซนติเมตร จำนวน - ชิ้นส่วนภาชนะคินเผาเคลือบเนื้อละเอียด เขียนลายด้วยสีฟ้าใต้ น้ำยาเคลือบใส จำนวน 1 ชิ้น

รูปที่ 3-26 สภาพหลุมขุดค้นก่อนดำเนินการขุดค้นหลุมขุดค้นที่ 1 (ทิศเหนือ)

รูปที่ 3-27 สภาพหลุมขุดค้นก่อนคำเนินการขุดค้นหลุมขุดค้นที่ 1 (ทิศตะวันตก)

ระดับผิวดิน-80 cm.dt. เริ่มทำการขุดค้นในพื้นที่ NEQ เพื่อให้พื้นที่ส่วนนี้ของหลุมขุดค้นอยู่ที่ ระดับลึก 80 cm.dt. แล้วจึงขุดค้นต่อในพื้นที่ NWQ, SEQ และ SWQ เพื่อให้ถึงระดับความลึกเดียวกัน ทั้งนี้ในบริเวณพื้นที่ SWQ เมื่อทำการขุด ค้นในระดับ 50-60 cm.dt. พบร่องรอยของกลุ่มโบราณวัตถุ อันประกอบ

- ตะกรันจากการถลุงแร่เหล็ก ขนาดประมาณ 2-10 เซนติเมตร กระจายตัวทั่วพื้นที่ร่วมกับชิ้นส่วนดินเผาไฟขนาดประมาณ 3-10 เซนติเมตร
- ชิ้นส่วนกั่นของเครื่องมือเหล็ก จำนวน 1 ชิ้น พบในพื้นที่ส่วน NWQ
- ชิ้นส่วนของท่อดินเผาสำหรับหุ้มปลายท่อจากที่สูบลม
- ตัวอย่างถ่าน
- ชิ้นส่วนภาชนะดินเผาประเภทเนื้อดิน ขนาดประมาณ 3-5 เซนติเมตร
- ชิ้นส่วน ก้อนดินเผาสำหรับอุดช่องดักตะกรันที่ผนังเตาถลุง

รูปที่ 3-28 แสดงร่องรอยของดินเผาไฟในพื้นที่ NEQ ในระดับ 80 cm.dt.

80-90 cm.dt.

เมื่อทำการขุดค้นในพื้นที่ NEQ พบร่องรอยของคินเผาไฟซึ่งสันนิษฐานว่า เป็นส่วนที่เหลืออยู่ของเตาถลุงเหล็ก จึงได้ทำการขุดลอกตามระดับชั้น ของร่องรอยคินเผาไฟดังกล่าว ทั้งพื้นที่ส่วน NEQ และทำการขุดขยายต่อ ในพื้นที่ส่วน SEQ พบหลักฐานทางโบราณคดีชนิดต่างๆ ดังนี้

- ซากเตาถลุงเหล็กหมายเลข 1 หมายเลข 2 และหมายเลข 3 โดยพบเตาถลุงหมายเลข 1 และ 2 ในพื้นที่ส่วน NEQ ซึ่งน่าจะ เป็นเตาถลุงที่ใช้งานพร้อมกันเนื่องจากพบในระดับดินเดียวกัน โดยการขุดดินเป็นแอ่งตื้นๆ ด้านที่เป็นปากของเตาถลุง ลึกลงจาก ระดับผิวดินใช้งานประมาณ 10-20 เซนติเมตร แล้วลาดเอียงลึกไป ทางทิสตะวันออกเฉียงเหนือของปากเตา ฉาบพื้นเตาและพื้นที่ รอบเตาด้วยดินเหนืยว รูปทรงของซากเตาถลุงมีลักษณะคล้ายเป็น รูปวงรี ขนาดกว้างประมาณ 34 เซนติเมตร ยาวประมาณ 67 เซนติเมตร พื้นด้านในของเตาถลุงหมายเลข 1 พบร่องรอยการ ฉาบด้วยดินซ้อนทับอย่างน้อย 2 ครั้ง ส่วนเตาถลุงหมายเลข 3 ซึ่ง พบในพื้นที่ส่วน SEQ นั้น มีสภาพไม่สมบูรณ์เท่ากับเตาหมายเลข 1 และ 2 ทั้งนี้อาจเกิดจากการถูกรบกวนจากการใช้งานซ้ำบนที่ เดิม ทำให้เหลือร่องรอยของเตาถลุงให้เห็นเพียงเล็กน้อย
- ตะกรันจากการถลุงแร่เหล็ก
- ชิ้นส่วนดินเผาไฟซึ่งสันนิษฐานว่าเป็นชิ้นส่วนของผนังเตา
- ชิ้นส่วนภาชนะดินเผาเนื้อดิน
- ชิ้นส่วน ก้อนดินเผาสำหรับอุดช่องดักตะกรันที่ผนังเตาถลุง

90-100 cm.dt.

การขุดกันชั้นหลักฐานทางโบราณคดีในพื้นที่ส่วน SWQ ที่ระดับ 100 cm.dt. พบว่าหลักฐานประเภทชิ้นส่วนของท่อดินเผาสำหรับหุ้มปลายท่อ จากที่สูบลม ชิ้นส่วนก้อนดินเผาไฟ และชิ้นส่วนก้อนดินเผาสำหรับอุด ช่องดักตะกรันที่ผนังเตาถลุง กระจุกตัวกันเป็นกลุ่ม และต่อเนื่องไปยัง

- ชิ้นส่วนภาชนะดินเผา ขนาดประมาณ 3-5 เซนติเมตร
- ตะกรันจากการถลุงแร่เหล็ก
- ชิ้นส่วน ก้อนดินเผาสำหรับอุดช่องดักตะกรันที่ผนังเตาถลุง
- ชิ้นส่วนของท่อดินเผาสำหรับหุ้มปลายท่อจากที่สูบลม
- ก้อนดินเผาไฟ

100-110 cm.dt

การขุดค้นพื้นที่ส่วน SEQ นั้นพบกลุ่มโบราณวัตถุ ประเภท ตะกรันจาก การถลุงแร่เหล็ก ชิ้นส่วนของท่อดินเผาสำหรับหุ้มปลายท่อจากที่สูบลม และก้อนดินเผาไฟมากขึ้น ชิ้นส่วนของผนังเตาบางชิ้นมีร่องรอยนิ้วปาด ตกแต่ง สันนิษฐานว่าพื้นที่บริเวณนี้น่าจะถูกใช้งานหลายครั้ง และทำให้ ชั้นหลักฐาน หรือเตาถลุงเดิมถูกรบกวนจากการทำเตาถลุงในระยะหลัง สำหรับพื้นที่ส่วน SWQ และ NWQ นั้นพบว่าก้อนตะกรันจากการถลุงแร่ เหล็กมีขนาดค่อนข้างใหญ่กว่าในระดับผิวดินบน โดยมีขนาดประมาณ 5-10 เซนติเมตร มีข้อสังเกตว่า ดินในพื้นที่ด้าน SWQ มีสีอ่อนกว่าบริเวณ อื่นๆ เนื้อดินละเอียด ค่อนข้างร่วน ในชั้นนี้ได้พบชิ้นส่วนของก้อนดินเผา ไฟ ชิ้นส่วนผนังเตาถลุง และชิ้นส่วนของก้อนดินเผาสำหรับอุดช่องดัก

110-120 cm.dt. ยังมีลักษณะเหมือนกับ ระดับ 100-110 cm.dt. โดยเฉพาะพื้นที่ส่วน SWQ ดินยังคงเป็นสีอ่อน ลักษณะค่อนข้างร่วน

120-130 cm.dt. ในระดับชั้นนี้พบว่า ดินบางตอนในพื้นที่บริเวณตามแนวตอนกลางของ
หลุมขุดค้น เปลี่ยนเป็นสีออกเทา ซึ่งน่าจะเกิดโบราณวัตถุที่เสื่อมสภาพ
เปลี่ยนเป็นผงและผสมอยู่กับดิน จึงกำหนดให้ร่องรอยที่มีดินสีเทานี้เป็น
ร่องรอยกิจกรรมมนุษย์หมายเลข 3 (Feature#3)

130-140 cm.dt.

พบว่าชั้นดินสีออกเทา ที่แยกบันทึกไว้เป็นร่องรอยกิจกรรมมนุษย์ หมายเลข 3 (Feature#3) ในพื้นที่ SWQ มีความลึกลงไปเพียง 2-5 เซนติเมตร ถัดจากนั้นปรากฏว่าเป็นชั้นของตะกรันจากการถลุงเหล็กจับ ตัวเป็นกลุ่มแข็ง ซึ่งน่าจะเกิดจากการจงใจทิ้ง หรือใช้พื้นที่เป็นที่ทิ้งสิ่ง เหลือทิ้งจากกระบวนการถลุงเหล็ก

ในพื้นที่ด้าน NWQ พบซากที่เหลือบางส่วนของเตาถลุงเหล็ก ซึ่ง กำหนดให้เป็นเตาถลุงเหล็กหมายเลข 4 พบอยู่ที่ระดับ 133 cm.dt. เมื่อทำ การขุดขยายเพิ่มเติมทางด้านทิสตะวันตกของหลุมขุดก้น ปรากฏชั้น ทับถมของตะกรันขนาดใหญ่ ชิ้นส่วนผนังเตา ชิ้นก้อนดินเผาสำหรับอุด ช่องดักตะกรันที่ผนังเตาถลุง และชิ้นส่วนของท่อดินเผาสำหรับหุ้มปลาย ท่อจากที่สูบลม ที่บางส่วนพบกลุ่มดินเผาไฟจับตัวแน่นคล้ายเป็นพื้นดิน ซึ่งอาจจะเป็นพื้นดินใช้งาน จึงกำหนดให้เป็นเตาถลุงหมายเลข 5 ที่ระดับ ระดับความลึกสมมุติวัด ณ จุดสูงสุดของเตาถลุง 85 cm.dt. (พื้นใช้งาน อยู่ในสภาพไม่สมบูรณ์ ดังนั้นเมื่อทำการเก็บบันทึกหลักฐานแล้วจึงได้ ตัดสินทำการขุดก้นต่อไปพบว่า ใต้ซากเตาถลุงหมายเลข 5 นั้น ปรากฏ หลักฐานชิ้นส่วนของปากเตา และส่วนของกลางเตา จึงกำหนดให้เป็นเตา ถลุงหมายเลข 8

140-150 cm.dt.

บริเวณทางทิศใต้ของหลุมขุดค้น ทั้งในพื้นที่ SEQ-SWQ พบกลุ่มดินสี ขาวจับตัวแข็ง สันนิษฐานว่า น่าจะเป็นชั้นดินใช้งานร่วมสมัยกับเตาถลุง เหล็กหมายเลข 4

ส่วนหลักฐานประเภทก้อนตะกรันจากการถลุงเหล็ก ชิ้นส่วนของท่อดิน เผาสำหรับหุ้มปลายท่อจากที่สูบลม ชิ้นส่วนผนังเตา ยังพบกระจัดกระจาย ทั่วไป ยกเว้นบริเวณร่องรอยกิจกรรมมนุษย์หมายเลข 3 ที่ยังมีก้อน ตะกรันจากการถลุงเหล็กจับตัวเป็นกลุ่มแข็ง ซึ่งต่อมาพบว่าต่อเนื่องลึกลง ไปจนถึงระดับ 190 cm.dt.

150-180 cm.dt.

ได้ทำการขุดกันในพื้นที่ส่วน SWQ ขนาดกว้าง 1 เมตร ยาว 1.5 เมตร เพื่อตรวจสอบร่องรอยกิจกรรมมนุษย์หมายเลข 3 พบว่ากลุ่มก้อนตะกรัน จากการถลุงเหล็ก ก้อนขนาดใหญ่ยังจับตัวเป็นกลุ่มแข็ง จึงทำการขุดกัน เต็มพื้นที่ SWQ และทำการขุดกันเพิ่มเติมในพื้นที่ SEQ ให้อยู่ในระดับ เดียวกับพื้นที่ SWQ

พื้นที่ NWQ และ NWQ ส่วนที่ขุดขยายเพิ่มเติมนั้น ยังคงเป็นชั้นดินเผาไฟ ร่วมกับหลักฐานประเภทก้อนตะกรันจากการถลุงเหล็ก ชิ้นส่วนของท่อ ดินเผาสำหรับหุ้มปลายท่อจากที่สูบลม แต่ตะกรันที่พบจะไม่เกาะตัวแน่น ต่างไปจากพื้นที่ SEQ และ SWQ

180-220 cm.dt.

การขุดค้นในพื้นที่ส่วน SWQ และ SEQ พบว่าร่องรอยกิจกรรมมนุษย์ หมายเลข 3 สิ้นสุดที่ระดับความลึก 189 cm.dt. โดยเปลี่ยนเป็นชั้นทราย แน่นแข็งไปจนถึงระดับความลึก 204-205 cm.dt. ซึ่งได้กำหนดให้เป็น ร่องรอยกิจกรรมมนุษย์หมายเลข 4 ถัดจากนั้นลงไปจึงเป็นชั้นตะกรันจาก การถลุงแร่เหล็กอีกครั้ง จนถึงระดับความลึก 220 cm.dt. ทั้งนี้ที่ระดับ ความลึก 200 cm.dt. พบชั้นขี้เถ้าที่มุมผนังด้านทิศตะวันตก และในพื้นที่ ส่วน SEQ พบกลุ่มก้อนตะกรันจากการถลุงเหล็ก ปะปนกับชิ้นส่วนของ ท่อดินเผาสำหรับหุ้มปลายท่อจากที่สูบลม

220-250 cm.dt.

การขุดค้นในพื้นที่ส่วน SWQ และ SEQ พบว่า มีลักษณะเป็นชั้นคินเผา ไฟที่พบอยู่ใต้ชั้นตะกรัน

250-260 cm.dt.

ในส่วนของพื้นที่ SEQ และ SWQ พบว่าเป็นชั้นพื้นคินสีน้ำตาลอ่อนหนา ประมาณ 2-3 เซนติเมตร และในพื้นที่ด้าน NWQ ชั้นพื้นคินจะมีขนาด ประมาณ 10 -20 เซนติเมตร สันนิษฐานว่าเป็นชั้นกิจกรรมหรือร่วมกับ กิจกรรมการถลุงเหล็ก

260-270 cm.dt.

ในพื้นที่ SEQ และ SWQ ปรากฏเป็นชั้นทับถมประกอบด้วยก้อนตะกรัน ขนาดใหญ่ๆ และในพื้นที่ด้าน NWQ ชั้นตะกรันไม่จับตัวแน่น

270-280 cm.dt.

ปรากฏเป็นชั้นพื้นคินสีน้ำตาลอ่อนทั้งพื้นที่ทำคำเนินการขุคค้น โดยพื้นที่ ค้าน NWQ จะมีขนาคค่อนข้างหนาประมาณ 10 -20 เซนติเมตร นอกจากนี้ยังพบชิ้นส่วนเปลือกหอย land snail ในพื้นที่ NWQ ส่วนขยาย ในพื้นที่ SEQ พบถ่านขนาคประมาณ 2-3 เซนติเมตรที่ระคับ 273 cm.dt.

280-320 cm.dt.

ทำการขุดกันต่อในพื้นที่ SEQ และ SWQ พบซากเตาถลุงในพื้นที่ SWQ พบตั้งแต่ปากเตาจนถึงกลางเตา และต่อเนื่องเข้าไปยังพื้นที่ NWQ ใน ระดับ 320 cm.dt. และระหว่างการขุดกันในตัวเตาพบว่าส่วนหน้าของเตา ใกล้กับปากเตามีเศษก้อนดินอัดติดอยู่ สันนิษฐานว่าเป็นดินที่เกิดจากถม ทับลงเป็นเตาเพื่อทำเป็นชั้นใช้งานใหม่ (Soil profile) นอกจากนี้ยังพบ เศษตะกรันที่เกิดจากการถลุงเหล็กติดอยู่กับกันเตาบริเวณกลางเตา ลักษณะของเตาไม่แตกต่างจากซากเตาที่พบในระดับอื่น โดยวางตัวใน แนวทิศตะวันออกเฉียงใต้ - ตะวันตกเฉียงเหนือจึงกำหนดให้เป็นเตาถลุง หมายเลข 6 ลักษณะของดินหรือพื้นที่ใช้งานรอบเตา แบ่งออกได้เป็น 2 ส่วน คือ ส่วนที่เป็นแผ่นดินเหนียวแข็ง เนื่องจากถูกความร้อนของเตา และส่วนที่เป็นพื้นดิน (ดินปนทราย) ที่อัดตัวแน่น โดยพื้นดินเหนียวเป็น ส่วนที่อยู่รอบและใกล้เตา ขณะที่พื้นที่ดินอัดอยู่ถัดออกไป ทั้งสองส่วนนี้ เป็นส่วนของพื้นใช้งานรอบเตา หรือระดับพื้นที่ทำงานของช่างถลุงเหล็ก

320 -350 cm.dt.

ทำการขุดค้นต่อในพื้นที่ SEQ ปรากฏเป็นชั้นตะกรันขนาดประมาณ 3 เซนติเมตร

360-370 cm.dt.

ในพื้นที่ SEQ ปรากฏเป็นชั้นพื้นคินสีน้ำตาลอ่อน พบหลักฐานประเภท คินเผาไฟ และเศษขี้เถ้า สันนิษฐานว่าชั้นตะกรันสิ่งเหลือทิ้งจากการถลุง เหล็ก และอาจเป็นการถมปรับพื้นที่ก่อนกระบวนการถลุงเหล็กเตา หมายเลข 6

380-390 cm.dt.

ในพื้นที่ SEQ พบเศษตะกรันปะปนปริมาณน้อย มีลักษณะเป็นชั้นพื้น กล้ายกับการอัดดินที่มีส่วนผสมของเม็ดทรายละเอียดลงบนพื้นในขนาดที่ หนา ทำให้พื้นนั้นอัดตัวแน่นพบซากเตาถลุงตั้งแต่บริเวณปากเตาลงมา จนถึงกลางเตา แต่บริเวณท้ายเตานั้นไม่พบหลักฐานที่สมบูรณ์ โดยวางตัว ในแนวทิศตะวันตกเฉียงเหนือ - ตะวันออกเฉียงใต้ ขนาดของเตาวัดจาก หลักฐานที่พบจากการขุดค้น ไม่รวมแนวสันนิษฐานของท้ายเตา ด้านยาว มีขนาด 80 เซนติเมตร ด้านกว้างมีขนาด 40 เซนติเมตร พบการกระจายตัว ของเศษตะกรันจำนวนมาก และชิ้นส่วนผนังเตาเป็นวงกลม ซึ่งอาจแสดง ถึงขอบเขตของบริเวณท้ายเตา จึงได้กำหนดให้เป็นเตาถลุงหมายเลข 7

หลุมขุดค้นที่ 2(TP.2)

Surface

เนื่องจากเป็นพื้นที่ที่มีความลาคชัน จึงได้เลือกใช้วิธีการขุดค้นแบบหลุม ยาว (Trench) โดยแบ่งพื้นที่หลุมออกเป็น 3 ส่วน ได้แก่ พื้นที่ A พื้นที่ B และ พื้นที่ C โดยแต่ละส่วนมีขนาดกว้าง 1.50 เมตร ยาว 2.00 เมตร

รูปที่ 3-29 แสดงสภาพหลุมขุดค้นก่อนดำเนินการขุดค้นหลุมขุดค้นที่ 2 (ทิศเหนือ)

$\frac{\vec{N}u\vec{N}}{A}$

ระดับผิวดิน – ระดับความถึก 220 cm.dt.

ชั้นนี้ประกอบด้วยดินร่วนสีน้ำตาลคล้ำ บางส่วนมีสีแดงเนื่องมาจากการ สลายตัวของตะกรันจากการถลุงแร่เหล็ก ซึ่งกระจายตัวอยู่หนาแน่น มีราก ไม้ ขนาดเล็กปะปนอยู่ทั่วพื้นที่ โดยมีรากไม้ขนาดใหญ่วางตัวตามแนวทิศ ตะวันออก - ตะวันตก พบก้อนดินเผาสำหรับอุดช่องดักตะกรันที่ผนังเตา ถลุง จำนวน 1 ก้อน

220-310 cm.dt.

พบตะกรันจากการถลุงแร่เหล็กจับตัวกันเป็นกลุ่มทั้งพื้นที่ พบร่วมกับ ชิ้นส่วนดินเผาไฟ ขนาดประมาณ 2-10 เซนติเมตร ชิ้นส่วนของท่อดินเผา สำหรับหุ้มปลายท่อจากที่สูบลม ชิ้นส่วนตุ๊กตาดินเผา จำนวน 6 ชิ้น ชิ้นส่วนภาชนะดินเผาประเภทเนื้อดินจำนวน 6 ชิ้น ขนาดประมาณ 2-10 เซนติเมตร

<u>พื้นที่ B</u>

ระคับ 220-300 cm.dt.

ลักษณะชั้นทับถมทางโบราณกดีกล้ายกับใน พื้นที่ A ในระดับเคียวกัน แต่มีตะกรันจากการถลุงแร่เหล็กหนาแน่นน้อยกว่า และ ไม่จับตัวรวมกัน เป็นก้อนใหญ่ เพียงแต่รวมตัวกันอย่างหลวมๆ โบราณวัตถุอื่นๆ ที่พบ ได้แก่ห่วงโลหะ ขนาดเส้นผ่าศูนย์กลางประมาณ 2.5 เซนติเมตร ซึ่งพบใน ระดับความลึก 300 cm.dt.

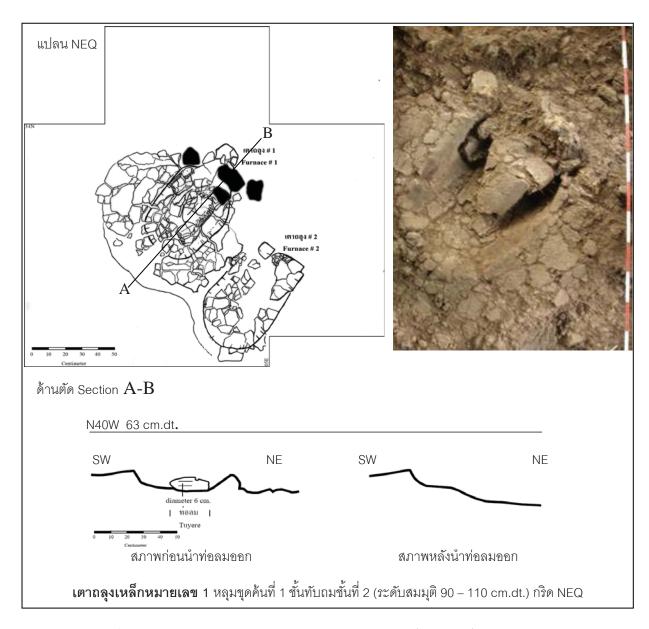
<u>พื้นที่ C</u> ระดับ 220-300 cm.dt.

พบตะกรันจากการถลุงแร่เหล็กหนาแน่น แต่ไม่จับตัวแน่น มีรากไม้ขนาด เล็กปะปนอยู่ทั่วพื้นที่ โบราณวัตถุอื่นๆ ที่พบ ได้แก่ ก้อนดินเผาไฟ ซึ่ง อาจเป็นส่วนที่แตกมาจากผนังเตา หรืออาจเป็นชิ้นส่วนของท่อดินเผาหุ้ม ปลายท่อจากที่สูบลม และชิ้นส่วนก้อนดินเผาสำหรับอุดช่องดักตะกรันที่ ผนังเตาถลุง จำนวน 2 ชิ้น ชิ้นส่วนของท่อดินเผาสำหรับหุ้มปลายท่อจาก ที่สูบลม และเสษภาชนะดินเผาประเภทเนื้อดินจำนวน 11 ชิ้น ขนาด ประมาณ 2-7 เซนติเมตร

300-400 cm.dt.

ชั้นทับถมทางโบราณคดีในพื้นที่ C มีลักษณะแตกต่างกัน จึงสามารถ แบ่งออกเป็น 2 ส่วนย่อย ส่วนละประมาณ 1 เมตร ที่มีสีดินไม่เหมือนกัน โดยบริเวณทางทิศเหนือนั้นมีสีอ่อนกว่า ซึ่งน่าจะเป็นส่วนที่ต่อ เนื่องมาจากพื้นที่ B ในขณะที่พื้นที่ทางด้านทิศใต้นั้น จำนวนหลักฐานที่ พบมีปริมาณน้อยมาก 400 -520 cm.dt.

เนื่องด้วยพื้นที่กรึ่งหนึ่งทางทิศใต้ของพื้นที่ขุดก้นนั้นมีตะกรันจากการ ถลุงแร่เหล็กอยู่ไม่มาก จึงได้เลือกทำการขุดก้นต่อในพื้นที่นี้ก่อน เพื่อหา ขอบเขตของกลุ่มตะกรันจากการถลุงแร่เหล็ก ลักษณะการทับถมของ ตะกรันจากการถลุงเหล็กที่พบในพื้นที่ขุดก้นนี้ ทำให้สันนิษฐานได้ว่า พื้นที่หลุมขุดก้นที่ 2 นั้น น่าจะเป็นพื้นที่สำหรับทิ้งตะกรันจากการถลุงแร่ เหล็ก ชิ้นส่วนผนังเตา หรือสิ่งเหลือทิ้งที่ไม่ต้องการจากการถลุงโลหะ โดยไม่มีการก่อเตาถลุงแร่เหล็กในพื้นที่ส่วนนี้ ซึ่งทำให้ทราบว่า ในการ ถลุงเหล็กนั้น คนในสมัยโบราณได้มีการแบ่งพื้นที่ทำงาน โดยแยกพื้น ที่ตั้งเตาถลุงแร่เหล็ก และพื้นที่ทิ้งสิ่งเหลือทิ้งจากการถลุงแร่เหล็กจากกัน แต่ไม่ไกลกัน

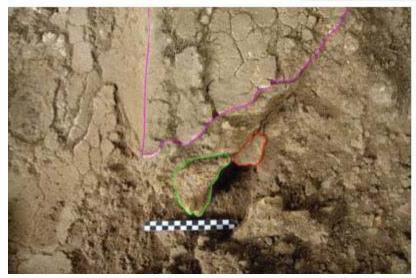

520-720 cm.dt.

การขุดค้นในระดับความถึกนี้เป็นการใช้เครื่องมือเจาะดิน (Auger) ขุดเจาะเก็บตัวอย่างดิน โดยทำการเก็บตัวอย่างดินช่วงละ 20 เซนติเมตร จนถึงที่ระดับความถึกที่ 720 cm.dt. ซึ่งไม่พบตะกรันจากการถลุงแร่เหล็ก ปะปนมาในเนื้อดิน อีกทั้งพบว่าเป็นชั้นที่ประกอบด้วยดินปนทรายแป้ง มี เม็ดกรวดปะปน

หลักฐานทางโบราณคดีประเภทสำคัญที่พบในการขุดค้น

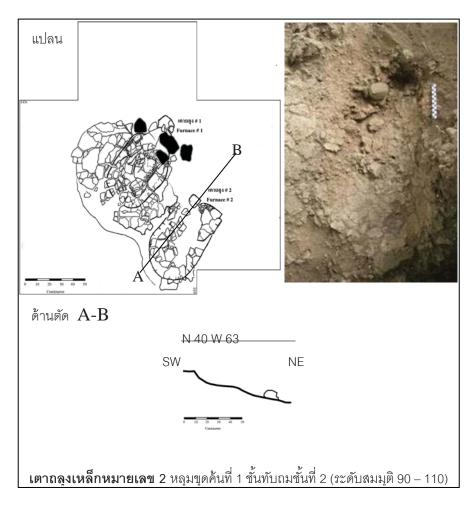
1. ซาก เตาถลุงเหล็ก

<u>เตาถลุงเหล็กหมายเลข 1</u>



รูปที่ 3-30 แสดงเตาถลุงเหล็กหมายเลข 1 หลุมขุดค้าที่ 1 ชั้นทับถมชั้นที่ 2 (ระดับสมมุติ 90-110 cm.dt.) กริด NEQ

พบในหลุมขุดค้นที่ 1 ชั้นทับถมทางโบราณคดีชั้นที่ 2 ระดับความลึก 80-90 cm.dt. ขนาดกว้างประมาณ 34 เซนติเมตร ยาว 67 เซนติเมตร สภาพค่อนข้างสมบูรณ์ เป็นส่วน ที่เหลืออยู่ของเตาถลุงเหล็กแบบแอ่งหรือเตาอ่าง (Bowl Furnace) รูปร่างเป็นทรงรี สันนิษฐานว่า



เตาถลุงเหล็กด้านทิศเหนือ มีร่องรอยที่แสดงถึงการฉาบพื้น ใหม่ทับซ้อนหรือซ่อมแซมลงบน พื้นเตาเก่า อย่างน้อย 3 ครั้ง

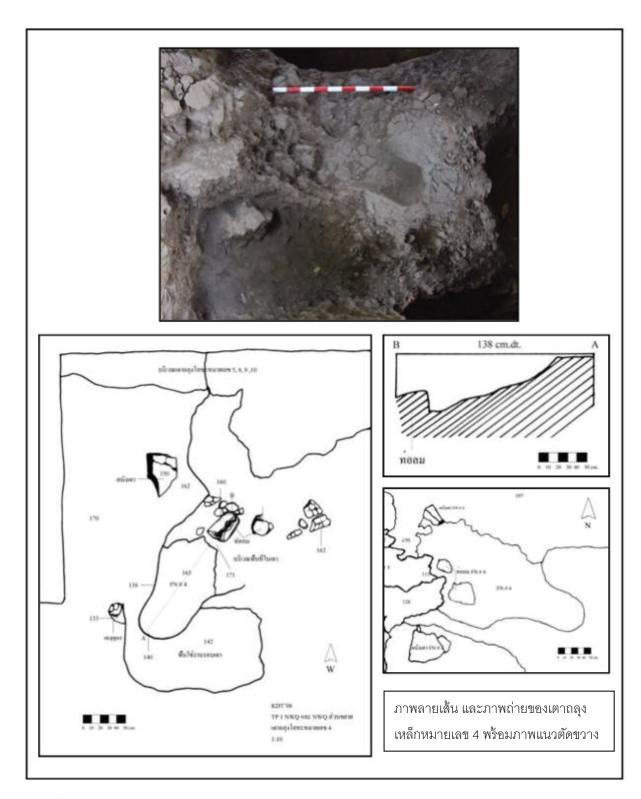
รูปที่ 3-31 แสดงเตาถลุงเหล็กด้านทิศเหนือ

<u>เตาถลุงเหล็กหมายเลข 2</u>

ร**ูปที่ 3-32** แสคงเตาถลุงเหล็กหมายเลข 2 หลุมขุดค้าที่ 1 ชั้นทับถมชั้นที่ 2 (ระดับสมมุติ 90-110 cm.dt.) กริค NEQ

พบในหลุมขุดกันที่ 1 ชั้นทับถมทางโบราณคดีชั้นสมมุติที่ 2 ระดับความ ลึก 80-90 cm.dt. ขนาดกว้างประมาณ 39 เซนติเมตร ยาว 78 เซนติเมตร บางส่วนของเตาหายไป น่าจะสร้างขึ้นมาไล่เลี่ยกับเตาถลุงหมายเลข 1 หรืออาจก่อนหน้า เนื่องจากบางส่วนของเตา หมายเลข 2 มีร่องรอยคล้ายถูกซ้อนทับโดยบางส่วนของเตาถลุงหมายเลข 1

เตาถลุงเหล็กหมายเลข 3

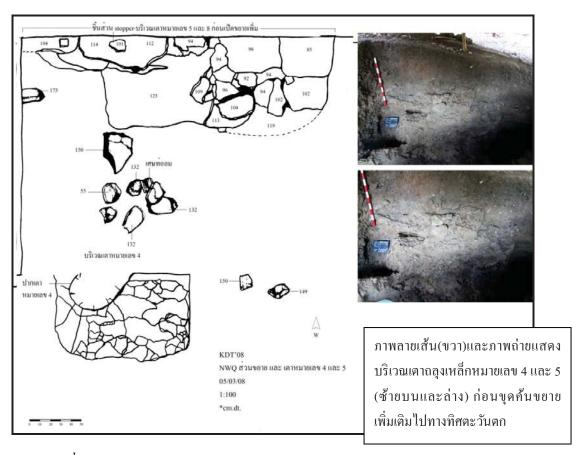


ร**ูปที่ 3-33** แสคงเตาถลุงเหล็กหมายเลข 3 หลุมขุดค้าที่ 1 ชั้นทับถมชั้นที่ 2 (ระดับสมมุติ 90-110 cm.dt.) กริค NEQ

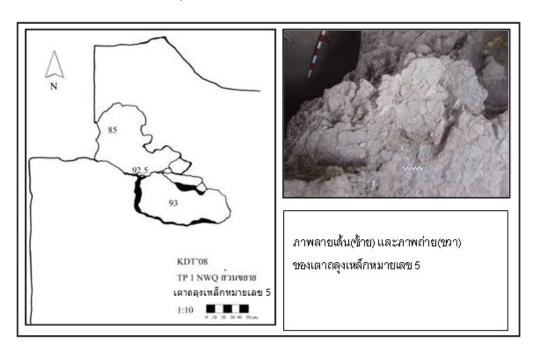
พบในหลุมขุดค้นที่ 1 ชั้นทับถมทางโบราณคดีชั้นที่ 2 ระดับความลึก 80-90 cm.dt. สภาพไม่สมบูรณ์ เนื่องจากการถูกทุบทิ้งและถูกรบกวนจากการก่อเตาถลุงหมายเลข 2

<u>เตาถลุงเหล็กหมายเลข 4</u>

รูปที่ 3-34 แสดงภาพลายเส้น และภาพถ่ายของเตาถลุงเหล็กหมายเลข 4 พร้อมภาพแนวตัดขวาง


พบในหลุมขุดค้นที่ 1 ชั้นทับถมทางโบราณคดีชั้นสมมุติที่ 3 และ 5 ระดับ ความลึกวัด ณ จุดสูงสุด 151 cm.dt. และจุดลึกสุด 170 cm.dt. ในการทำงานทางโบราณคดีเมื่อ พ.ศ. 2550 พบเฉพาะระดับพื้นใช้งานปากหลุม และบางส่วนของปากเตาเท่านั้น หลักฐานส่วนที่เหลือนั้น อยู่เข้าไปในผนังหลุมขุดค้นด้านทิศตะวันตก ต่อมาเมื่อดำเนินการขุดค้นทางโบราณคดีในปี พ.ศ. 2551 จึงได้ทำการขยายขนาดของหลุมขุดค้นเดิมเพื่อทำการศึกษาเพิ่มเติมเกี่ยวกับเนินถลุงโลหะ พร้อมทั้งขุดค้นเพิ่มเติมบริเวณเตาถลุงหมายเลข 4 อีกด้วย ลักษณะเป็นเตาถลุงที่สร้างโดยใช้วิธีการ ฉาบปั้นดินเหนียวขึ้นเป็นตัวเตา วางตัวในแนวตะวันตกเฉียงใต้-ตะวันออกเฉียงเหนือ

ร่องรอยของเตาหมายเลข 4 พบเหลืออยู่เฉพาะบริเวณพื้นใช้งานค้านปาก เตา และพื้นเตา แต่ไม่พบผนังเตา และส่วนท้ายเตา ซึ่งสันนิษฐานว่าอาจถูกรื้อหลังจากการถลุงครั้ง สุดท้าย หรืออาจทลายหลังจากถูกทับถม และจากการขุดค้นทำให้สันนิษฐานได้ว่าเตาถลุงหมายเลข 4 นั้นสร้างโดยใช้ตะกรันที่เกิดจากการถลุงเหล็กเป็นฐานรากรองรับและค้ำผนังของเตา โดยเริ่มจาก การถมตะกรันขึ้นเป็นชั้น และกันตะกรันเป็นช่องสำหรับสร้างเตา หลังจากนั้นจึงใช้ดินเหนียวฉาบ ขึ้นเป็นตัวเตา


หลักฐานทางโบราณคดีที่พบร่วมกับเตาถลุงเหล็กเตานี้ประกอบด้วย

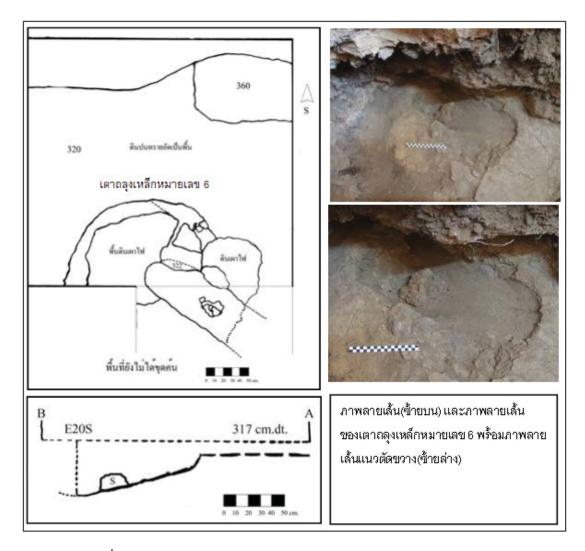
- 1. เศษผนังเตา พบกระจายบริเวณรอบเตา ยกเว้นค้านหน้าเตา สันนิษฐาน ว่าเป็นเศษผนังเตาที่ทลายลงหลังจากการใช้งานหรือฝังกลบ เศษผนังเตาเหล่านี้ทำให้สามารถ สันนิษฐานขนาดและขอบเขตของเตาได้ เนื่องจากยังคงมีเศษผนังเตาบางส่วนติดอยู่กับโครงสร้าง เดิมของเตา
- 2. ชิ้นส่วนท่อลมทำค้วยดินเผา พบบริเวณค้านปลายกันเตา มีคราบของ ตะกรันเกาะอยู่ และมีคราบสีเขียวมีความแวววาวซึ่งเกิดจากแร่ชาตุในดินและเถ้าที่ถูกความร้อนสูง มากภายในเตาถลุงเหล็กจนหลอมเหลวและเคลือบอยู่ที่ผิวท่อลมดินเผา

<u>เตาถลุงเหล็กหมายเลข 5</u>

รูปที่ 3-35 แสดงภาพลายเส้นและภาพถ่ายบริเวณเตาถลุงเหล็กหมายเลข 4 และ 5 ก่อนขุดค้นขยายเพิ่มเติมไปทางทิศตะวันตก

รูปที่ 3-36 แสดงภาพลายเส้นและภาพถ่ายของเตาถลุงเหล็กหมายเลข 5

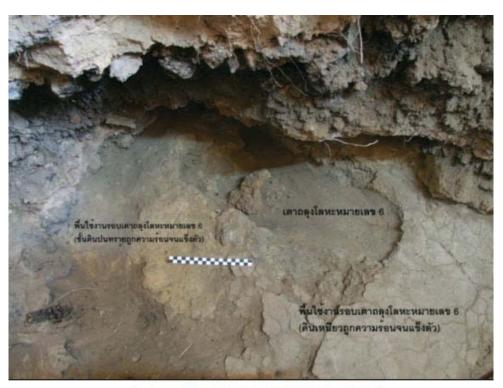
พบในหลุมขุดค้นที่ 1 ชั้นทับถมทางโบราณคดีชั้นสมมุติที่ 3 ระดับความ ถึกของจุดสูงสุดของเตาถลุง 85 cm.dt. (พื้นใช้งานรอบเตา) และจุดลึกสุด ซึ่งอาจเป็นส่วนก้นเตา 113 cm.dt. พบที่ตำแหน่งห่างจากผนังทิศตะวันออกส่วนขยาย 62 เซนติเมตร ผนังทิศใต้ส่วนขยาย 122 เซนติเมตร วางตัวซ้อนทับอยู่บนเตาหมายเลข 8 ร่องรอยของเตาถลุงเหล็กหมายเลข 5 เหลืออยู่ น้อยมากจึงไม่สามารถแสดงสภาพเดิมของเตา แต่อาจพออนุมานได้ว่าสภาพและรูปแบบของเตาคง มีลักษณะไม่แตกต่างไปจากเตาถลุงอื่นๆ ที่พบ คือ มีลักษณะเป็นเตาสร้างโดยปั้นดินขึ้นเป็นตัวเตา เช่นเดียวกับเตาถลุงที่พบในหลุมขุดค้นที่ 1 วางตัวในแนวตะวันออก-ตะวันตก

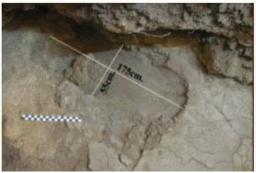

การขุดค้นบริเวณเตาถลุงหมายเลข 5 พบเพียงกองเสษก้อนดินเผาที่ สันนิษฐานว่าเป็นผนังเตาที่ผุพังเกือบหมด พื้นเตา และพื้นที่ใช้งานบริเวณปากเตา ปะปนเป็นกอง ทับอยู่บนเตาถลุงหมายเลข 8

สันนิษฐานว่าช่างอาจสร้างเตาถลุงหมายเลข 5 ซ้อนทับลงบนเตา หมายเลข 8 โดยอาจเป็นการเปลี่ยนหรือปรับปรุงเตาหลังจากไม่สามารถใช้งานต่อไปได้ โดยใช้วิธี สร้างซ้อนทับลงบนตำแหน่งเตาเดิม

หลักฐานทางโบราณคดีที่พบร่วมกับเตาถลุงเหล็กเตานี้ประกอบด้วย

- 1. ชิ้นส่วนผนังเตา และพื้นเตา เป็นดินเหนียวที่ถูกความร้อนจากการถลุง เหล็ก มีก้อนขนาดต่างๆ กันหลายชิ้น เกาะกลุ่มกันกองอยู่บนเตาถลุงเหล็กหมายเลข 8
- 2. พื้นใช้งานบริเวณปากเตา เป็นพื้นคินเหนียวขนาดกว้างประมาณ 50 เซนติเมตร ยาวประมาณ 100 เซนติเมตร พบเฉพาะส่วนค้านเหนือของเตา และอยู่ในระคับความลึก เคียวกับกองชิ้นส่วนเตาของเตาถลุงเหล็กหมายเลข 5

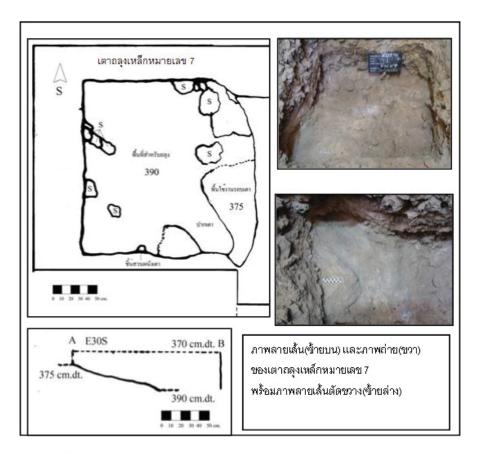

<u>เตาถลุงเหล็กหมายเลข 6</u>



รูปที่ 3-37 แสดงภาพลายเส้นและภาพลายเส้นของเตาถลุงเหล็กหมายเลข 6
พร้อมภาพลายเส้นแนวตัดขวาง

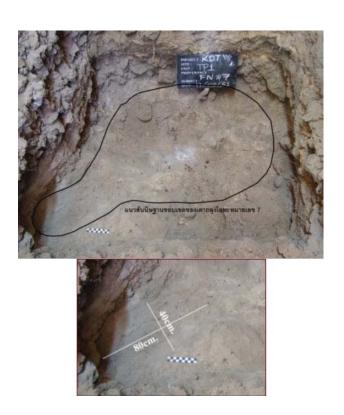
พบในหลุมขุดค้นที่ 1 ชั้นทับถมทางโบราณคดีชั้นสมมุติที่ 20 และ 21 จุดสูงสุดของเตา ซึ่งอาจเป็นขอบของปากเตา วัดระดับความลึกได้ 320 cm.dt. ส่วนจุดลึกสุดของเตา วัดระดับความลึกได้ 341 cm.dt. พบอยู่ที่ตำแหน่งห่างจากผนังทิศใต้ 110 เซนติเมตร ผนังทิศ ตะวันตก 81 เซนติเมตร มีลักษณะเป็นเตาถลุงที่สร้างโดยใช้ดินเหนียวปั้นขึ้นเป็นโครงสร้างของเตา และได้รับความร้อนจนเป็นชั้นแข็ง วางตัวในแนวทิศตะวันออกเฉียงใต้-ตะวันตกเฉียงเหนือ ขนาด ของเตาวัดจากหลักฐานที่พบจากการขุดค้น ยาว 175 เซนติเมตร กว้าง 55 เซนติเมตร ประกอบด้วย พื้นที่ใช้งานรอบเตา ซึ่งแบ่งออกได้เป็น 2 ส่วน คือ ส่วนที่เป็นแผ่นดินเหนียวแข็ง เนื่องจากถูกความ ร้อน และส่วนที่เป็นพื้นดินปนทรายที่อัดตัวแน่น โดยพื้นดินเหนียวเป็นส่วนที่อยู่รอบและใกล้เตา

ส่วนประกอบของเตาถลุงหมายเลข 6 พบตั้งแต่ปากเตาจนถึงกลางเตา และระหว่างการขุดค้นในตัวเตาพบว่าส่วนหน้าของเตาใกล้กับปากเตามีเศษก้อนดินอัดติดอยู่ สันนิษฐานว่าเป็นดินที่เกิดจากถมทับลงเป็นเตาเพื่อทำเป็นชั้นใช้งานใหม่ นอกจากนี้ยังพบเศษ ตะกรันที่เกิดจากการถลุงเหล็กติดอยู่กับกันเตาบริเวณกลางเตา อย่างไรก็ตามไม่สามารถขุดค้นเตา ถลุงหมายเลข 6 ต่อไปได้ เนื่องจากข้อจำกัดเรื่องพื้นที่



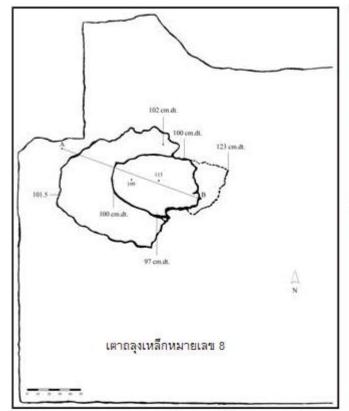
หลักฐานทางโบราณคดีที่พบร่วมกับเตาถลุงเหล็กหมายเลข 6 มีดังนี้

- 1. ชิ้นส่วนของผนังเตา ซึ่งหลุดออกมาจากเตาถลุง
- 2. เศษตะกรัน แยกเป็น 2 ส่วน คือ เศษตะกรันที่ยังคงติดอยู่กับกันเตา และเศษตะกรันที่ตกอยู่ในเตา แต่ไม่เชื่อมติดกับเตา


<u>เตาถลุงเหล็กหมายเลข 7</u>

รูปที่ 3-38 แสดงภาพลายเส้นและภาพถ่ายของเตาถลุงเหล็กหมายเลข 7
พร้อมภาพลายเส้นตัดขวาง

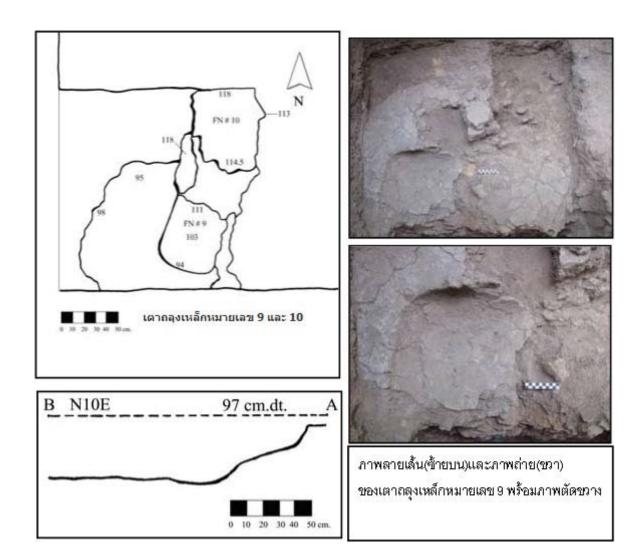
พบในหลุมขุดค้นที่ 1 ชั้นทับถมทางโบราณคดีชั้นสมมุติที่ 22-24 จุดสูงสุดของเตาวัดระดับความถึกได้ 375 cm.dt. และจุดถึกสุด 390 cm.dt. โดยเป็นเตาที่พบใน ระดับถึกที่สุดในการขุดค้นครั้งนี้ เตาทำโดยใช้ดินเหนียวปั้นขึ้นเป็นโครงสร้างของเตาและได้รับ ความร้อนจนจับตัวแข็ง ลักษณะโดยรวมไม่แตกต่างไปจากเตาอื่นๆ ที่พบในหลุมขุดค้น สร้างขึ้นใน ชั้นตะกรันที่เกิดจากการถลุงเหล็กครั้งก่อนหน้า โดยขุดหลุมตื้นๆ ในชั้นตะกรัน แล้วจึงใช้ ดินเหนียวปั้นและฉาบเป็นรูปทรงเตาในหลุมนั้น หลังจากนั้นอาจเผาหรืออุ่นเตาเพื่อให้แข็งตัว และ พร้อมสำหรับการใช้งาน ตัวเตาวางตัวในแนวทิศตะวันตกเฉียงเหนือ - ตะวันออกเฉียงใต้ ขนาดของ เตาวัดจากหลักฐานที่พบจากการขุดค้น ไม่รวมแนวสันนิษฐานของท้ายเตา ด้านยาวมีขนาด 80 เตนติเมตร ด้านกว้างมีขนาด 40 เตนติเมตร


ร่องรอยของเตาถลุงหมายเลข 7 พบตั้งแต่บริเวณปากเตาลงมาจนถึงกลาง เตา แต่บริเวณท้ายเตานั้นไม่พบหลักฐานที่สมบูรณ์ พบเศษตะกรันกระจายปนอยู่จำนวนมาก โดยกระจายอยู่ในตำแหน่งที่อาจแสดงถึงขอบเขตของบริเวณท้ายเตา บริเวณปากเตาพบชิ้นส่วนผนังเตาจำนวน 1 ชิ้นในตำแหน่งที่น่าจะ เชื่อมต่อกับส่วนของปากเตา และยังได้พบพื้นใช้งานรอบเตาที่เป็นลักษณะของดินเหนียวฉาบลงบน ชั้นตะกรัน แต่แตกต่างจากพื้นใช้งานของเตาอื่น คือ พื้นบริเวณปากเตา หรือพื้นที่รอบเตาของเตา อื่นๆ เป็นพื้นฉาบด้วยดินเหนียวบนพื้นหนาประมาณ 1-2 เซนติเมตร เมื่อแตกออกมีลักษณะเป็น แผ่นแยกออกจากกัน ยกเว้นเตาหมายเลข 7 ที่พบว่าเป็นพื้นชั้นดินหนาประกอบด้วยดินที่มีเม็ดทราย ละเอียดผสม อัดตัวแน่นเป็นเนื้อเดียวกัน ในระหว่างการขุดกันบริเวณเตาพบกลุ่มก้อนตะกรัน จำนวนมากในบริเวณที่เป็นจุดถลุงซึ่งแตกต่างจากที่พบในเตาหมายเลข 6 ที่พบเพียงก้อนเล็กขนาด ไม่เกิน 3 เซนติเมตร ก้อนตะกรันที่พบในเตาหมายเลข 7 นั้นบางส่วนมีรูปร่างเหมือนก้อนตะกรันที่ มีรูปทรงโค้งเว้าคล้ายกับส่วนโค้งของเตา และบางก้อนยังกงหลงเหลือเสษถ่าน ซึ่งเป็นเชื้อเพลิงใน การถลุงเหล็กอยู่ด้วย นอกจากนี้ยังพบว่ามีเสษตะกรัน และชิ้นส่วนผนังเตากระจายเป็นแนววงกลม ซึ่งอาจแสดงถึงขอบเขตของตัวเตา

หลักฐานทางโบราณคดีที่พบร่วมกับเตาหมายเลข 7 มีดังนี้

- 1. ชิ้นส่วนผนังเตาจำนวน 1 ชิ้นพบตรงด้านทิศตะวันออกของปากเตา ซึ่ง กาดว่าอาจเป็นผนังเตาที่หลุดออกมาจากเตา หลังจากที่ใช้เตาครั้งสุดท้ายก็เป็นได้
- 2. ก้อนตะกรันจากการถลุงเหล็ก มีรูปทรงไม่แน่นอน แต่บางก้อนมี ลักษณะด้านหนึ่งโค้งเหมือนก้นเตา หรือโค้งของผนังเตา นอกจากนี้บางก้อนยังพบเศษถ่านแทรก ปนอยู่ด้วย

<u>เตาถลุงเหล็กหมายเลข 8</u>

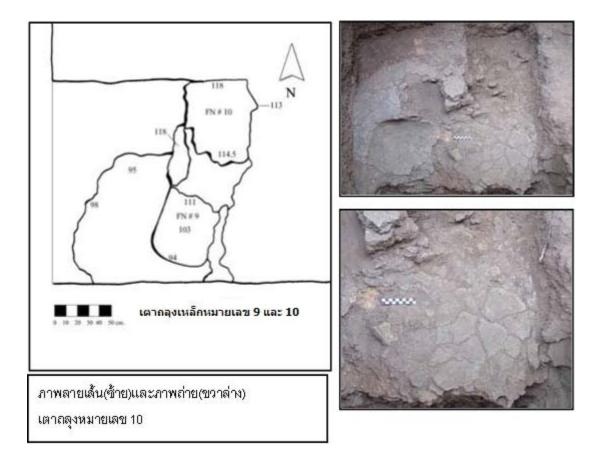


ภาพลายเล้น(ซ้าย)ภาพถ่าย(ชวา) และภาพ ลายเล้นแนวตัดชวาง(ถ่าง) ชองเตาถลุงหมายเลข 8

รูปที่ 3-39 แสดงภาพลายเส้น ภาพถ่าย และภาพลายเส้นแนวตัดขวางของเตาถลุงเหล็กหมายเลข 8

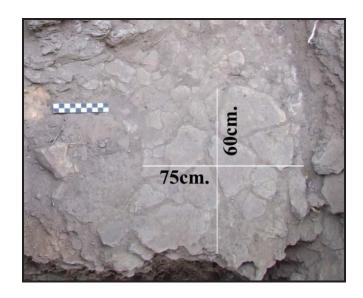

พบในหลุมขุดค้นที่ 1 ชั้นทับถมทางโบราณคดีชั้นสมมุติที่ 3 ระดับความ ถึกสมมติวัค ณ จุดสูงสุด 97 cm.dt. และจุดถึกสุด 118 cm.dt. ตำแหน่งห่างจากผนังทิศตะวันออก ส่วนขยาย 59 เซนติเมตร และห่างจากผนังทิศใต้ส่วนขยาย 115 เซนติเมตร พบอยู่ใต้เตาหมายเลข 5 ในตำแหน่งเดียวกัน หลักฐานที่พบนั้นมีเพียงส่วนของปากเตา และส่วนของกลางเตา แสดงให้เห็น ว่าช่างถลุงได้สร้างเตาหมายเลข 5 ซ้อนทับลง ณ จุดเดิมหลังจากที่เลิกใช้เตาหมายเลข 8 ขนาดของ เตาวัคตามด้านยาวได้ 105 เซนติเมตร ค้านกว้าง ณ หัวเตาได้ 35 เซนติเมตร และกลางเตาได้ 70 เซนติเมตร

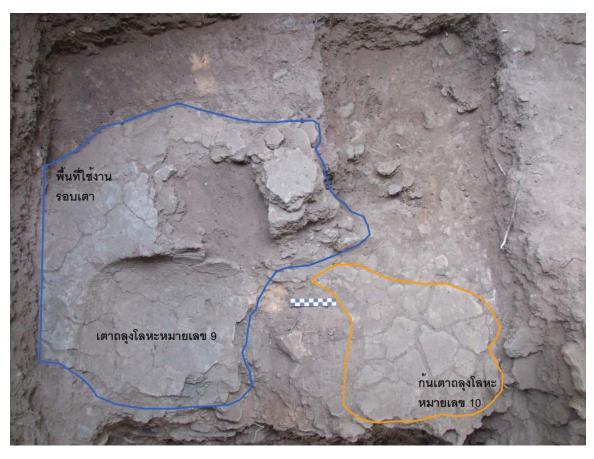
<u>เตาถลุงเหล็กหมายเลข 9</u>



รูปที่ 3-40 แสดงภาพลายเส้นและภาพถ่ายของเตาถลุงเหล็กหมายเลข 9
พร้อมภาพลายเส้นตัดขวาง

พบในหลุมขุดก้นที่ 1 ชั้นทับถมทางโบราณคดีชั้นสมมุติที่ 3 ระดับความ ถึกสมมุติวัด ณ จุดสูงสุดของเตาถลุง 95 cm.dt. และจุดถึกสุด 118 cm.dt. ห่างจากผนังทิศตะวันออก ส่วนขยาย 46 เซนติเมตร ติดกับผนังทิศใต้ส่วนขยาย โดยสร้างซ้อนทับเหนือบางส่วนของพื้นกันเตา ที่เป็นของเตาหมายเลข 10 พบหลักฐานที่เกี่ยวข้องกับเตาเฉพาะส่วนหัวของเตา และพื้นใช้งาน บริเวณปากเตาเท่านั้น โดยรูปแบบและลักษณะของเตาไม่แตกต่างไปจากเตาอื่นๆ ที่พบในหลุมขุด กันที่ 1 คือ สร้างจากดิน และเผาไฟ หรืออบไฟเพื่อให้ดินจับตัวแข็ง โดยปากเตามีรูปทรงเป็น สี่เหลี่ยมมุมมน ซึ่งต่างจากเตาถลุงหมายเลขอื่นที่ปากเตามีทรงโด้งมากกว่า นอกจากนี้ตรงบริเวณปลายเตาที่มีร่องรอยของการฉาบดินซ้ำ ซึ่งอาจเป็น การซ่อมแซมเพื่อการใช้งานต่อไป ขนาดของเตา วัดตามด้านยาวมีขนาด 65 เซนติเมตร ด้านกว้างมี ขนาด 55 เซนติเมตร




<u>เตาถลุงเหล็กหมายเลข 10</u>

รูปที่ 3-41 แสคงภาพลายเส้นและภาพถ่ายของเตาถลุงเหล็กหมายเลข 10

พบในหลุมขุดกันที่ 1 ชั้นทับถมทางโบราณคดีชั้นที่ 3 ระดับความลึกจาก ระนาบอ้างอิงสมมุติวัค ณ จุคสูงสุดของเตาถลุง 114.5 cm.dt. และจุคลึกสุด 118 cm.dt. ห่างจากผนัง ด้านทิศใต้ส่วนขยายประมาณ 50 เซนติเมตร ผนังทิศตะวันตกส่วนขยายประมาณ 100 เซนติเมตร สภาพไม่สมบูรณ์ พบเฉพาะพื้นกันเตาขนาดกว้าง 60 เซนติเมตร ยาวประมาณ 70 เซนติเมตร และ ไม่พบหลักฐานอื่นๆ ร่วม โดยพื้นกันเตาทางด้านทิศใต้ซ้อนอยู่ใต้เตาหมายเลข 9 ลักษณะของเตา พิจารณาจากหลักฐานที่หลงเหลืออยู่แสดงให้เห็นว่า ไม่มีแตกต่างจากเตาถลุงหมายเลขอื่น คือ เป็น เตาที่สร้างด้วยดินเหนียวปั้นขึ้นเป็นโครงสร้าง และใช้ไฟเผาให้จับตัวแข็ง

2. ตะกรันจากการถลุงแร่เหล็ก (Iron Smelting Slag)

เป็นโบราณวัตถุที่พบมากที่สุดในการขุดค้นเนื่องจากเป็นส่วนที่หลงเหลือ จากการถลุงเหล็ก แบ่งออกเป็น 2 ประเภท

• ก้อนตะกรันที่มีลักษณะเป็นฟอง มีรูพรุน รูปร่างไม่แน่นอน ซึ่งในหลุมขุดค้นที่ 2 พบรวมตัวติดกันเป็นก้อนขนาดใหญ่

ตะกรันจากการถลุงแร่เหล็กที่มีลักษณะเป็นแผ่น เนื้อค่อนข้าง
 เรียบ รูปร่างไม่แน่นอน เมื่อหักออกคูเนื้อมีลักษณะคล้ายแก้ว พบกระจายตัวทั่วไปทั้ง 2 หลุมขุดค้น

ตารางที่ 3-11 ตารางสรุปปริมาณโบราณวัตถุประเภทตะกรันจากการถลุงเหล็กที่พบในหลุมขุดค้นที่

หลุมขุดค้นที่	ชั้นทับถมชั้นที่	ระดับสมมติ	ปริมาตร	
		(CM,DT.)	(ลูกบาศก์เซนติเมตร)	
1	1 - 4	1 (Surface – 80)	1,380,998	
1	5	2 – 6 (80 – 130)	1,333,001	
1	6	7 (130 – 140)	208,560	
1	7	8 – 10(140 – 170)	1,601,862	
1	8	11 (170 – 180)	72,000	
1	9 - 12	11 – 14 (180 – 230)	296,346	

ตารางที่ 3-12 ตารางสรุปปริมาณโบราณวัตถุประเภทตะกรันจากการถลุงเหล็กที่พบในหลุมบุคค้นที่ 2

หลุมขุดค้นที่	ชั้นทับถมชั้นที่	ระดับสมมติ (CM.DT.)	ปริมาตร (ลูกบาศก์เซนติเมตร)	
2	1 – 2	1 (Surface – 220)	379,284	
2	3 - 5	2 – 31 (220 – 520)	2,662,959	

โครงการวิจัยได้ส่งตัวอย่างตะกรันจากการถลุงเหล็กจำนวน 2 ตัวอย่าง ให้ศูนย์เครื่องมือวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ช่วยดำเนินการวิเคราะห์องค์ประกอบ ทางเคมีของตะกรัน ด้วยอุปกรณ์ X-ray Fluoresence ได้ผลดังตารางต่อไปนี้

ตัวอย่าง	ปริมาณธาตุต่างๆ (ร้อยละ)				
หมายเลข	Al_2O_3	SiO ₂	FeO	Total	
A1	11.60	28.21	60.19	100.00	
B1	9.62	39.10	51.28	100.00	

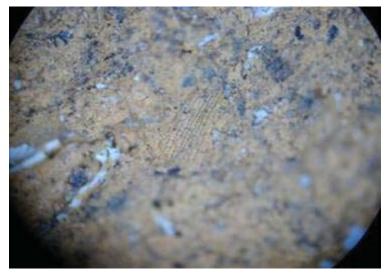
ผลการวิเคราะห์องค์ประกอบทางเคมีดังตารางนี้ แสดงให้เห็นว่าตะกรัน จากการถลุงเหล็กสมัยโบราณที่บ้านเขาดินใต้ เป็นตะกรันที่มีเหล็กเหลืออยู่ปริมาณค่อนข้างสูง อันเป็นลักษณะสามัญของตะกรันที่เกิดในการถลุงเหล็กด้วยกระบวนที่เรียกว่าการถลุงเหล็กแบบ

3. ชิ้นส่วนของท่อดินเผาหุ้มปลายท่อจากที่สูบลม (Tuyere)

ทำด้วยดินเผา ส่วนใหญ่มีสภาพไม่สมบูรณ์ ท่อดินเผาสำหรับหุ้มปลายท่อ จากที่สูบลมที่สมบูรณ์นั้น มีลักษณะเป็นท่อทรงกรวย มีช่องทะลุตลอดจากด้านโคนถึงด้านปลาย โดยด้านปลายซึ่งเป็นด้านที่ลมถูกพ่นออกจากที่สูบลมเข้าสู่เตาถลุงนั้น มีขนาดเล็กกว่าด้านโคนซึ่ง อยู่ติดกับผนังเตาถลุง ชิ้นส่วนของท่อดินเผาสำหรับหุ้มปลายท่อจากที่สูบลม ที่พบมีความหนาวัด จากผิวด้านนอกมายังด้านในระหว่าง 5-10 เซนติเมตร มีเส้นผ่าสูนย์กลางของช่องลมระหว่าง 4-11 เซนติเมตร พบทั้งชิ้นส่วนจากด้านปลายซึ่งเป็นทางออกของลม และชิ้นส่วนจากส่วนลำตัวซึ่งเป็น ด้านที่อยู่ติดกับผนังเตาถลุง

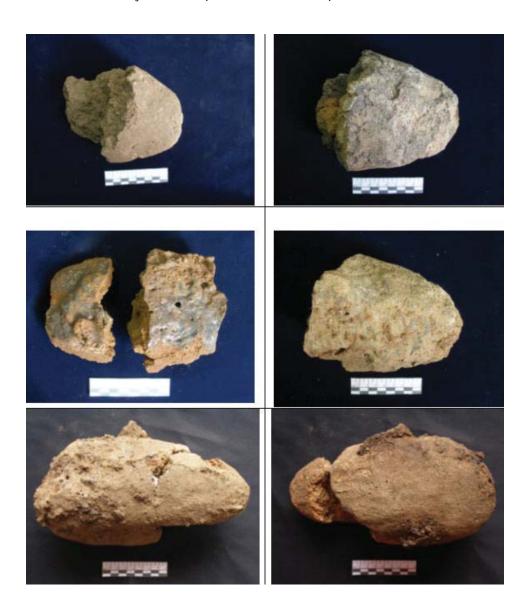
นอกจากนี้ยังมีการวิเคราะห์ระดับจุลภาค โดยคุณบัณฑิตย์ สมประสงค์ นักวิทยาศาสตร์ภาควิชาโบราณคดี คณะโบราณคดี มหาวิทยาลัยศิลปากร ดังนี้

1. ชิ้นส่วนของท่อดินเผาหุ้มปลายท่อจากที่สูบลม (Tuyere) จากหลุมขุด ค้นที่ 2 ชั้นดินทับถมที่ 4 พื้นที่ A ขนาดยาวประมาณ 11 เซนติเมตร เส้นผ่าศูนย์กลาง 9.5 เซนติเมตร ค้านในมีเส้นผ่าศูนย์กลาง 4 เซนติเมตร ลักษณะเนื้อประกอบด้วยแร่ควอร์ต (Quatz) ขนาดอนุภาค ทรายแป้ง (Silt) และแร่เหล็กผสมมีขนาดอนุภาคใหญ่กว่า การรับความร้อนมีอุณหภูมิไม่สูงมากจึง ทำให้เนื้อดินมีสีส้มและสีส้มอ่อน และการจับตัวของเนื้อดินไม่ดีจนทำให้มีรอยร้าวโดยทั่วไป ผิวค้านนอกพบรอยประทับ (Imprint) ของแกลบข้าว ยาวประมาณ 0.6 เซนติเมตร กว้างประมาณ 0.3 เซนติเมตร และมีเถ้าสีขาวของแกลบข้าวมีลักษณะเป็นจุดขนาดเล็กโดยทั่วไป ผิวค้านในท่อมี ลักษณะเรียบเนื้อดินมีจับตัวแข็งสีน้ำตาลปนเทา มีเศษตะกรันจากการถลุงโลหะขนาดเล็กติดอยู่


ด้านนอกของท่อลม ยาว ประมาณ 11 เซนติเมตร เส้นผ่านศูนย์กลาง 9.5 เซนติเมตร ท่อมีเส้นผ่าน ศูนย์กลาง 4 เซนติเมตร

ด้านตัดของของท่อลม
เส้นผ่านศูนย์กลาง 9.5
เซนติเมตร เส้นผ่าน
ศูนย์กลางของท่อด้านใน
4 เซนติเมตร

เศษตะกรันจากการถลุง โลหะ ที่ติดอยู่ด้านในท่อ ลม


รอยประทับของแกลบ ข้าว ยาวประมาณ 0.6 เซนติเมตร กว้าง ประมาณ 0.3 เซนติเมตร และเถ้าซึ่งสันนิษฐานว่า เป็นเถ้าจากแกลบข้าวบน ผิวด้านนอก ภายใต้กล้อง จุลทรรศน์กำลังขยาย 3x

ลักษณะเนื้อบริเวณขอบ ปากด้านในท่อลม มี ลักษณะจับตัวแข็งผิว เรียบ ภายใต้กล้อง จุลทรรศน์กำลังขยาย 1x

4. ก้อนดินเผาสำหรับอุดช่องดักตะกรันที่ผนังเตาถลุงแร่

ทำค้วยคินและเผาไฟ มีลักษณะเป็นก้อนรูปไข่ ปลายค้านหนึ่งของก้อนคิน เผาสำหรับอุคช่องคักตะกรันที่ผนังเตาถลุงแร่ มีร่องรอยการถูกไฟในอุณหภูมิสูง จนมีชั้นของ เคลือบเนื้อกล้ายแก้วเคลือบอยู่ วัตถุนี้อาจถูกใช้เป็นวัตถุอุคช่องคักให้ตะกรันไหลออกนอกเตาถลุง (Slag Tapping Hole) ซึ่งอยู่ที่ผนังเตาถลุงในระหว่างทำการถลุงเหล็ก

5. ชิ้นส่วนก้อนดินเผาไฟ

สันนิษฐานว่าเป็นชิ้นส่วนของผนังเตาถลุงแร่ พบกระจายแทรกปนทั่วไป ในชั้นของตะกรันจากการถลุงแร่เหล็ก บางชิ้นพบร่องรอยนิ้วมือปาคเพื่อตกแต่งผนังเตาถลุงให้ เรียบเป็นคินเหนียวเผาไฟจนจับตัวแข็ง พบว่าบางชิ้นมีการผสมแกลบไม้และมีแกลบข้าว หนา ประมาณ 2.4-5 เซนติเมตร สันนิษฐานว่าเป็นชิ้นส่วนของผนังเตา พบกระจายตัวโคยทั่วไป บางชิ้น พบร่องรอยนิ้วมือปาคเพื่อแต่งขึ้นรูปทรงของเตา

สามารถจัดแบ่งได้เป็น 3 ประเภท ได้แก่

- 1. ปากเตา (Furnace Mouth) มีลักษณะเป็นสัน
- 2. ผนังเตา (Furnace Ling) ด้านในเตา มีลักษณะเป็นแผ่นเรียบและ โค้งมน และมีคราบสีน้ำตาลแดงซึ่งสันนิษฐานว่าเป็นคราบตะกรันจากการถลุงโลหะ ผิวด้านนอกมีรอยนิ้ว มือ เพื่อแต่งขึ้นรูปเตา
 - 3. กันเตา (Furnace Floor) มีลักษณะเป็นแผ่นเรียบ และ โค้งมน

ตารางที่ 3-13 ตารางรายละเอียดชิ้นส่วนเตาถลุงเหล็กเพื่อสร้างภาพขนาดเตาฯ

หมายเลข	รหัส	ร่องรอย	รัศมี	กว้าง	ยาว	หนา
	โบราณวัตถุ	กิจกรรมมนุษย์	(cm.)	(cm.)	(cm.)	(cm.)
1	164/1	เตา#5	28	13	21	4
2	162/1	เตา#5	มากกว่า 28	8	9.5	3.5
3	164/1	เตา#5	7	10	11	3.5

6.ชิ้นส่วนตุ๊กตาดินเผา

พบในหลุมขุดค้นที่ 2 จำนวนรวมทั้งสิ้น 6 ชิ้น ลักษณะคล้ายรูปสัตว์ โดย มีชิ้นหนึ่งคล้ายรูปปั้นของวัว

7. ชิ้นส่วนภาชนะดินเผา แบ่งออกเป็น

ภาชนะเนื้อคืน (Earthenware)

หลุมขุดค้นที่ 1

รูปทรงภาชนะส่วนมากไม่สามารถระบุได้ มีลักษณะสีน้ำตาล สีส้ม สีเทา สีเทา-ดำ โดยมีความหนามากที่สุดประมาณ 1.9 เซนติเมตร มีความหนาน้อยที่สุด

- 1. ส่วนปากภาชนะ (Rim)
- 2. ส่วนใหล่ภาชนะ (Shoulder)
- 3. ส่วนลำตัวภาชนะ (Body)
- 4. ส่วนกั้นภาชนะ (Base)
- 5. ส่วนฐานภาชนะ (Pedestal)

การตกแต่งผิวภาชนะ ได้แก่

- 1. กดประทับลายเชื้อกทาบ เป็นการกดประทับด้วยเชื้อกควั่นลง
- 2. กดประทับลูกกลิ้ง เป็นการกดประทับด้วยลูกกลิ้งซึ่งมีลาย ลักษณะต่างๆ ลงบนเนื้อรอบตัวภาชนะ
- 3. ทาน้ำดิน เป็นทาน้ำแช่ดินเคลือบผิวภาชนะ เพื่อให้ผิวภาชนะ มีความมันวาว
- 4. ขูดขีด เป็นการใช้ไม้ปลายแหลมหรือของมีคมขูดขีดสร้าง ลวดลายลักษณะต่างๆ ลงบนเนื้อรอบตัวภาชนะ

หลุมขุดค้นที่ 2

การขึ้นรูป ได้แก่

- 1. การขึ้นรูปแป้นหมุน มีลักษณะเป็นร่องเส้นตรงแนวนอนผาด
- รอบตัวภาชนะ

บนเนื้อรอบตัวภาชนะ

2. การขึ้นรูปมือ มีลักษณะเป็นรอยเว้าลึกลงในเนื้อ ซึ่งส่วนมาก จะพบร่องรอยที่ด้านในของส่วนลำตัวภาชนะ

รูปทรงไม่สามารถระบุได้ มีลักษณะสีน้ำตาล สีส้ม สีเทา สีเทา-ดำ โดยความหนามากที่สุดประมาณ 1.1 เซนติเมตร และความหนาน้อยที่สุดประมาณ 0.3 เซนติเมตร และสามารถแบ่งเป็นส่วนต่างๆ ของภาชนะดินเผา เช่นเดียวกับหลุมขุดค้นที่ 1

การตกแต่งผิวภาชนะ ได้แก่

- 1. บูคขีด เป็นการใช้ไม้ปลายแหลมหรือของมีคมบูคขีดสร้าง ลวดลายลักษณะต่างๆ ลงบนเนื้อรอบตัวภาชนะ
- 2. บูดบีคลายซี่ไม้ เป็นการใช้ซี่ไม้หรือของมีคมบูดบีคสร้าง ลวคลายลักษณะต่างๆ ลงบนเนื้อรอบตัวภาชนะ

จากการวิเคราะห์ระดับจุลภาค พบร่องรอยต่างๆ ได้แก่

1. โบราณวัตถุหมายเลข 172/1 หลุมขุดค้นที่ 1 ชั้นทับถมทาง
โบราณคดีระดับชั้นสมมติที่ 10 ระดับ 160-170 cm.dt. กริด SWQ

ชิ้นส่วนภาชนะดินเผาเนื้อดิน (Earthenware) ส่วนลำตัวภาชนะ หนา 0.4 เซนติเมตร ด้านนอกตกแต่งด้วยการกดประทับลายเชือกทาบ และอาจจะมีการเคลือบด้วย น้ำเคลือบไม่สมบูรณ์ ด้านในมีเศษตะกรันจากการถลุงโลหะ เป็นก้อนกลมเส้นผ่านศูนย์กลางขนาด ประมาณ 1 เซนติเมตร เนื้อมีรูพรุนปริมาณมาก

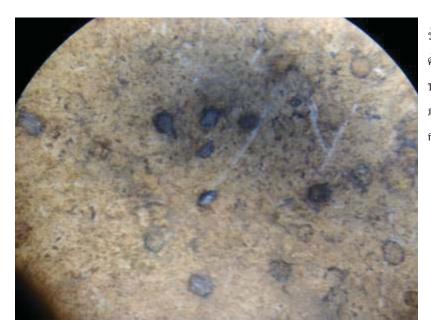
ด้านนอกของชิ้นส่วน ภาชนะคินเผาเนื้อคิน ส่วนลำตัวภาชนะ หนา 0.4 เซนติเมตร ตกแต่ง ด้วยการกคประทับลาย เชือกทาบ และอาจจะมี การเคลือบด้วยน้ำเคลือบ ไม่สมบูรณ์

ด้านในของชิ้นส่วน ภาชนะคินเผาเนื้อคิน ส่วนลำตัวภาชนะ หนา 0.4 เซนติเมตร และมีเศษ ตะกรันจากการถลุงโลหะ เส้นผ่านศูนย์กลาง ประมาณ 1 เซนติเมตร

¹ บัณฑิตย์ สมประสงค์ นักวิทยาศาสตร์ภาควิชาโบราณคดี คณะโบราณคดี มหาวิทยาลัย ศิลปากร

เสษตะกรันจากการถลุง
โลหะ เส้นผ่านศูนย์กลาง
ประมาณ 1 เซนติเมตร
เนื้อมีรูพรุนปริมาณมาก
ภายใต้กล้องจุลทรรศน์
กำลังขยาย 1x

2. โบราณวัตถุหมายเลข 0178/1 หลุมขุดค้นที่ 1 ชั้นทับถมที่ 7 ชั้นสมมติที่ 9 ระดับ 150-160 cm.dt. กริด SWQ


ชิ้นส่วนภาชนะดินเผาเนื้อดิน (Earthenware) ส่วนปากภาชนะ ทรงหม้อปากผาย เส้นผ่าศูนย์กลางปาก 18 เซนติเมตร (20%) ผิวด้านนอกมีร่องรอยคราบโลหะเป็น จุด เส้นผ่าศูนย์กลางประมาณ 0.1 เซนติเมตร

ด้านนอกของชิ้นส่วน ภาชนะคินเผาเนื้อคิน ส่วน ปากภาชนะทรงหม้อปาก ผาย เส้นผ่าสูนย์กลางปาก 18 เซนติเมตร ปรากฏ ร่องรอยคราบโลหะเป็นจุด เส้นผ่าสูนย์กลางประมาณ 0.1 เซนติเมตร

ด้านในของชิ้นส่วนภาชนะ ดินเผาเนื้อดิน ส่วนปาก ภาชนะทรงหม้อปากผาย เส้นผ่าสูนย์กลางปาก 18 เซนติเมตร

ร่องรอยคราบโลหะที่ผิว ด้านนอก เส้นผ่าศูนย์กลาง ประมาณ 0.1 เซนนิเมตร ภายใต้กล้องจุลทรรศน์ กำลังขยาย 1X

<u>ภาชนะเนื้อแกร่ง (Stoneware)</u> พบในหลุมขุดค้นที่ 1 เพียง 1 ชิ้น ชั้นทับ ถมทางโบราณคดีชั้นสมมุติที่ 11 ในพื้นที่ NWQ ส่วนขยาย

ภาชนะเนื้อละเอียด (Porcelain) พบเพียง 1 ชิ้นในหลุมขุดค้นที่ 1 ชั้นดิน ทับถมระดับผิวดิน (Surface) เป็นส่วนขอบปาก ไม่สามารถระบุรูปทรงได้ มีลักษณะเขียนน้ำเงิน ครามใต้เคลือบลายคดโค้งคล้ายพันธุ์พฤกษา เนื้อสีนวลขาว กว้าง 4 เซนติเมตร ยาว 4 เซนติเมตร หนา 0.4 เซนติเมตร ซึ่งขนาดและลวดลายที่เห็นได้น้อยมาก จึงยากต่อการสันนิษฐานเรื่องอายุสมัย ของชิ้นส่วนภาชนะดินเผาชิ้นนี้ แต่จากการเปรียบเทียบกับเครื่องถ้วยจีนที่พบในประเทศไทย ซึ่ง ทำการศึกษาโดยคุณปริวรรต ธรรมาปรีชาการ คุณกฤษฎา พิณศรี และคุณณัฎฐภัทร จันทวิช ทำให้ ทราบว่าชิ้นส่วนภาชนะดินเผาชิ้นนี้มีลักษณะคล้ายกับภาชนะเนื้อนวลเขียนลายน้ำเงินครามใต้ เคลือบที่ผลิตในประเทศจีน ซึ่งสันนิษฐานว่าคล้ายกับเครื่องถ้วยจีน 2 สมัย ได้แก่

สมัยราชวงศ์เอวี๋ยน หรือราชวงศ์หยวน ที่เริ่มผลิตขึ้นครั้งแรกเมื่อราวครึ่ง หลังพุทธศตวรรษที่ 19 โดยการใช้สีน้ำเงินจากแร่ โดบอลด์มาตกแต่งลวดลาย และมีลักษณะเด่นคือ เนื้อดินสีขาวแกร่ง ก้นหรือฐานภาชนะไม่เคลือบ รูปทรงที่พบเป็นจาน ชาม กระปุก และไหทรง กวน ตกแต่งลายกิเลน ลายเป็ดกอบัว ลายเห็ดหลิงจือ ลายกลีบบัว ลายพุทธมงคลแปด ลายปลา ท่ามกลางพันธุ์ไม้และลายผลแตงโม เป็นต้น โดยส่วนใหญ่จะพบที่เวียงท่ากาน อำเภอสันป่าตอง จังหวัดเชียงใหม่ ที่กรุวัดพระพายหลวง จังหวัดสุโขทัย ที่กรุวัดมหาธาตุ จังหวัดพระนครศรีอยุธยา ที่อำเภออมก๋อย จังหวัดเชียงใหม่ ที่วัดพระธาตุหริภุญไชย จังหวัดลำพูน ที่อำเภอเมือง จังหวัดตาก และในแม่น้ำแม่กลอง จังหวัดราชบุรี เป็นต้น

สมัยราชวงศ์หมิง ที่มีอายุราวต้นถึงกลางพุทธศตวรรษที่ 21 ผลิตจากเตา ในมณฑลเจียงซี ฝูเจี้ยน และกว่างตง รูปทรงส่วนใหญ่เป็นจาน ชาม กระปุก โถ และกุณฑี ลักษณะ ลวดลายของเครื่องถ้วยก็เป็นแบบที่ทำสืบต่อมาจากลวดลายของเครื่องลายครามจีนในสมัยราชวงศ์ หมิงตอนต้น เช่น ลายพุทธมงคลแปคสลับกับลายช่อดอกไม้ ลายมังกร ลายสามเกลอ เป็นต้น

ชิ้นส่วนภาชนะดินเผาเนื้อ
นวล (Porcelain)
ชั้นผิวดิน (Surface)
มีลักษณะเขียนลายน้ำเงิน
กรามใต้เคลือบลายคด โค้ง
กล้ายลายพันธุ์พฤกษา เนื้อ
สีขาวนวล สันนิษฐานว่า
ผลิตในประเทศจีน สมัย
ราชวงศ์เอวี๋ยน หรือหยวน
จนถึงสมัยราชวงศ์หมิง

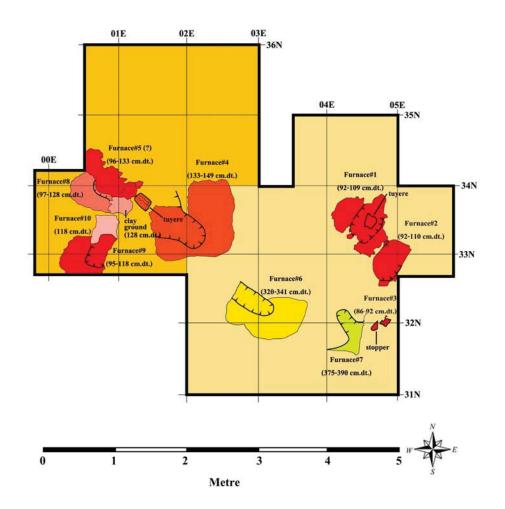
8. ฟันหมู (Lower Incisor)

จำนวน 1 ชิ้น พบในหลุมขุดค้นที่ 1 บริเวณพื้นที่ SWQ ในระดับสมมติ 100-110 cm.dt.

² ปริวรรต ธรรมาปรีชาการ และกฤษฎา พิณศรี เรียบเรียง, **ศิลปะเครื่องถ้วยในประเทศไทย** , (กรุงเทพฯ : บริษัท โอสถสภา (เต๊กเฮงอยู) จำกัด), หน้า 70-89. ; ณัฎฐภัทร จันทวิช, **เครื่องถ้วยจีน** ที่พบจากแหล่งโบราณคดีในประเทศไทย, (กรุงเทพฯ : กรมศิลปากร, 2537), หน้า 28-37.

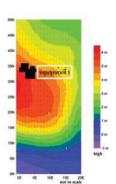
9.เศษกั่นของเครื่องมือเหล็ก

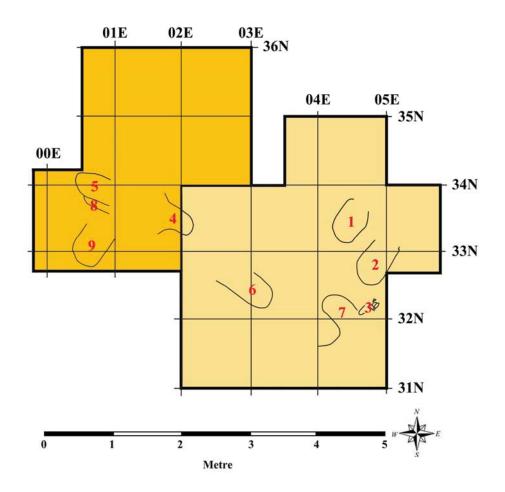
จำนวน 1 ชิ้นพบในหลุมขุดค้นที่ 1 ระดับสมมุติ 46 cm.dt. ขนาดยาว 9.5 เซนติเมตร เส้นผ่านศูนย์กลางประมาณ 1 เซนติเมตร


10.ห่วงโลหะ

น่าจะใช้เป็นปลอกเข้าค้ามกับเครื่องมือบางชนิด จำนวน 1 ชิ้น พบในหลุม ขุคค้นที่ 2 ระคับสมมุติ 220-300 cm.dt.

ลำดับชั้นวัฒนธรรมการถลุงเหล็กจากหลุมขุดค้นที่ 1

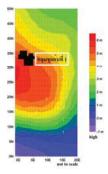

การขุดค้นในปีพ.ศ. 2550 พบซากเตาถลุงทั้งหมด 4 เตา คือ เตาหมายเลข 1-4 และในปี พ.ศ. 2551 พบเพิ่มอีกจำนวน 6 เตา คือ เตาหมายเลข 5-10 รวมหลักฐานประเภทเตา ถลุงที่พบในหลุมขุดค้นที่ 1 ทั้งหมด 10 เตา การกระจายตัวของเตาถลุงเหล็กสมัยโบราณที่ขุดค้นพบ มีดังแผนผังต่อไปนี้

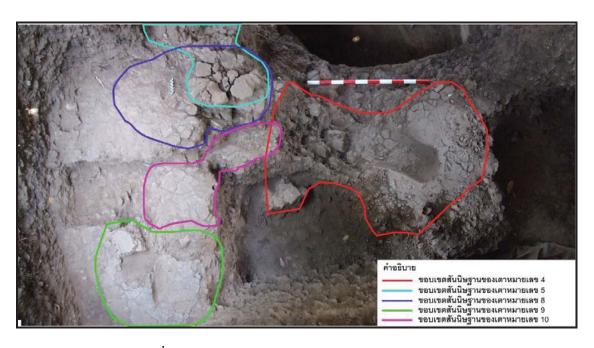


แหลงโบราณคดีบานเขาดินใต้ หมู่ 9 อ.บานกรวด จ.บุรีรัมย์ การขุดค[้]น ปี พ.ศ. 2550 - 2551

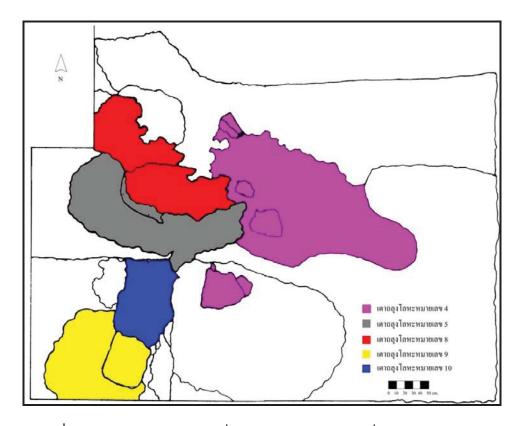
Living Angkor Road Phase II แผนผังการกระจายตัวของเตาถลุงเหล็ก หลุมขุดค[ื]นที่ 1

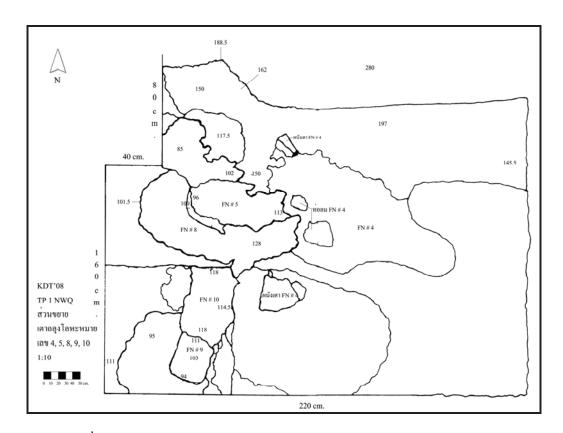
- ___การขุดคนปี พ.ศ. 2550 Excavation 2007
- ___การขุดคนปี พ.ศ. 2551 Excavation 2008



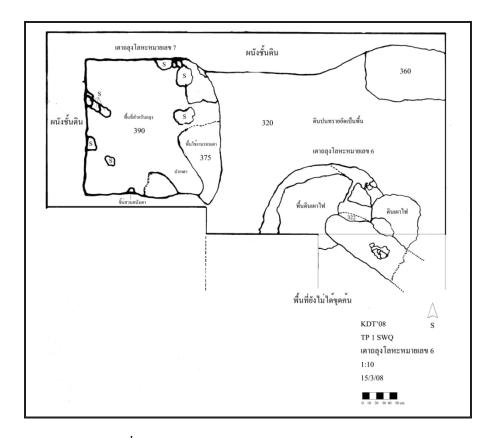

แหล่งโบราณคดีบานเขาดินใต้ หมู่ 9 อ.บานกรวด จ.บุรีรัมย์ การขุดค[ุ]้น ปี พ.ศ. 2550 - 2551

Living Angkor Road Phase II แผนผังการกระจายตัวของเตาถลุงเหล็ก หลุมขุดกุ้นที่ 1


__การขุดคนปี พ.ศ. 2550 Excavation 2007__การขุดคนปี พ.ศ. 2551 Excavation 2008


เตาถลุงที่พบมีการกระจายตัวในบริเวณแนวกลางหลุม และอยู่ในลักษณะ ซ้อนทับระหว่างกัน หากพิจารณาจากระดับความลึก พบว่าเตาหมายเลข 7 ปรากฏในระดับลึกที่สุด และเตาหมายเลข 1 และ 2 พบในระดับบนสุด

รูปที่ 3-42 ภาพถ่ายแสดงเตาหมายเลข 4, 5, 8, 9 และ 10


รูปที่ 3-43 ภาพลายเส้นแสดงเตาที่พบในบริเวณหลุมขุดค้นที่ 1 NWQ ส่วนขยาย

รูปที่ 3-44 ภาพลายเส้นแสดงเตาถลุงภายในหลุมขุดค้น TP 1 NWQ ส่วนขยาย พร้อมระดับสมมุติ ที่พบ

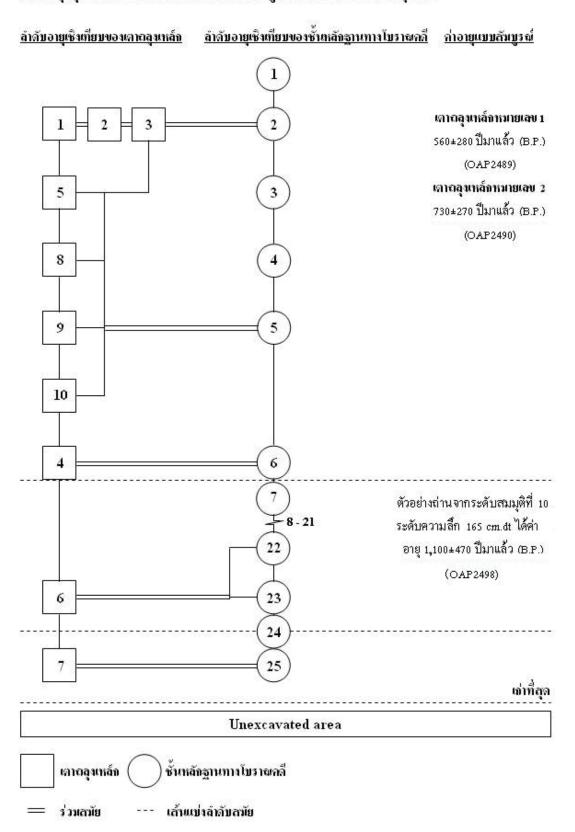
รู**ปที่ 3-45** ภาพถ่ายแสดงเตาหมายเลข 6 และ 7 ในบริเวณกริค SWQ (หมายเลข 6) และ SEQ (หมายเลข 7)

รูปที่ 3-46 ภาพลายเส้นแสดงเตาหมายเลข 6 และ 7 บริเวณกริค SWQ และ SEQ ของ TP1

เมื่อทำการศึกษาชั้นทับถมทางโบราณคดีภายในหลุมขุดค้นที่ 1 พบว่า ประกอบด้วยชั้นของตะกรันจากการถลุงเหล็ก และชั้นดินบางๆ รวมทั้งหมด 24 ชั้น ชั้นดังกล่าวนี้ เกิดจากกิจกรรมการถลุงโลหะที่เกิดขึ้นภายในพื้นที่ซึ่งสันนิษฐานว่ากิจกรรมดังกล่าวเกิดขึ้นอย่าง น้อยไม่ต่ำกว่า 8 ชั้น โดยสันนิษฐานจากหลักฐานที่ปรากฏบนชั้นดิน และเตาถลุงจำนวน 10 เตาที่ อนุมานได้ว่า การถลุงเริ่มต้นจากการสร้างเตาบนพื้นดิน เมื่อทำการถลุงเสร็จจะมีสิ่งเหลือทิ้งที่เกิด จากการถลุงเหล็กแต่ละครั้ง เช่น ตะกรันจำนวนมาก เศษผนังเตา เศษท่อลม เป็นต้น โดยส่วนหนึ่ง ถูกนำไปทิ้งบริเวณทิศใต้ของหลุมขุดค้น ซึ่งคือพื้นที่หลุมขุดค้นที่ 2

ขณะที่อีกส่วนหนึ่งกระจายทั่วไปบนระดับพื้นใช้งานของกิจกรรมครั้ง

ดังกล่าว



รูปที่ 3-47 ลักษณะชั้นทับถมทางโบราณคดีที่ประกอบด้วยชั้นตะกรันจากการถลุงเหล็ก สลับกับชั้นดินฉาบเป็นระดับพื้นที่ทำกิจกรรมการถลุงเหล็ก

เมื่อพิจารณาจากชั้นทับถมทางโบราณคดีพบว่าเมื่อทำการถลุงเสร็จใน คราวหนึ่ง ช่างอาจทำการเกลี่ยปรับพื้นที่โดยนำสิ่งเหลือทิ้งที่หลงเหลือจากการถลุงให้เป็นพื้นที่ เหมาะสำหรับก่อเตาเพื่อทำการถลุงครั้งต่อไป จากนั้นจึงนำดินเหนียว ซึ่งอาจได้มาจากบริเวณ ใกล้เคียงมาถมเพื่อปรับพื้นที่ หลักฐานสนับสนุนแนวคิดนี้ คือ ชั้นดินที่พบว่าเป็นการสลับระหว่าง ชั้นสิ่งเหลือทิ้งจากการถลุงและชั้นดินบางจำนวนหลายชั้น และลักษณะของเตาที่เป็นการก่อในชั้น ตะกรัน ขณะที่พื้นใช้งานรอบเตาอยู่ในระดับของชั้นดิน เช่นที่พบกับเตาหมายเลข 4 หมายเลข 6 และหมายเลข 7

ลำดับการปรากฏหรือการสร้างเตาถลุงเหล็กจากเตาที่มีลำดับการสร้างเก่า ที่สุดไปใหม่ที่สุด มีดังแผนภูมิต่อไปนี้

. แผนภูมิลำลับอายุเชิงเทียบของเกาฉลุงเหล็กสมัยโบราฉและชั้นหลักฐานทางโบราฉคดี พบในหลุมขุดอ้าเที่ 1 แหล่งโบราฉคดีบ้านเขาดินใต้ หมู่ 9 อำเภอบ้านกรวด จังหวัดบุรีรัมย์

สรุปผลการดำเนินการขุดค้นทางโบราณคดี

จากการดำเนินงานทางโบราณคดี แหล่งโบราณคดีบ้านเขาดินใต้ อ.บ้านกรวค จ.บุรีรัมย์ เป็นแหล่งโบราณคดีที่ปรากฏร่องรอยกิจกรรมการถลุงเหล็กของมนุษย์ในอดีต จากการขุดค้นทางโบราณคดี ซึ่งคำเนินการแยกเป็น 2 ช่วง คือในระหว่างวันที่ 1-31 พฤษภาคม พ.ศ. 2550 และ ระหว่างวันที่ 22 กุมภาพันธ์ - 22 มีนาคม 2551 พบว่า แหล่งโบราณคดีแห่งนี้ ปรากฏหลักฐาน กิจกรรมการถลุงเหล็กโดยการถลุงตามกระบวนการทางตรง (direct smelting process) ซึ่งเหล็กที่ได้ จากการถลุงแบบนี้ เหล็กที่เกิดขึ้นจะยังอยู่ในสภาพของแข็งที่ยังมีตะกรันแทรกปนอยู่ในเนื้อเหล็ก ซึ่งช่างจะต้องทำการกำจัดตะกรันที่หลงเหลืออยู่ด้วยการให้ความร้อนจนเป็นสีแดง เพื่อให้ตะกรัน นั้นหลอมเหลว แล้วนำไปตีเพื่อบีบอัดเนื้อเหล็ก รีดตะกรันแยกออกมาจากโครงสร้างภายใน ดังนั้น เหล็กที่ได้จะเป็นเหล็กอ่อนที่เรียกว่า Wrought iron ซึ่งเป็นเหล็กเกือบบริสุทธิ์ มีธาตุการ์บอนผสม น้อยกว่า 0.5% ซึ่งสามารถนำไปตีเป็นเครื่องมือเครื่องใช้ต่างๆ ได้

สำหรับรูปแบบของเตาถลุงที่พบจากการขุดค้นแหล่งโบราณคดีบ้านเขาดินใต้ ทั้งสองครั้ง พบว่า มีลักษณะเป็นเตาที่สร้างขึ้นด้วยดินเหนียวเป็นวัสดุหลัก ทำการปั้นขึ้นรูป และอาจให้ความ ร้อนเพื่อให้ดินเหนียวจับตัวแน่นและแข็งขึ้นพร้อมสำหรับใช้งาน โดยใช้การเผาในอุณหภูมิต่ำ หรือ ใช้ความร้อนระหว่างขั้นตอนการถลุง เป็นการเผาเตาครั้งแรก เพื่อให้เตาสามารถทนความร้อนใน อุณหภูมิสูงในระหว่างการถลุง แต่อย่างไรก็ตามความคงทนต่อการถลุงนั้นอาจขึ้นอยู่ส่วนผสมที่ใช้ สร้างเตาด้วย

รูปทรงของเตาถลุง สันนิษฐานจากหลักฐานซากของเตาถลุงทั้ง 10 เตา โดยเฉพาะจากซาก เตาถลุงหมายเลข 7 ซึ่งปรากฏว่ามีลักษณะคล้ายผลน้ำเต้า คือ บริเวณค้านหน้าที่เป็นส่วนยาวรี และ ส่วนค้านหลังที่เป็นส่วนโก้งกว้างเหมือนชาม จึงสันนิษฐานว่าน่าจะมีรูปแบบที่เรียกว่า เตาปล่อง (Shaft Furnace) ซึ่งโดยทั่วไปจะประกอบค้วย 4 ส่วนหลัก คือ พื้นที่ใช้งานรอบเตา (Activity floor or pavement) ปากเตาส่วนหน้า (Furnace mouth) ผนังเตา (Furnace lining) และกันเตา (Furnace floor) กล่าวคือ เป็นเตาถลุงที่มีส่วนปล่องสำหรับเป็นห้องสำหรับบรรจุแร่และถ่านเพื่อทำการถลุง ถึงแม้ว่าจะไม่พบส่วนที่สันนิษฐานว่าเป็นปล่อง หรือบริเวณใช้งานหลักของเตา พบเฉพาะพื้นที่ใช้ งานรอบเตา ปากเตาส่วนหน้า ผนังเตา และกันเตา ที่เป็นเช่นนี้อาจเป็นเพราะช่างได้ทำลายส่วน ดังกล่าวนี้เพื่อเก็บ "Bloom" หรือ ก้อนเหล็กไม่บริสุทธิ์ที่ได้จากการถลุง ออกจากเตา จึงไม่เหลือ หลักฐานแน่ชัด แต่ในการขุดก้นพบว่า ชิ้นส่วนผนังเตามีการกระจายตัวหนาแน่นบริเวณท้ายเตา รวมถึงลักษณะของชิ้นส่วนผนังเตาที่มีความโก้ง และบางชิ้นมีคราบตะกรันเกาะอยู่ ซึ่งทำให้ สามารถระบุตำแหน่งของส่วนปล่องได้ โดยตัวปล่องนั้นน่าจะมีเส้นผ่านศูนย์กลางประมาณ 60-80 เซนติเมตรแล้วแต่ขนาดของเตา

โดยมีส่วนหน้าที่ยังคงเหลืออย่างชัดเจน ซึ่งสันนิษฐานว่าเป็นบริเวณสำหรับเติมเชื้อเพลิง หรืออัดอากาศจากส่วนหน้าเตา ขณะที่ชิ้นส่วนของท่อดินเผาสำหรับหุ้มปลายท่อจากที่สูบลมที่พบ สันนิษฐานว่าน่าจะอยู่ด้านส่วนล่างของปล่องในตำแหน่งใดตำแหน่งหนึ่ง เพื่ออัดอากาศเข้าสู่เตา ถลุง

ส่วนช่องคักตะกรันนั้นอาจอยู่ในระดับที่ลึกกว่าเตา สำหรับคักเอาตะกรันที่เกิดจากการถลุง ออกจากเตาในระหว่างการถลุง แต่จากการขุดค้นไม่พบหลักฐานที่ชัดเจนเกี่ยวกับช่องคักตะกรัน และพื้นที่รับตะกรันเหลว แต่อย่างไรก็ตาม จากหลักฐานประเภทตะกรัน พบที่มีลักษณะเป็นริ้ว ซึ่งแสดงถึงตะกรันเหลวที่ถูกคัก และไหลออกมาตามช่องคักตะกรัน

ค่าอายุที่ได้จากการวิเคราะห์จากตัวอย่างถ่านที่ได้จากเตาถลุงโลหะในระดับ 80-90 cm.dt. และระหว่างชั้นดินเผาไฟ ซึ่งสันนิษฐานว่าเป็นชั้นกิจกรรมถลุงโลหะกับชั้นตะกรันที่เหลือจากการ ถลุงเหล็ก ในระดับ 160-170 cm.dt. แสดงในตาราง ดังนี้

ตารางที่ 3-14 ค่าอายุ Carbon – 14 ของตัวอย่างถ่านพบในการขุคค้นแหล่งถลุงเหล็กสมัยโบราณ บ้านเขาคินใต้³

ตัวอย่างหมายเลข	ตำแหน่งที่พบ	อายุ <bp></bp>
SF#0002	TP.1 NWQ level 1: Surface – 80 cm.dt.	260±210
SF#0004	TP.1 NEQ Furnace 1	560±280
SF#0022	TP.1 SWQ Furnace 2	730±270
SF#0008	TP.1 SWQ level10: 160 -170 cm.dt.	1100±470

ในเบื้องต้นจึงกำหนดค่าอายุของเตาถลุงอยู่ที่ประมาณ 700-800 ปีมาแล้ว ซึ่งน่าจะร่วมสมัย กับแหล่งเตาเผาภาชนะดินเผาบ้านกรวด ซึ่งกำหนดอายุราว พุทธศตวรรษที่ 18

สำหรับหลุมขุดกันหมายเลข 2 นั้นสันนิษฐานว่าน่าจะเป็นพื้นที่ใช้สำหรับทิ้งสิ่งที่เหลือจาก การถลุงเหล็กโดยเฉพาะ ซึ่งหลักฐานทางโบราณคดีที่พบนั้นประกอบไปด้วย ตะกรันจากการถลุง เหล็ก ชิ้นส่วนท่อดินเผาหุ้มปลายท่อลมจากที่สูบลม ชิ้นส่วนผนังเตา และชิ้นส่วนก้อนดินเผาอุด ช่องดักตะกรันที่ผนังเตา โดยพื้นที่บริเวณหลุมขุดกันที่ 2 นี้เชื่อได้ว่าน่าจะถูกใช้งานมานานอย่าง ต่อเนื่อง เนื่องจากไม่พบชั้นดินแทรกระหว่างชั้นตะกรันจากการถลุงเหล็ก มีเพียงความแตกต่างของ การเกาะตัวกันของกลุ่มตะกรันจากการถลุงเหล็ก ในแต่ละระดับที่น่าจะเป็นการแสดงถึงกิจกรรมที่ เกิดขึ้นหลายครั้ง

³ Thailand institute of Nuclear Technology (Public Organization)

ข้อคิดเห็นจากการศึกษาทางโบราณคดีของโครงการวิจัย

เมื่อนำผลการศึกษาทางโบราณคดีในแง่มุมต่างดังที่กล่าวถึงข้างต้นทั้งหมดมาประมวลเข้า ด้วยกัน สามารถช่วยให้เห็นความสำคัญเมื่อสมัยอดีตของพื้นที่ศึกษาซึ่งประกอบด้วยแนวเส้นทาง โบราณจากเมืองพระนครไปยังเมืองพิมาย และพื้นที่ปริมณฑลของแนวเส้นทางนี้ได้ชัดเจนขึ้น

แม้ว่ามีหลักฐานว่าแหล่งชุมชนสมัยโบราณที่พบในพื้นที่นี้บางแห่ง ปรากฏขึ้นตั้งแต่ยุก ก่อนประวัติสาสตร์ตอนปลาย แต่ข้อมูลทางโบราณคดีส่วนใหญ่บ่งชี้ว่าเมื่อช่วงเวลาประมาณ พุทธสตวรรษที่ 15-17 นั้น พื้นที่ศึกษาในโครงการนี้ อันประกอบด้วยแนวเส้นทางโบราณจากเมือง พระนครไปยังเมืองพิมาย และพื้นที่ปริมณฑลของแนวเส้นทาง จึงกลายเป็นพื้นที่ที่มีความสำคัญใน ฐานะที่เป็นสื่อและช่องทางเชื่อมโยงแหล่งหน้าที่ต่างๆ เข้าด้วยกันเป็นเครือข่ายทางวัฒนธรรมที่มี ความสัมพันธ์กันและต่างพึ่งพากัน รวมทั้งมีพัฒนาการและความเจริญรุ่งเรืองร่วมกันไปทั้งเครือข่าย วัฒนธรรม แหล่งหน้าที่ต่างๆ กันเหล่านั้น อย่างน้อยได้แก่ชุมชนที่อยู่อาสัยประเภทหมู่บ้าน เกษตรกรรมขนาดต่างๆ สาสนสถานที่มีหน้าที่ด้านสาสนาความเชื่อ และแหล่งหัตถกรรมและ อุตสาหกรรมที่มีหน้าที่เชิงเสรษฐกิจที่ผลิตสิ่งของสนองตอบต่อความต้องการของผู้คนหรือตลาดใน เครือข่าย ซึ่งอย่างน้อยก็ได้แก่แหล่งผลิตเหล็กและภาชนะดินเผา

แหล่งโบราณคดีที่ศึกษาในครั้งนี้ มีหลายแห่งมากที่สามารถพัฒนาเป็นแหล่งเรียนรู้ ประวัติ ความเป็นมาของสังคมและวัฒนธรรมท้องถิ่น รวมทั้งแหล่งเรียนรู้เรื่องความสัมพันธ์ ความผูกพัน และภูมิปัญญาพื้นถิ่นของประชากรท้องถิ่นเมื่อสมัยอดีต โดยเฉพาะหากสามารถดำเนินการพัฒนา ให้เป็นแหล่งทัศนศึกษาเพื่อการเรียนรู้ตลอดชีพและการเรียนรู้ตามอัธยาศัยแล้วน่าจะสามารถ เอื้ออำนวยให้เกิดพัฒนาการทางเสรษฐกิจและคุณภาพชีวิตของประชากรในปัจจุบันตามมาได้

บทที่ 4

การค้นคว้าและวิธีการทางด้านธรณีฟิสิกส์

4.1 การค้นคว้าและวิธีการทางด้านธรณีฟิสิกส์บริเวณแหล่งถลุงเหล็กโบราณ บ้านเขาดิน ใต้ อำเภอบ้านกรวด จังหวัดบุรีรัมย์

4.1.1 ความนำ

1. แหล่งเตาถลุงโลหะ บ้านเขาดินใต้ อำเภอบ้านกรวด จังหวัดบุรีรัมย์

โครงการวิจัยทางด้านโบราณคดีในภาคตะวันออกเฉียงเหนือของประเทศไทยของ สำนักงานโบราณคดี กรมศิลปากร ได้ตรวจพบแหล่งถลุงเหล็กโบราณในพื้นที่ของอำเภอบ้านกรวด จังหวัดบุรีรัมย์ มากว่า 20 ปีแล้ว แหล่งถลุงเหล็กโบราณในบริเวณหมู่บ้านเขาดินใต้เป็นหนึ่งใน แหล่งถลุงเหล็กโบราณที่ได้ค้นพบในช่วงเวลาดังกล่าว

การศึกษาด้านธรณีฟิสิกส์ในแหล่งถลุงเหล็กโบราณ ในบริเวณหมู่บ้านเขาดินใต้ มีวัตถุประสงค์เพื่อศึกษาความเป็นไปได้ในการประยุกต์ใช้วิธีการทางด้านธรณีฟิสิกส์เพื่อกำหนด ตำแหน่งของเตาถลุงเหล็กโบราณ หรือวัสดุที่หลงเหลืออยู่จากกิจกรรมถลุงเหล็กโบราณในบริเวณ เนินดินแห่งหนึ่งของหมู่บ้านเขาดินใต้ ซึ่งคาดว่าเป็นแหล่งเตาถลุงเหล็กโบราณ สำหรับการ วางแผนการดำเนินการขุดค้นทางด้านโบราณคดีต่อไป

2. การศึกษาด้านธรณีฟิสิกส์

วิธีการค้านธรณีฟิสิกส์สามารถประยุกต์ใช้เพื่อกำหนดตำแหน่งโบราณสถานหรือโบราณวัตถุซึ่งถูกฝังอยู่ใต้ดินในระคับตื้นใค้ดีโดยการใช้ประโยชน์ในความแตกต่างของสมบัติทางกายภาพของโบราณสถานและดินที่อยู่ในบริเวณข้างเคียง เช่น วิธีวัดค่าสนามแม่เหล็กโลกจะใช้ประโยชน์จากสมบัติกวามเป็นแม่เหล็กที่แตกต่างกันในขณะที่วิธีเรคาร์หยั่งความลึกของชั้นดินจะอาศัยสมบัติสภาพยอมทางไฟฟ้า (electric permittivity) หรือความเร็วของคลื่นแม่เหล็กไฟฟ้าที่แตกต่างกัน อย่างไรก็ตามเนื่องจากโบราณสถานหรือโบราณวัตถุที่ค้นหามักจะถูกฝังอยู่ในระคับตื้นเช่น ลึกน้อยกว่า 1 เมตร และมีความกว้างน้อยกว่า 1 เมตร การเลือกใช้วิธีธรณีฟิสิกส์ที่เหมาะสมจะต้องพิจารณาถึงความสามารถในการจำแนกวัตถุทั้งในคิ่งและแนวราบโดยเหตุที่การวัดค้านธรณีฟิสิกส์ส่วนใหญ่จะทำการเก็บข้อมูลบนผิวคิน ดังนั้นการกำหนดตำแหน่งของโบราณสถานหรือโบราณวัตถุด้วยวิธีธรณีฟิสิกส์จึงสามารถคำเนินการได้อย่างรวดเร็ว และนิยมนำมาประยุกต์ใช้

วิธีวัดค่าสนามแม่เหล็กโลกเป็นวิธีที่นิยมนำมาใช้ในกรณีที่วัตถุเป้าหมายเป็นสาร แม่เหล็กที่มีค่าสภาพรับไว้ได้ทางแม่เหล็กสูงกว่าดินท้องที่ เช่น ตะกรันในแหล่งเตาถลุงโลหะ โบราณ ตะกรันเหล่านี้จะมีส่วนผสมของเหล็กมากกว่าดินในบริเวณข้างเคียง หรือมีสภาพรับไว้ได้ ทางแม่เหล็กสูงกว่าดินท้องที่ ดังนั้นการปรากฏอยู่ของตะกรันในแหล่งเตาถลุงโลหะจะทำให้ สนามแม่เหล็กโลกในบริเวณดังกล่าวถูกรบกวน วิธีการวัดค่าสนามแม่เหล็กจึงเป็นการตรวจสอบ บริเวณที่สนามแม่เหล็กของโลกถูกรบกวนไป ตัวอย่างการประยุกต์ใช้วิธีการการวัดสนามแม่เหล็ก ในงานโบราณคดี ได้แก่ ปรีชา เล่าซู (2538) Chavez et al.(2001) Wood et al. (2004) Chianese et al.(2004) Valfidis et al. (2005) และ Ansoy et al. (2007) เป็นต้น

วิธีการหยั่งลึกชั้นดินด้วยคลื่นเรดาร์ เป็นวิธีการที่ได้รับความนิยมในการนำมาใช้ เพื่อการกำหนดตำแหน่งของโบราณสถานใต้ดิน โดยอาศัยหลักการส่งพัลส์สัญญาณแม่เหล็กไฟฟ้า ความถี่สูง หรือย่านความถี่คลื่นเรดาร์ เช่น พัลส์เรดาร์ซึ่งมีความถี่กลาง 200 MHz ลงไปในดิน เมื่อพัลส์เรดาร์เดินทางถึงผิวรอยต่อระหว่างชั้นดิน หรือผิวรอยต่อระหว่างดินกับโบราณวัตถุใต้ดิน ที่มีสภาพยอมให้ผ่านได้ทางไฟฟ้า (electric permeability) หรือความเร็วของคลื่นแม่เหล็กไฟฟ้า ต่างกัน พัลส์เรดาร์ส่วนหนึ่งจะสะท้อนกลับมายังผิวดินและถูกตรวจจับไว้โดยสายอากาศรับ สัญญาณของเครื่องมือวัด ตัวอย่างการประยุกต์ใช้วิธีการหยั่งลึกชั้นดินด้วยคลื่นเรดาร์ในงานด้าน โบราณคดีได้แก่ กรณีเกาะรัตนโกสินทร์ (วรวุฒิ โลหะวิจารณ์, 2543) กรณีสุสานวิลันดา (อภิชาติ พัฒนะวิริยะพิศาล, 2542) กรณีแหล่งโบราณคดีในแคนาดาและสหรัฐอเมริกา (Vaughan, 1986; Bevan, 1991; Sternberg and McGill, 1995) เป็นต้น

4.1.2 วัตถุประสงค์

เพื่อกำหนดตำแหน่งของเตาถลุงโลหะในบริเวณแหล่งเตาถลุงโลหะบ้านเขาดินใต้ อำเภอ บ้านกรวด จังหวัดบุรีรัมย์ โดยประยุกต์ใช้วิธีธรณีฟิสิกส์ซึ่งประกอบด้วยการวัดค่าสนามแม่เหล็ก โลก (Total magnetic field measurement) และเรดาร์หยั่งความลึกของชั้นดิน (GPR measurement)

4.1.3 วิธีดำเนินการศึกษา

1. พื้นที่ศึกษา

พื้นที่ศึกษาอยู่ในหมู่บ้านเขาดินใต้ อำเภอบ้านกรวด จังหวัดบุรีรัมย์ หรืออยู่ ระหว่างพิกัด 293048E ถึง 293066E และ 1596984N ถึง 1597036N ของระบบพิกัด WGS-84 พื้นที่

2. การวัดค่าสนามแม่เหล็กรวมของโลก

ทำการวัดค่าสนามแม่เหล็กรวมของโลกจำนวน 21 แนววัด (แนววัด 0E ถึงแนววัด 20E) คังแสดงในรูปที่ 4-3 โดยแนววัดทุกแนววางตัวอยู่ในทิศใต้-เหนือ (00N ถึง 50N) ด้วย ระยะห่างระหว่างแนววัดเท่ากับ 1.0 เมตร และระยะห่างระหว่างจุดวัดในแต่ละแนววัดเท่ากับ 1.0 เมตร จำนวนจุดวัดรวมทั้งสิ้น 400 จุด

ใช้เครื่องมือ Proton Precession Magnetometer ยี่ห้อ Geometric รุ่น G-856 จำนวน 2 ชุด โดยแต่ละชุดจัดวางหัววัดให้อยู่สูงจากพื้น 1.85 เมตร โดย Proton magnetometer ชุดที่หนึ่ง หรือ Rover Unit ใช้สำหรับวัดค่าสนามแม่เหล็กรวมของโลกที่จุดวัดต่างๆ ในพื้นที่ศึกษา ส่วน Proton magnetometer ชุดที่สอง หรือ Base Unit ใช้ทำหน้าที่บันทึกการแปรผันของสนามแม่เหล็ก รวมโลกตามเวลาที่จุดวัดฐาน (base station) ซึ่งจะทางด้านใต้ของพื้นที่ศึกษา และจะนำมาใช้เพื่อทำการปรับแก้ คริฟท์ หรือการเปลี่ยนแปลงของสนามแม่เหล็กรวมของโลกตามเวลาที่วัดได้ที่จุดวัดต่างๆ ในพื้นที่ศึกษา

พล๊อตแผนที่ค่าสนามแม่เหล็กรวมของโลกที่ผิดปกติของพื้นที่ศึกษา โดยค่า สนามแม่เหล็กรวมผิดปกติได้จากการหักลบค่าสนามแม่เหล็กโลกที่ไว้ได้ออกจากค่าสนามแม่เหล็ก ภูมิหลังของพื้นที่ศึกษา ทำการวิเคราะห์ข้อมูลเพื่อกำหนดตำแหน่งและความลึกของวัตถุผิดปกติ ทางแม่เหล็กในพื้นที่ศึกษา

3. การสำรวจเรดาร์หยั่งความลึกชั้นดิน (Ground Penetrating Radar; GPR)

ทำการสำรวจเรดาร์หยั่งความลึกชั้นดิน จำนวน 21 แนววัด (แนววัด 0E ถึง แนววัด 20E) ดังแสดงในรูปที่ 4-4 แนววัดแต่ละแนวยาวเท่ากับ 50 เมตร (00N ถึง 50N) โดยมีระยะห่าง ระหว่างแนววัดเท่ากับ 1 เมตร และระยะห่างระหว่างจุดวัดในแต่ละแนววัดเท่ากับ 0.25 เมตร

การสำรวจเรคาร์หยั่งความลึกชั้นคิน ใช้เครื่องมือ RAMAC/GPR เลือกใช้ สายอากาศรับและส่งสัญญาณที่มีความถี่กลางเท่ากับ 200 MHz โดยจัดให้สายอากาศส่งสัญญาณ และสายอากาศรับสัญญาณอยู่ห่างกันเท่ากับ 0.6 เมตร

การประมวลผลข้อมูลใช้โปรแกรม Interprex/GRADIX โดยมีขั้นตอนในการ ประมวลผลดังต่อไปนี้ คือ (1) dewow หรือการกรองสัญญาณรบกวนที่มีความถี่ต่ำกว่า 20 MHz ออก (2) set time zero ตั้งเวลาเริ่มต้นของสัญญาณให้เป็นศูนย์ (3) static correction หรือ การจัดวาง

4.1.4 ผลการศึกษา

1. ผลการวัดค่าสนามแม่เหล็กรวมของโลก

ค่าผิดปกติของสนามแม่เหล็กรวมของโลกในหน่วยนาโนเทสลา (nT) ของแหล่ง เตาถลุงโลหะโบราณบ้านเขาดินใต้ อำเภอบ้านกรวด จังหวัดบุรีรัมย์ แสดงด้วยแผนที่เฉดสี ดังรูปที่ 4.5 (ข)

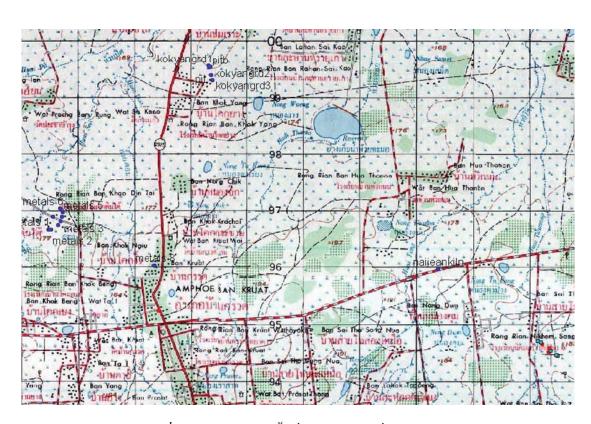
ในบริเวณตอนใต้ของพื้นที่ศึกษา หรือ พื้นที่ระหว่าง 10N ถึง 22N ซึ่งมีลักษณะ เป็นใหล่ของเนินดินที่มียอดสูงประมาณ 5 เมตร เราจะสังเกตเห็นค่าผิดปกติของสนามแม่เหล็กรวม ที่มีค่าต่ำกว่า -400 nT แสดงด้วยแถบสีน้ำเงินที่ตำแหน่ง 03E-15E และ 17N-22N โดยมีความยาวใน แนวตะวันออก-ตะวันตกประมาณ 10 เมตร และมีความกว้างในแนวเหนือใต้ประมาณ 5 เมตร และ ค่าผิดปกติของสนามแม่เหล็กรวมที่มีค่าสูงกว่า 600 nT แสดงด้วยแถบสีแดงที่ตำแหน่ง 00E-15E และ 08N-15N โดยมีความยาวในแนวตะวันออก-ตะวันตกประมาณ 15 เมตร และมีความกว้างใน แนวเหนือใต้ประมาณ 5 เมตร ในขณะที่พื้นที่ส่วนอื่นมีค่าผิดปกติในสนามแม่เหล็กรวมของโลก -400 nT ถึง 100 nT และอาจพิจารณาเป็นค่าผิดปกติภูมิหลังของสนามแม่เหล็กรวมของโลกในพื้นที่ ศึกษานี้ ค่าผิดปกติในสนามแม่เหล็กรวมของโลกในที่นที่ ศึกษานี้ ค่าผิดปกติในสนามแม่เหล็กรวมของโลกในบริเวณทางด้านใต้ของพื้นที่ศึกษาระหว่าง 8N-22N และ 0E-15E น่าจะมีสาเหตุมาจากวัตถุใต้ผิวดินที่มีสภาพความแม่เหล็กสูงกว่าดินท้องที่ ซึ่ง อาจจะเป็นบริเวณของเตาถลุงโลหะ หรือบริเวณที่ตะกรันของการถลุงโลหะถูกนำมากองรวมกันไว้

แบบจำลองของวัตถุผิดปกติทางแม่เหล็กของแนววัด มีรูปทรงเป็นแผ่นมวลเพื่อ กำหนดตำแหน่งและความลึกของวัตถุผิดปกติทางแม่เหล็กที่เป็นต้นเหตุของค่าผิดปกติของ สนามแม่เหล็กรวมของโลก ดังรูปที่ 4.6 (ข) ได้สร้างเป็นรูปแผ่นมวล และคาดหมายว่าวัตถุผิดปกติ ทางแม่เหล็กเหล่านี้เป็นส่วนของโครงสร้างเตาถลุงโลหะที่ยังคงหลงเหลืออยู่

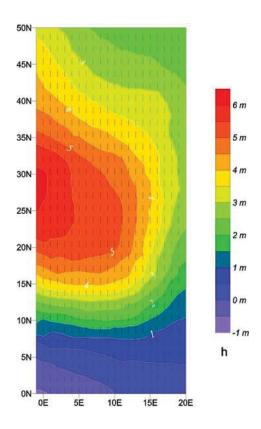
2. ผลการสำรวจเรดาร์หยั่งความลึกชั้นดิน

แผนภาพเรคาร์ของแนววัคทั้ง 20 แนว ประกอบด้วยแนววัค 01E ถึง 20E แสดงไว้ ในรูปที่ 4-7 รูปที่ 4-8 รูปที่ 4-9 รูปที่ 4-10 และรูปที่ 4-11 พร้อมกับตำแหน่งที่สัญญาณเรคาร์มี ตำแหน่งที่มีสัญญาณเรคาร์ผิดปกติทั้งหมดในพื้นที่สำรวจแสดงไว้ในรูปที่ 4-12 ตำแหน่งเหล่านี้กาดว่าเป็นตำแหน่งของวัตถุผิดปกติที่ถูกฝังอยู่ใต้ผิวดิน นอกจากนั้นจะสังเกตเห็น ว่าในบริเวณตอนใต้ของพื้นที่สำรวจ หรือพื้นที่ระหว่าง 00N ถึง 20N เราตรวจเจอว่าเป็นบริเวณที่มี สนามแม่เหล็กโลกผิดปกติด้วยเช่นกัน ในขณะที่บริเวณตอนเหนือของพื้นที่สำรวจ หรือพื้นที่ ระหว่าง 20N ถึง 50N เราตรวจพบว่าสนามแม่เหล็กโลกมีค่าปกติในบริเวณดังกล่าว ดังนั้นจึงคาดว่า บริเวณตอนใต้ของพื้นที่สำรวจ มีวัตถุผิดปกติที่ถูกฝังอยู่ใต้ผิวดินมีสมบัติกวามเป็นแม่เหล็กสูงกว่า ดินบริเวณข้างเคียง วัตถุผิดปกติเหล่านี้อาจได้เป็นกองขี้แร่ หรือ ส่วนใดส่วนหนึ่งของเตาถลุงโลหะ ในขณะที่วัตถุผิดปกติใต้ผิวดินในบริเวณตอนเหนือของพื้นที่สำรวจไม่ได้มีสมบัติทางแม่เหล็ก แตกต่างจากดินในบริเวณข้างเคียง วัตถุผิดปกติเหล่านี้อาจเป็นตัวเตาถลุงโลหะที่มีสมบัติทาง แม่เหล็กใกล้เกียงกับดินในบริเวณข้างเคียง

3. การตรวจสอบผลด้านธรณีฟิสิกส์กับการขุดค้นทางโบราณคดี


ทีมงานวิจัยจากมหาวิทยาลัยศิลปากรได้ดำเนินการขุดค้นทางโบราณคดีจำนวน 2 หลุม โดยหลุมแรก หรือ Tested pit 1 ในบริเวณด้านเหนือค่อนไปทางตะวันตกของพื้นที่ศึกษา หรือ ระหว่างแนววัด 03.5E-05.0E และ 32.5N-34.0N และหลุมขุดค้นที่สอง หรือ Tested pit 2 ในบริเวณ ด้านใต้ค่อนไปทางด้านตะวันตกของพื้นที่ศึกษา หรือ ระหว่างแนววัด 06.0E-07.5E และ 09.0N-15.0N

3.1 ผลการขุดค้นในหลุมขุดค้นที่หนึ่ง หรือ Tested pit 1 ได้ตรวจพบเตา ถลุงโลหะจำนวน 2 เตาที่ระดับความลึกประมาณ 0.4 เมตรจากผิวดิน ซึ่งในบริเวณดังกล่าวนี้ไม่มี สนามแม่เหล็กผิดปกติ แต่สัญญาณเรคาร์ของแนววัด 04E และแนว 05E มีลักษณะผิดปกติ ดังที่ได้ ทำเครื่องหมายไว้ด้วยกรอบสีแดง

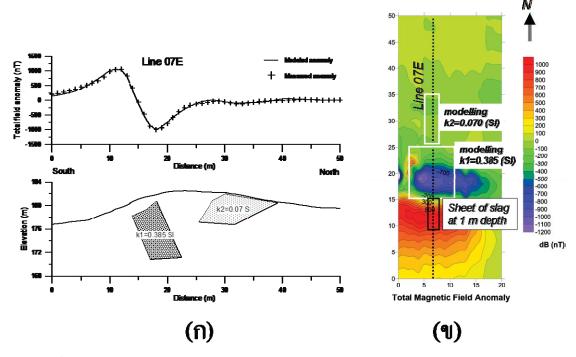

3.2 ผลการขุดค้นในหลุมขุดค้นที่สอง หรือ Tested pit 2 ได้ตรวจพบแผ่น ตะกรันที่ระดับความลึกจากผิวดินประมาณ 1.0 เมตร โดยแผ่นตะกรันนี้มีความหนาประมาณ 0.5 เมตร ซึ่งในบริเวณดังกล่าวสนามแม่เหล็กรวมของโลกมีค่าผิดปกติ และสัญญาณเรคาร์ของแนววัด ที่ 06E และ 08E มีลักษณะผิดปกติ แต่ไม่พบลักษณะผิดปกติของสัญญาณเรคาร์ในแนววัดที่ 07E จึง มั่นใจได้ว่าตะกรันถูกนำมากองสะสมไว้แบบไม่สม่ำเสมอ แต่ในภาพรวมแล้วมีตะกรันกระจัด กระจายครอบคลุมพื้นที่ระหว่างแนววัด 15.0N-25.0N และ 04.0E-14.0E

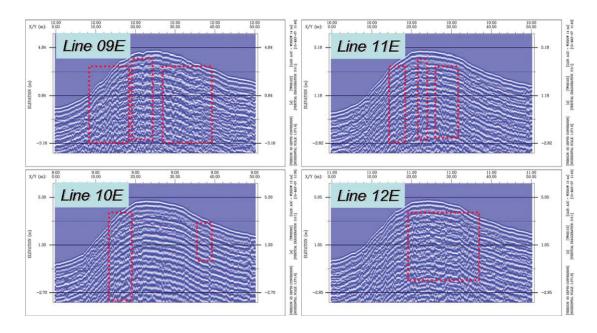
4.1.5 สรุปผล

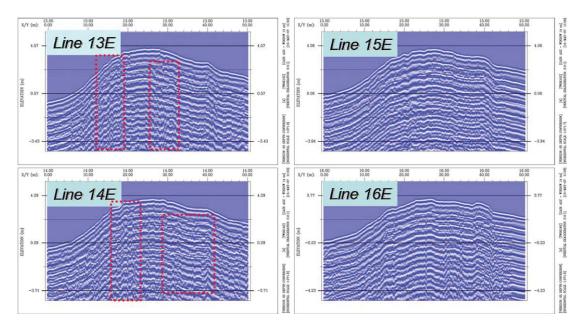
วิธีการด้านธรณีฟิสิกส์ซึ่งประกอบด้วยวิธีการวัดสนามแม่เหล็กรวมของโลก และวิธีการ เรดาร์หยั่งความลึกของชั้นดินได้สามารถช่วยกำหนดตำแหน่งหลุมขุดค้นทางโบราณคดีในแหล่งโบราณคดีเตาถลุงโลหะบ้านเขาดินใต้ อำเภอบ้านกรวด จังหวัดบุรีรัมย์ได้เป็นอย่างดี โดยสามารถ กำหนดตำแหน่งที่มีตะกรันฝังอยู่ในบริเวณตอนใต้ของพื้นที่สึกษา โดยสังเกตจากบริเวณของพื้นที่ ศึกษาที่มีค่าสนามแม่เหล็กโลกผิดปกติและสัญญาณเรดาร์มีลักษณะผิดปกติ นอกจากนั้นเตาถลุงโลหะที่ถูกฝังอยู่ใต้ดินทางด้านเหนือของพื้นที่ศึกษาจะสอดคล้องกับบริเวณที่มีสัญญาณเรดาร์ ผิดปกติ อย่างไรก็ตามการพิจารณาวางตำแหน่งหลุมขุดค้นทางโบราณคดีนอกจากจะอาศัยตำแหน่งที่สังเกตเห็นสัญญาณผิดปกติด้านธรณีฟิสิกส์แล้วยังต้องอาศัยการสังเกตและวิเคราะห์พื้นที่ศึกษาโดยหลักการทางด้านโบราณคดีประกอบไปด้วย

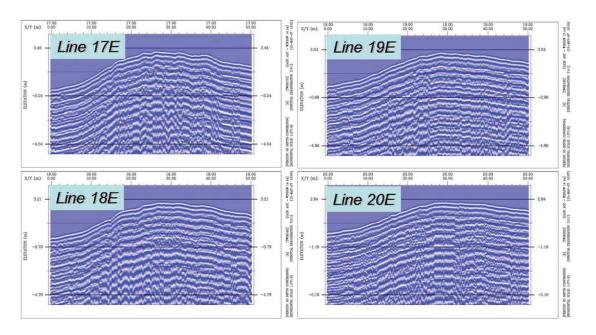
รูปที่ 4-1 ตำแหน่งของพื้นที่ศึกษาในแผนที่ภูมิประเทศ

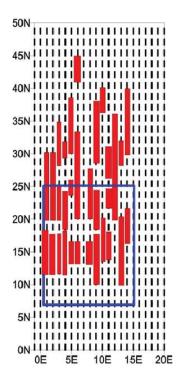
รูปที่ 4-2 แผนที่ความสูงของพื้นที่ศึกษา

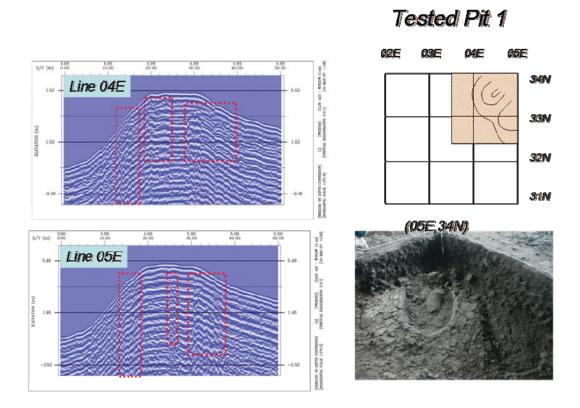

รูปที่ 4-3 การสำรวจสนามแม่เหล็กโลกในพื้นที่ศึกษา

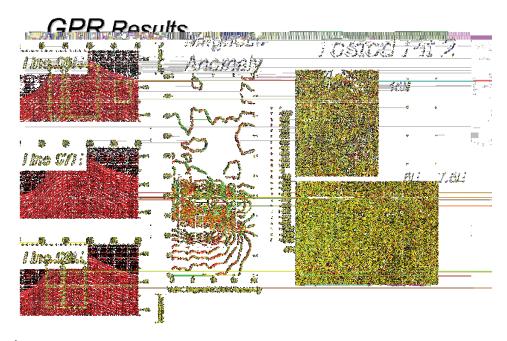

รูปที่ 4-4 การสำรวจเรคาร์หยั่งความถึกของชั้นดินในพื้นที่ศึกษา


รูปที่ 4-5 (ก) แผนที่ระดับความสูง และ (ข) แผนที่ค่าสนามแม่เหล็กผิดปกติของพื้นที่ศึกษา


รูปที่ 4-6 (ก) ตำแหน่งและรูปทรงของวัตถุผิดปกติทางแม่เหล็ก และค่าผิดปกติทางแม่เหล็ก ในแนววัด 07E (ข) แผนที่สนามแม่เหล็กผิดปกติของพื้นที่ศึกษาและตำแหน่งของแนววัด 07E


รูปที่ 4-7 แผนภาพเรดาร์ของแนววัดที่ 09E, 10E, 11E และ 12E พร้อมตำแหน่งและความลึกของ บริเวณที่มีสัญญาณเรดาร์ผิดปกติ (กรอบสี่เหลี่ยมสีแดง) ในบริเวณพื้นที่ศึกษา


รูปที่ 4-8 แผนภาพเรคาร์ของแนววัดที่ 13E, 14E, 15E และ 16E พร้อมตำแหน่งและความลึกของ บริเวณที่มีสัญญาณเรคาร์ผิดปกติ (กรอบสี่เหลี่ยมสีแดง) ในบริเวณพื้นที่ศึกษา


รูปที่ 4-9 แผนภาพเรคาร์ของแนววัดที่ 17E, 18E, 19E และ 20E พร้อมตำแหน่งและความลึกของ บริเวณที่มีสัญญาณเรคาร์ผิดปกติ (กรอบสี่เหลี่ยมสีแคง) ในบริเวณพื้นที่ศึกษา

ร**ูปที่ 4-10** ตำแหน่งที่สัญญาณเรคาร์มีลักษณะผิดปกติ (แถบสีแคง) และบริเวณที่มีสนามแม่เหล็กผิดปกติ (สี่เหลี่ยมสีน้ำเงิน) ในพื้นที่ศึกษา

รูปที่ 4-11 หลุมขุดค้นทางโบราณคดีหลุมที่ 1 (Tested pit 1) เปรียบเทียบกับผลการสำรวจเรดาร์ ในแนววัด 04E และ 05E ในพื้นที่ศึกษา

รูปที่ 4-12 หลุมขุดค้นทางโบราณคดีหลุมที่ 2 (Tested pit 2) เปรียบเทียบกับผลการสำรวจเรคาร์ ในแนววัค 06E 07E และ 08E ในพื้นที่ศึกษา

4.2 การศึกษาธรณีฟิสิกส์ของจังหวัดบุรีรัมย์

4.2.1 ความน้ำ

ตามที่มีการค้นพบเตาถลุงเหล็กโบราณในเขตอำเภอบ้านกรวด จังหวัดบุรีรัมย์ เช่น แหล่ง เตาถลุงเหล็กบ้านเขาดินใต้ จึงเป็นที่ถกเถียงเกี่ยวกับวัตถุดิบซึ่งใช้สำหรับการถลุงเหล็กในสมัย โบราณ ทั้งนี้ โดยเชื่อว่าอุตสาหกรรมการถลุงเหล็กในสมัยโบราณมักจะตั้งอยู่ในบริเวณใกล้เคียงกับ แหล่งวัตถุดิบ กอร์ปกับไม่ปรากฏมีแหล่งแร่เหล็กในบริเวณพื้นที่ของจังหวัดบุรีรัมย์และจังหวัด ใกล้เคียง จะมีเพียงแหล่งศิลาแลง ซึ่งการนำศิลาแลงมาใช้เป็นวัตถุดิบสำหรับการถลุงเหล็กนั้น ศิลาแลงต้องมีปริมาณของเหล็กที่ค่อนข้างสูง และศิลาแลงจะสัมพันธ์กับแหล่งหินที่มีธาตุเหล็กสูง เช่น หินบะซอลต์ที่มีอยู่แพร่หลายในจังหวัดบุรีรัมย์และจังหวัดใกล้เคียง

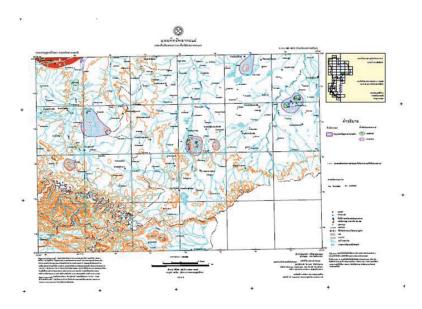
เหตุที่หินบะซอลต์และศิลาแลงที่มีปริมาณเหล็กสูงมักจะมีค่าสภาพความเป็นแม่เหล็กสูง กว่าหินตะกอนซึ่งเป็นหินท้องที่ในพื้นที่ศึกษา และทำให้สนามแม่เหล็กโลกในบริเวณที่ปกคลุม ด้วยหินบะซอลต์หรือศิลาแลงเบี่ยงเบนไปจากค่าสนามแม่เหล็กปกติ เรียกว่า มีสนามแม่เหล็กผิดปกติในพื้นที่ดังกล่าว ดังนั้นการศึกษาครั้งนี้จึงประยุกต์ใช้แผนที่สนามแม่เหล็กผิดปกติ (กรม ทรัพยากรธรณี, 2531) เพื่อกำหนดบริเวณที่มีสนามแม่เหล็กผิดปกติของโลกหรือมีค่าต่ำกว่าบริเวณ ข้างเคียงในบริเวณพื้นที่ของจังหวัดบุรีรัมย์ซึ่งอาจสัมพันธ์กับขอบเขตของหินบะซอลต์ที่เป็นแหล่ง ธาตุเหล็กให้กับศิลาแลงในพื้นที่ศึกษาหรือขอบเขตของศิลาแลงที่มีปริมาณเหล็กสูง

4.2.2 แหล่งแร่เหล็กในประเทศไทย

แร่เหล็กที่พบมากและนำมาใช้ประโยชน์ภายในประเทศเป็นแร่เหล็กจำพวกออกไซด์ ได้แก่ Hematite (Fe_2O_3) Magnetite (Fe_3O_4) และ Limonite หรือ geothite (Fe_2O_3 . H_2O) สำหรับศิลาแลง (Laterite) อาจจะเป็นแหล่งแร่เหล็กได้เพราะในศิลาแลงอาจมีเปอร์เซ็นต์ของเหล็กสูงถึง 30-40% แต่ เนื่องจากในศิลาแลงมีสารปนเปื้อนสูงซึ่งอาจเป็นอันตรายต่อการถลุง (ที่มา : อกนิษฐ์ สุวรรณสิงห์, 25??)

แร่เหล็กที่พบในประเทศไทยเกิดอยู่ 4 แบบด้วยกัน ดังนี้คือ

- 1) เกิดแบบแทนที่ (replacement deposit) ในหินคาร์บอเนตใกล้เขตการแปรสภาพโดยการ แทนที่ (contact metasomatic zone) หินท้องที่ที่พบอยู่ในยุคออร์โควิเชียนหรือเพอร์เมียน และ การ์บอนิเฟอรัส ส่วนหินอักนีแทรกซอนชนิดกรดหรือปานกลางมักอยู่ในยุคไทรแอสซิก
- 2) เกิดแบบสายแร่ (vein deposit) ในหินชั้นและหินแปรซึ่งมีอายุในช่วงมหายุคพาลีโอโซ-อิกเป็นส่วนใหญ่
- 3) เกิดเป็นชั้นร่วมกับหินชั้น (stratiform deposit) ตัดผ่านในหินซึ่งคาดว่ามีอายุในยุค พรีแคมเบรียน
- 4) เกิดแบบตกตะกอนทับถมอยู่กับที่ (residual deposit) ในลักษณะศิลาแลง (laterite) โดยเกิดจากการผูพังของหินชนิดต่างๆ ซึ่งมีธาตุเหล็กในปริมาณสูง


แหล่งแร่เหล็กในประเทศไทยพบที่จังหวัด กระบี่ กาญจนบุรี กำแพงเพชร จันทรบุรี ฉะเชิงเทรา ชลบุรี เชียงใหม่ ตรัง ประจวบดีรีขันธ์ ปราจีนบุรี พัทลุง เพชรบูรณ์ แม่ฮ่องสอน ระนอง ระยอง ลพบุรี ลำปาง นครศรีธรรมราช นครสวรรค์ เลย สระบุรี และสุโขทัย (ที่มา: กรมทรัพยากร ธรณี, 2544) โดยแหล่งใหญ่ในประเทศไทยที่มีปริมาณเกินกว่า 1 ล้านตันมีเพียง 6 แหล่งเท่านั้น ทั้งนี้ ไม่นับแหล่งศิลาแลง คือ (1) แหล่งเขาทับควาย จังหวัดลพบุรี (2) แหล่งอื่มครืม จังหวัด กาญจนบุรี (3) แหล่งหนองบอน จังหวัดฉะเชิงเทรา (4) แหล่งภูยาง ในเขตอำเภอเชียงคาน และ แหล่งภูอางในเขตอำเภอเมือง จังหวัดเลย (5) แหล่งแม่โก ในเขตอำเภอแม่แจ่ม จังหวัดเชียงใหม่ และ (6) แหล่งท่าศาลา จังหวัดนครศรีธรรมราช (ที่มา: อกนิษฐ์ สุวรรณสิงห์, 25??)

สำหรับศิลาแลง หินที่เป็นแหล่งกำเนิดศิลาแลงที่ดีมักจะมีส่วนประกอบของเหล็ก และ อลูมิเนียมมาก เช่น หินบะซอลต์ หินแกรนิต หินชีสต์ หินดินดาน และหินทรายแดง เป็นต้น เพราะหินเมื่อผุพังจะเป็นต้นกำเนิดของสารละลายแร่เหล็ก ซิลิกา อลูมิเนียม เป็นต้น การผุพังมีทั้ง การผุพังอยู่กับที่และผุพังเป็นตะกอนแล้วถูกพัดพาไปสะสมตัว ณ ที่ใดที่หนึ่ง ต่อมาจึงเปลี่ยนสภาพ

หินบะซอลต์ในจังหวัดบุรีรัมย์และจังหวัดใกล้เคียงเป็นหินบะซอลต์ที่มีแร่โอลิวีนเป็นแร่ ประกอบและจัดอยู่ในกลุ่มหินอัลคาไลน์ หินบะซอลต์มีลักษณะการเกิดจากการใหลของลาวาที่มี ความหนืดน้อย หรือเกิดจากการระเบิดที่ไม่รุนแรงโดยทั่วไปของหินภูเขาไฟนี้มีลักษณะผุสลาย และบางแห่งกลายเป็นศิลาแลงและดินแดง (ที่มา: http://www.buriram.go.th/general/resource.html, 8 มีนาคม 2551)

บริเวณที่พบหินบะซอลต์มีดังนี้

- 1) บริเวณเขากระโดง บริเวณนี้ครอบคลุมพื้นที่ประมาณ 15 ตารางกิโลเมตร ยอดเขา ประกอบเขากระโดงและเขาใหญ่ มีระดับความสูงเทียบกับพื้นที่โดยรอบประมาณ 60 เมตร พื้นที่ โดยรอบเนินเขากระโดงนี้จะเป็นเนินธารลาวาซึ่งเป็นพืดหินครอบคลุมพื้นที่ประมาณ 90 ตาราง กิโลเมตร ชั้นลาวานี้มีความหนาเท่ากับ 20 เมตรและแผ่กระจายไปทางทิศตะวันออกเฉียงเหนือของ ยอดเขามากกว่าทางทิศทางอื่น
- 2) บริเวณเขาพนมรุ้ง บริเวณนี้เป็นลักษณะของกรวยภูเขาไฟอยู่กลางที่ราบของหินตะกอน ชุค โคราช โคยยอคของเขาพนมรุ้งสูงจากพื้นที่ข้างเคียงประมาณ 180 เมตร บริเวณเขาพนมรุ้ง ปกคลุมพื้นที่ 15 ตารางเมตร และธารลาวาไหลไปทางทิศเหนือเป็นส่วนใหญ่
- 3) บริเวณภูพระอังคาร บริเวณนี้มีความสูงจากพื้นที่ข้างเคียงประมาณ 130 เมตร โคยมีธาร ลาวาไหลปกคลุมพื้นที่ 52 ตารางกิโลเมตร ช่องประทุเป็นแอ่งกว้างถึง 600 เมตร และปล่องของ ภูพระอังคารนี้อยู่ห่างจากปล่องของเขาพนมรุ้งประมาณ 12 กิโลเมตร

รูปที่ 4-13 ตำแหน่งของแหล่งหินบะซอลต์ในจังหวัดบุรีรัมย์ (ที่มา : กรมทรัพยากรธรณี, 2551)

4.2.3 ธรณีวิทยาของจังหวัดบุรีรัมย์

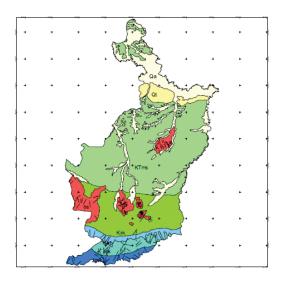
(ที่มา : Sattayarak, 1985 และ http://www.buriram.go.th/general/resource.html, 8 มีนาคม 2551)

พื้นที่ของจังหวัดบุรีรัมย์ส่วนใหญ่ปกคลุมด้วยกลุ่มหินชุดโคราช แผ่กระจายตั้งแต่ตอนใต้ สุดตามแนวเทือกเขาพนมดงรัก ซึ่งเป็นหินแข็งตลอดขึ้นไปทางทิสเหนือ และมีลักษณะการเอียงเท ของชั้นหินเข้าสู่ใจกลางแอ่งโคราช-อุบล ตั้งแต่บริเวณตอนใต้ของตัวเมืองบุรีรัมย์ ลงไปจนถึงอำเภอ นางรอง อำเภอประโคนชัย และอำเภอละหานทราย มีหย่อมหินอัคนีประเภทหินบะซอลต์ ปรากฏ เป็นพืดหินและเป็นเนินเขาไม่สูงนัก เช่น เขากระโดง ภูพระอังคาร เขาพนมรุ้ง และเขาไปรปัด เป็นต้น

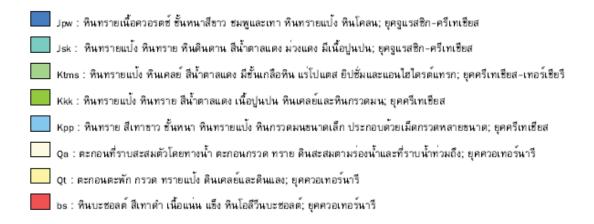
ลักษณะการลำดับของชั้นหินในพื้นที่จังหวัดบุรีรัมย์ ซึ่งเรียงจากหินที่มีอายุมากไปยังหินที่ มีอายุน้อยเป็นดังนี้

กลุ่มหินชุดโคราช เป็นกลุ่มหินตะกอนที่มีอายุประมาณยุคไทรแอสซิกถึงยุคครีเท-เชียส หรือประมาณ 230 ล้านปีมาแล้ว ซึ่งประกอบด้วยหมวดหินที่พบในพื้นที่จำนวน 5 หมวดหิน ดังนี้

หมวดหินพระวิหาร (Jpw) ประกอบด้วยหินทรายสีขาว สีชมพู มีชั้นเฉียง ระดับชัดเจน ชั้นหนา พบหินกรวดมน หรือหินทรายปนกรวดอยู่ส่วนบน ความหนาไม่เกิน 60 เมตร โผล่ให้เห็นตามแนวเขาพนมดงรัก และบริเวณหน้าผา


หมวดหินมหาสารคาม (KTms) ประกอบด้วยหินทรายแป้ง และหินทราย มีชั้นโพแทช ยิปซัมและเกลือหิน หนาเฉลี่ย 200 เมตร หมวดหินนี้มีความหนาประมาณ 600 เมตร เกิดจากการสะสมตัวของแอ่งซึ่งอาจแยกกันเป็น 2 แอ่งคือ แอ่งสกลนครกับแอ่งโคราช อายุของหิน มหาสารคามนี้มีอายุประมาณยุคครีเทเชียสตอนปลาย จากหลักฐานสนามแม่เหล็กบรรพกาล และ จากไอโซโทป ของแร่มีอายุประมาณ 100 ล้านปี

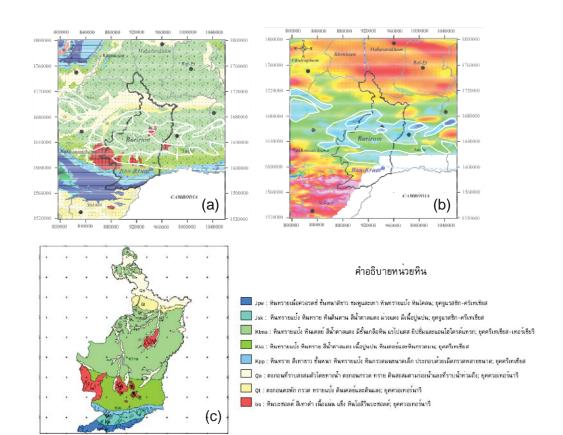
หมวดหินเสาขัว (Jsk) ประกอบด้วยหินทรายแป้งสีน้ำตาลแดงมีหิน โคลนแทรกบ้าง อาจพบชั้นหินปูนบางๆ และมีซากหอยแทรกอยู่บ้าง พบในบริเวณหุบเขาของ เทือกเขาพนมดงรัก


หมวดหินภูพาน (Kpp) มีหินกรวคมนและหินทรายปนกรวค เป็น ลักษณะเค่น สีขาวถึงเทาอ่อน มีเศษกรวคสีเข้มปะปนบ้าง สีน้ำตาลอ่อนอมเหลืองบ้าง พบในบริเวณ ที่เป็นเทือกเขาซึ่งอยู่ถัดจากบริเวณหุบเขาในเทือกเขาพนมคงรัก หมวดหินโคกกรวด (Kkk) ประกอบด้วยหินทรายสีน้ำตาลแคงเป็นส่วน ใหญ่มีหินทรายแป้ง หินโคลนและหินกรวดปนเม็ดปูนแทรกอยู่บ้าง อาจพบชั้นยิปซั่มแทรกอยู่ด้วย พบในบริเวณถัคจากแนวเขาพนมคงรักออกไปทางตอนเหนือคลุมพื้นที่ถึงตัวเมืองบุรีรัมย์ มีความ กว้างในแนวเหนือ-ใต้ประมาณ 30 กิโลเมตร

หินอัคนี หินอัคนีส่วนใหญ่เป็นหินบะซอลต์ที่มีแร่โอลิวีนเป็นแร่ประกอบหลัก และจัดอยู่ในกลุ่มหินอัลกาไลน์บะซอลต์ ซึ่งเกิดจากการไหลของลาวาที่มีความหนืดน้อย ซึ่งเกิด จากการระเบิดที่ไม่รุนแรง หินบะซอลต์มีอายุประมาณ 7-9 แสนปี พบที่บริเวณเขากระโดง บริเวณ เขาพนมรุ้ง และบริเวณภูพระอังคาร

ตะกอนลำน้ำ (Qa) พบในบริเวณพื้นที่ลุ่มและเนินติดกับที่ลุ่มเป็นส่วนใหญ่ พบตะกอนที่น้ำพัดพามาทับถม เช่น ทราย กรวด มีอายุอยู่ในยุคควอเทอร์นารี ถึงปัจจุบัน บริเวณที่ พบมากได้แก่พื้นที่ตอนเหนือของจังหวัดบุรีรัมย์ บริเวณใกล้ลำน้ำมูลและลำน้ำสาขาต่างๆ ในเขต อำเภอคูเมือง อำเภอพุทไธสง และอำเภอสตึก เป็นต้น

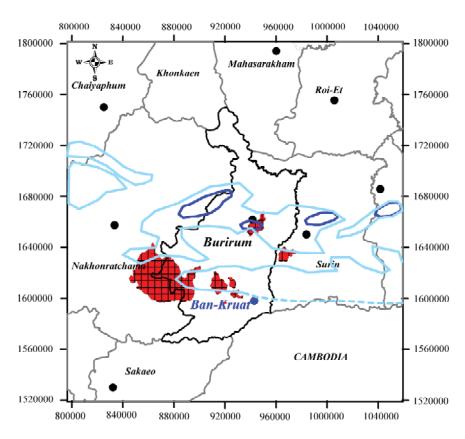
คำอธิบายหน่วยหิน


รูปที่ 4-14 แผนที่หน่วยหินของจังหวัดบุรีรัมย์ (ที่มา: กรมทรัพยากรธรณี, 2551)

4.2.4 ธรณีฟิสิกส์ของจังหวัดบุรีรัมย์

แผนที่เฉคสีของสนามแม่เหล็กผิดปกติของจังหวัดบุรีรัมย์แสดงไว้คังรูปที่ 4-15b (ที่มา: กรมทรัพยากรธรณี, 2551) ซึ่งจะสังเกตว่าค่าสนามแม่เหล็กผิดปกติมีค่าสูง หรือ -39 ถึง 144 nT (เฉคส้มถึงเฉคสีม่วง) ในบริเวณพื้นที่ตอนเหนือและพื้นที่ตอนใต้ของจังหวัดบุรีรัมย์ และ สนามแม่เหล็กผิดปกติมีค่าต่ำ หรือ -255 ถึง -39 nT (เฉคสีเขียวถึงเฉคสีน้ำเงิน) ในบริเวณพื้นที่ ตอนกลางของจังหวัดบุรีรัมย์

ในพื้นที่ตอนเหนือของจังหวัดบุรีรัมย์ ค่าสนามแม่เหล็กผิดปกติที่มีค่าสูงซึ่งปรากฏอยู่ใน พื้นที่ซึ่งปกคลุมด้วยหมวดหินมหาสารคาม(KTms) ซึ่งเป็นหินตะกอนยุคครีเทเชียส-เทอร์เชียรี และ หว ด้า


ื้นที่ซึ่งปกคลุมด้วยหมวดหินภูพาน (Kpp) หมวด หินเสาขัว (Jsk) และ หมวดหินพระวิหาร (Jpw)

รูปที่ 4-15 (a) แผนที่ธรณีวิทยาของจังหวัดบุรีรัมย์และจังหวัดใกล้เคียงและขอบเขตของบริเวณที่ สนามแม่เหล็กผิดปกติมีค่าต่ำซึ่งแทนด้วยวงปิดสีขาว (b) แผนที่สนามแม่เหล็กผิดปกติของพื้นที ศึกษา (c) แผนที่ธรณีวิทยาของจังหวัดบุรีรัมย์ (ที่มา : กรมทรัพยากรธรณี, 2531, 2551)

สำหรับในพื้นที่ตอนกลางของจังหวัดบุรีรัมย์ สนามแม่เหล็กผิดปกติที่มีค่าต่ำ หรือระหว่าง -39 nT ซึ่งแสดงด้วยเฉดเขียวถึงเฉดสีน้ำเงิน (รูปที่ 4-15a และ 4-15b) ปรากฏอยู่เหนือพื้นที่ซึ่ง ปกคลุมด้วยหมวดหินมหาสารคาม (KTms) และตะกอนควอเทอร์นารี (Qa และ Qt) และค่า สนามแม่เหล็กผิดปกติซึ่งมีค่าต่ำนี้ยังต่อขยายไปยังพื้นที่ของจังหวัดสุรินทร์ซึ่งอยู่ทางด้าน ตะวันออกและพื้นที่ของจังหวัดนครราชสีมาซึ่งอยู่ทางด้านตะวันตกของจังหวัดบุรีรัมย์ นอกจากนี้ ยังสังเกตเห็นว่าสนามแม่เหล็กผิดปกติที่มีค่าอยู่ระหว่าง -126 ถึง -184 nT (เฉดสีฟ้า) ปรากฏอยู่พื้นที่ ซึ่งปกคลุมด้วยหมวดหินภูพาน (Kpp)

เป็นที่สังเกตว่าในบริเวณพื้นที่ซึ่งปกคลุมด้วยหินบะซอลต์ (bs) เช่น ที่เขากระ โดง และเขา พนมรุ้ง สนามแม่เหล็กผิดปกติจะมีค่าต่ำกว่า -136 nT และมีแนว โน้มว่าจะเป็นเช่นนั้นที่ภูพระ อังคารด้วยแต่ไม่ชัดเจน (รูปที่ 4-16) อย่างไรก็ตามเราอาจสรุปได้ว่าพื้นที่ซึ่งมีค่าสนามแม่เหล็ก ผิดต่ำกว่า -136 nT สัมพันธ์กับหินบะซอลต์ (bs) หรือหินที่มีค่าสภาพความเป็นแม่เหล็กสูง เช่น ศิลา แลง โดยปกติสภาพความเป็นแม่เหล็กของหินบะซอลต์จะมีพิสัย 0.0002 ถึง 0.175 (SI) และมีค่าเลลี่ยเท่ากับ 0.07 (SI) ในขณะที่สภาพความเป็นแม่เหล็กของหินตะกอนหรือดินตะกอนจะมีพิสัย 0 ถึง 0.018 (SI) และมีค่าเลลี่ยเท่ากับ 0.0009 (SI) (Telford et al., 1990) ดังนั้นขอบเขตของหิน บะซอลต์หรือหินอื่นที่มีค่าสภาพความเป็นแม่เหล็กสูง เช่น ศิลาแลง สามารถกำหนดได้ด้วยพื้นที่ซึ่ง มีค่าสนามแม่เหล็กผิดปกติ ต่ำกว่า -136 nT เช่น เส้นวงปิดสีน้ำเงินในรูปที่ 4-16 เป็นต้น

รูปที่ 4-16 แสดงขอบเขตของบริเวณสนามแม่เหล็กผิดปกติ
(วงปิดสีฟ้าและสีน้ำเงิน) และตำแหน่งของหินบะซอลต์

4.2.5 สรุป

การศึกษาด้านธรณีฟิสิกส์ครั้งนี้สามารถกำหนดบริเวณของสนามแม่เหล็กผิดปกติในพื้นที่ ศึกษาที่สัมพันธ์กับหินบะซอลต์หรือหินอื่นที่มีค่าสภาพความเป็นแม่เหล็กสูง เช่น ศิลาแลงที่มี ปริมาณของเหล็กสูง ผลการศึกษาครั้งนี้ควรได้รับการตรวจสอบยืนยันในสนามต่อไป

บทที่ 5

การพัฒนาสารสนเทศและสารคดีเพื่อการศึกษา

5.1 บทนำ

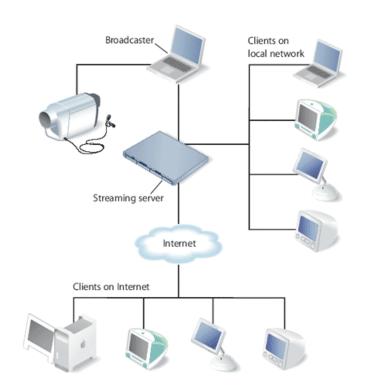
ในขั้นตอนการสำรวจและการศึกษาในโครงการวิจัยค้นหาและพัฒนาสารสนเทศของ ราชมรรคาสมัยพระเจ้าชัยวรมันที่ 7 (Living Angkor Road Project) ในระยะที่ 1 นั้นได้มีการเก็บ บันทึกภาพการสำรวจในรูปแบบของวิดีโอและภาพนิ่ง อันเป็นผลให้โครงการวิจัยในระยะที่ 2 นี้ได้ มีการพัฒนาฐานข้อมูลในระบบมัลติมีเดีย เพื่อให้บริการข้อมูลทางการสำรวจแก่ประชาชนผู้ที่สนใจ โครงการฯ ในลักษณะของ Video Streaming บนระบบเครือข่ายอินเทอร์เน็ต

5.2 ความรู้เบื้องต้น

5.2.1 Video Streaming¹

เป็นการให้บริการข้อมูลในระบบ Digital Video ผ่านเครือข่ายอินเตอร์เน็ต ทำให้ผู้ให้ บริการสามารถรองรับการใช้งานของผู้ใช้จำนวนมากเมื่อเทียบกับระบบ Video Conference ตามปกติ และมีการลงทุนน้อยกว่า นอกจากนี้ยังมีความยืดหยุ่นในการใช้งาน สามารถให้บริการได้ ทุกที่ที่มีระบบเครือข่ายอินเตอร์เน็ต รวมทั้งอุปกรณ์เคลื่อนที่ทั้งหลาย เช่น โทรศัพท์เคลื่อนที่ เป็น ต้น โดยที่ระบบ Video Streaming สามารถที่จะปรับขนาดของการส่งข้อมูลให้เหมาะสมกับ ความเร็วอินเตอร์เน็ตของผู้ใช้

5.2.1.1 ประเภทการให้บริการวิดีโอผ่านอินเตอร์เน็ต


• แบบ Download ในกรณีที่ Web Server ไม่มี Streaming Server ให้บริการ เมื่อผู้ใช้คลิกหน้าเว็บเพื่อดูวิดีโอ Server จะส่งไฟล์วิดีโอทั้งไฟล์ไปให้กับผู้ใช้ ผู้ใช้ต้องรอ จนการ download ข้อมูลสมบูรณ์จึงจะดูได้ วิธีนี้จะมีการเก็บแฟ้มวิดีโอไว้ในเครื่องผู้ใช้ และไม่ สามารถดูการถ่ายทอดสดได้

http://r-radio.vec.go.th/htx/rtemplate/doc_news/video_stream.doc

(วันที่ค้นข้อมูล : 10 พฤษภาคม 2550)

¹ Video Streaming. [ออนไลน์] เข้าถึงได้จาก :

• แบบ Video Streaming เป็นแบบที่ Web Server มี Streaming Server การให้บริการแบบนี้ เมื่อผู้ใช้หน้าเว็บแสดงความจำนงที่จะดูวิดีโอ Video Streaming Server ก็จะส่ง ข้อมูลที่แบ่งออกเป็นชิ้นเล็กๆ พอเหมาะกับความเร็วของอินเตอร์เน็ตของผู้ใช้ไปให้กับผู้ใช้ และเมื่อ ส่งไปจนเต็ม buffer ของผู้ใช้แล้วก็จะแสดงผลวิดีโอในหน้าจอผู้ใช้ ปกติแล้ว Buffer เป็นการใช้ หน่วยความจำขนาดเล็กในการเก็บชิ้นส่วนข้อมูลวิดีโอเพื่อการแสดงผล โดยในขณะที่ผู้ใช้ดูวิดีโอ อยู่ server ก็จะทยอยส่งข้อมูลให้ไปเรื่อยๆ จนจบ เนื่องจาก buffer มีขนาดเล็ก ดังนั้นวิดีโอที่ server ส่งไปแทบจะแสดงผลทันทีที่ผู้ใช้ขอดู และวิธีนี้จะไม่มีการบันทึกข้อมูลในเครื่องผู้ใช้จึงมีความ ปลอดภัยมากกว่า

รูปที่ 5-1 ภาพแสดงการทำงานของ Video Streaming Network

ที่มา: http://r-radio.vec.go.th/htx/rtemplate/doc_news/video_stream.doc

5.2.2 Red5

เป็น Open source Flash Server (OSFlash) ซึ่งทำหน้าที่ในการกระจายสัญญาณต่างๆ ทางด้านวิดีโอ เสียง หรือข้อมูล โดยสามารถนำมาพัฒนางานทางด้าน

- Streaming Audio/Video (FLV and MP3)
- Recording Client Streams (FLV only)
- Shared Object

- Live Stream Publishing
- Remoting (AMF)

5.2.3 Flash Video (FLV)

FLV เป็นรูปแบบหนึ่งของไฟล์ Flash ซึ่งใช้สำหรับการทำ Streaming บนเว็บ เพื่อให้การ ส่งข้อมูลวิดีโอบนระบบอินเตอร์เน็ต ซึ่งในโครงการนี้จะใช้ JW Player (สามารถดาวน์โหลดได้ที่ http://www.jeroenwijering.com) ในการเล่นไฟล์วิดีโอ

ข้อดีของไฟล์วิดีโอในรูปแบบของ Flash คือ สามารถนำมาใช้ร่วมกับ Component ของ Flash รวมทั้งไฟล์ที่ถูกบีบอัดแล้วจะมีขนาดเล็กและยังคงรักษารายละเอียดของไฟล์ต้นฉบับได้เป็น อย่างดี

5.3 แผนการดำเนินงาน

การคำเนินงานเกี่ยวกับการพัฒนาสารสนเทศและสารคดีเพื่อการศึกษานั้น จะแบ่งหัวข้อใน การศึกษาออกเป็น 3 ส่วนคือ

- การนำเสนอสารคดีเพื่อการศึกษาผ่านเครือข่ายอินเตอร์เน็ต
- การนำเสนอข้อมูลผ่านทาง e-Learning
- การนำเสนอสารคดีตอนสั้น

5.3.1 การนำเสนอสารคดีเพื่อการศึกษาผ่านเครือข่ายอินเตอร์เน็ต

การนำเสนอสารคดีเพื่อการศึกษาผ่านเครือข่ายอินเตอร์เน็ต โดยการทำ Video streaming นั้นจะแบ่งการทำงานออกเป็น การตัดต่อวิดีโอ และการนำเสนอสารคดีผ่านเครือข่ายอินเตอร์เน็ต

• การตัดต่อวิดีโอ

- นำวิดีโอการสำรวจทั้งหมดมาจัดแยกออกเป็นหมวดหมู่
- นำวิดีโอการสำรวจมาจัดเก็บในรูปแบบของไฟล์ดิจิตอล โดยการนำ ม้วนวิดีโอที่ได้จากการสำรวจมาทำการ capture ในโปรแกรม
 Adobe Premiere ซึ่งจะได้ไฟล์วิดีโอที่มีนามสกุล wav
- นำไฟล์วีดีโอที่ได้มาตัดแบ่งตามหัวข้อการสำรวจ โดยการใช้
 โปรแกรม Adobe Premiere

- นำไฟล์วีดีโอที่แบ่งตามหัวข้อการสำรวจมาจัดการแปลงเป็นไฟล์ flash video ต่อไป
- การแปลงไฟล์ในรูปแบบของ Flash Video
 - เมื่อได้ไฟล์วิดีโอที่ต้องการแล้ว หลังจากนั้นนำไฟล์วิดีโอที่ได้มา แปลงให้อยู่ในรูปแบบของ Flash Video (FLV) เพื่อใช้ในสำหรับ การทำ Video Streaming บนเครือข่ายอินเตอร์เน็ต โดยใช้โปรแกรม Cucusoft Ultimate DVD + Video Converter Suite เพื่อแปลงจาก ไฟล์ในรูปแบบของ wav ไปเป็น flash
 - ข้อดีของการแปลงเป็น Flash Video ก็คือ ขนาดของไฟล์มีขนาดเล็ก และยังคงรักษารายละเอียดของไฟล์ต้นฉบับได้เป็นอย่างดี
- การนำเสนอคดีผ่านเครื่อข่ายอินเตอร์เน็ต
 - รายละเอียดซอฟแวร์

Web Server

- Apache Web Server เวอร์ชั่น 2.0.59
- PHP Script Language เวอร์ชั่น 4.4.7
- MySQL Database เวอร์ชั่น 5.0.45
- phpMyAdmin Database Manager เวอร์ชั่น 2.10.2

Streaming Media Server

- JDK เวอร์ชั่น 1.6 อัพเคต 6
- Red5 เวอร์ชั่น 0.6.2 (Streaming Media Server)
- JW Player
- ในงานวิจัยนี้จะใช้ RED5 เป็น Streaming Media Server เนื่องจาก เป็นโปรแกรมประเภท Open Source Flash Server (OSFlash) ขั้นตอนแรกให้ติดตั้งโปรแกรม JDK ก่อนเมื่อเสร็จแล้วติดตั้ง RED5 สามารถ ดาวน์โหลดโปรแกรมได้ที่ http://www.osflash.org/red5
- นำไฟล์วิดีโอที่ในรูปแบบของ flash video มาใส่ไว้ในโฟลเดอร์
 Red5\ webapps\oflaDemo\streams

ในการแสดงภาพวิดีโอบนหน้าเว็บเพจให้ใส่ script ดังนี้

```
<div id="container"><a href="http://www.macromedia.com/go/getflashplayer">Get the
Flash Player</a> to see this player.</div>
<script type="text/javascript" src="swfobject.js"></script>
<script type="text/javascript">
    var s1 = new SWFObject("mediaplayer.swf","mediaplayer","350","300","8");
    s1.addParam("allowfullscreen","true");
    s1.addVariable("width","350");
    s1.addVariable("height","350");
    s1.addVariable("file","rtmp://localhost/oflaDemo/larp_video/<?=$_REQUEST[videotype=id];?>/&id=<?=$_REQUEST[video_id];?>.flv");
    s1.write("container");
    <script>
```

จากข้อมูล Video Streaming ข้างต้น ในโครงการวิจัยนี้จะใช้การแสดงข้อมูลระบบ Video Streaming Server ให้บริการในลักษณะของ Video on Demand ซึ่งผู้ใช้ไม่จำเป็นต้องบันทึกข้อมูล ลงในเครื่อง โดยใน Web Server จะมีการบันทึกไฟล์วิดีโอ (สารคดี) การสำรวจไว้บนเครื่อง Server และให้ผู้ใช้เลือกชมวิดีโอ (สารคดี) การสำรวจที่ต้องการผ่านระบบเครือข่ายอินเตอร์เน็ต ซึ่ง สามารถออกแบบระบบฐานข้อมูลในการทำวิจัย ได้ดังต่อไปนี้

ตารางที่ 5-1 ตารางแสดงรายละเอียดฐานข้อมูลภาษาที่ใช้แสดง (Language)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
lang_id	char	2	รหัสภาษาที่แสดง
lang_name	varchar	255	ชื่อภาษาที่แสดง

ตารางที่ 5-2 ตารางแสดงรายละเอียดฐานข้อมูลประเทศ (Country)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
country_name	varchar	255	ชื่อประเทศ

ตารางที่ 5-3 ตารางแสดงรายละเอียดฐานข้อมูลจังหวัด (Province)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
province_id	char	2	รหัสจังหวัด
province_name	varchar	255	ชื่อจังหวัด

ตารางที่ 5-4 ตารางแสดงรายละเอียดฐานข้อมูลอำเภอ (District)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
province_id	char	2	รหัสจังหวัด
district_id	char	2	รหัสอำเภอ
district_name	varchar	255	ชื่ออำเภอ

ตารางที่ 5-5 ตารางแสดงรายละเอียดฐานข้อมูลตำบล (Commune)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
province_id	char	2	รหัสจังหวัด
district_id	char	2	รหัสอำเภอ
commune_id	char	2	รหัสตำบล
commune_name	varchar	255	ชื่อตำบล

ตารางที่ 5-6 ตารางแสดงประเภทของข้อมูลวัฒนธรรม (CultureType)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
culturetype_id	char	2	รหัสประเภทของข้อมูลวัฒนธรรม
lang_id	char	2	รหัสภาษาที่แสดง
culturetype_name	varchar	255	ชื่อประเภทของข้อมูลวัฒนธรรม ภาษาอังกฤษ

ตารางที่ 5-7 ตารางแสดงข้อมูลทางวัฒนธรรม (Culture)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
province_id	char	2	รหัสจังหวัด
culture_type	char	2	รหัสประเภทข้อมูลวัฒนธรรม
culture_id	char	2	รหัสข้อมูลวัฒนธรรม
culture_name	varchar	255	ชื่อข้อมูลวัฒนธรรม
culture_detail	text		รายละเอียดข้อมูลวัฒนธรรม
culture_ref	varchar	255	อ้างอิง

ตารางที่ 5-8 ตารางแสดงข้อมูลภาพ (Filelist)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
province_id	char	2	รหัสจังหวัด
culture_type	char	2	รหัสประเภทข้อมูลวัฒนธรรม
culture_id	char	3	รหัสข้อมูลวัฒนธรรม
file_id	char	2	รหัสรูปภาพ
file_filename	varchar	255	ชื่อไฟล์
file_detail	text		คำอธิบายไฟล์

ตารางที่ 5-9 ตารางแสดงฐานข้อมูลวัฒนธรรมของประเทศกัมพูชา (cCulture)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
culture_type	char	2	รหัสประเภทข้อมูลวัฒนธรรม
culture_id	char	3	รหัสข้อมูลวัฒนธรรม
culture_name	varchar	255	ชื่อข้อมูลวัฒนธรรม
culture_detail	text		รายละเอียดข้อมูลวัฒนธรรม

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
culture_ref	varchar	255	อ้างอิง

ตารางที่ 5-10 ตารางแสดงรายละเอียดฐานข้อมูลหมู่บ้าน (Village)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
province_id	char	2	รหัสจังหวัด
district_id	char	2	รหัสอำเภอ
commune_id	char	2	รหัสตำบล
village_id	char	2	รหัสหมู่บ้าน
village_name	varchar	255	ชื่อหมู่บ้าน

ตารางที่ 5-11 ตารางแสดงรายละเอียดฐานข้อมูลหัวข้อข้อมูลการสำรวจ (Villagetype)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
vtype_id	char	2	รหัสหัวข้อในการสำรวจ
lang_id	char	2	รหัสภาษาที่แสดง
vtype_name	varchar	150	ชื่อหัวข้อในการสำรวจ

ตารางที่ 5-12 ตารางแสดงรายละเอียดฐานข้อมูลการสำรวจหมู่บ้าน (Village_survey)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
province_id	char	2	รหัสจังหวัด
district_id	char	2	รหัสอำเภอ
commune_id	char	2	รหัสตำบล
village_id	char	2	รหัสหมู่บ้าน
vtype_id	char	2	รหัสหัวข้อในการสำรวจ
village_name	varchar	255	ชื่อหมู่บ้าน

ตารางที่ 5-13 ตารางแสดงรายละเอียดฐานข้อมูลรูปภาพจากการสำรวจ (Village_gallery)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
province_id	char	2	รหัสจังหวัด
district_id	char	2	รหัสอำเภอ
commune_id	char	2	รหัสตำบล
village_id	char	2	รหัสหมู่บ้าน
culture_id	char	3	รหัสข้อมูลวัฒนธรรม
file_id	char	2	รหัสหัวข้อในการสำรวจ
filename_name	varchar	255	ชื่อไฟล์รูปภาพ

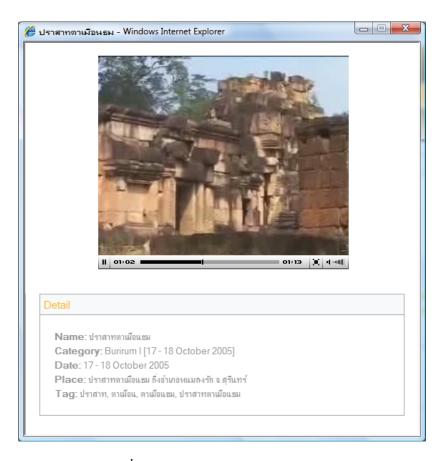
ตารางที่ 5-14 ตารางแสดงฐานข้อมูลจากการสถานที่จากการสำรวจของหมู่บ้าน (vCulture)

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
country_id	char	2	รหัสประเทศ
lang_id	char	2	รหัสภาษาที่แสดง
province_id	char	2	รหัสจังหวัด
district_id	char	2	รหัสอำเภอ
commune_id	char	2	รหัสตำบล
village_id	char	2	รหัสหมู่บ้าน
culture_id	char	3	รหัสข้อมูลวัฒนธรรม
culture_name	varchar	255	ชื่อข้อมูลวัฒนธรรม
culture_type	char	50	ชนิดของข้อมูล
culture_detail	text		รายละเอียดข้อมูลวัฒนธรรม

ตารางที่ 5-15 ตารางแสดงฐานข้อมูลหมวดหมู่ในการจำแนกวิดีโอ (video_type)

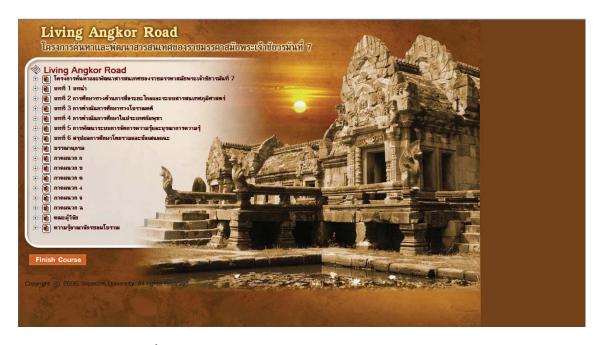
ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
videotype_id	char	3	รหัสหมวดหมู่ของวิดีโอ
videotype_name	varchar	255	ชื่อหมวดหมู่ของวิดีโอ

ตารางที่ 5-16 ตารางแสคงฐานข้อมูลการจัดเก็บ ไฟล์วีดี โอ (video)

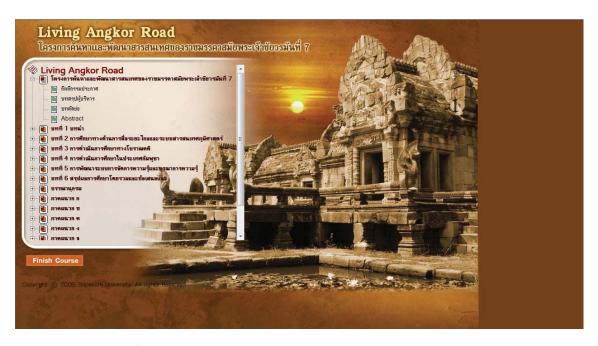

ชื่อฟิลด์	ชนิดข้อมูล	ขนาดข้อมูล	คำอธิบาย
videotype_id	char	3	รหัสหมวดหมู่ของวิดีโอ
video_id	char	2	รหัสวิดีโอ
video_name	varchar	255	รหัสภาษาที่แสดง
video_date	varchar	50	รหัสจังหวัด
video_file	varchar	50	รหัสอำเภอ
video_place	varchar	255	รหัสตำบล
video_tag	varchar	255	รหัสหมู่บ้าน

รูปที่ 5-2 หน้าเว็บเพจแสดงรายชื่อวิดีโอ

รูปที่ 5-3 ภาพเว็บเพจเมื่อเลือกหัวข้อ "Burirum I [17-18 October 2005]"



รูปที่ 5-4 ภาพแสดงวิดี โอบนหน้าเว็บเพจ


5.3.2 การนำเสนอข้อมูลผ่านทาง e-Learning

ในส่วนนี้เป็นการนำเอารายงานการวิจัย "โครงการวิจัยค้นหาและพัฒนาสารสนเทศของ ราช-มรรคาสมัยพระเจ้าชัยวรมันที่ 7 (Living Angkor Road Project) ระยะที่ 1" มาจัดทำใหม่ใน ลักษณะของสื่อการเรียนรู้ หรือที่เรียกว่า e-Learning เพื่อเผยแพร่งานวิจัยให้ประชาชนทั่วไปหรือ บุคคลที่สนใจได้เข้าใจถึงเนื้อหาของเอกสาร การทำ e-Learning มีขั้นตอนการทำ ดังนี้

- การเก็บข้อมูล ข้อมูลที่นำมาใช้ได้มาจาก "เอกสารรายงานการวิจัยฉบับ สมบูรณ์ของโครงการวิจัยฯ" และข้อมูล "ความรู้อาณาจักรขอมโบราณ" ประกอบกับรูปถ่ายทางวัฒนธรรมและทางโบราณคดี
- นำข้อมูลที่ได้มาวิเคราะห์เพื่อสร้าง Story Board ประกอบด้วยเนื้อหา ดังนี้
 - ลักษณะรูปแบบการนำเสนอ
 - หัวข้อที่ใช้ในการนำเสนอ
 - การเชื่อมโยงไปยังข้อมูล รูปภาพ หรือเว็บไซต์
- สร้าง Template ของ Background
- นำข้อมูลจากเอกสารมาจัดวางตาม story board
- ทดสอบการใช้งาน

รู**ปที่ 5-5** แสดงระบบ e-Learning ของโครงการฯ ระยะที่ 1

รูปที่ 5-6 แสดงระบบ e-Learning ของโครงการฯ ระยะที่ 1 (ต่อ)

รูปที่ 5-7 แสดงระบบ e-Learning ของโครงการฯ ระยะที่ 1 ในส่วนของบทคัดย่อ

5.3.3 การนำเสนอสารคดีตอนสั้น

จุดประสงค์ในการทำสารคดีตอนสั้น เพื่อเผยแพร่ข้อมูลเกี่ยวกับการคำเนินงานวิจัยของ โครงการฯ ต่อประชาชนและบุคคลที่สนใจได้เข้าใจถึงความเป็นมา เนื้อหา การเชื่อมโยงกันของแต่ ละสถานที่ การนำความรู้ในหลายๆแขนงมาประยุกต์ใช้ร่วมกัน และขั้นตอนการคำเนินงานวิจัยโดย ผ่านทางวิดีโอสารคดี โดยมีขั้นตอนการคำเนินงาน ดังนี้

- จัดทำบทสารคดีที่มีเนื้อหาครอบคลุมงานวิจัย
- นำบทสารคดีที่ได้มาจัดแบ่งเป็นหมวดย่อยเพื่อใช้ในการทำ story board
- วางแผนและจัดหาภาพวิดีโอการสำรวจทั้งภาพเคลื่อนไหว ภาพถ่ายและคนตรี ที่สอดคล้องกับ เนื้อหาใน story board
- จัดการลำดับภาพ, ตัดต่อภาพและบันทึกเสียงตามเนื้อหาใน story board
- นำสารคดีที่ได้มาตรวจสอบความเรียบร้อยก่อนนำเสนอผ่านเครือข่าย Internet

5.4 ผลการดำเนินงาน

จากการคำเนินการงาน ทำให้ได้ระบบพัฒนาฐานข้อมูลวัฒนธรรมซึ่งแบ่งออกเป็น 2 ส่วน คือ

5.4.1 ฐานข้อมูลวัฒนธรรมในส่วนของ Video Streaming บนเครือข่ายอินเตอร์เน็ต ซึ่งจะ มีรายละเอียคดังต่อไปนี้

- วีดีโอการออกสำรวจภาคสนาม การขุดค้นทางโบราณคดี และการสำรวจทาง ธรณีฟิสิกส์
- วีดีโอการบรรยายในส่วนของ Tele conference ของโครงการวิจัยจากหลุมขุด ค้นทางโบราณคดีไปยังต่างประเทศ
- วีดีโอการบรรยายสัมมนางานวิจัยที่สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) จัดขึ้น
- วีดีโอการบรรยายสรุปโครงการวิจัยต่อคณะสื่อมวลชน เจ้าหน้าที่ของ สกว. และ ผู้ที่สนใจ
- วีดีโอการจัดงานโครงการสืบสานวัฒนธรรมไทย กัมพูชา ตามแนวเส้นทาง โบราณจากเมืองพระนครถึงเมืองพิมาย
- วีดีโอสารคดีของโครงการวิจัยโคยสรุป

5.4.2 ฐานข้อมูลวัฒนธรรมในส่วนของ e-learning

- อธิบายรายละเอียดของโครงการวิจัย
- อธิบายขั้นตอนและวิธีการทำงานวิจัยในส่วนต่างๆ เช่น การขุดค้นทาง โบราณคดี การสำรวจทางธรณีฟิสิกส์ เป็นต้น
- รายงานผลที่ได้จากการสำรวจต่างๆ
- เป็นสื่อการเรียนรู้ในเรื่องของอาณาจักรขอมโบราณ

5.5 สรุป

ในส่วนของการพัฒนาสารสนเทศและสารคดีเพื่อการศึกษานั้น จะเน้นในเรื่องการเผยแพร่ ข้อมูลความรู้ ขั้นตอนวิธีการในการทำงานวิจัยชิ้นนี้ผ่านทางระบบเครือข่ายอินเตอร์เน็ตในรูปแบบ ของ Video Streaming และสื่อการเรียนรู้ e-learning ซึ่งผู้ที่สนใจสามารถศึกษาถึงรายละเอียดของ โครงการ วิธีการสำรวจ วิธีการวิเคราะห์ผลที่ได้จากการสำรวจนั้น รวมถึงการใช้ความรู้ในหลาย แขนงๆ มาวิเคราะห์ผลที่ได้

บทที่ 6

รายงานการวิจัยจากทีมวิจัยกัมพูชา

6.1 Introduction

It is a study on historic roadway, communication links and human settlement of Khmer Empire from Angkor to Phimai. The research work had been conducted along the axes in Cambodian side for more than hundred kilometers. The archaeological and ethnographical are systematically surveyed by the Cambodian team. The cultural data collection from the study is certainly the most valuable information for the current study and for future research work on the region. The Advance Technologies are also applied in the field research for collecting and analyzing archaeological and cultural information.

6.1.1 Objectives

The research work aims to identify communication network, human settlement structures along the ancient road and ancient manmade structures along the axes: stone bridges, rest-houses which Louis Finot (1925) supposed to be called *Dharmashala*, hospitals written in Ta Phrom's inscription as *Arogyashala*, ancient agglomerations/communities, water structures, water works, etc. The results from this integrated studies revealed the knowledge about this ancient road in the form of physical evident, geographic property, and archaeological information of the ancient road and its surrounding area.

6.1.2 Data Resources

The studies based on existing resources as following:

- Ancient written texts: inscriptions mainly Sdok Kak Thom, 11th century and Preah Khan, 12th century. The first one has also written about the territory and public infrastructure development to west region of Angkor. The second is most important information which mentioned about the "rest-houses" built along the roads from capital city Angkor linked to provincial cities and neighboring kingdoms, particularly, the building along the royal road from Angkor to Phimai.

- **Chinese records of Tcheou Ta-Kouan**: a Chinese envoy to Angkor Royal Court in late 13th century who recorded Khmer daily life, royal court, infrastructure, etc.
- **Archaeological remains** are the most important resources of the study: vestige of roads which are mostly still visible in Cambodian side, stone bridges, water structures, building of resthouses, chapel of hospitals, temples, ancient agglomerations, etc...
- Old maps: different old maps drawn by French dated from late 19th century (Bastian, Aymonier, etc.), early 20th century (Lunet de Lajonquère) and following until current date (see more detail at Remote Sensing and GIS survey).
- **Remote Sensing**: old aerial photos taken by French in 1930's, 1940's, 1950's, 1990's and 2000's. Satellite images (Spot, Landsat, Ikonos, etc...) are also used for this study. This will develop in detail at Remote Sensing and GIS study as below.

6.1.3 Methodology/Research Approach

The study is primarily based on three main approaches: archaeological survey, anthropological survey and remote sensing and GIS survey. The archaeological and anthropological surveys are based on data-collection form that was developed out of earlier studies conducted by the APSARA Research Unit. The APSARA team has developed this survey form and trained its members in its use to collect archaeological and cultural data from the fields. Four local people from each village are selected for interviewing: the village's chief or his deputy, a senior citizen, a monk or a spiritual leader of the village.

The Archaeological Research Form consists of five main points:

- **Location of the site**: its UTM and where is it located in village, commune, district and province; and its orientation?
 - **Archaeological Typology**: Was it a temple, water structure, dike, ceramic kiln, metallic site, mound, road, bridge?
 - Archaeological Structure, its layout, its art style
 - Inventory number: old and new number will be marked on each site
 - Current Status: Is it in good, fair, threat, looting, and vandalism condition?

The Cultural Research Form consists of five main points:

- **Geography and Statistics:** the location of the village, its UTM, heritage protected zone, data collection date and a brief description.
- Village Location and its Structure: for example, whether on an ancient man-made structure, a dike of a water reservoir, a road or an ancient site. Some villages preserve a traditional layout, concentrated around a central point.
- Village Infrastructures: the village may be characterised by its own infrastructures which could be classified as: Familial; Public; Ancient; Religious; Education and Health.
- Customs and Belief: This is a significant component of the data form and aims to collect comprehensive information about the traditions associated with each of the Khmer villages. We are surveying two main aspects: the first is concerned with *rites of passage*, and with rituals associated with a fixed annual calendar or with special occasions (which can occur at any time). *Rites of passage* are special events in an individual's life and are an ancient tradition of the region (Ang 2007). Rituals that are associated with particular set dates encompass a series of ceremonies that occur throughout the traditional yearly calendar. These are complemented by rituals that can be performed at any time of the year they are usually held to coincide with an auspicious time, as identified by the officiant. The second aspect is concerned with customs and performing arts, which are also considered to have a ritual component, and which contribute as part of collective events such as dances and theatre.
- Economic Resources: we did a very quick survey regarding the economic activities within each village. The resources can be traditional crafts and handicraft production; agricultural production; basket, mat and broom dressing; weaving; alcohol production from rice or sugar palm, and foods.

6.1.4 Task Works

For the phase I, we designed a working zone for the field research which is covered 2km away to each side from the supposed axes. That field survey covered on area of 4km wide by 125km long from Angkor to the current borders of both countries. This zoning preliminarily includes 54 villages of the 8 districts and of the 2 provinces, Siem Reap and Uddor Meanchey. Four phase works of the ground operation have been successively taken place in the field due to

geographical condition of regions and seasons (Fig. 6-1). The ground operation has been taken from its departure of road at Angkor Thom to Prasat Ta Mean at border for more than 18 months.

Following up the previous phase, the Phase II of the Project is formally designed into six step works as below:

- Continuing the ground survey at the border region, Prey Veng village, Udor Meanchey Province. The survey will be used archaeological and cultural anthropological approaches.
- Mapping of an ancient provincial city which presently named "Kol Village" where situated close to the Royal Road. This is a study of an ancient city structure which composed ancient temples dated different periods, chapel of hospital, rest-house, stone bridges and water structures.
 - Cross Section of Royal Road and Analyzing its Structure
 - Ceramic Studies, physical and scientific analyzing
 - Archaeological and Cultural studies and Analysis the data collected
- GIS Analysis from data collection for better understanding the ancient structures situated along the road axis.

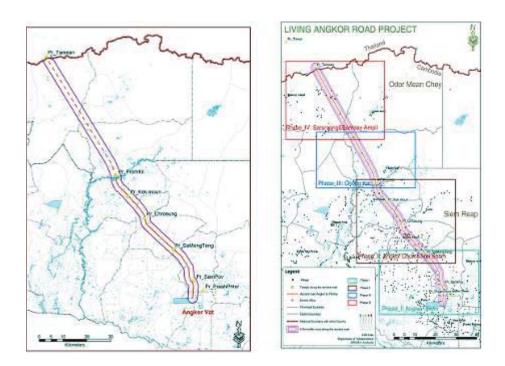


Fig. 6-1 Field Work Plan

6.2 Cultural Study

This is a Socio historic study conducted on communities living along the Royal Road in Cambodia and Thailand sides. The ethnographic survey has consisted of two sub-phases: Location of all communities living along royal road, and field survey to each community that has relation with the royal road, i.e. the community that has exist for long period of time, not newly established, with the buffer zone of 2 km. from each side of the predicted location of the royal road (4 km. buffer zone).

6.2.1 Development on Existing Cultural Research Form

LARP has developed from the existing Cultural Research Form which created by APSARA's Cultural Studies Unit, and translated it into English. The summary of the Research Form's Structure:

a- Location & Statistics:

- Village code #; Village; Commune; District; Province
- UTM; Data collected / Updated
- Location (Map)
- Statistics: Year; Houses; Families; Population; Males; Females
- Location's brief description

b- Infrastructures:

- Familial: Well; Pond and other water reservoir; Pipe; rivulet
- Public: Road, trail, path; Bridge; Well; Pond and other water reservoir; Pipe; rivulet
- Ancient: Temples; Ancient structure; Road, trail, path; Bridge; Pond and other water reservoir; Pipe, rivulet
- Religious: Buddhist monastery; Rest-house; Spirit's hut
- Education: Nursery, primary school; Secondary school; Junior high school;
 Monastery school

- Health: Health center; Mobile health unit; Medium (spirit possession); (Traditional) midwife; (Traditional) healer

c- Resources:

- Agriculture:
 - . Rice-field:
 - . Irrigated rice-field
 - . Dry season rice-field
 - . Slash-and-burnt rice-field
 - . Receding rice-field
 - .Water-mounting rice-field
 - . Other cultures:
 - . Sugar-palm trees
 - . Fruit trees
 - . Vegetables
 - . Plantation, orchard
 - . Animal breeding:
 - . Familial consumption
 - . Commercial
- Fishing: Fishing concession; Fishermen community; other
- Services: Labour; Commerce; Public administration; Private sector; personnel; Other
- Supplementary incomes: Natural resources; Crafts; Other
- d- Traditions and Beliefs:
 - Types of ceremonies:
 - . With fixed dates
 - . With no fixed dates
 - . Rites of passage
 - . Other Customs
 - Ceremony code #

- Number of images

- Ceremony's name ; Data collected in

- Short description; Recording

- Detailed description

6.2.2 Field Survey on Villages situated along the Royal Road

The survey has been done during nearly two years on communities living within the zoning along royal road. There are 54 villages found situated in the zoning study along the axes where located in eight different districts of two provinces, Siem Reap and Udor Meanchey. 39 villages situated in 5 different districts in Siem Reap province where there are 4 villages located in World Heritage site Angkor. 15 villages situated in 3 different districts in Uddor Meanchey province.

6.2.2.1 Findings of the Survey

* Village Location and Structure

Most of the village settlements are often associated with ancient occupancies that date back to different periods of Cambodian history. As a result, the structure of each village has accrued its own character and value. Some villages reflect the discernible ancient landscape along the historic road, and continue to use the road as a central feature and communication arterial. Some villages exist harmoniously with nearby ancient temples or Buddhist monasteries, for example *Nokor Krao, Nokor Pheas, Kol, Kok Spean* villages. Several villages are significant for their relationship with ancient water structures or irrigation systems. These include *Kandol, Srah, Loboek, Tonle Sar* villages, etc. Others are distinguished as a result of their settlement within Angkorian industry nodes, such as the ceramics production centre: for example *Khnar, Srah Srang, Prei, Prey Veng* villages.

These villages have gradually developed in a cluster around a central Buddhist monastery, most of them built on an ancient temple or ancient structure. The villages are surrounded by rice fields, vegetation or the forest of their communities. Some villages are isolated

from other by rice fields. The seasonal changes reflected in the surrounding landscape also act to create a changing environment.

The settlement histories and stories of the villages are often reflected in their names. Several villages share a popular tale, which they consider to be a common history that creates a linkage between their communities. Another historical theme relates to the first man who came and cleared land for developing that community (e.g. *Tasom, Don miev,* etc). Other villages have histories relating to natural, cultural or historical events of the region (*Nokor Krao, Nokor Pheas, Chum Nom Reach*, etc). Most stories of this type relate to nature and are concerned with a specific plant grown in the area (*Ta Trao, Kok Beng, Khchas, Makak*). Most of these histories can probably be dated to after the fall of Angkor. They have been told from one generation to the next and exist primarily as oral traditions, although a few stories have been published.

* Village Landscape

A variety of village landscapes have been identified on the basis of their settlement structure and environment. Many villages are situated on ancient infrastructure (for example, dikes, water structures, ancient roads), and reflect one set of changing environments. Other villages are found close to ancient temples or clustered around a temple, which gives a different character to the village landscape.

The village landscape reflects the different seasonal changes. The rainy season in particular can give much beauty to villages surrounded by rice paddy and seasonal vegetation. At this time of year the villagers are all busy with agricultural work, and their activities can be observed from dawn until night during half the year.

The traditional house is built on stilts, where people live upstairs and animals (such as a cow) are stabled underneath with an ox-cart. Houses are surrounded by a natural fence of small trees (sometimes fruit trees or medicinal trees) or different kinds of flowering plants. The roof is covered by traditional ceramic tiles, usually in a brown colour. Some households have a small garden around the house; a water pond is often found in front of the house. In some places, rice fields are situated next to or in front of the house.

* Tradition and belief

Some main traditional and ceremonial events have been identified in most of 54 villages in Cambodia and some villages investigated during short survey in Buriram and Surin, Thailand. As mentioned above, there are two main categories of ceremony. The first is concerned with *Rites of Passage*, and with rituals associated with either the fixed ceremonial calendar or with special occasions (which can occur at any time). The second aspect is concerned with customs and performing arts, which are also considered to have a ritual component, and which contribute as part of collective events (Ang 2007 & Im 2008b).

Rites of Passage encompass a series of ritual practices performed through a circle of an individual's life, from the stage of new birth to death: they are manifest in eight different rituals (Ang 2007 & Im 2008b). This series of rituals can be summarised and literally translated in English as the following:

- **a- Ritual concerning Birth** *Kat Sak Bankok Chmob* or *Sray Khsae Tanlak Chankran* is performed a few days after delivery, and aims for the recognition by the community of the newborn, to pass on the family's gratitude to the midwife, and to drive away any misfortunes in that future that may be caused by the mother's blood during delivery, which is considered to be unclean. The Midwife has ritually shaped the newborn to make the baby into a new human being of our world. This ritual is performed throughout all along the *Royal Road villages* in Cambodia, and some Buriam and Surin villages situated close to the border.
- **b- Keeping and Cutting of the Topknot** *Kor Chuk* or *Kat Sak* marks the human age of pre-adolescence. Traditionally a child in a family is made to grow a long central tuft of hair, often from birth. Around the age of 13, and always at an odd-numbered age, a ceremony is performed symbolising the passage into puberty and rivalling the marriage ceremony in importance during which the tuft is removed. The ritual is still practised in a large number of *Royal Road villages* and very few found in Buriram and Surin within the zoning study.
- **c-Buddhist monk Ordination** *Bous Neak* for a male celebrates a new step of life to the study age. Young adult men prepare for ordination as novices in the Buddhist order. These events are also observed commonly in the *Royal Road villages*, but not for all young men. For a girl of

this life stage, there is a ritual called *Mlob* (literally meaning 'entering to shadow'). The girl stays inside her room for a period of time and is banned from talking with strangers or with a man. She learns from an old woman sage how to be a good housewife. This ceremony is no longer practised in the villages inside zoning study, but it still survives in a few villages of the Siem Reap region, Kompong Thom, Kompong Cham, Koh Kong.

- **d- Marriage** *Reap Kar* is a conjugal step between a man and a girl who has passed through the adolescence step of life. There is a diversity of ritual during marriage events noted in the *Royal Road villages*. While the concept and objective of the ceremony is the same from one village to another, the form of the ritual is usually slightly different. We have no information from Buriram and Surin.
- **e- Ritual concerning delivery** which marks the transition from a housewife to being a mother. The ritual is practised across the whole *Royal Road villages*.
- **f- The ceremony of Prolongation of Life** has several names: *Chansok Kiri Sout, Chhark Toch, Chhark Thom* or *Chhark Maha Bangsakol, Tor Ayuk,* etc. The ritual practices are associated with elderly people. The ceremony aims to prolong the life of the person concerned, by simulating a cycle of death–gestation–rebirth. Meditation is practised by the elderly, notably older women, to assist the mediator to envisage his or her own self as a corpse, presumably in preparation for death. The ritual is widely practised in the *Royal Road villages*.
- **g-Funerary rite** *Bochea Sap* or *Chamroeun Phloeung* or *Banches Bukul* is composed of three major ceremonial components: First burial, Exhumation and Definitive burial. The two major ritual components are exhumation followed by cremation of the remains. The rite is still practised in many *Royal Road villages*, mostly in the villages situated in Siem Reap province.
- **h- Burying of the ashes from incineration** *Banchus Theat* is the final stage of the human life circle. This is a testimony to the continuation of an ancient tradition in the villages of Siem Reap province.

The Ceremonies of the fixed annual calendar can be observed as the following: Traditional Ceremonies over twelve months as written in the traditional calendar; Agrarian rites, and Practices of Animism – a homage to Neak Ta, an important spiritual village protector (see detail Ang 2000).

The traditional ceremonies over the calendar period are performed similarly elsewhere in the Kingdom. The difference lies in the way the ceremony is practised from one place to another.

The Ceremony of homage to *Neak Ta* is widely performed in every village along the Royal Road and in Buriram and Surin within the zoning study.

Agrarian rites are the most practised in the Royal Road villages. This reflects the importance of agriculture as the main economic activity of the region. A series of rituals concerning rice paddy celebrates the beginning of the agriculture season through to the time the rice is stored. The agriculture season commences after the Royal Ploughing Ceremony, which is conducted by the King or his representative.

Ceremonies that are not tied into specific calendar events include those that are observed in the ritual of inauguration of a *Vihara*, Buddhist monastery, or any public building; rituals relating to the asking for rain; rituals to divert misfortune in a family or village or community; rituals at the beginning of house construction and house warming. This series of ceremonies is also widely performed throughout the region. Any ritual of this type can be performed on an auspicious date, determined by the officiant.

* Customs:

The kinds of performing arts that are considered to be of a ritual nature have contributed as a part to various collective events. Popular dances are indigenous forms relating to the chasing of evil, bad spirits and wild animals that can provoke misfortune over the communities. *Trot* is performed only during the New Year celebration for chasing away bad luck, misfortune and for begging the rain. *Tug-of-war* is also played during the New Year Day celebrations. The aim of the latter is to ensure rain for the coming agriculture season (Im 2008b).

* Economic Resources:

The *Royal Road villages* stretch along the road from the downstream plain on the south toward the Dang Rek Range on the north, which covers an area of several thousand square kilometres. Based on geographical and environmental factors in the context of a long history of human occupancy, the region can be distinguished by several types of village community. Each type occupies one of the main ecological sub-zones of the region and is differentiated by sociocultural characteristics (Ang 1995).

These communities consist basically of traditional subsistence rice farmers whose livelihood principally depends on one crop a year of rain-fed or irrigated rice paddy. In addition to the paddy, the population cultivates fields prepared by slash and burn techniques where they grow rice and other vegetables.

Typically, a number of traditional varieties of rice are grown. Each variety is adapted to different soil types and, particularly, to differing water conditions. Traditional farming techniques are used, such as the swing plow pulled by oxen or buffalo. Up to the north region, each family generally cultivates a field prepared by slash and burn techniques, where rice and many vegetables are grown.

The daily life of the Khmer villages has not changed considerably. Traditional crafts, such as weaving, are still practised in the village. Other activities include basket, mat and natural broom dressing; weaving silk or cotton; ox-cart production, and alcohol making.

6.2.2.2 Discussion on Cultural Study

Most of the village settlements are often associated with ancient occupancies that date back to different periods of Cambodian history. These villages have always been a spiritual landscape, inhabited by protector spirits, *Neak Ta* who live in temples and villages. The veneration of a god, Buddha or *Neak Ta* is a central element in the retention of village identity and memory of the Khmer people. Hindu gods and other element of ancient structures all also have spiritual power. Natural stones and Hindu or Buddhist icons have been appropriated as the embodiment of certain *Neak Ta* (Ang 2000 & Im 2008b).

Praying to the Hindu or Buddhist gods and the Neak Ta, and organising ceremonies and rituals is a continuing practice that reinforces both the sacred landscape and community identity.

Within the landscape, certain 'special' places are commemorated through ritual, and their importance remembered and passed on within and between village communities (Im 2008b).

Myths and legends and oral histories commonly reflect collective knowledge and can be derived from historical memory, myth, legends, folktales and beliefs. Through these surveys, there are a number of myths that serve to reinforce our understanding for the future studies, and of course, elaborate local understandings of the sacredness of certain sites, linking elements in the stories to local practices (Im 2008b).

Royal Road communities are continuing of living in the same spaces, within which there are inherited memories of ancestors' experiences and beliefs, overlain with the new generation's memories and experiences – and these all remain closely associated with particular places and localities within the wider landscape. Continuing practices also include story-telling, playing New Year games, dances, music and theatre.

Temples, ancient roads, bridges, forests, and the rice fields, lakes and ponds, have the names of ancestors attached to them or are surrounded by legends remains as important landmarks for local people. The names of villages are similarly reflective of local and natural elements and markers, or of shared history with other villages¹.

A word to confirm that, what we found from Cultural Studies, is well matching with the title given to this research project as "Living Angkor Road". A significant outcome of this project is that it reinforces the research from a number of other projects supporting a historical continuity in various community traditions and practices. This is important in understanding the wider heritage significance of Ankorian Civilization. While contemporary practices and ways of life are themselves an important component of the heritage of the region, it is equally significant that these maintain connectivity with the past and with the Khmer civilisation. *Preah Kunlong* is the home of multiple village communities which are considered also as *living heritage* in the sense that the village way of life itself – although constantly evolving and changing – reflects a continuation of practices, beliefs and traditions.

¹ see Im 2008b

6.2.3 Kuy Study

During the intensive cultural survey in both sides Cambodia and Thailand, we have found a huge interesting information regarding a strong connection between Khmer and ethnic *Kuy* communities. But this is not a new discovery. The relationship was generally studied by scholars on the field of Khmer Study. For LARP, this is extremely important information and new perspective for studying on a culture which is on the way to lose for ever: *Elephant Hunting* and *Iron Smelting*.

Of course, there are many ethnic *Kuy* communities settled in Cambodia and Thailand. But this study has mainly made on two communities: Hunting Elephant and Metallic production communities which their settlement some situated along the road and other parts of the countries. The survey is not focus only to the subjects regarding Hunting Elephant or Iron Smelting stories, but their tradition and customs are very important information to be studied as well.

6.2.3.1 Findings of the Survey

a. Hunting Elephant Communities², Kuy Damrei

Several surveys have been conducted inside Cambodia at Srae Noy *in* Siem Reap province and at Samrong, Udor Meanchey province, and others inside Thailand at Ban Taklang and Ban Dong Bang, Surin. We found these communities are relative and still in contact each others. The great elephant hunter, *Mho Kamloung* named *Mho Mak*, great elephant hunter at Ban Taklang is cousin of the *Mho Kamloung* named *Mho Tha*, 92 years old (at the date of interview 2007), living here in Srae Noy. And *Mho Tha* is close friend with *Mho Kamloung* named *Mho Keo* at Ban Dong Bang.

Kuy communities at Samrong, Uddor Meanchey province, and at Srae Noy are recognized by authority as Cambodian nationality and legally settled on their land. Through interview with old generation, we are told that they were migrated down from Surin and Burirum

² Actually, there was not only ethnic Kuy who was skill in hunting elephant and was an ethnic group of elephant hunter. But Laotian, Khmer and many other ethnics settled in Cambodia, Laos, Vietnam and Thailand were also known as elephant hunter. Here the study aims to find relationship between this ethnic and Khmer regarding the Royal Road.

to Cambodia roughly in second quarter of 20th century for seeking land for agriculture and elephants.

Through several interviews conducted in Cambodia and Thailand, we learnt that previously, there was no administrative boundary. They could freely go down and go up beyond the chain of Dangrek range. And even in our modern day, from time to time, they pass through the current administrative border for seeing their relatives here and there. This means the circulation space of these communities are free of limit. Their destinies are linked, certainly lasted very long time ago (Fig. 6-2).

b- Metallic Making Communities, Kuy Dek³

Eight iron smelting sites are found along the axis and at two huge sites situated close to road at Uddor Meanchey. And 67 sites are identified in Thailand. None of local people living on sites or close to the sites remembered about this work. Once we asked Khmer at Ban Kruad and here in Cambodia, they said: It was *Kuy* who was skill to smelt and to produce the metal. With this reason and based on the previous studies, leading us to go further in search on Iron Smelting history.

With kindly supporting from our Thai partner, we went to Chomprak. We met with an Kuy family who is a black smith. When we asked him about the smelting history. He said, the ancient time was Khmer and *Kuy* who did the smelting. No body remembers how to smelt any more. But, he knows how to produce different kind of tools from metal/iron. Two kinds of tools which he is currently still producing are: a kind of sword and knives (such cutting tools using in daily life). This is very important thing to learn. The forms of these tools supposedly look similar to what sculpted on temple walls. But, this needs to do check and more work.

We conducted seven field researches into four different Kuy settlements located in Cambodia. These settlements situated near the iron mine, natural hill, called *Phnom Dek*, litteraly means "Hill of Iron".

First at *Bakan* temple complex, called *Preah Khan Kompong Svay*, a city of Jayavarman VII, where many Iron smelting sites found inside. Local people still remembered the stories told from generation to next about *Kuy* who produced the metal.

³ For information see Dupaigne 1992.

Second we did survey at *Prey Sanlong* site was a former ethnic minority *Kuy* settlement, located in Srei Snom district, Siem Reap province. And in the same time, we also did survey at *Chhok* situated in Chong Kal district, Uddor Meanchey province, where we found about five remained furnaces. Third the survey is conducted at *Chanrot* where was a former Kuy village, Kompong Thom province. We found here more than 10 sites. Fourth was *Phnom Dek* area where was the fame of *Kuy* settlement of iron smelting, currently situated in Preah Vihear province (see Dupaigne 1992 for more detail). We surveyed three different sites: O Por village, Rumchek Village and Boeng village. The first two villages are descendant from iron smelting family. We did in deep interview with the old men and women, aged 75 to 90 year olds, who participated/involved to the daily smelting activities. No more *Kuy* lives at Boeng village. But, here are very important sites where about twenty sites have been identified.

There is important information, found at *Kuy Dek* living in current Cambodia, which should be thinking to develop this topic further. Firstly, it is about a kind of "dance of war" called *Pravay* * *Khael* *, which performed by *Kuy* during the New Year Day or sometime after just the harvest. Even within Khmer communities, living at Thalaporivat, Stun Treng province, has also invited *Kuy* for performing *Pravay Khael* inside the compound of *Preah Ko* temple, Pre-Angkorian brick temple, during the New Year Day. Of course, this perform consists art of war, magic and using warrior tools.

Second evident has been found within these *Kuy* communities as well. It is a ritual concerning iron tools, *Iron Tools Oblation*. During three days of ritual, all kind of metal tools using in everyday life are displayed on the altar of their houses. These tools are considered as the sacred objects for them. We don't know exactly the ritual date which have been performed previously. But, we observed within out survey that it is performed during the festival of death (Fig 6-3A and B, 6-4, 6-5).

⁴ To fight

⁵ Shield

_

Fig. 6-2 Kuy Damrei at Surin and Siem Reap

Fig. 6-3A $\mathit{Kuy}\ \mathit{Dek}$, Black Smith at Chomprak

Fig. 6.3B Kuy Dek at Phnom Dek, Preah Vihear province

Fig 6-4 Pravay Khael at Veal Veng, Kompong Thom

Fig 6-5 Iron Oblation at Kuy Veng, Kompong Thom

6.2.3.2 Discussion on Kuy Study

- Sanlong, a Kuy dialect define iron smelting site. This term found using in any Kuy Dek

communities.

- We observe that these two communities worship their different divinities. Sacred object

of Kuy Damrei, Hunting Elephant, is certainly Prakam, a kind of buffalo hid rope used for

hunting and tying elephant. For Kuy Dek, their own divinity is Sanlong.

- According to cultural point of view, Kuy was and is an ethnic minority close to Khmer.

They know and well performed Khmer traditions and beliefs for their daily life.

- Relative abundance of literature related to Kuy people because of their production the

metallic quality and their genius on elephant hunting. They were masters of Iron and Fires; and

master of Elephant Hunting.

- Observing the sculptures of Angkorian temple walls, we find elephants, scene of

combats, war tools. This is not mean that were from Kuy, but at least Kuy has paid their

contributions to Royal Services.

- Khmer words abundantly loaned by Kuy for using in all aspects of rituals, tradition and

customs

- And the function of Royal Road linked also to the development of Iron smelting and

Elephant use.

- The study on Kuy communities is given more values to the fold of Cultural Studies

which is well matching to the research project entitled "Living Angkor Road".

6.2.4 Initiate Cultural Database

We developed the Excel format for cultural information from field survey collection. The

structure is designed as following:

- Village Code: LARP code and national code

- Village name: Khmer and Romanisation

- Village location: Administration location and its UTM

- Date of Registration

- Statistic: Family and Population

- Public Infrastructure: Road (ancient and new); Bridge (ancient and new); Water structure (ancient and new); Water way
- Religious Infrastructure: Temple (ancient and new); Rest-houses (ancient and new); Spiritual protector, Neak Ta
 - Health infrastructure: Health Center; Home cure
 - Resources: Agriculture; Farming; Livestock; Fishing; Services; Craft
 - Traditions and Beliefs: Rite of Passage; Fixed date rituals; unfixed date rituals; minor rituals.

6.3 Archaeological Survey

6.3.1 Royal Road

This is the identification on road's vestige remained on spot and its orbit from the departure point till Dangrek. Road is all visible within Siem Reap province and mostly seen in Uddor Meanchey province. Generally, Royal Road was a straight line, but it was deviated in some areas on its orbit. For example:

- It was deviated its direction when it was reach to a temple called *Preah Khan* located about 20km on the northwestern of Angkor Thom.
- It was turned its direction to East about 20 degrees when it was reach Kol village situated about 35 km on the northwest of Angkor.
- It was deviated its direction again when it arrived to a village named *Kok Spean*, etc.
- Royal Road was often crosscut with local roads where were linked to ancient agglomerations, provincial city and temples, for example at about 5km on the north from Angkor Thom, Kol village and some other places at Uddor Meanchey.
- Road was built up with high elevation, as dike, when it runs on lower plain and becomes lower when it passes through on upper plain.
- It was structured by water draining and shoulder at each side and covered by a large crown from 6 meters to 14.50 meters wide. Water draining was canal flanked the road, average measuring about 6 meters.

- Generally, Royal Road measures about 30 meters wide (included crown, shoulder, edge and water draining)
- Total distance of Royal Road from Angkor to Dangrek is about 125 km long which is around 65 km in Siem Reap province and 60 km in Uddor Meanchey province.
- It was built up by different five compact soil layers (see detail work at Cross-section point)
 - Road was rehabilitated from time to time in ancient period (see detail below).

6.3.2 Passage through Dangrek

Two passages have been identified through Dangrek: *Ox-cart* passage called "Phlov Prahok" (literally means "Road of fish-paste or fermented fish) and a walking passage through a laterite stairway structure called "Phlove Romkel Sap" (literally means "Road of moving royal dead body"). *Phlov Prohok* was used for Ox-cart, elephant and heavy transportation. *Phlov Rokel Sap*, a laterite stairway was used for pedestrians and palanquins means (Fig. 6-6, 6-7, 6-8).

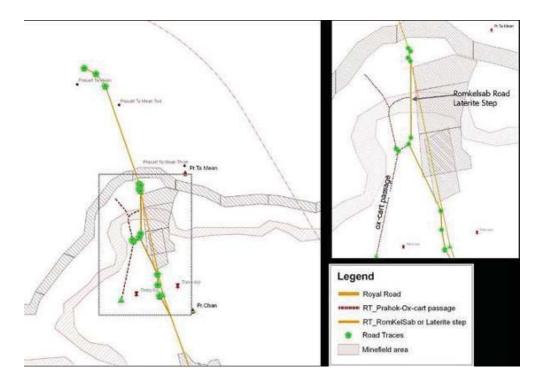


Fig. 6-6 Passages through Dangrek

Fig. 6.7 Ox-cart passage

Fig. 6.8 Laterite Steps

6.3.3 Cross-Section on Royal Road

The work is taken place within the Kol village situated on the Royal Road 40km away from Angkor. The Road is clearly visible in the area where three ancient stone bridges remained. Two operations have been conducted: Excavation the main section of road and Hand augering to the both side of road extension (Fig. 6-9 Kol Village).

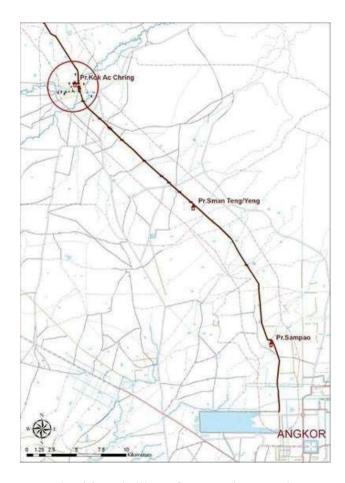


Fig. 6-9 Kol village_Cross-section Location

6.3.3.1 Objective

The excavation aims to study about: Road's Structure; Construction Technique of Road; History of Road's use and making a comparative study to the road's structure which has been previously done in Thailand by the Thai partner.

6.3.3.2 Excavation

- Excavation pit is selected at the most damage part of road structure because it's better to avoid more cut. The original level of road might be higher than current level about one meter high.
 - Setting up work plan for excavating and recording.

6.3.3.3 Stratigraphy (Soil Texture)

Road's Structures were thoroughly compacted by clay, sand and coarse laterite/granular laterite (?). Four soil layers have been identified (Fig. 6-10, 6-11, 6-12 and 6-13):

- Layer I: A sandy loam; fine; organic soil because of common roots; slightly hard; light gray at central pit and becomes dark at extremities pits.
- Layer II: A loamy sand; Light brown; Granular and coarse soil composed with sand and clay are identified by red spot when they absorbed water; slightly hard soil layer; Tree roots found.
- Layer IIIa: A mixed clay with coarse sand layer; Light brownish gray at dry area and becomes dark brown at wetting area; Very coarse and granular; Hard; clay's composition is much more than Layer II but it not well stuff as previous layer; big tree roots found in some parts of the layer.
- Layer IIIb: Similar to previous layer but it's more wetting, softer and browner than layer IIIa.
- Layer IV: A mixed clay and coarse sand layer; clay's composition is less stuff than Layer IIIa (sandy loam); light brown; It's flaking when it's grated; less sticky than layer IIIa; Coarse sand became dark red spot at wetted area, considered as manganese layer (Mg).

Fig. 6-10 Cross-Section Pit

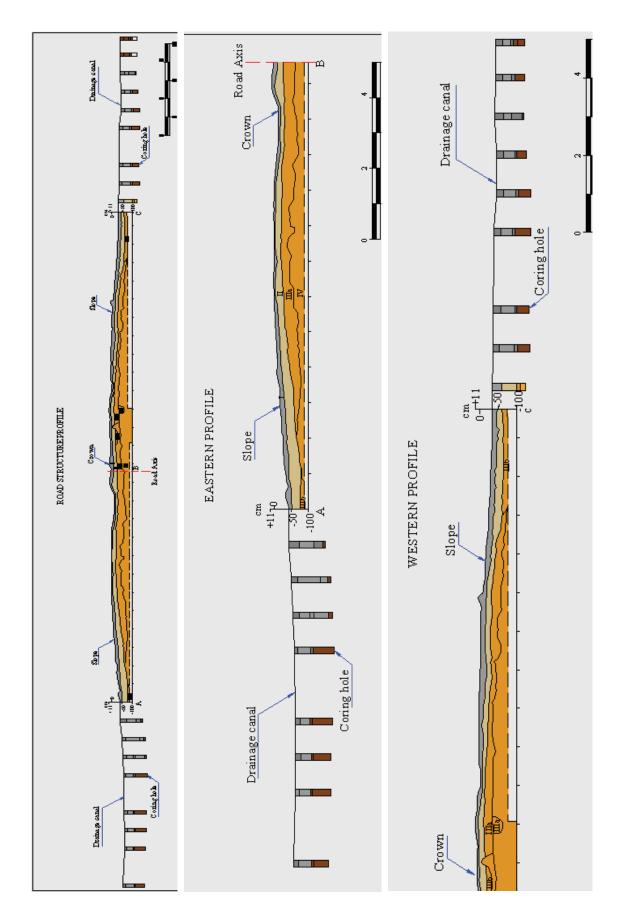


Fig. 6-11, 6-12 and 6-13 Road structure profile

6.3.3.4 Object found

4 small ceramic pieces discovered during the excavation which could be identified as 3 Chinese pieces and 1 Khmer piece (see detail report below).

6.3.3.5 Hand Coring

We extended the research work into the both side of extremities pits. Coring work into each side was covering into 10m away from the excavation pit. We did a coring hole in every 1m for seeking the edge and drainage canal of the road.

A- Soil recording at Eastern part (E + number = coring hole location and number):

- **E-1** is a coring hole 1m away from excavation pit to East side. Here's below the soil description:
 - * 0cm-30cm: A sandy loam, gray, sediment soil, Fine, soft and well stuffed
- * 30cm-70cm: A loamy sand, light gray, sediment, soft, coarse sand found and ground water infiltrated at this level
- * 70cm-100cm: Loamy sand, light gray, sediment, hard, coarse sand and its grains became dark red spots due to ground water infiltrated in this level, a small piece of charcoal found
- * 100cm-110cm: Loamy sand, grayish mixed with dark red spots, harder, much more coarse sand, natural sediment.
 - E-2 is 1m away from E-1 coring hole:
 - * 0cm-20cm: Sandy loam, light gray, Fine, soft and well stuffed, sediment
- * 20-80cm: Loamy sand, light gray, sediment, soft, coarse sand found and ground water infiltrated.
- * 80cm-110cm: Loamy sand, light gray, sediment, hard, coarse sand and its grains became dark red spots due to ground water infiltrated in this level.
- * 110cm-120cm: Loamy sand, grayish mixed with dark red, harder, much more coarse sand, natural sediment.

- E-3 is 1m away from E-2 coring hole:
- * 0cm-20cm: Sandy loam, light gray, Fine, soft and well stuff, sediment
- * 30-50cm: Loamy sand, light gray, sediment, soft, coarse sand found and ground water infiltrated.
- * 50cm-60cm: Loamy sand, light gray, sediment, hard, ground water infiltrated in this level.
 - * 60cm-100cm: Loamy sand, light gray, harder, coarse sand, natural sediment.
- * 100cm-120cm: Loamy sand grayish mixed with dark red spots, harder, much more coarse sand, natural sediment.
 - E-4 is 1m away from E-3 hole:
 - * 0cm-20cm: Sandy loam, light gray, Fine, soft and well stuff, sediment
- * 20-50cm: Loamy sand, light gray, sediment, soft, coarse sand found and ground water infiltrated.
- * 50cm-60cm: Loamy sand, light gray, sediment, hard, coarse sand with dark red
- * 60cm-110cm: Loamy sand, grayish mixed with dark red spots, harder, much more coarse sand, natural sediment.
 - E-5 is 2m away from E-4 hole (6m away from excavation pit):
 - * 0cm-20cm: Sandy loam, light gray, Fine, soft and well stuff, sediment
- * 20-50cm: Loamy sand, grayish mixed with dark red spots, sediment, hard, coarse sand found and ground water infiltrated.
- * 50cm-60cm: Loamy sand, gray mixed with dark red, sediment, hard, coarse sand with dark red
- * 60cm-110cm: Loamy sand, grayish mixed with dark red spots, harder, much more coarse sand, natural sediment.
 - E-6 is 7m away from excavation pit and has a similar soil texture to E-5
 - E-7 is 8m away from excavation pit and its textures are:

- * 0cm-20cm: Sandy loam, light gray, Fine, soft and well stuff, sediment
- * 20cm-50cm: Loamy sand grayish mixed with dark red spots, coarse sand, hard, natural sediment
- * 50cm-60cm: Loamy sand, grayish mixed with big dark red spots, coarse sand, hard, natural sediment
 - * 60cm-100cm: same texture as layer above
 - E-8 is 10m away from excavation pit and here the soil texture:
 - * 0cm-20cm: Sandy loam, light gray, soft and well stuffed
- * 20cm-50cm: Loamy sand, grayish mixed with dark red spots, coarse sand, hard, natural sediment
- * 50cm-60cm: Loamy sand, grayish mixed with big dark red spots, coarse sand, hard, natural sediment
 - * 60cm-100cm: same texture as layer above

B - Soil recording at Western part (W + number = coring hole location and number):

- W-1 is a coring hole 1m away from excavation pit to West side. Here's below the soil description:
 - * 0cm-30cm: Sandy loam, gray, sediment soil, Fine, soft and well stuffed
- * 30cm-60cm: Loamy sand, grayish mixed with dark red spots, coarse sand, hard, sediment soil
- * 60cm-70cm: Loamy sand, grayish mixed with dark red spots, coarse sand, harder, natural sediment
- * 70cm-90cm: Loamy sand, grayish mixed with dark red spots, coarse sand, harder, natural sediment
 - W-2 is 1m away from W-1 hole:
 - * 0cm-20cm: Sandy loam, gray, sediment soil, Fine, soft and well stuffed
- \ast 20cm-50cm: Loamy sand, grayish mixed with dark red spots, coarse sand, hard, sediment soil

- * 50cm-60cm: Loamy sand, grayish mixed with dark red spots, coarse sand, harder, natural sediment
- * 60cm-100cm: Loamy sand, grayish mixed with dark red spots, coarse sand, harder, natural sediment
 - W-3 is 1m away from W-2 hole and has the same texture as W-2
 - W-4 is 5m away from excavation pit and has the same texture as W-3
 - W-5 is 1m away from W-4 and has the same texture as W-4
 - W-6 is 1m away from W-5 hole:
 - * 0cm-20cm: Sandy loam, dark gray, sediment soil, Fine, Soft and well stuffed
- * 20cm-50cm: Loamy sand, light grayish mixed with dark red spots, coarse sand, hard, sediment soil
- * 50cm-60cm: Loamy sand, grayish mixed with dark red spots, coarse sand, harder, natural sediment
- * 60cm-100cm: Loamy sand, grayish mixed with dark red spots, coarse sand, harder, natural sediment
 - W-7 is 1m away from W-6 and has the same texture as W-6.
 - W-8 and W-9 have the same textures as W-6.
- **C-Soil recording at the inside excavation pits** (S + number = coring hole location and number). The work is looking the soil structures underneath of excavation pit where we could not go deeper because of infiltrating of underground water.
 - S-1 is a coring hole 0.5m away from the Eastern bank of excavation pit:
 - * 0cm-20cm: Sandy loam, light gray, Fine, Soft, coarse sand found, sediment
- * 20cm-50cm: Loamy sand, light gray mixed with dark red spots, coarse sand found more than previous layer, hard, natural sediment
- * 50cm-90cm: Loamy sand, grayish mixed with dark red spost, coarse sand found much more that previous layer, harder, natural sediment
 - S-2 is 13m away from the Eastern bank of excavation pit:

- * 0cm-20cm: Sandy loam, grayish mixed with dark red spot, coarse sand, hard, natural sediment
- * 20cm-110cm: Loamy sand, light gray mixed with dark red spots, more coarse sand than previous layer, harder, natural sediment
 - S-3 is 1m away from Western bank of excavation pit:
- * 0cm-50cm: Loamy sand, grayish mixed with dark red spots, hard, natural sediment
- * 50cm-110cm: Loamy sand, grayish mixed with dark red spots, harder, natural sediment.

6.3.3.6 Result from the Analyzing

Based on the studies on soil layers found in excavation pits and soil textures found at coring holes, we could summarize the result as below:

- Royal Road was flanked by two drainage canals, one at each side
- Royal Road measures at this excavation pit 23.50 meters (included crown and its two edges/slopes)
 - Road consisted by 4 different compacted soil layers
 - Original level of Road was probably 1 meter higher than current situation
 - Two drainage canals stand about 1.40m away from foot slope of Road
 - Eastern drainage canal measures about 7m wide and more than 1m deep.

Current was not speedy flowing in this canal during the ancient time

- Western drainage canal was about 8 meters wide and 1 meter deep. Current was not speedy flowing as well.
- Road might be rehabilitated during two different periods of times in this area. The rehabilitation was done at central part of Road.

6.3.4 Associated structures of the Royal Road

6.3.4.1 Chapel of Rest-houses, Dharmashala

17 chapel of rest-houses, *Dharmashala*, which mentioned in Preah Khan inscription, are totally found: 8 chapel situated in side current Cambodia and 9 building in Thailand (Fig. 6-14)

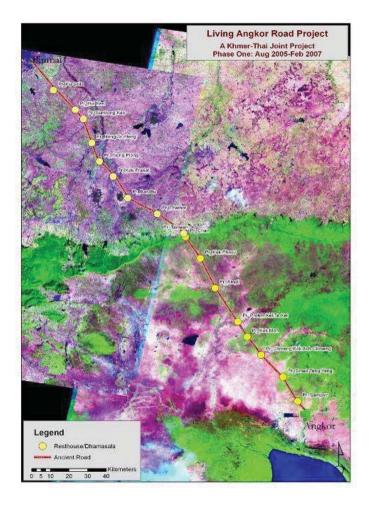


Fig. 6-14 Trace of Royal Road from Angkor to Phimai

Distance Calculation (walking speed) from Yashodharapura to Dangrek Range

Dhamarshala	Distance (Km)	Time (H)	Total (d/h/m)
Angkor-Sampov	7	1.45	
Sampov-Samanteng	18.71	4.40	
Samanteng-Kok Ach Chroeng	17.36	4	
Kok Ach Chroeng-Kok Mon	11.81	4	
Kok Mon-Prohm Kel	10.36	2.50	
Prohm Kel-Ampil	22.58	5.50	
Ampil-Kok Phnau	18.61	4.45	
Kok Phnau-Prasat Chan	14.61	3.50	
Average distance/time	15.13	4	
Total distance/time	123.2	31	1.7

Distance Calculation (walking speed) from Dangrek Range to Vim Āyapura

Dhamarsala	Distance (Km)	Time (H)	Total (d/h/m)
Tamean-Thmor	17	4.25	
Thmor-Ban Bu	17.6	4.4	
Ban Bu-Kok Prasat	17.8	4.45	
Kok Prasat-Nong Plong	9.5	2.37	
Nong Plong-Samrong Kao	10.6	2.65	
Samrong Kao-Hui Ken	20.4	5.1	
Hui Ken-Kuk Sila	16.6	4.15	
Kuk Sila-Phimay	19.4	4.85	
Average distance/time	16.11	4.02	
Total distance/time	128.9	32.22	1.8.22
Angkor-Dangrek	123.2	31	1.7
Yashodarapura-VimĀyapura	245	61.25	2.13.25

6.3.4.2 Ancient Stone Bridges, Spean Boran

a- General Findings

Totally, there are 32 stone bridges have been identified and located along the axis in present Cambodia side as following (fig. 6-15):

- 20 stone bridges found in Siem Reap province
- 18 stone bridges found in Uddor Meanchey province
- The first one located near the capital city Angkor currently named *Spean*Prasat Sampov which measures 27m long x 9m wide.
- The last one located close to Dangrek, named *Spean Khmeng* which measures 12m long x 6m wide x 4 arches. Bridge was partly destroyed by mine in 1980's.
- The longest bridge named *Spean Top* situated in Chongl Kal district, Uddor Meanchey, measures 150m long x 14.5 m wide x 28 arches.
- The shortest bridge named Spean Hal at Kol village measuring $7.5 \times 6.10 \times 3$ arches. (see detail work below). Here is table demonstrating of calculation of distance from each bridge, their size and location.

No.	Name	Distance (Km)	Size (M)	Location (district and Province)
1	Spean Tmo (Pr Sampov)	7.5	27 x 9 x arches?	Angkor Thom, Siem Reap
2	Spean Srah /Spean Stung		18 x 7 x 7 arches	
	Chkae Kon	8		Pouk, Siem Reap
3	Spean Phnak Dai	8.5	24 x 6.5 x12 arches	Angkor Chum, Siem Reap
4	Spean Thmo (Kok Doung)	1.5	12 x 6.5 x 5 arches	Angkor Chum, Siem Reap
5	Spean Klakon	1.5	20 x 6 x 8 arches	Angkor Chum, Siem Reap
6	Spean Trapeang Spean	1	12 x 6.5 x 6 arches	Angkor Chum, Siem Reap
7	Spean Prey Spean	2.50	10 x 6 x arches?	Angkor Chum, Siem Reap
8	Spean Ta Liv/Ta Lev	3	18 x 6 x 7 arches	Angkor Chum, Siem Reap
9	Spean Thmo Toch	1.60	11 x 6.5 x 5 arches	Angkor Chum, Siem Reap
10	Spean Thmo	0.20	34 x 9 x 17 arches	Angkor Chum, Siem Reap

No.	Name	Distance	Size	Location
		(Km)	(M)	(district and Province)
11	Spean Thmo Trapeang Yeay		14 x 6 x 4 arches	
	Loem	1.30		Angkor Chum, Siem Reap
12	Spean Memay	2.50	32 x 6.5 x 6 arches	Angkor Chum, Siem Reap
13	Spean Hal	1.35	7.5 x 6.10 x 3 arches	Angkor Chum, Siem Reap
14	Spean Memay	0.20	32 x 6.5 x 6 arches	Angkor Chum, Siem Reap
15	Spean Preah Chang E	0.30	34 x 8 x 13 arches	Angkor Chum, Siem Reap
16	Spean O Krabao	13.50	25 x 7 x arches?	Srei Snom, Siem Reap
17	Spean Thong	4.50	25 x 6.5 x 9 arches	Srei Snom, Siem Reap
18	Spean Choeng	0.50	51 x 10 x17 arches	Srei Snom, Siem Reap
19	Spean Khmeng	2.60	40 x 9 x 11 arches	Srei Snom, Siem Reap
20	Spean Memay	0.60	40 x 8.5 x11arches	Srei Snom, Siem Reap
21	Spean Yeang	0.70	92 x 9.5 x15 arches	Chong Kal, Uddor Meanchey
22	Spean Top	0.20	150 x 14.5 x28arches	Chong Kal, Uddor Meanchey
23	Spean Thong	0.18	43 x 9.5 x 11 arches	Chong Kal, Uddor Meanchey
24	Spean O Thlok	6	46 x 9 x 14 arches	Chong Kal, Uddor Meanchey
25	Spean Memay	0.60	20 x 7.5 x 9 arches	Chong Kal, Uddor Meanchey
26	Spean Kantrip	0.50	15 x 6 x 7 arches	Chong Kal, Uddor Meanchey
27	Spean Ta Nat	6.10	16 x 7 x 6 arches	Chong Kal, Uddor Meanchey
28	Spean Chramos Spean	2.60	25 x 7.5 x 8 arches	Chong Kal, Uddor Meanchey
29	Spean Memay	1.30	40 x 8 x arches?	Chong Kal, Uddor Meanchey
30	Spean Khmeng	11.30	22 x 7 x 4 arches?	Samrong, Uddor Meanchey
31	9		18 x 6.5 x 5 arches	Tonle Sar, Banteay Ampil,
	Spean Khmeng	5.50		Uddor Meanchey
32			12 x 6 x 4 arches	Prey Veng, Banteay Ampil,
	Spean Khmeng	17.10		Uddor Meanchey

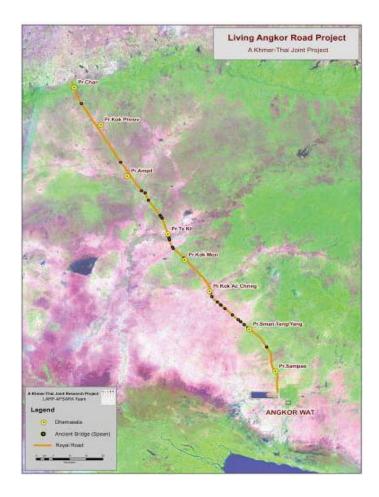


Fig. 6-15 Spean Boran, Stone bridges Location

b- A study on an ancient bridge, *Spean Hal* at Kol village⁶ b-1 Location

In Kol village, there are three ancient bridges which situated about 200 meters away from each others. All these bridges were built by laterite of their whole structures. Spean Hal⁷ is the smallest one located on the South-east of the other two bridges, and on the North of a huge water reservoir, named *Veal Roneam*, ancient water structure (fig. 6-16).

⁶ This report reworked on last LARP report by Srun Tech

⁷ The local villagers called this ancient bridge as "Spean Hal or Hal Bridge".

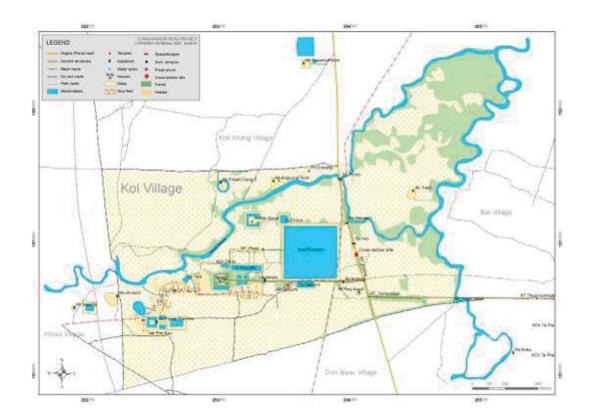


Fig. 6-16 Archaeological map of Kol Village

b-2 Current Condition of the bridge

Nowadays, no any traffic held at Hal bridge, but it is still functioning as a drainage system which water at up stream flows down to feed the community and the rice fields at the down stream. The bridge's condition is supposed in good condition about 55%. Its current status found as following:

- Being covered by the vegetation
- Corbelled arches⁸ were blocked by sediment about 70 cm thick
- Some movable laterite blocks are in the both side of the bridge
- One big tree grows on the bridge caused some block of its balustrade moved at South-west corner
 - West façade's structure is preserved in good condition

⁸ The Siem Reap Villagers called bridge's drainages "corbelled arch" as "Runtadev" (in French technical terms called arche en encorbellement).

- Middle part of east façade was fallen down from 2 to 3 layers of stones
- South-east wing wall is still in better condition. But some laterite stones at embankment are moved from the original place, and some are fallen from their original places
- Other three wing walls are completely fallen down, except their basement (see fig. 6-17, 6-18)
 - 4 retaining walls are fallen remained only some of their structures

Fig. 6-17 South-east view from a tree

Fig. 6-18 View form North-east

b-3 The bridge structure

b-3-1 Structural Material

The bridge was built from laterite stones. The average dimensions of each block for the construction are: 40 centimeters in width, 60 meters in length and 30 meters in thick. And others are from 190 to 240 centimeters in length.

b-3-2 Construction Technique

The size of the bridge is 6.10 meters by 7.35 meters and 2.50 meters high (from the lower basement). The bridge's body is standing on 2 pillars (1.30 meters wide by 1.57 meters high), 3 corbelled arches (1 meter wide). There are four wing walls and four retaining walls used as stabilizer for the bridge and its foundation (see fig. 6-19).

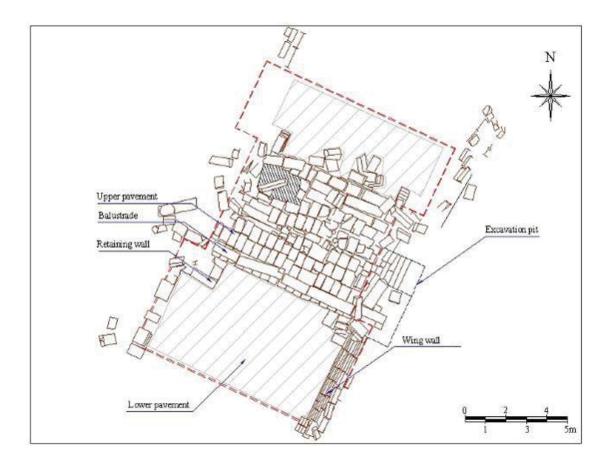


Fig. 6-19 Ground plan, Current status

b-4 Assembling Structure

The bridge's structure was constructed by 9 laterite block layers (from the top layer of the base pavement to the top layer of the bridge body pavement "upper pavement") and might be two more layers for the foundation. The total structure is assembled by 11 layers of laterite stones (see fig. 6-8).

b-4-1 Basement and Foundation

Basement and Foundation are not excavated during the last mission. But we did the coring by using the metal stick at two sides, upstream and downstream close to the facades. This test confirmed the existing laterite stones paved underneath. This laterite layer was paved on compacted sand with rock"⁹. This is the foundation of the bridge.

The upstream basement is recorded about 3.50 meters long and the downstream basement is about 5.00 meters long (measuring away from the pillars). This basement was paved through a slope from upstream with 10 centimeters higher than to downstream.

b-4-2 "Bridge's Head of Bridge Structure/Base of bridge Structure

In the ancient time, Khmer people were skillful in making the slope of the roads, dikes and temple's foundation. Referring to the excavation's result at the "bridge's head" showed that there was also a present of slope's structure which was formed by as staircases of 6 steps linked directly to the road's structure. It was a skillful technique for one supporting the bridge stability, and second from the road's pressure.

Moreover, the 6 steps of the staircase firmly linked with the road's structures by 5 different layers of compacted soil. Some of this layers were composed by fine sand with small stone, and other layers was composed by fine clay compacted with coarse laterite.

By studying on this "bridge's head", we found this is a strong structure which well made bridge to be strong and stabilize (see fig. 6-23, 6-24 and 6-25).

⁹ This is a common foundation structure of ancient stone bridges. We found the structure during the 3 different excavations on ancient bridges situated along the National Road No 6.

b-4-3 Pillars

Nowadays, we can see the bridge's pillars on their upper part about 80 centimeters high. The down part remained underneath of the current sediment about 70 centimeters thick. These pillars were built by 5 layers of laterite blocks ¹⁰ as following:

- 1st layer (down from the bridge's body): all the blocks are parallel assembled along the bridge. Their sizes are about 1.70 meters by 35 centimeters.
- 2nd layer: all the blocks are also assembled along with the bridge. They are about 1.20 meters by 35 centimeters.

These two layers were formed as an architrave.

- 3rd layer was assembled along bridge's width by three successive blocks. These three blocks are same size of 35 centimeters wide by 35 centimeters thick.
- 4th and 5th layers are currently underneath of sediment. All these layers might be remained under water (see fig 6-21, 6-22 and 6-23).

b-4-4 Corbelled Arch

Corbelled arches were constructed by two pillars on each side and on the upper part joined by two layers of laterite blocks of their architraves where the block moved toward about 1/3 of each. The dimension of opened arch is 100 centimeters which is large enough for flowing water (see fig 6-20, 6-21 and 6-22).

b-4-5 Wing wall

There are 4 wing walls on the both bridge's head is a slope with 9 tightened steps of laterite block. The wing wall is plying an importance role to protect step bridge from water flow and water erosion to bridge foundation (see fig 6-20 and 6-22).

 $^{^{10}}$ This 5 layers situated on the surface of pillars.

b-4-6 Retaining wall

The 4 retaining walls were overlapped in square shape and paralleled with the both bridge's head. They were maybe the adding construction after the bridge was finished, in order to add more support. There is no any special connecting point, which is confirmed to fix to the bridge structure. Refer to this point, its function are playing role to protect water pressure and water eroded. Therefore, in the ancient time, it might be strong current or might be bridge's structure was weak? (see fig 6-20, 6-22 and 6-23).

Fig. 6-20 View of retaining wall and wing wall

Fig. 6-21 West facade elevation view

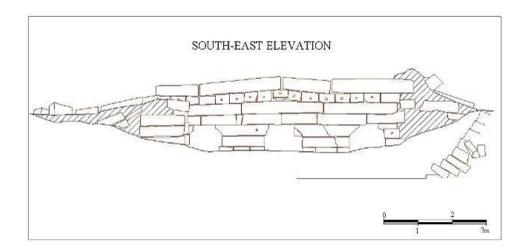


Fig. 6-22 Southeastern Facade

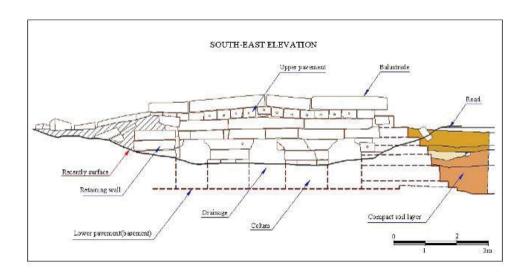


Fig. 6-23 West facade profile

Fig. 6-24 bridge's head structure

Fig. 6-25 Compacted soil layers at bridge's head

b-4-7 Bridge's body

The three layers of laterite were overlapped in crisscross for the bridge's body. It was laid on the step bridge, columns and drainages (see fig. 6-21, 6-22 and 6-23).

b-4-8 Balustrade

Generally, the bridge always has balustrade. This balustrade is short or high depends on the type of structures. This bridge has short balustrade, but no supporter only put long laterite blocks on the both edges of the bridge. The importance function of balustrade is pressing on small stone, in order to stucks them to move from its original place and its function to protect the traffic safety. Thus, all the blocks of balustrade are long (see fig. 6-21, 6-22 and 6-23).

b-5 Reflection to an original form of bridge and road

Referring to result of cross-section and bridge's survey (107 meters away from the two locations), we found the axis line of road and bridge were not standing on the same line. They are standing 5 degree away from each other. If we measure from the bridge's axis, the road's axis stays 5 degree on West. For reflecting the road and bridge use, we reconstructed the original form of bridge and road, based on the studies above, as showing in fig. 6-26, 6-27 and 6-28 below.

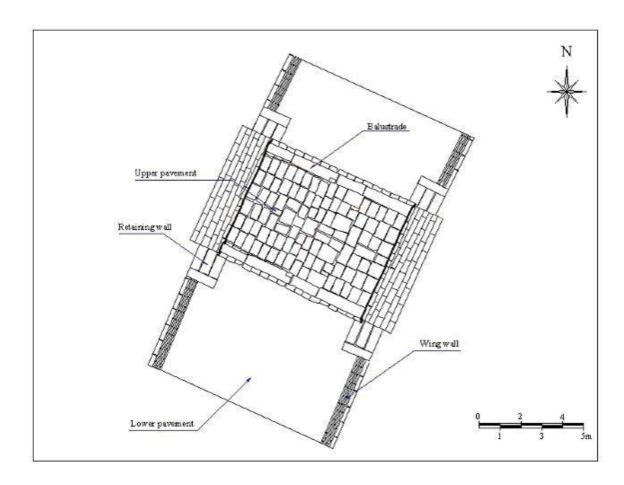


Fig. 6-26 Reconstruction to its original structure

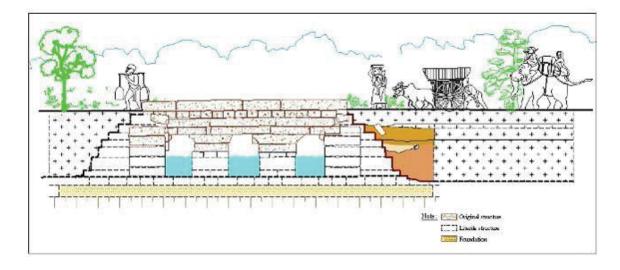


Fig. 6-27 Reflection to the bridge in Use

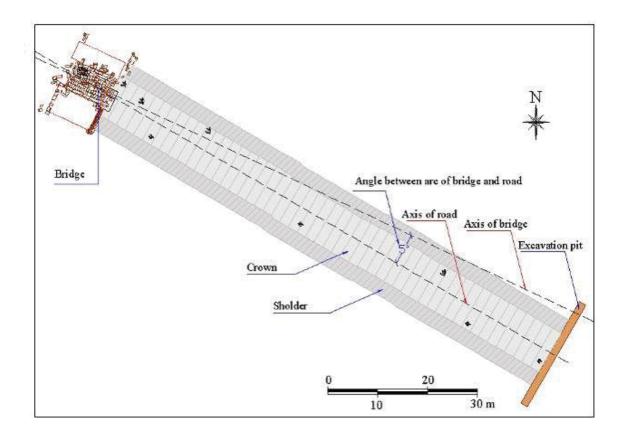


Fig. 6-28 Reflection on the axis of bridge and road

c- Excavation work at Bridge Site¹¹

Two pits are opened: one at the Head of bridge on the south. We opened this for finding the structure linked between bridge and road. This is the first study on bridge structure in Cambodia. Second pit is done at extremity of south-western wing wall for finding its structure.

c-1 Bridge's Head Site

- Step1: Pit is opened 3m (E-W) x 2m (N-S)
- Step2: Pit is extended to East 50cm and to West 80cm
- Step3: Due to time limited, we reduced the pit's size into 1m x 1.5m at the Eastern corner and 80cm x 80cm at the Western corner. The Eastern pit had its deep 2m down until ground water infiltrated. We dug down the Western pit just at 90cm deep (see fig. 6-29 and 6-30).

¹¹ This section contributed jointly with Ea Darith

c-1-1 Soil Layer

- Layer 0: 0cm-40cm is upper layer of Royal Road. This layer was worn during last thousand year remained just such thick: Sandy loam, light gray, fine, slightly hard
 - Layer I: 40cm-85cm, sandy loam, grayish brown, organic soil, hard
 - Layer IIa: 85cm-105cm, loamy sand, grayish brown, coarse laterite, sticky, very hard
 - Layer IIb: 105cm-130cm, sandy loam, grayish dark red, coarse alterite, very weak
 - Layer IIIa: 130cm-170cm, loamy sand, dark red, coarse laterite, sticky and very hard
 - Layer IIIb: 170cm-260cm, loamy sand, grayish dark red, sticky and very hard
 - Layer IV: under 260cm, coarse laterite layer

c-1-2 Object Found

10 small ceramic pieces found at this site: 6 Khmer ceramic pieces and 4 Chinese ceramic pieces (more detail see full report below).

c-2 Wing Wall Site

- Step1: Pit is opened 3m (N-S) x 2m (E-W)
- Step2: Extension 1m to the North (see fig. 6-31 and 6-32).

c-2-1 Soil Layer

- Layer 0: 0cm-15cm, sandy loam, soft, sediment, fine
- Layer I: 15cm-35cm, sandy loam, grayish brown, fine, organic, sediment, soft
- Layer II: 35cm-55cm, loamy sand, grayish dark red, coarse laterite, slightly sticky
- Layer III: 55cm-75cm, loamy sand, grayish red, very sticky and well stuffed
- Layer IV: under 75cm, loamy sand, dark brown, coarse laterite, very hard.

Fig. 6-29 and 6-30 Bridge's head site

Fig. 6-31 and 6-32 Wing wall site

c-2-2 Object Found

4 small Khmer ceramic pieces found at 30 cm deep. They were pieces of earthen pot. Base on decoration left on pieces, they probably were **pre-historic ceramic**.

d- Result from Analyzing

The bridge is small size. But laterite blocks are big size. This is important for construction technique, i.e. making bridge strong because of its whole structure is big for columns, arches and foundation. Moreover, the dimension of the basement is approximately $15 \text{ m} \times 10 \text{ m}$ which making strong enough for the bridge structure.

So, this bridge structure was built for heavy load and supported the strong current in rainy season. Furthermore, by the study on Hal bridge, we understand geographical formation of Kol village where the slope runs down from North-east and the current flows down from the same direction. Thus, it reflects to thinking the same situation in the ancient time.

On the other hand, there are three bridges in this community where given water flow from the up North-east down to South-west, where the community settled. Hal bridge was one of the three who was served, besides its fundamental function for transportation, as water drainage system, an inlet where the water flows to feed Veal Roneam (an ancient water reservoir) for supplying to the local community, Kol village. The functional system of *Hal* bridge is currently using by local people.

Based on analyzing on stone samples and bridge structure done by Civil Engineering Department, CRMA, Thailand, loading capacity of *Spean Hal* could be reachable **42 tons** of weight. A heavy loaded such as elephant could freely pass through the bridge (see fig. 6-27).

6.3.5 Archaeological sites: Temples

These are very important feature of the study. Most of the buildings are badly ruined and seriously looted. These temples were built on plain mound which are covered on an area mostly bigger than sq. 900 meters (30m x 30m). These temples faced east, surrounded by moat and some plus with laterite wall (inside the moat). We always found a small or big water structure situated on the east of the building. Some temples opened to the both sides: East and West. And some opened only to the East. There are 87 temples found in the buffer zone which classified into three categories (see fig. 6-33):

- 68 brick temples which some of them can be identified as Pre-Angkorian styles Some of them had only one tower some had three towers and other with five towers.
 - 13 sandstone temples
 - 6 laterite temples

The last two types were certainly Angkorian styles which some can be identified a single tower with a library and wall enclosure, and other were a complex.

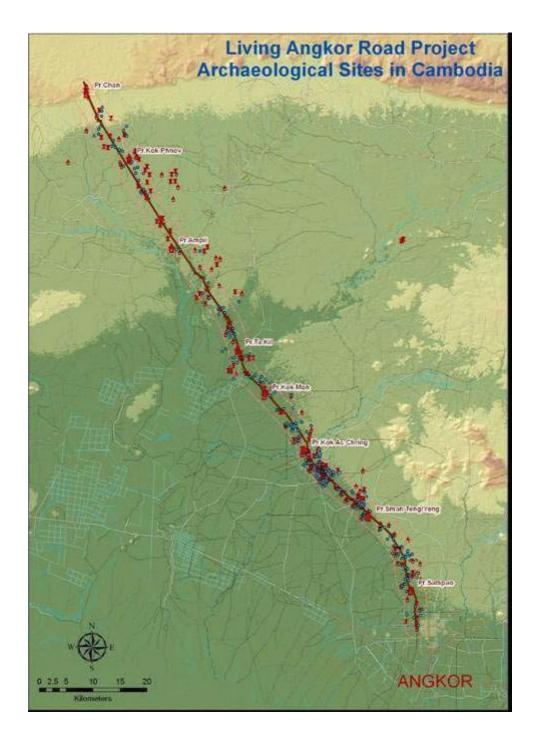


Fig. 6-33 Archaeological sites

6.3.6 Arogyashala, Chapel of Hospital

Ta Prohm's Inscription dated under reign of Jayavarman VII, listed 102 hospitals were built in his Empire (see fig. 6-34). These building called *Arogyashala* which were situated in capital city and in various provinces.

Fig. 6-34 Bas-relief at Bayon

Up to date, about 30 chapels are identified in current Thailand (see Muang Boran 2004) and 20 structures found in Cambodia which identified below:

- There are 5 chapels found in capital city Angkor
- 4 buildings found in Banteay Chhmar, sister city of Angkor Thom 12
- 2 chapels found along Angkor-Sambor Prei Kuk Road
- 1 chapel found along Angkor-Bakan road
- 1 found in Beng Mealea
- 1 found in Bakan, called Preah Khan Kompong Svay
- 1 found in Koh Ker
- 1 situated on the north of Phnom Dek region, Preah Vihear province; etc.
- There are 8 hospitals found along Preah Kunlong, Angkor-Phimay where 4 chapels situated along the axis from Angkor to Dangrek. These chapels are: *Prasat Prei Prasat* situated on Northwest corner of Angkor Thom, just about one kilometer outside city wall; *Prasat Ta*

¹² This is a new finding. The report on these four structures will be published soon by the author.

Koem situated in Kol village; Prasat Prei Nokor located in Chonkal, Uddor Meanchey; and Prasat Tor (local name), called Ta Mean Toch situated on Dangrek.

If we do calculation the distance the four hospitals located along the road from Angkor to Dangrek, so we got the average distance from one to other is roughly 40 km. This means taking about half day walk, passing two relay stations, rest-houses.

6.3.7 Ancient Inhabitancy, Kok

We have identified 27 sites supposed as "ancient resident area" located along the axis. These sites called "Kok" (literally means "plain mound"). Most of these sites are still living by villagers. One of these communities has been studied in detail. That is Kol village where situated close to the Royal Road. This is an example of a study on an ancient agglomeration structure (see detail report at LARP 2008, first semester: Sep 2007-Feb 2008). Archaeological features found at the community as below (see fig. 6-35):

- 5 ancient temples dated different periods: a chapel of hospital, *Arogyashala*; a chapel of rest-house, *Dharmashala*; a 11th century temple and a pre-angkorian brick temple.
 - 3 stone bridges which one is called *Spean Hal* as written above.
 - 9 different types of water structures
 - 2 ancient local roads linked to Royal Road
 - 5 Kok Srok sites where 3 of them are identified as prehistoric site dated Stone Age.

¹³ we called here in our study as Hospital Community or Arogyasala Community

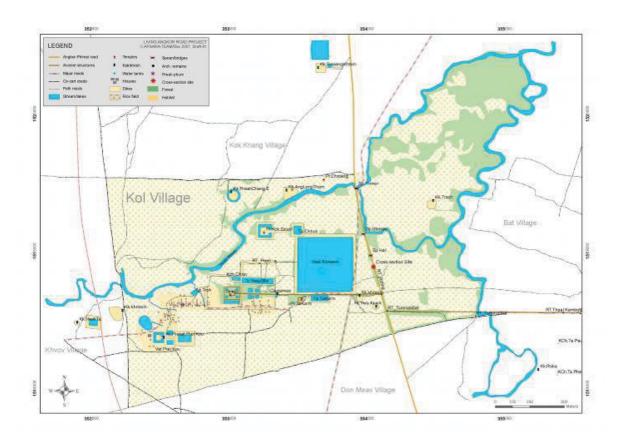


Fig. 6-35 Archaeological Map_Kol village

6.3.8 Water Structures¹⁴

The study on typology of water structures is almost done, but we need more study on other region, as a comparative study. For this project, there are 16 different types and names have been identified such as: *Thlok, Khou, Anlong, Srah, Kanhchan, Trapeang, Chok, Boeng, Santouk, Khnar, Khnach, Rohal, Rolom, Loboek, Tonle, Baray.* Each type designs a form, size, structure and origin different from other. Almost of them are the ancient name found in different inscription. For example: *Trapeang*, (Travan) written in inscription K.222; K.843; K. 207; *Rolom* written in Sdok Kak Thom inscription and K. 257,352, 229, 235, 353; *Chok* written in K. 357, 257, 235, 523; *Tonle* in K.904, 598, 383; etc.

We can divide into three different type of size: Small, Medium and Large; and into two type regarding their origin and form: Manmade with geometric form and Nature with no form but modified later on.

_

¹⁴ This work developed by Khieu Chan

About the size:

- Small size: Thlok, Khou, Anlong, Srah, Kanhchan,

- Medium Size: Trapeang, Santouk, Khnar, Khnach

- Large Size: Chok, Boeng, Rohal, Rolom, Loboek, Tonle, Baray

About their Origins and Forms:

- Manmade: Khou, Srah, Kanhchan, Trapeang, Santouk, Khnar, Khnach, Loboek, Tonle,

Baray

- Nature: Thlok, Anlong, Chhok, Rohal, Rolom, Boeng

During the ground survey along the axis from Angkor till Dangrek, there are 385 water structures have been identified as ancient structure based on remained of artifacts: ceramics, stone sculptures on their dikes; associated structures to communities or temples and road. Generally, we can determine these structures into three groups:

a- Most of theses structures are associated to communities situated in the buffer zone (4 km). At least one community had about three different sizes of water structures. They are mostly still using and highly threat to lose.

b- Some of them are associated to the temple complex. Normally, each temple had at least one water structure situated on the east (no included the temple moat).

c- And only 53 structures identified as associated to the Royal Road. These structures located the further one around few hundred meters and on the both side of Royal Road. They are mostly rectangular form built by four dikes, stretching east-west facing to the Royal Road. These structures are differently typology as following: 1 *Srah*; 42 *Trapeang*; 1 *Tonle*; 1 *Boeng*; 2 *Santouk*; 2 *Loboek*; 2 *Kou* and 3 *Rolom*.

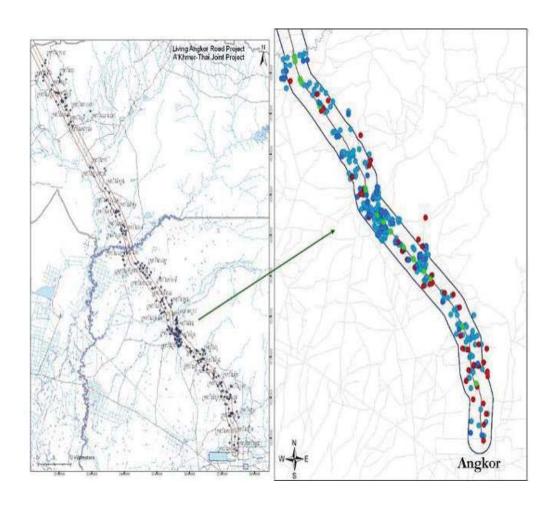


Fig. 6-36 Water Structures

We got a lot of information regarding "Thmo Kol", *gol*¹⁵ (stone post) during the ground survey which told by villages. Despite the landmine and time limited, we could not be reached to all post, but we did mapping only 14 *Thmo Kol* which some located along the road and some scattered in the rice fields situated in the buffer zone. There are two forms of post: one was sculpted a lotus flower on top; and other one was curved on the top formed lotus petal or pyramid (see fig. 6-37, 6-38 and 6-39). Some posts were sculpted on its faces into Buddha images.

_

¹⁵ gol means "stake, post", is written in many inscriptions such as: K.831; 521; 470; etc.

Fig. 6-37 Lotus flower

Fig. 6-38 Pyramid shape

Fig. 6-39 Buddha image

* A reflection to the gol use

As mentioned about the inscriptions cited here, *gol* was used for delimiting land, village and specially delimited the sacred and the profane. The last role found everywhere used at temple complex and in modern day at monasteries as well. Only one inscription remained on a door jamb of northern Kleang temple (11th century) in Angkor, drawn a plan of huge land offered to temples, etc (see fig. 6-40 and 6-41).

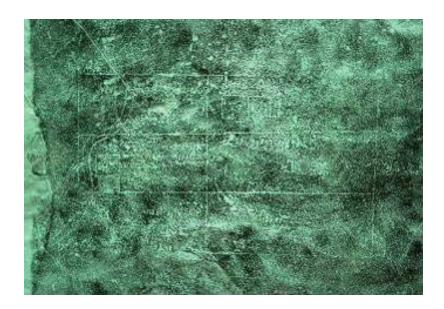


Fig. 6-40 Rubbing at Kleang (Plan of Land)

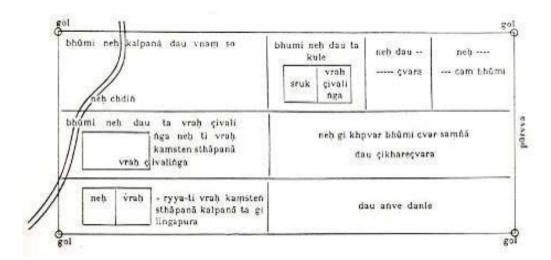


Fig. 6-41 Translation by G. Coedes

6.3.10 General Discussion on Royal Road Yashodarapura-Vimayapura

a- Collective knowledge on this axis is still living. Villagers called this road as $Preah^{16}$ $Kunlong^{17}$ ($vrah \ ganlo\acute{n}$ which at first was found in an inscription K.175, dated 10^{th} century), literally means Royal Road. In additions, local people still respect and worship to $Preah \ Kunlong$. No local people dare to disturb the ancient road. Interesting information found nearly everywhere, once we asked villagers, where this road comes from and leads to? They will be no hesitates reply back: It's $from \ Angkor \ and \ to \ Siam$. Some local people still remember its terminus and said that "it went to $Nokor \ Reach$ in ancient time". Phimai is not familiar within the local people. But $Nokor \ Reach$, Korat, is still on their memories.

b- Villagers at the Dangrek region have an extraordinary knowledge concerning *Preah Kunlong*, its origin and destination. Many local legends relating to ancient road are still talking from generation to next. The most important one is a story regarding the Laterite steps called *Phlov Romkel Sap*, Banteay Chhmar and Angkor. It was the story of the King named *Yos Ker*, which was probably derived from the former name of *Yashovarman* (more study to be carried out in the future).

.

¹⁶ Glorious, illustrious, Sacred. A sacred being or object: god, king, statue, etc...

¹⁷ Way, track, road

- c- In theory, Royal Road was straight where can be detected for some distances from aerial view seen as a straight line. But for some area it was deviated accordingly its orbit. Here are just only three cases to give as example::
- It was deviated its direction when it was be reached to a temple called *Preah Khan* located about 20km on the northwestern of Angkor Thom. This means the Road might be existed after the temple built
- It was turned its direction to East about 20 degrees when it was reach Kol village situated about 35 km on the northwest of Angkor. Here is exactly the case. Based on the archaeological mapping on the village, we found human settlement here dated back to Stone Age, the present of Pre-Angkorian temple style, and some early Angkorian temple style. This is proved that Kol was settled for long time and became a huge agglomeration before building the current Royal Road.
- It was deviated its direction again when it arrived to a village named *Kok Spean* at Chongkal. This village is a prehistoric site, a mound moat site. Two stone bridges found at each side of the village: one at the southeast when road was be reached at the moat. Then, Royal Road was overlapped on the ring road of the village. And, Road linked to second stone bridge situated on northwest when it was passed through the moat of village again.
- d- The integration of this multi-disciplinary research project has projected the history of Royal Road and its use. The evident issued from analyzing on ceramics found at excavation site in Kol village and found at different sites along the ancient road (see LARP 2008), from remote sending and GIS, from excavation work and historic context, can be used to propose some hypothesis as following:
 - Royal Road and bridge were not built before $9^{th} 10^{th}$ C
 - Road might be entirely became an axis linked from Angkor to Phimai from 11th century
 - Stone bridges were built between 11th 15th centuries
- e- Based on the study on Cross-section, Royal Road was built by four compact soil layers and rehabilitated from time to time.
- f- At Present *Preah Kunlong* is being in use for some parts, and highly threat from new rural development plan and land grabbing from new settlements, the outsiders.

6.4 Ceramic Study¹⁸

The entire article on this study has been specifically done a part from this report. It has attached along with this main report (see APPENDIX E).

6.5 Prehistoric Study¹⁹

Initially, this study was not included into the fold of the framework. But, during the course of the ground survey, we have accidentally found a lot of prehistoric remains such as stone tools, metal tools, ceramics and skeleton of human remains. These evident found at sites where some of them are presently occupied by local people living as their villages; and most of these sites are looted. We can identify these sites and classify them into four typologies:

- Plain mound
- Circular mound
- Circular mound moat
- Normal plain.

Along the Royal Road stretching in side Cambodia, 23 prehistoric sites are identified located in district of Pouk, Angkor Chum and Srei Snom in Siem Reap, and in the district of Chongkal in Uddor Meanchey. These sites are listed in the table below:

Location	Number of Site	Typology	Artifacts found
Siem Reap	18	- 14 Mound moat	Stone tools, metal tools,
		- 2 Circular mound	litho phone, Ceramics and
		- 1 Circulra mound moat	Skeletons
Uddor Meanchey 5		- 4 Mound	Stone tools, metal tools,
		- 1 Circular mound moat	Ceramics and Skeletons

All the sites situated close to water way: stream, creek or natural water structure. Some of them are villages where people are still living and also remained ruined temples which some

_

¹⁸ This entire section contributed by Ea Darith

¹⁹ It is contributed by Heng Than

dated Pre-Angkorian period, and some Angkorian period. Some sites called *Kok Srok* situated near by the village.

6.6 Initiate Archaeological Database

We also developed the Excel format for Archaeological information collected from field survey. The structure is designed as following:

- Inventory Code by LARP
- Old Inventory Code done by Ministry of Culture and Fine Arts
- Archaeological site's name: Khmer and Romanization
- Date of Survey
- Site Location: Administrative location and its UTM
- Current Status: Threat, Looting, Vandalism, Nature (high, medium, low)
- Archaeological Typology: Temple, Arogyasala, Dharmasal, Road, Bridge, water structure, etc
 - Archaeological Structure
 - Art Styles; Date
 - Dimension
 - Remark/description

For detail information see Annex V_Archaeological database.

6.7 Application of Remote Sensing and GIS²⁰

6.7.1 Objective:

- Identification the archaeological data information along the ancient road: temples, water structures, road traces, ancient industries, human settlements, and man made structures, etc.
- Surveying and analyzing the lost part of road traces, laterite step and ox-cart passage at Dangrek Mnt. Cliff near Tamean temple

 $^{^{\}rm 20}$ This section contributed by Kim Samnang.

- Mapping and Analyzing the complexities of the Ancient settlement, *Arogayasala* communities, at Kol Village (40km on the North-west of Angkor)
 - Development of basic Geo-Informatics information resources for the further study
 - Development of Internet Geo-Spatial Database Server

6.7.2 Methodology

6.7.2.1 Resources

- Old maps: different old maps drawn by French dated from late 19th century (Bastian, Aymonier, etc.), early 20th century (Lunet de Lajonquère) and following until current date.
 - Topographic Map 1960, scale 1:50,000
 - Topographic Map 1972, scale 1:250,000
 - Topographic Map 2003 (JICA), scale 1:100,000
 - Aerial photos dated 1945, 1957, 1997 and 2004, scale 1:40,000
 - Landsat ETM 2002 with 15m resolution
 - Spot 2003 with 15m resolution
 - Ikonos 2005 with 1m resolution
 - SRTM with 90m resolution`
 - Hand Drawing Map local chief authority

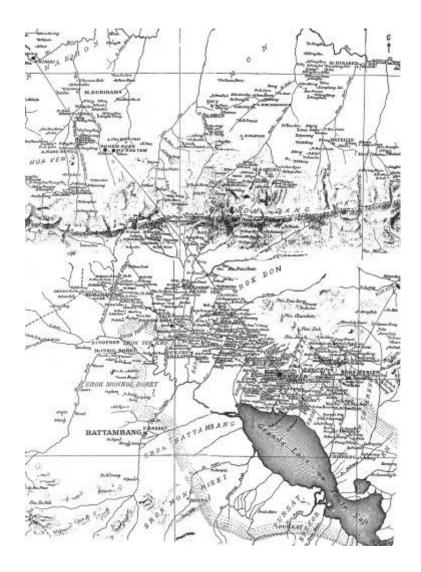
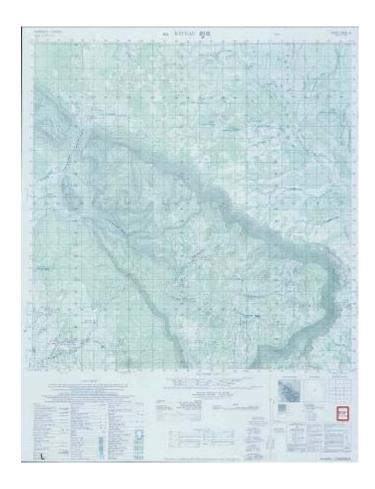



Fig. 6-42 Lunet de Lajonquère, 1904

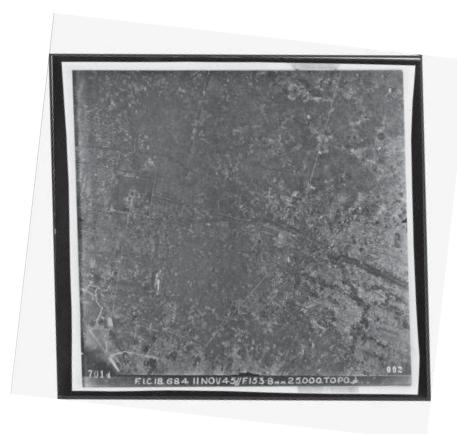

Fig. 6-43 Topographic Map 1972, scale 1:250,000

Fig. 6-44 Topographic Map 1960, scale 1:50,000

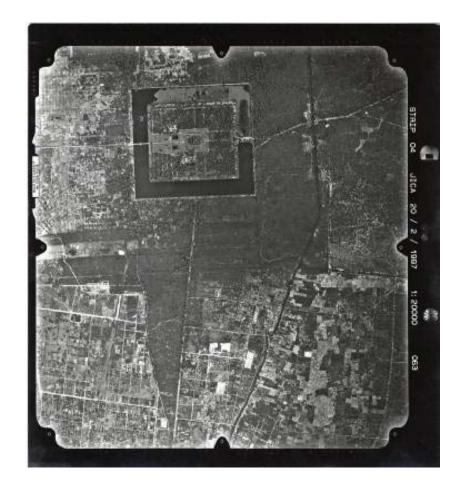

Fig. 6-45 Topographic Map 2003 (JICA), scale 1:100,000

Fig. 6-46 Aerial photo 1945

Fig. 6-47 Aerial photo 1957

Fig. 6-48 Aerial photo 1997 and 2004

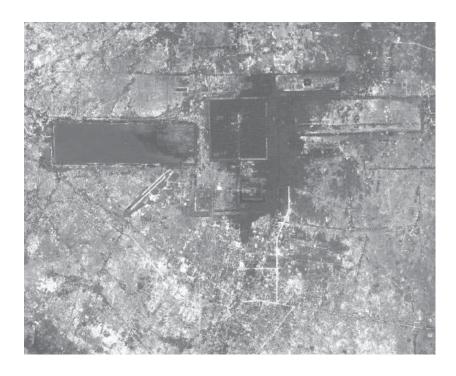


Fig. 6-49 Spot 2003 with 15m resolution

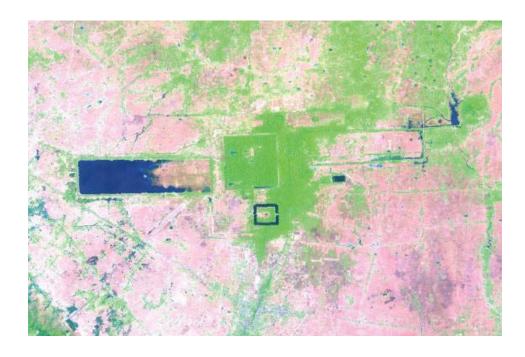


Fig. 6-50 Landsat ETM 2002 with 30 m resolution

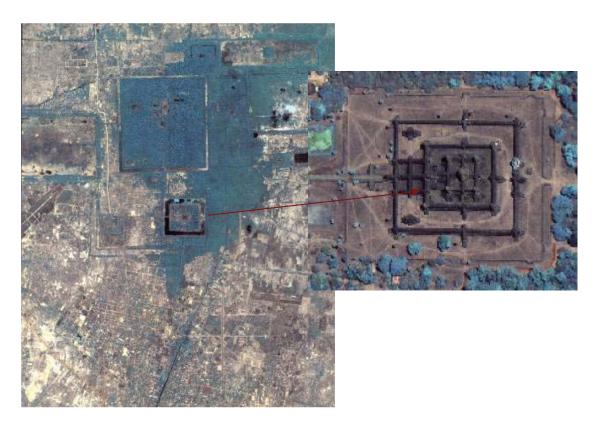


Fig. 6-51 Quickbird 2005 with 60 cm resolution

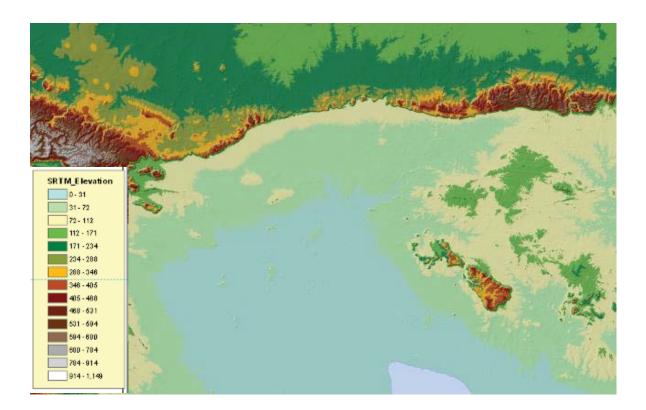
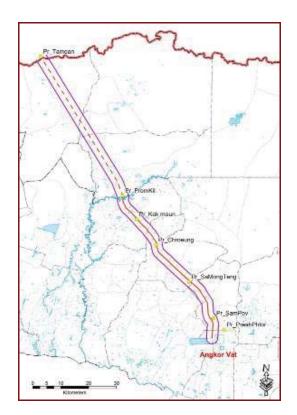


Fig. 6-52 SRTM with 90m resolution


6.7.2.2 Software and Materials for Application

- Software application for GIS and RS: ArcGIS Desktop 9.2 application & Envi 4.0 application
 - Ground operations by using GPS, Garmin M5 IQue, Digital Camera...

6.7.3 Application for Research Work

- Making the geo-referencing of old aerial photograph on the study areas
- Digitization and classification layers from the old and new aerial photographs.
- Analyzing of Remote Sensing and GIS for field survey planning
- Designing buffer zone for the field research which is covered 2km away to each side from the supposed axes. That field survey covered on area of 4km wide by 125km long from Angkor to the current borders of both countries.
 - Collecting the Archaeological and Cultural data information

- Pinpointing the all data collected along the ancient road: existing road structures, temples, water structures, road traces, ancient industries, human settlements, and man made structures, etc.
 - Plot the location of archaeological data information along the ancient road.
- Modification and re-location the Royal Road traces on the maps based on the latest data survey
- Modification the buffer zone in map according to Royal Road traces found in some part of its axis
 - Verification data collection on field surveys
- Detail mapping of Kol and Bat villages which included such as archaeological sites, old structures, houses, road networks, hydrological networks, and so on.
- Comparison and analyzing on the current collection data and the existing data in the past and present
 - Producing a new archaeological map of the Kol and Bat villages (see attached map)
 - Producing various field survey maps and various maps for using in communication
 - Developing Archaeological and Cultural Database.

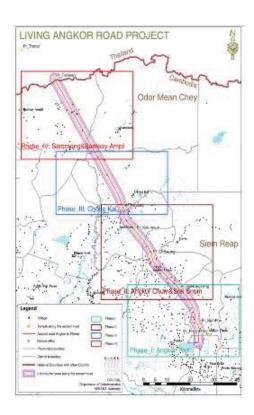


Fig. 6-53 Design work plan for the field survey

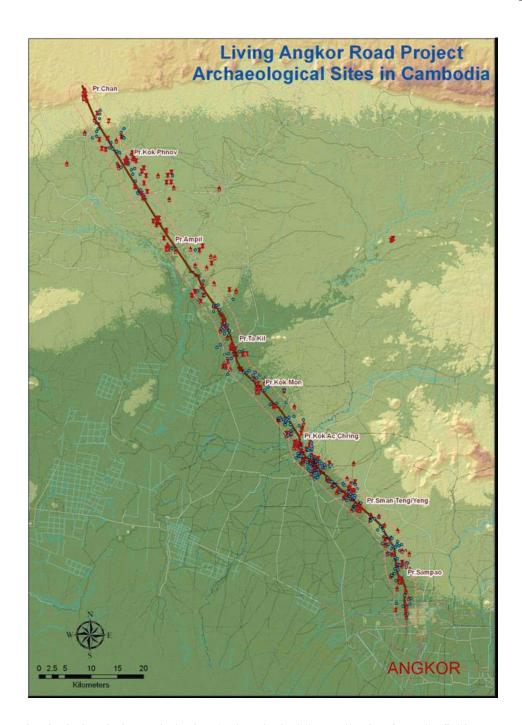
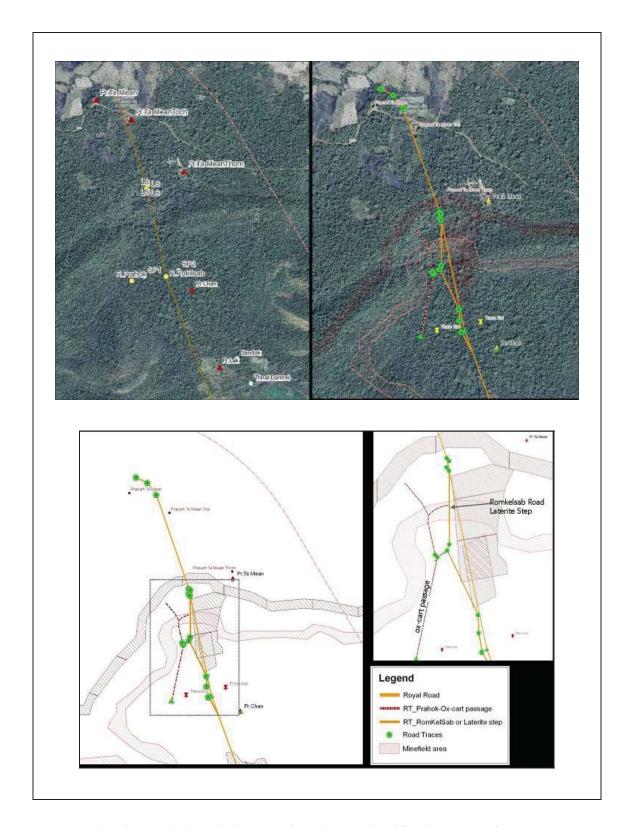



Fig. 6-54 Pinpointing and Plotting Archaeological data collection from the field survey

Fig. 6-55 Analyzing the lost part of road traces, Identification the Laterite steps and Ox-cart passages at Dangrek

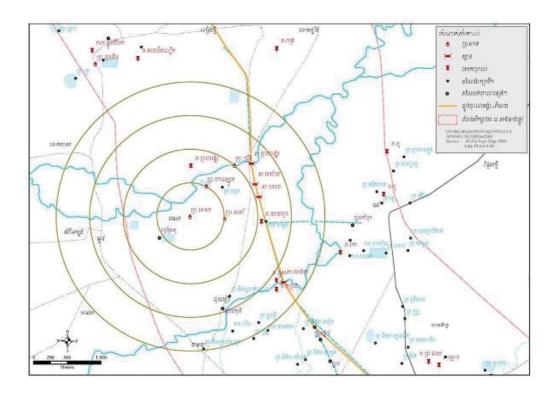
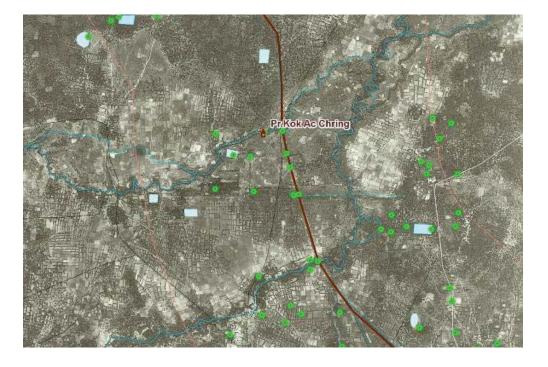



Fig. 6-56 Archaeological Mapping Zoning at Kol village, an Arogyashala community

Fig. 6-57 Analyzing Archaeological Features of Kol village on aerial photo 1957 Archaeological Mapping Zoning at Kol village, an *Arogyashala community*

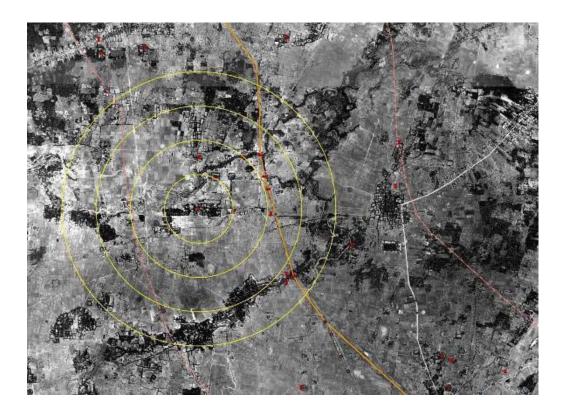


Fig. 6-58 Analyzing Archaeological Features of Kol village on aerial photo 2004

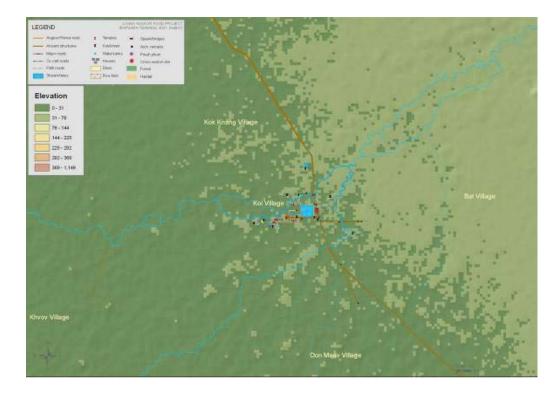


Fig. 6-59 Analyzing Archaeological Features of Kol village on SRTM

Fig. 6-60 Developing Archaeological and Cultural Database

6.7.4 Main Result

- Identification of Royal Road axis from Angkor to Phimai
- Identification of Archaeological Features along the Royal Road
- Identification of human settlement and ancient industries along the Road.

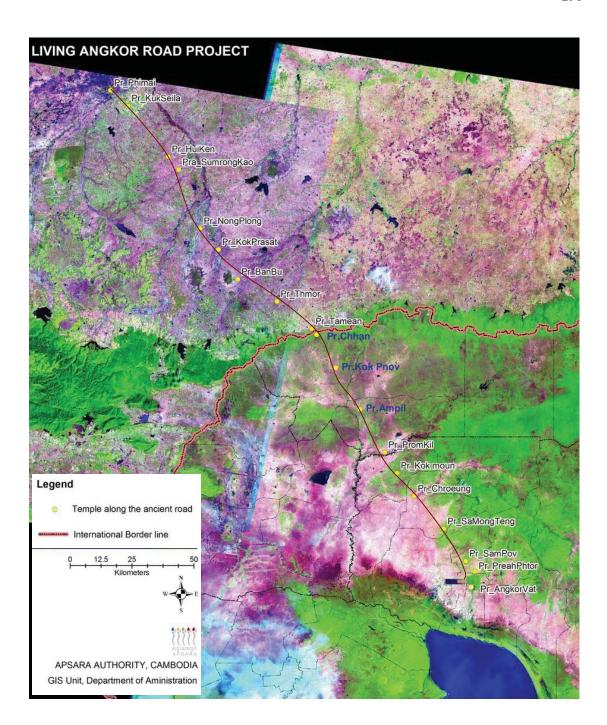


Fig. 6-61 Royal Road and Dharmashala

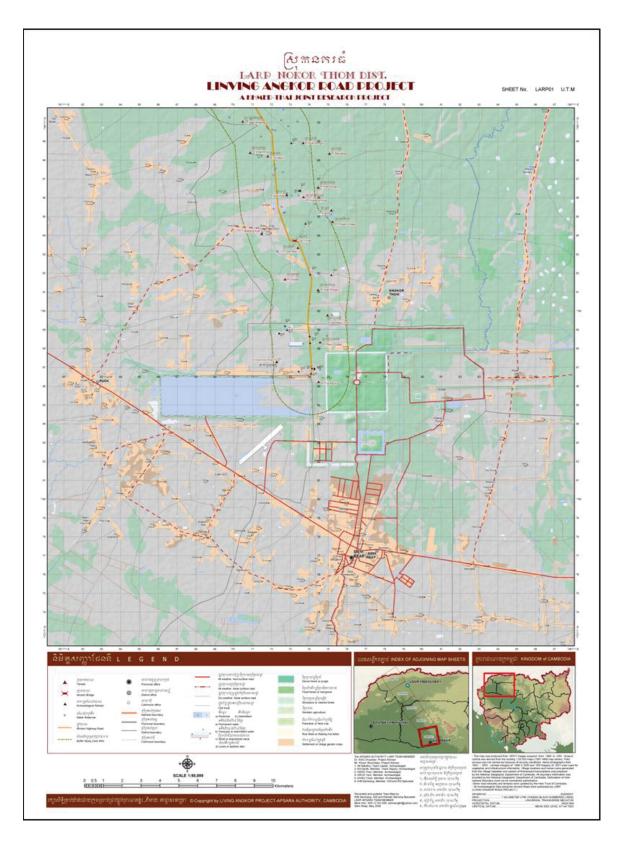


Fig. 6-62 Topographic Map of LARP, Scale 1:50 000 (Sheet 1)

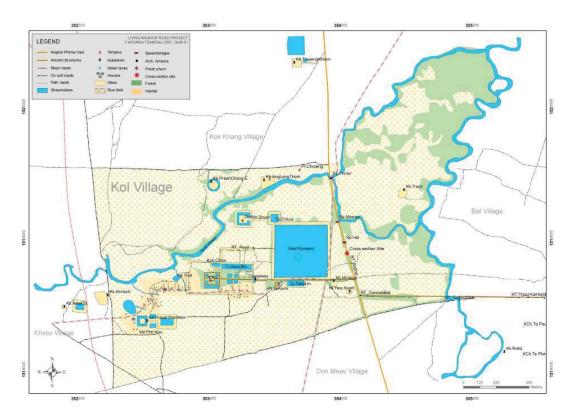


Fig. 6-63 Archaeological Map of Kol village

6.8 Communication

During the ongoing research work within the phase I and Phase II, APSARA team had opportunity presenting the joint research project in various themes issued from the field work to public, national and international conferences. Those communications are cited as following:

- a- Annual meeting of Technical Committee, International Co-ordinating Committee for the Safeguarding and Development of the Historic Site of Angkor (ICC), June 5-7, 2006
- b- International Conference on "Cultural Heritage: Thais and their Neighbours" at Silpakorn University in June 22-23, 2006; and "Ancient Cultures, New Technologies" at Maha Chakrei Sirindhorn Anthropology Center, June 24, 2006
- c- Presenting the work in progress within International Conference on "Southeast Asian Cultural Values: Exchange and Cooperation", Siem Reap, December 12-13, 2006.
- d- Dissemination an abridge of its first phase result for *APSARA Authority* on May 2nd, 2007. Director General and his deputies, seven Technical Department heads, staffs and representative from Unesco Phnom Penh office are attended the presentation.

e- Joint presentation in *Live VDO broadcast Lecture from Ban Khao Din Tai, Ban Kruat, Iron Smelting Excavation Site*, May 18, 2007. APSARA Team presented two topics for the lectures which themes one was "In search of ancient industry: Iron Smelting in Cambodia" and second was "Kilns and ceramics along the Angkor Royal Road".

f- Joint presentation in 5th meeting of TRF forum, Bangkok May 22, 2007. APSARA team presented an overall result of first phase work in Cambodia side.

g- Presented the result of the first phase work and next work plan for second phase at 16th Technical Committee of the ICC, Siem Reap, July 5-6, 2007. We got a great success and greatly interested from this International forum.

h- Joint presentation in International Conference on *Technology and Culture, New approach for local collaborations in GMS sub-region*, Princess Maha Chakri Sirindhon Anthropology Centre, organized by Silpakorn University, Aug 20-21, 2007.

i- Joint Presentation in Workshop entitled *Science and Cultural Activity for the Next Generation Khmer-Thai* at Phanom Roong Historical Park, Oct. 3, 2007.

j- "Ancient Khmer Road Network: A Case Study of a Royal Road from Angkor to Phimai", *International Conference on Archaeology in Vietnam-Laos-Cambodia: Towards Sustainable Cooperation*, Vietnamese Academy of Social Sciences, Institute of Archaeology, Hanoi, December 11-13, 2007

k- Presented the Progress Report of LARP to 17th Technical Committee of the ICC, Siem Reap, June 2008.

6.9 Field Research to Thailand

a- August 2004, the Thai partner has organized for the APSARA's team a field survey in Thailand, after the first successful survey, in May 2004, conducted in Cambodia by Dr Surat Lertlum in partnership with APSARA's team who had made a survey trip to the Angkor Area to identify the numerous ancient bridges and rest-houses (dharmasala) as well as hospital's chapels dated back to the reign of Jayavarman VII. Theses vestiges are located along two main ancient roads, departing both from Angkor and leading one to the area of Sdok Kak Thom Temple, the second one to the area of Phimai. This two-fold survey trips concerning one single topic proved very successful. After several exchanges of idea with the APSARA's team, we plan to elaborate a joint project on these ancient Angkor roads focusing on sociological and cultural research on the

different ancient settlements as well as the present day local communities living along this axis. We provisionally call this project *Living Angkor Road*.

b- Jan 2005, APSARA team along with Thai partner have conducted a field survey at the region of Sdok Kak Thom, Ta Mean, Muang Tam and Kiln sites in Buriram.

- c- Aug 3-5 2005, *Living Angkor Road* is a join research project Khmer- Thai which has been giving birth one year ago. Since that time many field surveys have been done in Thailand and Cambodia. The main objective of this field trip is to make the initial survey for *Living Angkor Road Project* as supported by Thailand Research Fund (TRF).
- d- February 2006, APSARA's team joint with Thai partner conducted a mainly cultural research on ancient settlements situated in the region of Ta Mean and Muang Tam.
- e- March 28 April 1, 2006, conducted a research on the field of anthropology along with Thai partner surveying the communities living along the royal road in the regions of Buriram and Surin.
 - f- May 2007, we have attended the important events:
 - . Excavation on Iron Smelting Site and the Tele Lecture at Ban Khao Din Tai, Ban Kruad, Buriram
 - . Joined Reporter and TRF Trip for visiting Dharmasalas along the road in Thailand side and in Cambodia at Prasat Chan and Laterite Step
 - . Field survey at Ban Kruad area
 - . Joined presentation in the 5th TRF Meeting at Bangkok
 - g- August 2007, a member of APSARA team is invited by Silpakorn University to attend the International Conference on Technology and Culture, New approach for Local Collaboration in GMS sub-region, SAC, Bangkok. During the stays at Bangkok, we have had a field trip to Ayuthaya, World Heritage Site.

6.10 Reporter Trip

APSARA Team has companied the Reporter Trip in July, 26-30, 2007. The Trip has conducted by Dr Surat Lertlum for "Traveling along the Royal Road from Phimai to Angkor". July 27th at afternoon, Reporters and LARP team have had an opportunity to meet and welcomed by Deputy Governor of Uddor Meanchey province at provincial town hall. Three topics have been discussed at the meeting.

- Introduction to LARP and purpose of the reporter trip
- Briefed report of first phase
- Future local collaboration project which will be an exchange of culture and relationship between the local people living close to border of both countries. The first exchange will be organized in coming October 2007.

6.11 General Conclusion

This is a Socio Historic Study on historic roadway, communication links and human settlement along the Royal Road from Angkor to Phimai. The research work had been conducted along the axis in Cambodian side for more than hundred kilometers by Cambodian team. And on the other side was conducted by Thai team. The exchange for field survey and discussion are being held some time in Cambodia and some time in Thailand. The Archaeology and Anthropology are systematically surveyed by the both teams. The Cultural Data Collection from the study is certainly the most valuable information for the current study and for future research work on the region.

This is the first time for such successful study taken place across the border of the countries after the French had done such study almost 100 years ago; and of course it will be a wealth to enhance the relationship between the countries in region as well. Culture knows no boundary. Culture is a crucial means to link people to people and developed beyond border in the region through out the history of Southeast Asian. Road makes people communicate between one community to others, a country to their neighbors.

Bearing on the existing collaboration of the two countries, it's time for us to write our own history based on the integration of multi-disciplinary research, local collaboration, local knowledge, local understanding and most advanced technologies.

บทที่ 7

การวิเคราะห์ในลักษณะสหวิทยาการ

7.1 บทนำ

การดำเนินโครงการวิจัยเพื่อค้นหาและพัฒนาสารสนเทศภูมิศาสตร์ของถนนโบราณสมัย พระเจ้าชัยวรมันที่ 7 เป็นการวิจัยในเชิงสหวิทยาการที่ประยุกต์ใช้เทคโนโลยีและศาสตร์ในสาขาที่ เกี่ยวข้องเพื่อทำการศึกษาแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมาย ดังมีรายละเอียด การศึกษาในแต่ละสาขาถูกนำเสนอในรายงานบทต่างๆ ที่ผ่านมา ส่วนสำคัญส่วนหนึ่งของการ ศึกษาวิจัยในโครงการนี้คือการพัฒนาวิธีการวิจัยในลักษณะสหวิทยาการ เพื่อให้เกิดการประสาน การทำงานวิจัยในแต่ละด้านให้สอดคล้องกัน และเพื่อยืนยันสมมุติฐานที่ใค้ถูกตั้งขึ้นจากหลาย มุมมอง หลายวิธีการวิจัย ซึ่งถ้าสมมุติฐานที่ตั้งขึ้นนั้นถูกต้อง ผลจากการวิจัยในแต่ละสาขาควรที่ จะต้องมีผลลัพธ์ออกมาเป็นไปในทางเดียวกัน

การดำเนินการวิจัยในเชิงสหวิทยาการนั้นมีหลักการพื้นฐานเดียวกันคือทำอย่างไรที่จะ สามารถใช้ศาสตร์ต่างๆ ในการทำการวิจัยร่วมกันเพื่อให้วิธีการวิจัยนั้นมีประสิทธิภาพมากขึ้น แต่ในรายละเอียดของการวิจัยเชิงสหวิทยาการแต่ละโจทย์ของการวิจัยนั้นย่อมขึ้นอยู่กับโจทย์ของ การวิจัยนั้นๆ ในบทนี้จึงเป็นการนำเสนอวิธีการวิจัยผ่านกรณีศึกษาของโครงการนี้

7.2 วิธีการดำเนินการ

ในการคำเนินวิจัยในลักษณะสหวิทยาการสำหรับการวิจัยในครั้งนี้สามารถสรุปขั้นตอน การคำเนินการโคยรวมได้ดังนี้

- 1. ทำการศึกษา ทบทวน หัวข้อวิจัยที่เกี่ยวข้อง เพื่อพิจารณาว่าศาสตร์ใดที่สามารถนำมา ประยุกต์ใช้ในการวิจัยในครั้งนี้ และผลลัพธ์ที่คาดว่าจะได้จากการประยุกต์ศาสตร์นั้นๆ ในการวิจัย ครั้งนี้
 - 2. พัฒนาฐานข้อมูลเบื้องต้นเพื่อใช้ในการวางแผนในการสำรวจ
 - 3. ดำเนินการสำรวจภาคสนาม
 - 4. ทำการตรวาสอบทางธรณีฟิสิกส์
 - 5. ทำการขุดค้นทางโบราณคดี
- 6. พัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์จากข้อมูลพื้นฐาน ข้อมูลจากการสำรวจ และ การศึกษาด้านต่างๆ เพื่อการวิเคราะห์ร่วมกัน
 - 7. ดำเนินการวิเคราะห์ร่วมกันโดยใช้ผลลัพธ์จากการวิเคราะห์ข้อมูลด้านต่างๆ

8. พิสูจน์สมมติฐานเกี่ยวกับแนวถนนโบราณโดยใช้ผลลัพธ์จากการวิเคราะห์ร่วมกัน

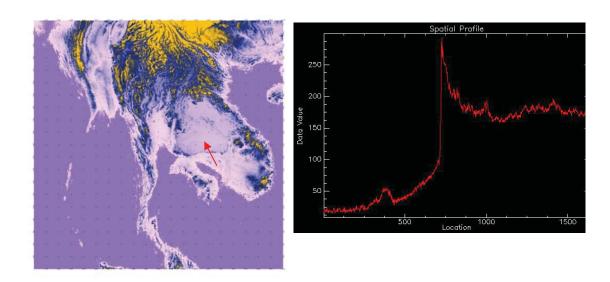
7.3 กรณีศึกษา

ในการดำเนินการวิจัยของโครงมีการดำเนินการวิจัยที่เป็นลักษณะสหวิทยาการอย่างเป็น ระบบ ซึ่งการดำเนินการในแต่ละสาขานั้นสามารถช่วยตอบคำถามการวิจัยในสาขาอื่นๆ ที่เกี่ยวข้อง ได้เป็นอย่างดีจากการศึกษาประเด็นเดียวกันในศาสตร์ที่ต่างกัน ซึ่งทำให้การศึกษาในครั้งนี้สามารถ ตอบคำถามทางวิชาการในเรื่องของถนนโบราณจากเมืองพระนครถึงเมืองพิมายด้วยเหตุผลทาง วิชาการมากกว่าสมมุติฐานที่กล่าวขึ้นมาโดยปราศ จากการวิเคราะห์ วิจัย อย่างเป็นระบบโดยศาสตร์ ที่เกี่ยวข้อง โดยต่อไปจะเป็นการนำเสนอตัวอย่างการศึกษาในลักษณะสหวิทยา การที่สำคัญของ โครงการ

7.3.1 การศึกษาร่องรอยแนวถนนโบราณ

ในการศึกษาหาร่องรอยของแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมายนั้น ได้มีการ ดำเนินการตามขั้นตอนที่ได้กล่าวไว้ข้างต้นตามลำดับ โดยเริ่มต้นโดยได้ดำเนินการรวบรวมข้อมูล ของแนวถนนโบราณเส้นนี้ทั้งในประเทศไทยและกัมพูชา ซึ่งทำให้ได้ข้อมูลองค์ความรู้เดิมเกี่ยวกับ ถนนโบราณเส้นนี้เป็นพื้นฐานในการศึกษา โดยทำให้เราทราบว่าแนวถนนโบราณในฝั่งกัมพูชานั้น สามารถตรวจสอบได้อย่างชัดเจน และทำให้เราทราบว่าแนวถนนโบราณมีลักษณะขึ้นอยู่กับพื้นที่ที่ แนวถนนทอดผ่าน ไม่จำเป็นจะต้องมีลักษณะเป็นคันดินยกสูงตลอดแนว ถนนที่เป็นคันดินนั้นจะ ถูกสร้างขึ้นเมื่อมีความจำเป็นเท่านั้น นอกจากนั้นแล้วเรายังทราบว่าเมื่อมีคันดินที่เป็นคันกั้นน้ำอยู่ แล้ว ถนนจะถูกเบี่ยงไปยังคันดินดังกล่าวเพื่อใช้เป็นถนนไปด้วย เพื่อเป็นการใช้งานร่วมกัน นอกจากนี้เรายังทราบว่าตามแนวถนนโบราณในฝั่งกัมพูชามีการสร้างสะพานศิลาแลงเพื่อใช้ข้ามลำ น้ำ

รูป 7-1 ลักษณะแนวถนนในฝั่งกัมพูชา



รูป 7-2 ลักษณะสะพานศิลาแลงในฝั่งกัมพูชา

พร้อมกันนั้นใค้คำเนินการรวบรวมข้อมูลของตำแหน่งของศาสนสถานโบราณ (ธรรมศาลา หรืออัคนีศาลา) และตำแหน่งของสิ่งก่อสร้างอื่นๆ ที่ได้มีการกล่าวถึงในจารึกปราสาทพระขรรค์ ตามแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมายให้มากที่สุด เพื่อพัฒนาฐานข้อมูลสารสนเทศ ภูมิศาสตร์เบื้องต้นสำหรับการสำรวจต่อไป โดยข้อมูลด้านอื่นที่เกี่ยวข้อง เช่น ข้อมูลทางภูมิศาสตร์ ข้อมูลทางมานุษยวิทยา ได้ถูกนำมาวิเคราะห์ร่วมกันเพื่อวางแผนการสำรวจ

หลังจากนั้นจึงทำการสำรวจตามแนวที่ได้รับการคาดหมาย โดยเป็นการสำรวจทาง โบราณคดี ทางภูมิสาสตร์ ทางธรณีฟิสิกส์ และทางมานุษยวิทยา ตามแต่ความเหมาะสมในแต่ละ พื้นที่ ซึ่งทำให้ได้ข้อมูลรายละเอียดของแนวถนนโบราณอย่างสมบูรณ์ในฝั่งกัมพูชาและฝั่งไทย แต่ ในฝั่งประเทศไทยนั้น แนวถนนโบราณปรากฏเป็นแนวสั้นๆ เท่านั้น อันเนื่องมาจากการที่พื้นที่ถูก เปลี่ยนแปลงไปเป็นพื้นที่การเกษตรเป็นหลัก โดยมีข้อมูลจากการสำรวจว่าเคยมีแนวเส้นทางอยู่จริง ในอดีต แต่ปัจจุบันได้ถูกไถให้เป็นพื้นที่เกษตรกรรม ซึ่งจากการเก็บพิกัดแนวดังกล่าวเปรียบเทียบ กับแนวที่คาดว่าน่าจะเป็นแนวถนนโบราณ ปรากฏว่าเกือบเป็นแนวเดียวกัน นอกจากนี้แล้วจากการ

รูปที่ 7-3 กราฟแสดงความสูงของพื้นที่ในฝั่งกัมพูชาและฝั่งไทยจากข้อมูล SRTM

หลังจากการดำเนินการสำรวจทางโบราณคดี ทางภูมิศาสตร์ ทางธรณีฟิสิกส์ และทาง มานุษยวิทยา ตามแนวถนนโบราณเส้นนี้แล้ว โครงการวิจัยได้ทำการวิเคราะห์ข้อมูลทั้งหมดใน ลักษณะสหวิทยาการ โดยนำองค์ความรู้ที่ได้มาทั้งหมดใช้ร่วมกันในการสรุปประเด็นการวิจัย เกี่ยวกับแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมาย ซึ่งทำให้ได้ข้อมูลในการตอบคำถามข้อ โต้แย้งเกี่ยวกับแนวถนนโบราณเส้นนี้เป็นอย่างดี เมื่อพิจารณา ข้อโต้แย้งว่าแนวคันดินที่ปรากภูนั้น เป็นแนวกั้นน้ำโบราณเท่านั้น มิใช่แนวถนนโบราณอย่างที่มีการตั้งสมมุติฐานนั้น เราสามารถ วิเคราะห์ในลักษณะสหวิทยาการและให้เหตุผลโด้แย้งดังนี้

<u>ด้านโบราณคดี</u>

1. ข้อมูลจากจารึกประสาทพระบรรค์ได้กล่าวถึงถนนหรือเส้นทางจากเมืองพระ นครถึงเมืองพิมาย ซึ่งถนนหรือเส้นทางนี้อาจมีการสร้างมาก่อนสมัยพระเจ้าชัยวรมันที่ 7 แต่ พระองค์ได้ทำการสร้างธรรมศาลาตามแนวถนนเส้นนี้จำนวน 17 หลัง ซึ่งจากการวิเคราะห์และการ สำรวจของโครงการ ก็ทำให้ได้ค้นพบธรรมศาลาทั้งหมดตามที่กล่าวไว้ในจารึก ดังนั้นจึงเป็นสิ่ง พิสูจน์ได้ส่วนหนึ่งว่าข้อความในจารึกเป็นเหตุการณ์ที่เกิดขึ้นจริง

- 2. จากการศึกษาทางโบราณคดีร่วมกับการศึกษาทางธรณีฟิสิกส์ ทำให้เราทราบถึง ลักษณะโครงสร้างของแนวถนนโบราณที่มีลักษณะทั้งคันดินยกสูงและแนวระดับไม่ยกสูง ซึ่งมี ลักษณะเดียวกันทั้งที่พบในฝั่งไทยและกัมพูชา ซึ่งมีการปูพื้นรากด้วยทรายก่อน
- 3. จากการสำรวจ ได้พบเศษชิ้นส่วนเครื่องปั้นดินเผา เศษตะกรันจากการถลุง เหล็ก และแหล่งถลุงเหล็กสมัยโบราณตามแนวถนนโบราณ ทำให้เราทราบว่ามีการใช้แนวถนนโบราณนี้งนส่งวัสคุดังกล่าวในอดีต ซึ่งเป็นเครื่องยืนยันอย่างหนึ่งว่ามีการเดินทางตามแนวคันดิน ดังกล่าวในอดีต ถ้าแนวคันดินดังกล่าวเป็นเพียงคันกั้นน้ำเพียงอย่างเดียว ก็ไม่น่าจะมีเศษชิ้นส่วน เครื่องปั้นดินเผา และแหล่งถลุงเหล็กจำนวนมากตามแนวถนนโบราณนี้ นอกจากนี้ ยังพบเศษ ชิ้นส่วนเครื่องเคลือบผลิตจากแหล่งผลิตในประเทศจีนตามแนวถนนโบราณนี้ด้วย
- 4. การสำรวจพบสะพานโบราณจำนวน 32 สะพานในฝั่งกัมพูชาตามแนวถนน โบราณจากเมืองพระนครถึงเมืองพิมายเส้นนี้ เป็นหลักฐานทางโบราณคดีที่สำคัญของแนวถนน โบราณเส้นนี้โดยสะพานศิลาแลงสุดท้าย อยู่ห่างจากชายแดนไทยบริเวณช่องตาเมือนประมาณหก กิโลเมตร

ด้าน Remote Sensing / GIS และภูมิศาสตร์

- 1. จากการวิเคราะห์ข้อมูลทางด้าน Remote Sensing / GIS และภูมิศาสตร์ ประกอบกับการวิเคราะห์ในด้านอื่นๆ ของโครงการ ทำให้เห็นภาพรวมเกี่ยวกับแนวถนนหรือ เส้นทางโบราณจากเมืองพระนครถึงเมืองพิมายว่าเป็นเส้นทางเชื่อมเมืองในพื้นที่ราบสูง (เมืองพิมาย) กับเมืองในพื้นที่ราบต่ำ (เมืองพระนคร) ดังนั้นถนนโบราณในฝั่งกัมพูชาจึงเป็นถนนในที่ราบต่ำจึงต้องมีการถมให้สูงมากกว่าถนนโบราณในฝั่งประเทศไทยซึ่งเป็นที่ราบสูงทำให้แนวถนนโบราณที่เป็นคันดินจึงอาจไม่มีความจำเป็นมากนัก การปรับระดับให้พื้นที่เรียบก็อาจเป็นการ เพียงพอ ดังนั้นการที่ถนนโบราณในฝั่งประเทศไทยถูกทำลายจึงเป็นไปโดยง่าย
- 2. การศึกษาแนวคันคินที่ถูกสร้างเป็นคันกั้นน้ำด้วยวัฒนธรรมเขมรโบราณ พบว่า มักยึดทิสตามแนวเหนือใต้ ตะวันออก ตะวันตกเป็นหลัก แต่แนวคันคินตามแนวถนนโบราณจาก เมืองพระนครถึงเมืองพิมายนี้ วางตัวอยู่ทิสตะวันตกเฉียงเหนือ ตามทิสทางจากเมืองพระนครไปยัง เมืองพิมาย ดังนั้น จึงเป็นไปได้ที่จุดประสงค์หลักของแนวคันคินนี้คือเส้นทางสัญจร และ จุดประสงค์รองคือการใช้เป็นคันกั้นน้ำ ดังที่ได้กล่าวข้างต้นว่า หลักนิยมในการก่อสร้างสมัยโบราณ ต้องการใช้ประโยชน์สูงสุดจากสิ่งก่อสร้าง มากกว่าการก่อสร้างที่ซ้ำซ้อน
- 3. จากการวิเคราะห์ตำแหน่งของแหล่งน้ำโบราณในแนวถนนโบราณเส้นนี้ พบว่า มีแหล่งน้ำโบราณตามแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมายเป็นจำนวนมาก ตามที่ได้

4. จากการวิเคราะห์แหล่งชุมชนโบราณและแนวถนนโบราณจากเมืองพระนครถึง เมืองพิมายนี้ ทำให้เห็นได้ว่าแนวถนนโบราณนี้ได้ถูกสร้างให้ผ่านแหล่งชุมชนโบราณ แหล่ง อุตสาหกรรมโบราณ ซึ่งจะได้กล่าวโดยละเอียด ในกรณีศึกษาเรื่องแหล่งอุตสาหกรรมโบราณ

<u>ด้านมานุษยวิทยา</u>

1. จากข้อมูลการสำรวจทางมานุษยวิทยา ทำให้เราทราบว่าประชากรท้องถิ่นในฝั่ง กัมพูชา มีการรับรู้ถึงเรื่องราวของแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมาย โดยยังมีความ นับถือต่อแนวถนนโบราณเส้นนี้ และเรียกแนวกันดินนี้ว่าถนนของราชวงศ์

7.3.2 การศึกษาแหล่งอุตสาหกรรม และชุมชนโบราณตามแนวถนนโบราณ

ในการศึกษาแหล่งอุตสาหกรรม และชุมชนโบราณตามแนวถนนโบราณเป็นการศึกษาตาม แนวทางสหวิทยาการอย่างสมบูรณ์แบบ โดยกรณีศึกษาแหล่งถลุงโลหะ บริเวณบ้านเขาดินใต้ ตำบลบ้านกรวด อำเภอบ้านกรวด จังหวัดบุรีรัมย์ เป็นการศึกษาตามขั้นตอนดังนี้

- 1. การสำรวจพื้นที่
- 2. การสำรวจทางธรณีฟิสิกส์
- 3. การขุดค้นทางโบราณคดี
- 4. การวิเคราะห์เชิงสหวิทยาการ

ในการดำเนินการหัวข้อ 1-3 ได้ทำมีการเสนอรายละเอียดแล้วในบทต่างๆ ที่เกี่ยวข้อง สำหรับการวิเคราะห์เชิงสหวิทยาการนั้นเป็นการวิเคราะห์เพื่อตอบคำถามในภาพรวมของแหล่ง อุตสาหกรรมโบราณและแหล่งชุมชนโบราณนี้คือ

- 1. สาเหตุของการตั้งแหล่งอุตสาหกรรมโบราณในพื้นที่
- 2. แหล่งวัตถุดิบสำหรับการผลิต
- 3. ตำแหน่งของชุมชนโบราณในพื้นที่
- 4. ความสัมพันธ์กับแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมาย

7.3.2.1 สาเหตุของการตั้งแหล่งอุตสาหกรรมโบราณในพื้นที่

จากการศึกษาทางภูมิศาสตร์ทำให้เราทราบว่าพื้นที่ดังกล่าวเป็นพื้นที่เชิงเขา ตำแหน่งของแหล่งอุตสาหกรรมตั้งอยู่บนพื้นที่สูงขอบที่ลุ่มน้ำท่วมถึง (Flood plain) ซึ่งปัจจุบันที่ ลุ่มดังกล่าวเป็นพื้นที่นาข้าว แต่ในอดีตพื้นที่ลุ่มดังกล่าวเป็นเส้นทางน้ำใหลลงเขาจากเทือกเขาพนม ดงรัก ซึ่งทำให้สามารถอธิบายสาเหตุการเลือกพื้นที่ในการดำเนินกิจกรรมที่ใกล้แหล่งน้ำ มี ทรัพยากรป่าไม้ที่สามารถใช้เป็นเชื้อเพลิงในการถลุงโลหะได้อย่างพอเพียงกับขนาดของแหล่ง อุตสาหกรรมขนาดใหญ่ที่ตรวจพบ

7.3.2.2 แหล่งวัตถุดิบสำหรับการผลิต

จากการศึกษาทางธรณีฟิสิกส์ และทาง Remote Sensing ทำให้เราทราบว่าพื้นที่ ดังกล่าวเป็นพื้นที่ที่อุดมด้วยแหล่งลูกรัง (Laterite) ที่มีส่วนผสมของแร่เหล็กสูงพอที่จะสามารถทำ การถลุงเป็นเหล็กได้ และจากการวิเคราะห์ทาง Remote Sensing ในพื้นที่ตลอดแนวถนนโบราณ จากเมืองพระนครถึงเมืองพิมายนั้น พื้นที่อำเภอบ้านกรวดเป็นพื้นที่เดียวที่อุดมด้วยแหล่งลูกรังที่มี แร่เหล็กผสมอยู่ในปริมาณสูงพอที่จะสามารถถลุงเป็นเหล็กได้ ซึ่งสามารถตอบคำถามถึงสาเหตุของ การตั้งแหล่งอุตสาหกรรมโบราณอย่างมากมายในพื้นที่

7.3.2.3 ตำแหน่งของชุมชนโบราณในพื้นที่

จากการวิเคราะห์ทางโบราณคดีจากหลักฐานทางโบราณคดี และการวิเคราะห์ทาง Remote Sensing ร่วมกับการศึกษาทางภูมิศาสตร์ ทำให้สามารถสรุปในขั้นต้นว่าแหล่งชุมชนโบราณและแหล่งชุมชนปัจจุบันเป็นพื้นที่เคียวกัน โดยในการตรวจสอบสภาพทางภูมิศาสตร์ของ พื้นที่ชุมชนในปัจจุบันพบว่าชุมชนปัจจุบันตั้งอยู่บนพื้นที่สูงกว่าพื้นที่โดยรอบ ซึ่งเป็นที่ราบน้ำท่วม ถึง นอกจากนั้นพื้นที่เดียวในบริเวณที่มีลักษณะของการตั้งถิ่นฐานมาแต่โบราณ มีแหล่ง อุตสาหกรรมโบราณอยู่โดยรอบ นอกจากนั้น จากการสำรวจทางโบราณคดีพบว่า มีศาสนสถานโบราณ (ปราสาท) ตั้งอยู่กลางพื้นที่ ซึ่งเป็นลักษณะของศาสนาสถานประจำชุมชนโบราณขนาดใหญ่ เราจึงสามารถสรุปเบื้องต้นในเรื่องของที่ตั้งของชุมชนโบราณในอำเภอบ้านกรวดจากเหตุผล ดังกล่าวข้างต้น

7.3.2.4 ความสัมพันธ์กับแนวถนนโบราณจากเมืองพระนครถึงเมืองพิมาย

จากการศึกษาร่วมกันทำให้เราเห็นถึงความสัมพันธ์กับแนวถนนโบราณจากเมือง พระนครถึงเมืองพิมาย กับแหล่งอุตสาหกรรมโบราณในอำเภอบ้านกรวด โดยการนำข้อมูลจากการ สำรวจมาทำการวิเคราะห์พบว่า แหล่งอุตสาหกรรมเหล่านี้อยู่ในรัสมีของแนวถนนโบราณ นอกจากนี้ในการขุดค้นทางโบราณคดีของแนวถนนโบราณ เราได้พบว่ามีการนำวัตถุดิบเพื่อการ ถลุงโลหะมาทำการปรับปรุงแนวถนนโบราณ ซึ่งอยู่ในชั้นดินที่ลึกลงไป ซึ่งสามารถตรวจพบได้ จากการขุดค้นทางโบราณคดีเท่านั้น นอกจากนี้เรายังตรวจพบเสษตะกรันจากการถลุงโลหะตาม แนวและบริเวณใกล้เคียงกับถนนโบราณอีกเป็นจำนวนมาก ซึ่งแสดงให้เห็นว่าแนวถนนโบราณจาก เมืองพระนครถึงเมืองพิมายนั้นมีความสัมพันธ์กับแหล่งอุตสาหกรรมโบราณในพื้นที่อย่างไม่ สามารถปฏิเสธได้

7.4 สรุป

การศึกษาวิจัยในลักษณะสหวิทยาการทำให้เราสามารถทำการศึกษาแนวถนนโบราณจาก เมืองพระนครถึงเมืองพิมายในมุมมองที่ครบถ้วน ซึ่งในการตอบคำถามหนึ่ง ผลการศึกษาในแต่ละ ค้านของประเด็นคำถาม จะต้องตอบมาในทางเคียวกัน เราจึงจะทำการสรุปผลของการศึกษาใน ประเด็นนั้นๆ ถ้าเกิดข้อขัดแย้งในผลการศึกษาจากการศึกษาแต่ละค้าน สิ่งแรกที่เราต้อง คำเนินการคือหาสาเหตุที่ทำให้ผลของการศึกษาออกมาไม่เป็นไปในแนวเคียวกัน ซึ่งเปรียบเสมือน การตรวจสอบซึ่งกันและกันไปในตัว ทำให้เราสามารถอธิบายผลการศึกษาที่ออกมาได้อย่าง สมบูรณ์ ในมุมมองที่ต่างกันของการศึกษาที่มีคำถามเคียวกัน จากการตรวจสอบซึ่งกันและกันนี้ ทำให้ข้อสรุปอยู่บนพื้นฐานขององค์ความรู้มากกว่าอยู่บนสมมติฐานที่ปราศจากหลักฐานและข้อมูล สนับสนุนที่เพียงพอ

บทที่ 8 บทสรุป

โครงการค้นหาและพัฒนาสารสนเทศของถนนโบราณสมัยพระเจ้าชัยวรมันที่ 7 ระยะที่ 2 ได้ดำเนินการในส่วนต่างๆ ตามที่ได้กำหนดในแผนงานเดิมและส่วนขยายจากแผนงานเดิมเพื่อให้ ผลการวิจัยมีประสิทธิภาพและประโยชน์สูงสุด เช่น การคำเนินกิจกรรมเยาวชนไทย กัมพูชาครั้งที่ 1 การพัฒนาระบบ e-Learning จากผลการวิจัยในระยะที่หนึ่ง การทำการศึกษาทางค้านวิศวกรรม โยธาเกี่ยวกับคุณสมบัติของสะพานโบราณในฝั่งประเทศกัมพูชา โดยการคำเนินการของโครงการที่ เป็นประเด็นหลักสามารถสรุปการคำเนินการได้ดังนี้

- 1. ขยายโครงการเพื่อนำผลการวิจัยไปใช้ในการสร้างความสัมพันธ์ระหว่างประเทศ ใน ระดับชุมชนบริเวณพื้นที่ชายแดนตามแนวถนนโบราณ โดยได้จัดกิจกรรม The 1st Science and Cultural Activity for Next Generation Khmer-Thai โดยได้รับความสนับสนุนเพิ่มเติมจากสมาคม วัฒนธรรมไทย-กัมพูชา ในวันที่ 3 ตุลาคม 2550 ณ อุทยานประวัติศาสตร์ปราสาทหินพนมรุ้ง
- 2. นำเสนอผลงานทางวิชาการของโครงการในการประชุมนานาชาติ Hanoi International Conference on "Archaeology of Vietnam-Cambodia-Laos: Toward Sustainable Cooperation" ของ นักวิจัยโครงการจากองค์การ APSARA ดังที่ได้ระบุไว้แล้วในบทที่ 6 ซึ่งได้รับการตอบรับเป็นที่น่า พอใจเป็นอย่างยิ่ง ซึ่งทำให้การคำเนินการของโครงการในอนาคตเป็นไปได้สะควกขึ้น
- 3. คำเนินการศึกษาแหล่งอุตสาหกรรมและชุมชนโบราณ บริเวณอำเภอบ้านกรวด จังหวัด บุรีรัมย์ และแหล่งโบราณคดีตามแนวถนนโบราณ โดยเป็นการคำเนินการในลักษณะสหวิทยาการ เป็นการประสานศาสตร์ต่างๆ ที่เกี่ยวข้องซึ่งสามารถนำมาใช้ประยุกต์ร่วมกัน ได้แก่ เทคโนโลยี remote sensing / GIS (บทที่ 2), โบราณคดี (บทที่ 3) และธรณีฟิสิกส์ (บทที่ 4) ซึ่งองค์ความรู้ที่ ได้รับจากการศึกษานี้สามารถนำไปประยุกต์ใช้ศึกษาในพื้นที่อื่นๆ ได้เป็นอย่างดี ในการคำเนินการศึกษาครั้งนี้ ทำให้เราได้ทราบถึงหลักการของคนโบราณในการเลือกพื้นที่เพื่อการอุตสาหกรรม และเพื่อการอยู่อาศัยตั้งถิ่นฐาน
- 4. ดำเนินการศึกษากลุ่มของแหล่งโบราณคดีสำคัญในแนวถนนโบราณในประเทศกัมพูชา บริเวณหมู่บ้าน Kol Village จังหวัดเสียมเรียบ ซึ่งเป็นแหล่งชุมชนโบราณขนาดใหญ่ในแนวถนน โบราณ (รายละเอียดในบทที่ 6) ได้มีการดำเนินการศึกษาโดยละเอียดในด้านต่างๆ เช่น ทำการศึกษา cross section ของแนวถนนโบราณ ศึกษาสะพานโบราณจากการขุดค้นทางโบราณคดี และจากการวิเคราะห์ทางวิศวกรรม ศึกษาผังเมืองโบราณจากภาพถ่ายทางอากาศ และการสำรวจ พื้นที่ภาคพื้นในบริเวณดังกล่าว ทำให้ทราบถึงการตั้งถิ่นฐานของชุมชนโบราณตั้งแต่ระยะเริ่มแรก ก่อนสมัยขอมโบราณเป็นเวลานาน ซึ่งยังไม่เคยมีการทำการศึกษาพื้นที่ดังกล่าวมาก่อนเลยในอดีต

5. ดำเนินการศึกษาและเก็บข้อมูลทางวัฒนธรรมโดยได้ดำเนินการศึกษาในเชิงลึกเกี่ยวกับ ชุมชนส่วย (กวย) ในประเทศกัมพูชาและประเทศไทย ซึ่งยังคงมีความสัมพันธ์กันระหว่างชุมชน ของทั้งสองกลุ่ม อันแสดงให้เห็นถึงความสัมพันธ์ของชุมชนโบราณจนถึงปัจจุบันซึ่งจากรายงาน ข้างต้นในส่วนต่างๆ ที่ได้นำเสนอไว้ในบทที่ 1-7

การดำเนินงานของโครงการนี้ได้ดำเนินเป็นไปตามแผนที่กำหนดจนเสร็จสิ้นโครงการ ตามระยะเวลาที่กำหนด ผลจากการวิจัยและการพัฒนาระบบข้อมูลอย่างมหาศาลเท่าที่เทคโนโลยีใน โลกปัจจุบันสามารถอำนวยได้นั้น ทำให้เห็นได้ว่ากิจกรรมทางวัฒนธรรมในช่วงสมัยวัฒนธรรม เขมรโบราณได้แผ่ครอบคลุมอาณาบริเวณที่กว้างขวางและเป็นไปอย่างเข้มข้น ดังปรากฏร่องรอย สิ่งก่อสร้างและแหล่งผลิตอย่างหนาแน่น ซึ่งการใช้ระเบียบวิธีการวิจัยทางโบราณคดี มานุษยวิทยา วัฒนธรรม เทคโนโลยีภูมิสารสนเทศ เทคโนโลยีธรณีฟิสิกส์ และเทคโนโลยีสารสนเทศ สามารถ ให้ความกระจ่างถึงภาพวิถีชีวิตในอดีตและร่องรอยของกลุ่มชาติพันธุ์ที่ยังคงสืบทอดคติความเชื่อ ้คั้งเคิมอยู่จนถึงปัจจุบัน เช่น วิถีชีวิตของชาวกูย นอกจากนั้นยังแสคงให้เห็นเครือข่ายการติดต่อ แลกเปลี่ยนทั้งทรัพยากร ผลผลิต แรงงาน คติความเชื่อทางศาสนา จนถึงอำนาจทางการเมืองใน ระบบรัฐหรืออาณาจักร การขยายเครือข่ายดังกล่าวนี้มีความเป็นไปได้ว่ามีเหตุผลสำคัญประการ หนึ่งคือการเพิ่มผลผลิตเพื่อป้อนเข้าสู่แกนกลางวัฒนธรรม (Culture Core) ในการคำรงไว้ซึ่งสถานะ ของศูนย์กลางอำนาจ ผลจากการสำรวจตลอดระยะเวลาที่ดำเนิน โครงการนี้พบว่าเป้าหมายของการ ขยายเครือข่ายมีความพยายามเพื่อมุ่งเข้าสู่ชุมชน หมู่บ้านที่มีอยู่ดั้งเดิมและยังคงมีเครือข่ายการติดต่อ แลกเปลี่ยนภายในมาก่อนแล้ว คังนั้นในมุมมองหนึ่งการแผ่งยายวัฒนธรรมเขมรโบราณจึงเป็น ปรากฏการณ์ระเบียงวัฒนธรรมที่เชื่อมโยงกลุ่มชน ชุมชนที่แตกต่างทั้งเชื้อชาติ ภาษา คติความเชื่อ ทั้งฝั่งตะวันตกและตะวันออกในบริเวณล่มแม่น้ำเจ้าพระยา จำปาศักดิ์ จนถึงบางส่วนของเวียดนาม เข้าไว้ด้วยกัน ด้วยระบบวัฒนธรรมแบบเขมรโบราณและระบบความเชื่อตามคติเทวราชา

บรรณานุกรม

ภาษาไทย

ธราพงศ์ ศรีสุชาติ. "การใช้วิธีการทางธรณีฟิสิกส์ในการสำรวจและวิเคราะห์แหล่ง โบราณคดี" ใน เทคโนโลยีและวิทยาศาสตร์ประยุกต์ในงานโบราณคดีไทย. กรุงเทพฯ : อมรินทร์ การพิมพ์, 2536. หน้า 20-36.

นิคม มุสิกะคามะ. <u>ประวัติศาสตร์ โบราณคดีกัมพูชา</u>. กองโบราณคดี, กรมศิลปากร, กรุงเทพฯ : 2536 หน้า 209.

ปรีชา เล่าซู. การประยุกต์เทคนิคทางธรณีฟิสิกส์เพื่อค้นหาแหล่งเตาเผาโบราณบริเวณลุ่ม น้ำสงคราม จังหวัดสกลนคร และแหล่งเตาเผาสังคโลก จังหวัดสุโขทัย. กรุงเทพฯ : กองเศรษฐ ธรณีวิทยา กรมทรัพยากรธรณี. 2538.

เมธา วิจักขณะ. "บูชายัญกรรมก่อนประวัติศาสตร์ที่เนินอุโลก." <u>วารสารเมืองโบราณ</u>. ปี ที่ 16, ฉบับที่ 4 (ตุลาคม-ธันวาคม 2533) : 69-79.

เมธา วิจักขณะ. รายงานการวิเคราะห์โบราณวัตถุ แหล่งโบราณคดีบ้านปราสาท ต.ธาร-ปราสาท อ.โนนสูง จ.นครราชสีมา. หน่วยศิลปากรที่ 6, 2527. (อัดสำเนา)

วรวุฒิ โลหะวิจารณ์. รายงานผลการสำรวจ Ground Penetrating Radar โครงการขุดเจาะ สำรวจและวิเคราะห์ด้านโบราณคดีบริเวณสถานีรถไฟฟ้าใต้ดินในพื้นที่กรุงรัตนโกสินทร์ให้กับ บริษัทวิศวกรรมธรณีและฐานราก จำกัด. หาดใหญ่ : ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์, 2543. 65 หน้า.

ศิลปากร, กรม. <u>การศึกษาเปรียบเทียบการบูรณะโบราณสถาน อนัสติโลซิส.</u> กรุงเทพฯ : เซเว่น พริ้นติ้ง กรุ๊ป. 2540.

ศิลปากร, กรม. <u>จารึกในประเทศไทย เล่ม 3.</u> กรุงเทพฯ: 2529.
ศิลปากร, กรม. <u>จารึกในประเทศไทย เล่ม 4.</u> กรุงเทพฯ: 2529.
ทฤษฎีและแนวปฏิบัติ การอนุรักษ์อนุสรณ์สถานและแหล่งโบราณคดี.
อกสารกองโบราณคดีหมายเลข 1 กรุงเทพฯ : บริษัท หิรัญพัฒน์ จำกัด, 2533.
<u>บ้านปราสาท แหล่งโบราณคดีอีสานล่าง.</u> กรุงเทพฯ : สำนักพิมพ์สมาพันธ์,
2534.
บ้านหลุมเข้า รายงานเบื้องต้นเฉพาะเรื่องชั้นดินและหลักฐานทางโบราณคดี
บาง
<u>ปราสาทพนมรู้ง</u> . กรุงเทพฯ : บริษัท อมรินทร์ พรินติ้ง กรุ๊พ จำกัด, 2531.

	. <u>เมืองร้อยเอ็ด.</u> พระนคร : อมรินทร์พริ้นติ้ง, 2541.
	รายงานการขุดแต่งโบราณสถานปราสาทเมืองต่ำ และการขุดตรวจเพื่อก้นหา
<u>แหล่งชุมชน</u>	<u>โบราณบริเวณโดยรอบปราสาทเมืองต่ำ.</u> กรุงเทพฯ : บริษัท ประชาชน จำกัด, 2536.
	. <u>รายงานการตรวจโบราณวัตถุสถานในภาคตะวันออกเฉียงเหนือ.</u> ม.ป.ท., 2503.
	หอสมุดแห่งชาติ. <u>จารึกในประเทศไทย เล่ม 1-4</u> . 2529.
	. <u>เอกสารกองโบราณคดีหมายเลข 10/2531</u> . พระนคร :โรงพิมพ์การศาสนา,
2531.	
สมิท	าธิ ศิริภัทร์ และมยุรี วีระประเสริฐ. <u>ทับหลัง การศึกษาเปรียบเทียบทับหลังที่พบใน</u>
<u>ประเทศไทยแ</u>	<u>เละประเทศกัมพูชา</u> . กรุงเทพฯ : โมเคอร์น เพรส, 2533.
สุภัท	ารดิศ ดิศกุล, ศ.ม.จ. "ประติมากรรมขอม." <u>วารสารศิลปากร</u> . ปีที่ 11 ฉบับที่ 2, 2510 :
51.	
	<u>ประวัติเมืองพระนครของขอม (ทรงแปล).</u> กรุงเทพฯ : บริษัท จันวานิชย์
จำกัด. 2526.	
	<u>ประวัติศาสตร์เอเชียอาคเนย์ ถึงพ.ศ.2000</u> . สมาคมประวัติศาสตร์ในพระ
ราชูปถัมภ์สม	เด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารี. 2535.
	. <u>ศิลปขอม</u> . กรุงเทพฯ: โรงพิมพ์คุรุสภา. 2539.
สุริย	วุฒิ สุขสวัสคิ์, ผศ. คร. ม.ร.ว., <u>ปราสาทเขาพนมรุ้ง, พิมพ์ครั้งที่ 2.</u> กรุงเทพฯ : 2535.
อภิข	ภาติ พัฒนวิริยะพิศาล. การศึกษาสัณฐานทางโบราณคดีด้วยคลื่นแม่เหล็กไฟฟ้า
หาดใหญ่ :	วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์มหาวิทยาลัยสงขลานครินทร์,
2542. 157หน้	٦.

ภาษาอังกฤษ

Ang, Ch., 2000, People and Earth, Reyum, Phnom Penh

Ang, Ch., Thompson, A., Eric, P., 1995, Angkor: A Manual for the Past, Present and Future, APSARA/UNESCO, Phnom Penh.

Ang, Ch., Preap, Ch., Sun, Ch., 2007 Cause of Khmer lifetime through the Rite of Passage, in Khmer, Hanuman Tourism, Phnom Penh.

Ansoy, M.Ö., Koçak.Ö, Büyüksaraç, A and Bilim, F., 2007. Images of buried graves in Bayat, Afyon (Turkey) from high-resolution magnetic data and their comparison with preliminary excavations. J. Archaeological Science 34. 1473-1484.

Aymonier, E., Le Cambodge. vol. II les Provinces Siamois Paris, 1901.

Aymonier, E., , Le Cambodge. vol. III, E. Leroux Ed, Paris, 1900-1903.

Bandhom, P., "Phanom Wan: Archaeological Study and The Restoration Project," Country Report on <u>Asean Workshop on Conservation and Restoration of Monuments and Sites</u> for Young Professionals. (Borobudur: Directorate General for Culture, 1998).

Bannanurag, R., "Khok Phanom Di and Its Socio-Cultural Implications" (Ph.D. dissertation, University of Otago, 1989): 354.

Bevan, B.W., 1991. The search for graves. Geophysics 56(9), 1310-1319.

Boisselier, J., 1966, Le Cambodge, Picard, Paris

Bruguier, B., 2000, "Les ponts en pierre du Cambodge ancien: aménagement ou contrôle du territoire?", *BEFEO 87 : 529-551*

Carr, C., "The Nature of Organisation of Intrasite Archaeological Records and Spatial Analytic Approachs to Their Investigation" in Schiffer, M.B. editor, <u>Advance in Archaeological Method and Theory.</u> Vol.17 (London: Academic Press, 1984): 103-211.

Chavez, R.E., Camara, M.E., Tejero, A., Barba, L., and Manzanilla, L., 2001. Site characterization by geophysical methods in the archaeological zone of Teotihuacan, Mexico. J. Archaeological Science 28. 1265-1276.

Chhay, Rachana 2007. The excavation of Anlong Thom Kiln Site. Internal Report by APSARA National Authority, Siem Reap (in Khmer).

Chianese, D., D'Emilio, M., Salvia, S.D., Lapenna, V., Ragosta, M., and Rizzo, E., 2004. Magnetic mapping, ground penetrating radar surveys and magnetic susceptibility

measurement for the study of the archaeological site of Serra di Vaglio (southern Italy). J. Archaeological Science 31. 633-643.

Claude Jacques and Philippe Lafond, The Khmer Empire, Cities and Sanctuaries from the 5th to the 13th Century, River Books: Bangkok, 2007.

Cœdès, G., 1906, "La stèle de Ta Prohm", BEFEO VI : 44-82
1908, "Inscription de Bàt Chum", JA XII, 10 série : 213-252.
1911, "Les bas-reliefs d'Angkor Vat", BCAI : 170-220.
1932, " A la recherche du Yaçodharaçrama", BEFEO XXXII : 84-112.
1940, "Les hôpitaux de Jayavarman VII", <i>BEFEO XL : 344-347</i> .
1940, "Les gîtes d'étape à la fin du XIIe siècle", <i>BEFEO XL : 347-349</i> .
1941, "La stèle du Práh Khan d'Angkor", <i>BEFEO XLI : 255-302</i> .
1941, "L'assistance médicale au Cambodge à la fin du XIIè siècle", CEFEO,
26:29-31.
1943, "Les stèle de Sdok Kak Thom", BEFEO, XLIII : 56-134.
1948, Les Etats hindouisés d'Indochine et d'Indonésie, Éd. de Boccard, Paris
Dupaigne, B., 1992, "La métallurgie dans l'ancien Cambodge: Travail des dieux, Travail
des hommes", in Études rurales, janvier-juin, 125-126:13-34
Em, Socheata 2004. Khnar Po Kiln Site. Bachelor of Arts thesis, Royal University of
Fine Arts, Phnom Penh (in Khmer).
Finot, L., 1925, "Dharmaçâlâs au Cambodge", BEFEO XXV: 417-422.
Foucher, A., 1903, "Les édicules des gîtes d'étapes", J.A I, dixième série : 174-18
Groslier B-P., 1958, Angkor et le Cambodge au XVIème siècle d'après les sources
portugaises et espagnoles, PUF, Paris.
1960, Indochine, carrefour des arts, Albin-Michel, Paris.
1979, "La cité hydraulique angkorienne : exploitation ou surexploitation du
sol?", BEFEO LXVI: 161-202.
1973, Inscriptions du Bayon, EFEO, Paris
Hang, Ch. & Lim, S., 2001 "A study on communities living in Siem Reap-Angkor
region", Udaya, Journal of Khmer Studies, n. 2, APSARA, Phnom Penh: 71-80.

Higham, C.F.W., and Thosarat, R., <u>Prehistoric Thailand from Early Settlement to Sukhothai</u> (Bangkok: River Books,1998).

Im, S. 1995, La vie quotidienne khmère à l'époque d'Angkor d'après les bas-reliefs du Bayon, mémoire de fin d'études, Phnom Penh (inédit) __. 1998, Les réseaux routiers et moyens de transport à l'époque angkorienne du au XIV siècles, mémoire présenté en vue du diplôme de l'EHESS, Paris (inédit) . 2003, "Angkor: A Living Heritage Site", Report for Living Heritage Sites Programme, First Strategy Meeting, SPAFA Headquarters, Bangkok ___. 2005, "Angkorian Communication Routes and Associated Structures", Udaya, Journal of Khmer Studies, n. 5, in Khmer . 2008, "Ancient Khmer Road Network: A Case Study of a Royal Road from Angkor to Phimai", Paper for International Conference, Archaeology of Vietnam-Cambodia-Laos: Toward Sustainable Cooperation, Hanoi Im, Sokrithy 2005. "Angkorian Road Network and Infrastruture Concerned". Journal of Khmer Studies, UDAYA 5: 39-78. Imai, T., Sakayama, T. and Kanemori, T., 1987. Use of ground-probing radar and resistivity survey for archaeological investigations. Geophysics 52(2), 137-150. Jean Boisselier, Le Cambodge. Manuel d'Archaéologie d' Extrême-Orient, Paris, 1966. Kroll, E.M., and Price, T.D., The Interpretation of Archaeological Spatial Peterning.

Plenum Press, 1991.

Lajongui ire, E., "Inventaire descriptif des monuments du Cambodge," vol II, Paris 1907. Mouhot, H., "Voyages dans les Royaumes de Siam de Cambodge et de Laos," Paris, 1868.

Lam, S. & So, Chh., 1999 The legend of Khmer history and Monument, BA thesis, Faculty of Archaeology, Phnom Penh (unpublished)

LARP, 2004, "Living Angkor Road Report", in 16th Technical Committee Report, Unesco, Siem Reap, 5-7 July, Sokha-Angkor Hotel

LARP, 2007-2008, Living Angkor Road: Technical Report, http://larp.crma.ac.th

Lim, S. & Hem, K., 2000, A study on linkage between communities living in Angkor region, BA Thesis, Faculty of Archaeology, Phnom Penh (unpublished)

Lunet de Lajonquière, E., 1902-1911, Inventaire descriptif des monuments du Cambodge, 3 vol. Publ. EFEO., Paris

Maspéro, G., 1925, "La géographe politique de l'Indochine aux environ de l'an 960 A.D.", EA 2: 79-125

Maspéro, H., 1918, "La frontière de l'Annam et du Cambodge du VIII au XIV ème siècle", *BEFEO XVIII : 29-36*.

Ministry of Culture and Fine Arts and UNESCO, 2004 *Inventory of Intangible Cultural Heritage of Cambodia*, Phnom Penh

Miura, Keiko, 2004 'Contested Heritage: People of Angkor', PhD Thesis, School of Oriental and African Studies, University of London, London.

Natthapatra Chandavij 1990. Ancient Kiln Site in Buriram Province, Northeastern Thailand. An Ancient Ceramic Kiln Technology in Asia (ed Hochumei), Hong Kong, Centre of Asian Studies, University of Hong Kong, pp. 230-43.

Parmentier, H., 1916, "Carte de l'Empire khmer d'après la situation des inscriptions datées", *BEFEO XVI : 69-73*______. 1933, "Examen du levé d'avion du parc d'Angkor par capitaine Gouet les 24-26 jan. 1933 à 9 heures à l'altitude de 1.300 m., Siem Reap, 1933", dans "Chroniques", *BEFEO XXXIII : 1111-1116*.

_____. 1934, "Examen du nivellement d'Angkor", BEFEO XXXIII : 310-318

Pelliot Paul, 1951, Mémoire sur les coutumes du Cambodge de Tcheou Ta-Kouan, A. Maisonneuve, Paris.

Philppe Stern, Les Monuments Khmers des style du Bayon et Jayavarman VII, Press Universities de France, Paris, 1965.

Phon, Kaseka 2002. Ancient Kiln Site at Choeung Ek. Master of Arts thesis, Cambodian Royal Accademy, Phnom Pehn (in Khmer)

Pichard, P., <u>Pimay Etude Architectural du Temple</u>. EFEO. Paris, 1976.

_______. "Restoration of a Khmer Temple in Thailand." UNESCO. Paris, 1972.

______. "Restoration of Phanom Rung." UNESCO. Paris, 1974.

______. <u>Tanjavur Brhadisvara an Architectural Study.</u> IGNCA.-EFEO. (Pondichery:

Pierre Pichard, Le Prasat Phanom Wan (IK. 437) avant anastylose, L'école Française d' Extrême-Orient, Paris, 1991.

All India Press, 1995).

Poshyanandana, V. <u>Etude Comparise d'anastylose</u>. Universite Lumiere-Lyon II, 1994.

Saxe, A.A., "Social Dimensions of Mortuary Practices" (Ph.D. dissertation, University of Michigan, 1970).

Schiffer, M.B., Behavioral Archaeology. (New York: Academic Press, 1976).

Schweyer, A-V, 2007, "The confrontation of the Khmer and Chams in the Bayon Period", in *Bayon: New Perspectives*, River Books, Bangkok, pp. 49-71

Sharer, J.R., and Ashmore, W., <u>Fundamentals of Archaeology</u>. Menlo Park, (California: The Benjamin Cummings, 1979).

Social Research Unit, 2000 Report on the Socio-economic Study of Angkor region, in Khmer, APSARA, Siem Reap (unpublished)

Social Research Unit, 2001 Report on Communities living in Angkor Thom, in Khmer, APSARA, Siem Reap (unpublished)

Social Research Unit, 2003 Report on Population statistics in zone 1 and 2, in Khmer, English and French, APSARA, Siem Reap (unpublished)

Sok, Keo Sovannara 2003. Sar Sey Kiln Site. Bachelor of Arts thesis, Royal University of Fine Arts, Phnom Penh (in Khmer).

Solheim II, W.G., and Ayres, M., "The Late Prehistoric and Early Historic Pottery of the Khorat plateau, with Special Reference to Phimai," In Smith, R.B., and Watson, W., editors, <u>Early Southeast Asian.</u> (Oxford: Oxford University Press, 1979): 63-77

Sternberg, B.K. and McGill, J.W., 1995. Archaeology studies in southern Arizona using ground penetrating radar. J. of Applied Geophysics 33, 209-225.

Suigyama, Hiroshi, Nishimura Ken, Hanatani ..., Ea Darith 2005. National Research Institute for Cultural Properties, Nara 2005. Final Report of Joint Research Project at Angkor, excavation of Tani kiln site, A6.

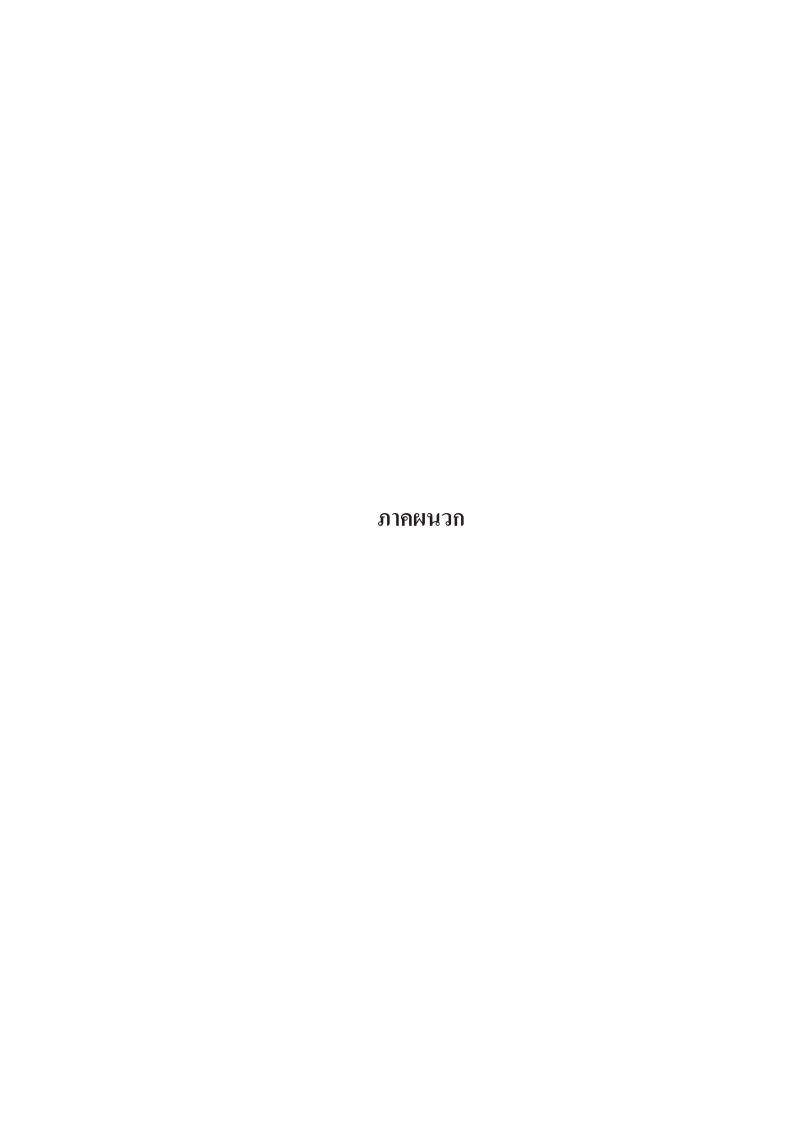
Valfidis, A., Economou, N., Ganiatsos, Y., Manakou, M., Poulioudis, G., Sourlas, G., Vrontaki, E., Sarris, A., Guy, M. and Kalpaxis, Th., 2005. Integrated geophysical studies at ancient Itanos (Greece). J. Archeological Science 32. 1023-1036.

Vaughan, C.J., 1986. Ground-penetrating radar survey used in archaeological investigation. Geophysics 51(3), 595-604.

Vikery, M., 1998, Society, Economics and Politics in Pre-Angkor Cambodia, The Centre for East Asian Cultural Studies for Unesco, The Toyo Bunko.

th
2004, "Cambodia and Its Neighbors in the 15 Century", Working Paper
Series No. 27, Asia Research Institute, Singapore (www.ari.nus.edu.sg/pub/wps2004.htm)
2005, "Champa revised", Working Paper at a conference on Champa, Asian
Research Institute, National University of Singapore
(http://www.ari.nus.edu.sg/pub/wps2005/wps05_037.htm)

Wood, S.H., Liberty, L.M., Singharajwarapan, F.S., Bundarnsin, T and Rothwell, E., 2004. Feasibility of gradient magnetometer surveys of buried brick structures at 13th century (C.E.) Wiang Kum Kan, Chiang Mai province, Thailand. Proc. Int. Conf. on Applied Geophysics. Chiang Mai: November 26-27, 2004., pp. 22-30.


Yukitsuku Tabata 2004. Technical Aspects on Khmer Stoneware Ceramics from the Tani kiln site. Docter Degree, Institute of Asian Culture, Sophia University (in Japanese).

Boston GIS. OpenLayers part 1. [Online]. Accessed March 2006. Available from http://www.bostongis.com/?content name=openlayers tut 01.

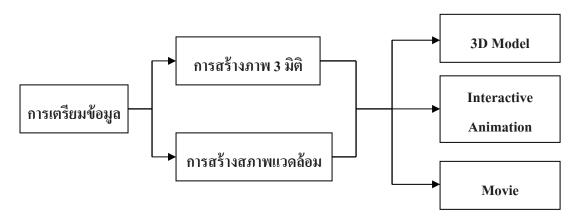
OpenLayers. OpenLayers examples. [Online]. Accessed March 2006. Available from http://www.openlayers.org/dev/doc/examples.html.

OpenLayers. OpenLayers getting started. [Online]. Accessed March 2006. Available from http://openlayers.org/doc/.

Wikipedia. <u>OpenLayers.</u> [Online]. Accessed March 2006. Available from http://en.wikipedia.org/wiki/OpenLayers.

การสร้างภาพเคลื่อนใหวเสมือนจริง 3 มิติ

1. กล่าวนำ

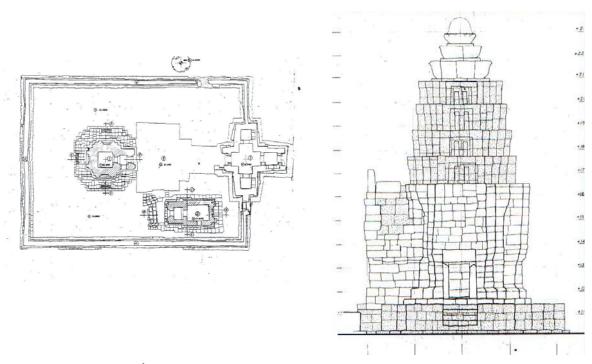

โครงการนี้ ได้ทำการพัฒนาภาพเสมือนจริง 3 มิติ (3D Realistic Model) และสภาพแวคล้อม ทางธรรมชาติ 3 มิติ (Natural 3D Environment) โดยการประยุกต์ใช้ครื่องมือต่างๆ จากซอฟต์แวร์ หลายประเภทเข้ามาผสมผสานเพื่อสร้างเป็นภาพจำลองและสภาพแวคล้อม 3 มิติ ขึ้นมา โดยมี วัตถุประสงค์เพื่อจำลองภาพโบราณสถานและสภาพแวคล้อมโดยรอบของโบราณสถานในรูปแบบ 3 มิติ ทำให้ผู้ที่ต้องการศึกษาเกี่ยวกับโบราณสถาน สามารถมองเห็นภาพโบราณสถานและ สภาพแวคล้อมได้ทุกด้านทั้งด้านหน้า ด้านหลัง ด้านบน รวมทั้งด้านในของโบราณสถาน และ มองเห็นรูปทรงได้อย่างชัดเจนเสมือนจริงโดยที่ไม่ต้องไปยังสถานที่จริง ทำให้ประหยัดค่าใช้จ่าย ในการเดินทางไปยังสถานที่จริง นอกจากนี้เรายังสามารถนำประโยชน์จากการจำลองภาพ โบราณสถาน 3 มิติไปเปรียบเทียบกับโครงสร้างโบราณสถานอื่นๆ ได้อีกด้วย

หลังจากการจำลองภาพโบราณสถานและสภาพแวคล้อมโคยรอบของโบราณสถานใน รูปแบบ 3 มิติแล้ว สิ่งที่จำเป็นที่จะต้องคำนึงถึงและนำมาประกอบในการพิจารณาถึงขั้นตอนการ คำเนินการคือการนำผลงานเหล่านั้นมาแสดงในรูปแบบต่างๆ ให้ตรงกับความต้องการของผู้ใช้งาน ครอบคลุมทุกแขนง เช่นการเสนอผลงานออกมาในรูปของภาพนิ่ง (picture) ภาพเคลื่อนไหวที่มีการ ตอบโต้ (interactive animation) และภาพยนต์ (movie) เป็นต้น โดยการนำเสนอผลงาน (export) จะอยู่ในรูปแบบไฟล์ชนิดต่างๆ เพื่อให้ผู้ใช้งานสามารถนำไปใช้งานอย่างสะควกขึ้นอยู่กับลักษณะ ของการนำไปใช้งาน

2. การดำเนินการ ผลงานที่ได้รับ และการนำไปใช้ประโยชน์

2.1 การดำเนินการ

การวางแผนงานในขั้นตอนการดำเนินการ เป็นสิ่งที่จำเป็นอย่างยิ่ง เนื่องจากงาน ประเภทการสร้างภาพจำลองและการสร้างสภาพแวดล้อม 3 มิติ เป็นงานที่ค่อนข้างจะยุ่งยาก และมี ความละเอียดอ่อน ผู้ปฏิบัติจะต้องมีความประฉีตและมีจิตนาการผลงานที่ได้รับจึงจะออกมาดี มีความสวยงาม เหมือนจริง และสามารถนำไปใช้ประโยชน์ได้จริง ซึ่งคณะวิจัยฯ ของโครงการ ได้วางแผนงานโดยมีขั้นตอนการดำเนินการในการสร้างชิ้นงานซึ่งประกอบด้วยขั้นตอนดังนี้



รูปที่ 1ก แสดงขั้นตอนการดำเนินการ

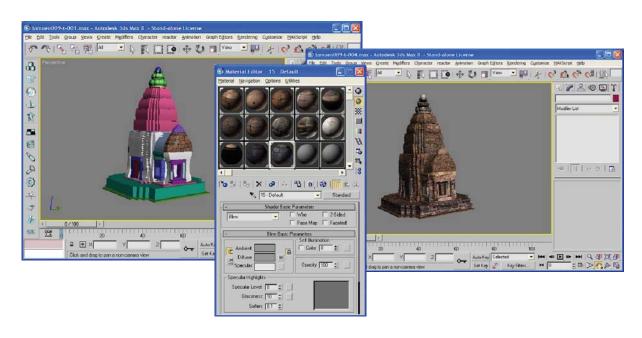
ขั้นตอนการเตรียมข้อมูล

การเตรียมข้อมูลที่ใช้สำหรับสร้างภาพจำลอง 3 มิติมีความสำคัญเป็นอย่างมาก เนื่องจากภาพจำลอง 3 มิติจะออกมาสมบูรณ์ สวยงาม หรือไม่ ขึ้นอยู่กับข้อมูลต่างๆ ดังนี้


O การเตรียมข้อมูลขนาดความกว้าง ความยาว ความสูง หรือตำแหน่งพิกัดของ โบราณสถาน (ถ้าใค้ข้อมูลที่ละเอียดมากจะทำให้การสร้างวัตถุมีรูปทรงที่สวยงามและสมจริง)

รูปที่ 2ก แสดงผังและมาตราส่วนของโบราณสถาน

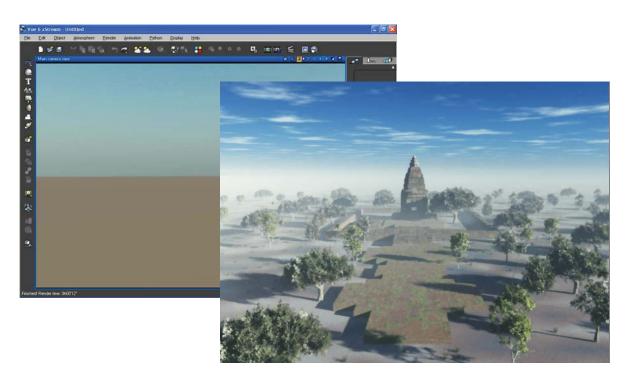
O การเตรียมข้อมูลภาพถ่ายพื้นผิวของวัตถุทั้งค้านหน้า ค้านข้าง ค้านหลัง และ ค้านบน เพื่อนำมาสร้างผิวของวัตถุให้ดูสมจริง โดยภาพที่ถ่ายควรมีความละเอียคสูง และมีการ ถ่ายภาพมุมใกล้และมุมไกลให้ครอบคลุมพื้นผิวทั้งหมดของโบราณสถาน



รูปที่ 3ก แสดงภาพพื้นผิวของโบราณสถาน

ขั้นตอนการสร้างภาพ 3 มิติของโบราณสถาน

ขั้นตอนการสร้างภาพ 3 มิติ สำหรับโครงการนี้ใช้โปรแกรม 3ds Max ในการสร้างภาพ โบราณสถาน ซึ่งเป็นขั้นตอนที่ต้องการความชำนาญและความประณีตเป็นอย่างยิ่ง เพราะออกแบบ ภาพ 3 มิตินั้นมีขั้นตอนหลายขั้นตอนและค่อนข้างมีความซับซ้อน ตั้งแต่ขั้นตอนการขึ้นรูป ขั้นตอน การสร้างผิววัตถุ (texture) และการ render ภาพ

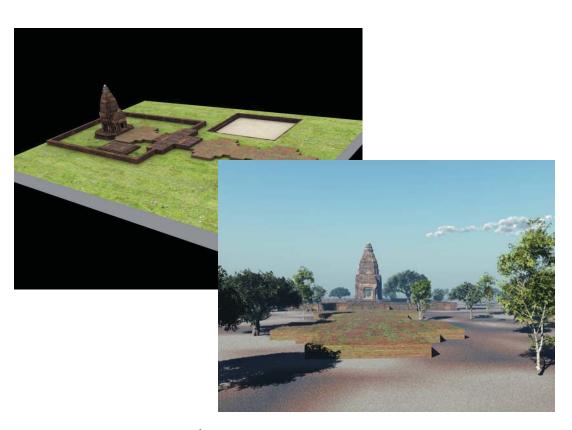

รูปที่ 4ก แสดงการสร้างภาพ 3 มิติของโบราณสถาน

ขั้นตอนการสร้างสภาพแวดล้อม 3 มิติ

นอกจากการสร้างภาพ 3 มิติ ของโบราณสถานแล้วองค์ประกอบที่สำคัญอีกอย่างหนึ่งที่จะ ทำให้ภาพ 3 มิติมีลักษณะเหมือนจริงก็คือการสร้างสภาพแวดล้อมรอบๆภาพนั้น เช่นสภาพท้องฟ้า พื้นดิน ป่า ภูเขา เป็นต้น ซึ่งโปรแกรมที่ออกแบบเครื่องมือช่วยสร้างสภาพแวดล้อมให้มีความง่าย และรวดเร็ว มีหลายโปรแกรม สำหรับโครงการวิจัยนี้ใช้โปรแกรม Vue 6 xStream เป็นเครื่องมือ ช่วยสร้างสภาพแวดล้อมเพราะมีความง่าย ความสะดวก ความอ่อนตัว และมีประสิทธิภาพ โดย โปรแกรมได้เตรียมวัตถุ (Objects) พื้นฐานสำหรับการสร้างสภาพแวดล้อม 3 มิติไว้ดังนี้

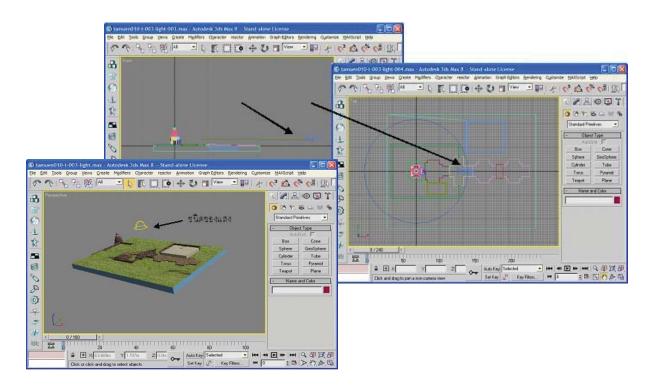
- O พื้นดิน พื้นน้ำ พื้นเมฆ (Infinite Planes)
- O ภูเขา (Terrain object)
- o ต้นไม้ ป่าไม้ (Plants)
- O หิน (Rocks)
- O เมฆ (MetaClouds)
- O ลม (Ventilators)

นอกจากนี้ยังสามารถนำเข้าวัตถุสำเร็จรูป เช่นต้น ไม้ ก้อนเมฆ หรือภูเขาจากที่อื่นแล้วนำมา ประกอบกับสภาพแวคล้อมที่เราสร้างขึ้นมาค้วยตนเองอีกค้วย



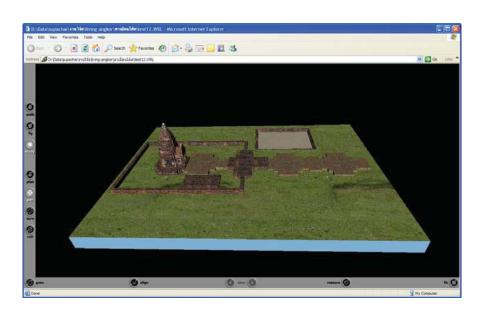
รูปที่ 5ก แสดงการสร้างสภาพแวดล้อม 3 มิติ

ขั้นตอนแสดงผลงานในรูปแบบ 3D Model, Interactive Animation และ Movie


การนำเสนอผลงานนั้นสามารถทำได้หลายลักษณะขึ้นอยู่กับความต้องการของผู้สร้างผลงานและผู้นำไปใช้งาน ซึ่งจะมีความต้องการแตกต่างกันออกไป เช่นการนำเสนอผลงานบน เว็บไซต์สามารถแสดงในรูปแบบของภาพนิ่ง ภาพเคลื่อนไหวที่ถูกย่อขนาดแล้ว หรือ ภาพเคลื่อนไหวที่มีการโต้ตอบ เป็นต้น ส่วนการนำเสนอผลงานอีกแบบหนึ่งคือการให้ผู้ใช้งาน download ไฟล์ไปใช้งาน ซึ่งวิธีนี้มักจะใช้กับไฟล์ที่มีขนาดใหญ่

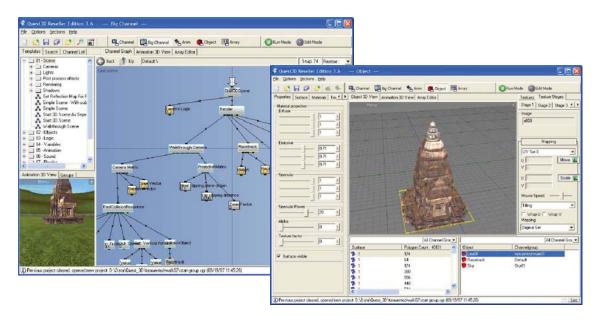
การนำเสนอผลงานในรูปแบบ 3D Model ก็เพียงแต่ Render ภาพออกมาเป็น jpg, png, bmp หรือ tif เป็นต้น ดังรูป

รู**ปที่ 6ก** การเสนอผลงานแบบ 3D Model


การนำเสนอผลงานในรูปแบบ Movie เป็นวิธีที่นิยมวิธีหนึ่งเพราะจะทำให้ผู้ที่ต้องการ ศึกษาเกี่ยวกับโบราณสถาน สามารถมองเห็นภาพโบราณสถานและสภาพแวคล้อมได้ทุกด้าน เหมือนไปยังสถานที่จริง อย่างไรก็ตามภาพที่เป็นแบบ movie มีข้อเสียเปรียบที่ผู้ใช้งานไม่สามารถ บังคับมุมมองได้ด้วยตัวเอง แต่ภาพจะถูกผลิตออกมาสำเร็จรูปจากผู้สร้างผลงาน ซึ่งบางครั้งอาจจะ ไม่ตรงตามความต้องการของผู้ใช้งาน การนำเสนอผลงานในรูปแบบ Movie ผู้ผลิตจะต้องเพิ่มขั้นตอนการ Render ภาพ โดยต้อง กำหนดทิสทางของแสง ทิสทางการเคลื่อนที่ของกล้อง จำนวน frame ที่ต้องการ และการตั้งค่า ความละเอียดของภาพ (resolution) เป็นต้น ดังรูป

รูปที่ 7ก การเสนอผลงานแบบ Movie

การนำเสนอผลงานในรูปแบบ Interactive Animation ในปัจจุบันนี้นับว่าเป็นวิธีที่ได้รับ ความนิยมวิธีหนึ่งเพราะผู้ใช้งานสามารถบังคับทิสทางการมองภาพเคลื่อนไหวเสมือนจริง 3 มิติ (3D Realistic Animation) ได้โดยผู้ใช้งานเอง ด้วยอุปกรณ์แป้นพิมพ์ เมาส์ หรืออื่นๆ สำหรับการ สร้างและออกแบบสามารถทำได้หลายวิธีทั้งนี้ขึ้นอยู่กับองค์ประกอบหลายอย่าง เช่น ความสะควก ความอ่อนตัว ความง่าย และความชำนาญในการใช้งานโปรแกรมที่จะนำมาสร้างสรรค์งานด้าน 3 มิติของผู้ออกแบบ สำหรับโครงการวิจัยนี้ผู้เขียนใช้โปรแกรม 2 ประเภทในการสร้างสรรค์ผลงาน คือ โปรแกรม Autodesk 3ds Max สำหรับการสร้าง Interactive Animation บน web browser และ โปรแกรม Quest 3D สำหรับการสร้าง Interactive Animation อย่างอิสระ สามารถแสดงภาพด้วย ตัวเองโดยไม่ต้องพึ่งซลฟต์แวร์อื่นมาห่วยในการแสดงผลงาน


สำหรับการสร้าง Interactive Animation บน web browser สามารถผลิตออกมาโดยการ ใช้โปรแกรม 3ds Max ทำการ Export ให้อยู่ในไฟล์ WRL ก่อน ส่วนการนำไฟล์ WRL มาแสดงบน web browser นั้นจะต้องติดตั้งโปรแกรมประเภท VRML Client บนเครื่องคอมพิวเตอร์ก่อน ซึ่ง โครงการนี้แนะนำให้ติดตั้งโปรแกรม Cortona VRML Client (cortvrml.exe) ของบริษัท

รูปที่ 8ก การเสนอผลงานแบบ Interactive Animation บน Web Browser

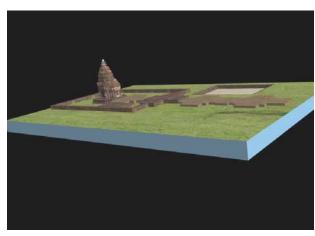
สำหรับการสร้าง Interactive Animation ที่สามารถทำงานได้อย่างอิสระสามารถแสดงภาพ ด้วยตัวเองโดยไม่ต้องพึ่งซอฟต์แวร์อื่นมาช่วยในการแสดงผลงานด้านแบบจำลอง 3 มิติที่มีการตอบ โต้กัน จะใช้โปรแกรม Quest 3D ในการสร้างผลงาน ซึ่งสามารถสร้างผลงานออกมาได้หลาย รูปแบบขึ้งอยู่กับรูปแบบการนำเสนอผลงานเช่น คือ

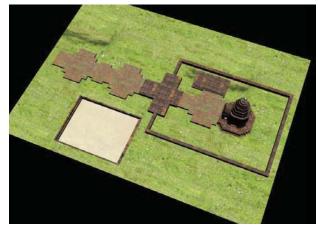
- ถ้าต้องการเสนอผลงานด้วย Quest 3D Viewer จะต้องเก็บไฟล์รูปแบบ .q3d
- ถ้าต้องการเสนอผลงานในรูปแบบเว็ปโดยจะต้องใช้ Quest 3D Browser Plug-in จะต้อง เก็บไฟล์รูปแบบ .q3d
 - ถ้าต้องการเสนอผลงานในรูปแบบ Screen Saver จะต้องเก็บไฟล์รูปแบบ .exe
- ถ้าต้องการเสนอผลงานในรูปแบบ Stand-alone Self-running จะต้องเก็บไฟล์รูปแบบ .exe ดังรูป

รูปที่ 9ก การเสนอผลงานแบบ Interactive Animation ทำงานอิสระ

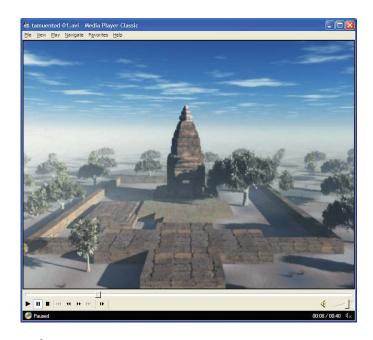
2.2 ผลงานที่ได้รับ

2.2.1 3D Model




รูปที่ 10ก ภาพธรรมศาลา (อัคนีศาลา) ปราสาทตาเมือน

รูปที่ 11ก ภาพอโรคยาศาลา ปราสาทหนองบัวลาย


รูปที่ 12ก ภาพอโรคยาศาลา ปราสาทหนองบัวลาย

รูปที่ 13ก ภาพสะพานโบราณ

2.2.2 Movie

รูปที่ 14ก ภาพเคลื่อนใหวอโรคยาศาลา ปราสาทหนองบัวลาย

2.2.3 Interactive Animation

รูปที่ 15ก ภาพเคลื่อนใหวแบบตอบโต้ ปราสาทหนองบัวลาย

3. สรุป

โครงการวิจัยนี้ได้ทำการประยุกต์โดยการนำซอฟต์แวร์หลายชนิดมาใช้เป็นเครื่องมือสร้าง ภาพจำลองโบราณสถาน 3 มิติ ทำให้สามารถลดขั้นตอนในการสร้างและออกแบบงานได้เป็นอย่าง ดี นอกจากนี้งานที่มีความซับซ้อนมากๆ ซอฟต์แวร์เหล่านี้ก็ยังช่วยให้สามารถสร้างงานนั้นออกมา อย่างง่ายและสะควกสบาย ผลงานที่สร้างออกมาก็สามารถนำไปเสนอผลงานได้หลายรูปแบบ ทำให้สามารถนำไปใช้งานได้อย่างหลากหลายยิ่งขึ้น แต่อย่างไรก็ตามการสร้างภาพจำลองและ สภาพแวดล้อม 3 มิติจะใกล้เคียงสถานที่จริงหรือไม่ขึ้นอยู่กับศิลปและจินตนาการของผู้ออกแบบ ซึ่งต้องอาศัยประสบการณ์และความชำนาญในการผลิตผลงานออกมาให้เหมือนจริง

ภาคผนวก ข

การใช้งาน OpenLayers เพื่อพัฒนาระบบการสื่อข้อมูลโครงการ

1. กล่าวนำ

การนำเสนอข้อมูล GIS ผ่านทางระบบอินเทอร์เน็ต ได้รับความนิยมอย่างแพร่หลายในเวลา อันรวดเร็ว เป็นผลให้มีการพัฒนา Web GIS Application ขึ้นมาให้ใช้งานเป็นจำนวนมาก นอกจากนั้น ในปัจจุบันผู้ใช้ยังสามารถเข้าถึงข้อมูล GIS จากหลากหลายแหล่งได้โดยไม่ต้องเสีย ค่าใช้จ่าย ดังนั้น ในกรณีที่ผู้ใช้ต้องการนำข้อมูลเหล่านี้มาใช้ร่วมกัน รวมถึงการนำข้อมูลของตนเอง มาร่วมนำเสนอด้วยนั้น ผู้ใช้สามารถกระทำได้โดยใช้ซอฟท์แวร์รหัสเปิดที่มีชื่อว่า OpenLayers ซึ่ง ได้รับพัฒนาขึ้นโดยใช้เทคโนโลยี JavaScript ช่วยให้นักพัฒนาสามารถนำเสนอข้อมูล GIS จาก หลากหลายแหล่งข้อมูลบนหน้าเว็บเดียวกันได้อย่างง่ายดายโดยเรียกใช้งานผ่าน JavaScript API ของ OpenLayers

2. คุณสมบัติของ OpenLayers

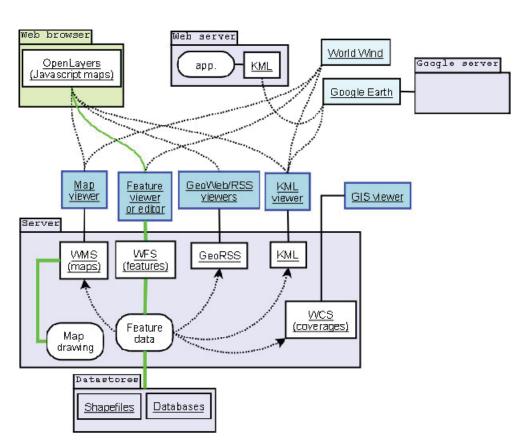
OpenLayers เป็นซอฟท์แวร์รหัสเปิดสำหรับการเรียกดูและนำเสนอข้อมูล GIS ในรูปแบบ ของแผนที่ผ่าน Web Browser ที่พัฒนาขึ้นมาโดยใช้ภาษา JavaScript ที่มีคุณสมบัติในการทำงานใน รูปแบบ Client Side ช่วยให้เป็นอิสระต่อการเลือกใช้เครื่องแม่ข่าย และที่สำคัญ OpenLayers ยังมี JavaSript API สำหรับใช้ในการสร้าง Web-Based Geographic Application ให้สำหรับนักพัฒนาใน การเข้าถึงและเข้าใช้งาน Library ต่างๆ ของ OpenLayers ได้อย่างสะดวกสบาย ช่วยให้ผู้ใช้สามารถ สร้างแผนที่ กำหนดคุณสมบัติของแผนที่ จัดเรียงชั้นข้อมูล และรองรับการใช้งานข้อมูล GIS หลากหลายรูปแบบ ดังแสดงไว้ในรูปที่ 1ข

คุณสมบัติที่น่าสนใจของ OpenLayers อย่างหนึ่งก็คือ ความสามารถในการเรียกใช้ข้อมูล GIS จากหลากหลายแหล่งข้อมูล ยกตัวอย่างเช่น

การติดต่อกับแหล่งข้อมูลที่ใช้ Protocol มาตรฐานของ OpenGIS Consortium

- Web Map Service (WMS) Protocol
- Web Feature Service (WFS) Protocol

การติดต่อกับแหล่งข้อมูลที่ใช้มาตรฐานอื่นๆ


- GeoRSS data
- GeoServer data
- ka-Map data
- NASA World Wind data
- UMN MapServer data

การติดต่อกับแหล่งข้อมูลอื่นๆ

- Google Maps
- MSN Virtual Earth
- Yahoo! Maps

นอกจากนั้น OpenLayers ยังรองรับการเรียกใช้งานข้อมูลอื่นๆ ดังแสดงไว้ในภาพด้านล่าง

นึ่

รูปที่ 1ข แสดงแผนภาพ OpenLayers ที่รองรับการเรียกใช้งานข้อมูล (ที่มา: http://en.wikipedia.org/wiki/OpenLayers)

3. การใช้งาน OpenLayers

การสร้างแผนที่โดยใช้ OpenLayers API เรียกข้อมูล GIS จากแหล่งข้อมูลต่างๆ นั้น ใน ขั้นต้นจะต้องแทรก OpenLayers JavaScript เข้าไปเป็นส่วนหนึ่งของ HTML (หรือโปรแกรมภาษา อื่นๆ ที่ใช้สำหรับสร้าง Web Page เช่น PHP, ASP.Net, หรือ PERL เป็นต้น) จากนั้นจึงเขียน โปรแกรมโดยใช้ภาษา JavaScript เพื่อเรียกใช้งานฟังก์ชันต่างๆ ตามข้อกำหนดของ OpenLayers JavaScript API

เรียกใช้งาน OpenLayers JavaScript

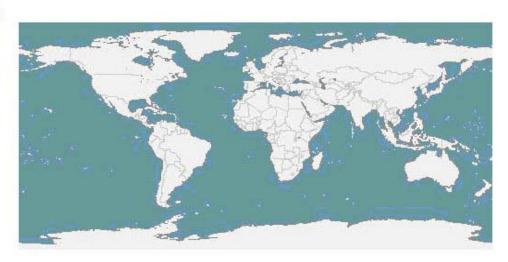
การสร้าง Web-Based Geographic Application ด้วย OpenLayers นั้น ในขั้นต้นจะต้อง สร้างไฟล์ HTML ที่มีการรวมเอา OpenLayers Library เข้าไว้เป็นส่วนหนึ่งของไฟล์ดังกล่าวก่อน ด้วยการแทรกเข้าไว้ในส่วนของ Header พร้อมกับสร้าง Block element ซึ่งในที่นี้ใช้ <div> เป็น ตัวกำหนดว่าจะแสดงข้อมูล GIS ไว้ที่ส่วนใดของ Web page พร้อมทั้งกำหนดขนาดของแผนที่ที่จะ แสดงผล

สร้าง OpenLayers Map Object

ในการสร้างแผนที่นั้น เมื่อเตรียมโครงสร้างของ HTML เรียบร้อยแล้ว ขั้นตอนต่อไปจะ เป็นการสร้าง Map Object ของ OpenLayers เพื่อเตรียมที่จะใช้เป็น Object หลักในการแสดงผล ข้อมูล GIS ซึ่งต้องมีการส่งผ่านค่าให้กับ OpenLayers.Map constructor 1 ตัว นั่นก็คือ ID ของ HTML element ที่ต้องการให้แสดงแผนที่

```
<html>
<head>
<title>OpenLayers Example</title>
<script src="http://openlayers.org/api/OpenLayers.js"></script>
<script defer="defer" type="text/javascript">
function init() {
    var map = new OpenLayers.Map('map');
}
</script>
</head>
<body onload=init()>
<div style="width: 100%; height: 100%" id="map"></div>
</body>
</html>
```

เมื่อเรียกดูผ่าน Web Browser จะเห็นว่ามีเพียงตัวควบคุมแสดงผลออกมาเท่านั้น


รูปที่ 2ข แสดงตัวควบคุมแสดงผล

สร้างชั้นข้อมูลโดยนำเข้าข้อมูล WMS

เมื่อเตรียมทุกอย่างพร้อมแล้ว ขั้นตอนต่อไปจะเป็นการเรียกข้อมูลออกมาแสดง โดยเริ่มต้น จากการนำเข้าข้อมูลจาก WMS Server ด้วยการสร้าง WMS Layer Object และเพิ่มชั้นข้อมูลเข้าไป ใน Map Object ตามลำดับ นอกจากนั้น จะต้องกำหนด Zoom level ให้กับ Map Object ด้วย ซึ่ง สามารถใช้ zoomToMaxExtent() เพื่อให้ขยายภาพให้มากที่สุดเท่าที่จะแสดงผลเต็มพื้นที่ได้

```
<html>
<head>
 <title>OpenLayers Example</title>
 <script src="http://openlayers.org/api/OpenLayers.js"></script>
 <script defer="defer" type="text/javascript">
  function init() {
   var map = new OpenLayers.Map('map');
   var wms = new OpenLayers.Layer.WMS( "OpenLayers WMS",
         "http://labs.metacarta.com/wms/vmap0",
         {layers: 'basic'});
   map.addLayer(wms);
   map.zoomToMaxExtent();
  }
 </script>
</head>
<body onload=init()>
<div style="width: 100%; height: 100%" id="map"></div>
</body>
</html>
```


รูปที่ 3ข แสดงตัวควบกุมแสดงผลบน Web Browser

กำหนดขอบเขตการแสดงข้อมูล

การกำหนดขอบเขตในการแสดงข้อมูล ก็เพื่อที่จะกำหนดว่าต้องการให้แสดงแผนที่เฉพาะ ในส่วนที่เราต้องการ ด้วยการกำหนดจุดศูนย์กลางของแผนที่และ zoom level

```
<html>
<head>
 <title>OpenLayers Example</title>
 <script src="http://openlayers.org/api/OpenLayers.js"></script>
 <script defer="defer" type="text/javascript">
  var lon = 100;
  var lat = 14;
  var zoom = 5;
  function init() {
   var map = new OpenLayers.Map('map');
   var wms = new OpenLayers.Layer.WMS( "OpenLayers WMS",
         "http://labs.metacarta.com/wms/vmap0",
         {layers: 'basic'});
   map.addLayer(wms);
   map.setCenter(new OpenLayers.LonLat(lon, lat), zoom);
  }
 </script>
</head>
<br/>body onload=init()>
 <div style="width: 100%; height: 100%" id="map"></div>
</body>
</html>
```


สร้าง Layer Switcher

Layer Switcher เป็นเครื่องมือในการควบคุมว่าต้องการหรือไม่ต้องการแสดงผลข้อมูลของ แต่ละ Layer ที่มีอยู่ในแผนที่ ซึ่งการสร้าง Layer Switcher ของ OpenLayers ใช้คำสั่งเพียงบรรทัด เดียวคือ

map.addControl(new OpenLayers.Control.LayerSwitcher());

สร้าง Overview Map

Overview Map เป็นรูปแผนที่ขนาดเล็ก ใช้เพื่อบอกตำแหน่งการแสดงผลของแผนที่หลัก กับบริเวณโดยรอบ

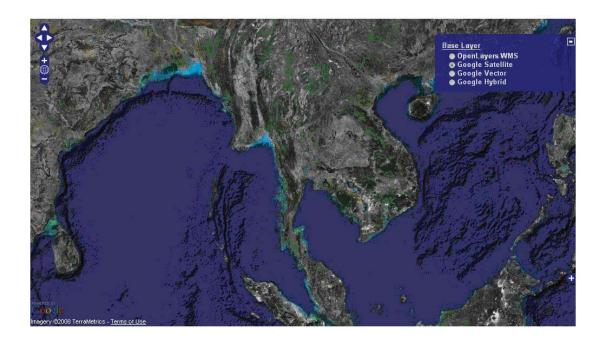
map.addControl(new OpenLayers.Control.OverviewMap());

4. เรียกใช้งานข้อมูลจาก Goolgle Maps

การเรียกใช้ข้อมูลจาก Google Maps นั้น ผู้ใช้จะต้องลงทะเบียนเพื่อขอรับ API key สำหรับ แต่ละ URL ก่อน ซึ่งสามารถลงทะเบียนโดยไม่เสียค่าใช้จ่ายได้ที่

http://code.google.com/apis/maps/signup.html

And get an API key for your web-site.


However, we will not explain how to sign up in this training

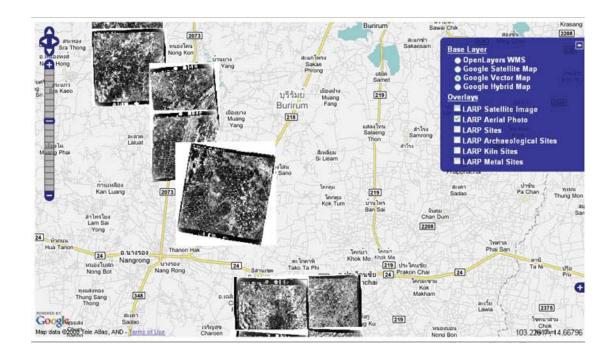
For further information, refer to the following site,

http://code.google.com/apis/maps/index.html

```
<html>
<head>
 <title>OpenLayers Example</title>
 <script src="http://openlayers.org/api/OpenLayers.js"></script>
 <script src="http://maps.google.com/maps?file=api&v=2</pre>
       &key=ABQIAAAAh5eI2e-uaLsMHMsRaL41sxQMRv3u6BnmjLFPiLNNcMg82Zw
       WaxTiDNyXUQfy3miBE6XJ3PyDkcIHOQ"
       type="text/javascript"></script>
 <script defer="defer" type="text/javascript">
  var lon = 100;
  var lat = 14;
  var zoom = 5;
  function init() {
   var map = new OpenLayers.Map('map');
   var wms = new OpenLayers.Layer.WMS( "OpenLayers WMS",
         "http://labs.metacarta.com/wms/vmap0",
         {layers: 'basic'});
   var gstlite = new OpenLayers.Layer.Google('Google Satellite',
                 {'type': G_SATELLITE_MAP } );
   var gvector = new OpenLayers.Layer.Google('Google Vector',
                 {'type': G_NORMAL_MAP } );
   var ghybrid = new OpenLayers.Layer.Google('Google Hybrid',
                 {'type': G HYBRID MAP } );
   map.addLayer(wms);
   map.addLayers([gsatellite, gvector, ghybrid]);
   map.setCenter(new OpenLayers.LonLat(lon, lat), zoom);
   map.addControl(new OpenLayers.Control.LayerSwitcher() );
   map.addControl(new OpenLayers.Control.OverviewMap());
  }
 </script>
```

```
</head>
<br/>
<body
and a style="width: 100%; height: 100%" id="map"></div>
<br/>
<br/>
/body>
</html>
```


5. การเรียกใช้ข้อมูลภาพถ่ายทางอากาศจาก WMS


เนื่องจาก OpenLayers มีความสามารถในการเรียกใช้งานข้อมูลหลากหลายรูปแบบ ดังนั้น เพื่อเป็นตัวอย่างในการเรียกใช้งานรูปแบบอื่นๆ จึงขอนำตัวอย่างการดึงข้อมูลภาพถ่ายทางอากาศ จาก "โครงการค้นหาและพัฒนาสารสนเทศของราชมรรคา สมัยพระเจ้าชัยวรมันที่ 7" มาเพื่อสร้าง ความเข้าใจในการเรียกใช้ข้อมูลรูปแบบอื่นๆ ของ OpenLayers ผ่าน WMS Protocol

var larp_aerial = new OpenLayers.Layer.WMS("LARP Aerial Photo",

"http://larp.crma.ac.th/cgi-bin/larp.wms",

{transparent: 'true', layers: 'Aerial_Photo'});

map.addLayers(larp_aerial);

6. การใช้งานคุณสมบัติอื่นๆ ของ OpenLayers

การใช้งาน OpenLayers นั้น นอกจากที่กล่าวมาแล้วข้างต้น ยังมีคุณสมบัติอื่นๆ อีกมากมาย ที่สามารถเรียกใช้งานเพื่อกำหนดรูปแบบ ลักษณะ และขอบเขตการแสดงผล การเพิ่มชั้นข้อมูลที่อยู่ ในรูปแบบอื่นๆ เช่น ข้อความ รูปภาพ และ GML เป็นต้น ซึ่งผู้ใช้งานสามารถศึกษาได้จาก OpenLayers API Reference และตัวอย่างจำนวนมากที่เว็บไซต์ OpenLayers

(http://www.openlayers.org/dev/examples/)

สรุป

OpenLayers เป็นซอฟท์แวร์ที่ช่วยให้ผู้ใช้และนักพัฒนาระบบ GIS สามารถนำเสนอข้อมูล ของตนเองร่วมกับข้อมูลอื่นๆ ที่มีการเผยแพร่ให้ใช้งานในเครือข่ายอินเทอร์เน็ตได้ โดยที่ OpenLayers มี JavaScript API ที่ช่วยให้สามารถเรียกใช้งานคุณสมบัติอันหลากหลายของ OpenLayers ได้อย่างสะดวกสบาย นอกจากนั้น OpenLayers ยังคงได้รับการพัฒนาอย่างต่อเนื่อง ใน รูปแบบการเผยแพร่รหัสให้นักพัฒนาทั่วโลกสามารถมีส่วนร่วมในการพัฒนาให้มีประสิทธิภาพ สูงขึ้นและมีคุณสมบัติต่างๆ เพิ่มขึ้น และด้วยความที่มีการเปิดเผยรหัสเช่นนี้ ยังช่วยให้นักพัฒนา สามารถปรับแก้คุณสมบัติของ OpenLayers ให้ตรงความต้องการเฉพาะงานของตนได้อีกด้วย

ภาคผนวก ค

การวิเคราะห์ทางวิศวกรรมโยธาของสะพานโบราณ Hal Bridge

Civil Engineering Department,

Project: Hal Bridge, Cambodia Subject: Loading capacity check Designer: CC Chk by: CC

Approved by:

CALCULATION SHEET

HAL Bridge check.mcd / 1/4

Sheet No: Project No: _ Drawing No: ..-....

Date: March 2008

HAL BRIDGE: Capacity Check

The design check procedures outlined below are in accordance with BS 5628: Part 1: Structural Use of Unreinforced Masonry which is based on the limit state principles.

Unit coversion: kN := 1000N

ton := 10kN

Bridge details i.e. width, length, spans and dimensions as shown on the attached drawings. Given:

Bridge span 1 approximate length: $s_1 := 1.7m$

Bridge span 2 approximate length: $s_2 := 2.4m$

Bridge span 3 approximate length:

s3 := 1.9m

Average bridge span length:

 $s := \frac{s_1 + s_2 + s_3}{3} \qquad \qquad s = 2000 \, \text{mm}$

Total bridge width:

Loading will be calculated per unit width of bridge; therefore, the unit width is

$$w := 1m$$

1. ULTIMATE DESIGN MOMENT (M)

Assume the critical plane of bending will be parallel to the bed joint and the ultimate design moment at mid-span of the panel, M, is given by (clause 36.4.2 of BS 5628)

$$M := \frac{Ultimate_load \cdot span_length}{8}$$

Ultimate load on the panel per unit length of bridge equals to uniform load times loaded area.

In which.

Characteristic uniform load is

Partial safety factor for load is

 $\gamma_f := 1.2$

Therefor,

Ult_load = uniform load x area

 $Ult_load := \gamma_{\Gamma} W_{k} \cdot s \cdot w$

 $Ult_load := f_l \cdot W_k$

In which:

 $f_1 := \gamma_f s \cdot w$ $f_1 = 2.40 \times 10^6 \text{ mm}^2$

Ult_load := $f_1 \cdot W_k$ N per unit length of bridge

Therefore, Hence

 $M := \frac{f_1 \cdot W_k \cdot s}{8}$

 $M := f_2 \cdot W_k$

In which:

 $f_2 := \frac{f_1 \cdot s}{8}$ $f_2 = 6.00 \times 10^8 \, \text{mm}^3$

Therefore.

 $M := f_2 \cdot W_k$

per unit length of bridge

Civil Engineering Department, CRMA

Project: Hal Bridge, Cambodia
Subject: Loading capacity check
Designer: CC Chk by: CC
Approved by:

CALCULATION SHEET

HAL Bridge check.mcd / 2/4 Sheet No:

Project No: :

Drawing No:...-.... Date: March 2008

2. MOMENT OF RESISTANCE, Md

Section modulus (Z)

$$Z := \frac{b \cdot d^2}{6}$$

In which, width of the block = 1m

thickness of the block.

Therefore, section modulus is

$$Z := \frac{b \cdot d^{-}}{6}$$
$$Z = 81.67 \times 10^{6} \,\text{mm}^{3}$$

per unit length of bridge

Moment of resistance

The design moment of resistance, Md, is equal to the moment of resistance when the plane of failure is parallel to the bed joint, Mkpar

Hence,

$$M_d := M_{kpar}$$

$$\mathbf{M}_d \coloneqq \frac{\mathbf{f}_{kxpar} \cdot \mathbf{Z}}{\lambda_m}$$

In which, the characteristic flexural strength (Table 3, BS 5628) is

$$f_{kxpar} := 0.25 \frac{N}{mm^2}$$

the partial safety factor for materials (Table 4, BS 5628) is

$$\gamma_m := 3.5$$

the section modulus is

$$Z = 81.67 \times 10^6 \text{ mm}^3$$

Therefore, the desgn moment of resistance is

$$\mathbf{M}_d \coloneqq \frac{\mathbf{f}_{kxpar} \cdot \mathbf{Z}}{\gamma_m}$$

$$M_d = 5.83 \times 10^6 \text{ N} \cdot \text{mm}$$

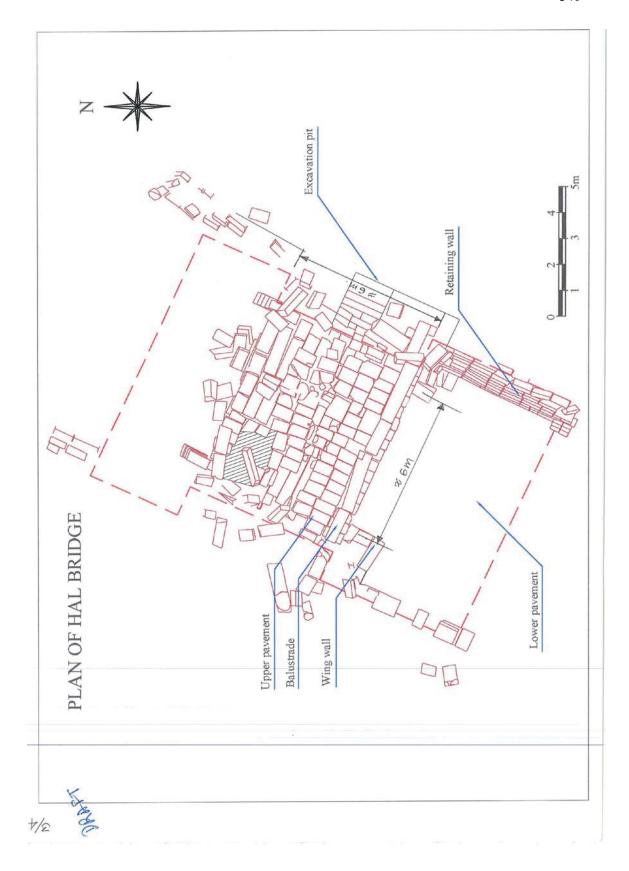
DETERMINATION OF MAXIMUM UNIFORM LOAD (Wk)

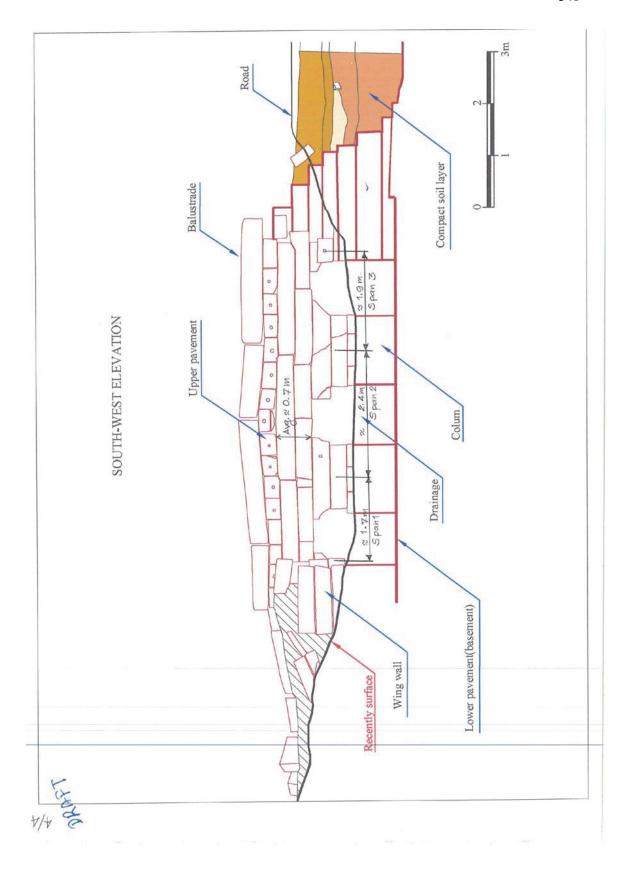
For structural stability:

$$M \le M_d$$

$$M := f_2 \cdot W_k \le M_d$$

$$w_k \coloneqq \frac{m_d}{f_2}$$


Hence the maximum uniform load that the bridge can resist is


$$W_k = 9.722 \times 10^{-3} \frac{N}{mm^2}$$

$$W_k = 9722 \frac{N}{m}$$

$$W_k = 9.72 \frac{kN}{2}$$

$$W_k = 9722 \frac{N}{m^2}$$
 or $W_k = 9.72 \frac{kN}{m^2}$ or $W_k = 0.97 \frac{ton}{m^2}$

ภาคผนวก ง

สารคดี โครงการ

"ค้นหาและพัฒนาสารสนเทศของถนนโบราณสมัยพระเจ้าชัยวรรมันที่ 7"

1. บทสารคดี

ภูมิหลังทางประวัติศาสตร์

ประมาณพุทธศตวรรษที่ 18 ในสมัยพระเจ้าชัยวรมันที่ 7 (พ.ศ.1724-1761) พระองค์ทรงทำ สงครามกับจามปาที่เข้ามารุกรานเขมรตั้งแต่ก่อนหน้าที่พระองค์จะเสด็จขึ้นครองราชย์ ทรงรบพุ่ง กับกองทัพจามปาหลายครั้ง แต่ครั้งสำคัญที่สุดคือการรบทางเรือ ซึ่งมีการถ่ายทอดเหตุการณ์เป็น ภาพสลักอยู่บนผนังระเบียงที่ปราสาทบายนและปราสาทบันทายฉมาร์ การสงครามในครั้งนี้ทำให้ อาณาจักรเขมร สามารถยุติสงครามและปราบปรามจามปาลงได้ ถึงแม้ว่าเขมรจะต้องทำศึกสงคราม เน้นหนักไปทางภาคตะวันออกก็ตามแต่ไม่ได้ละเลยที่จะแผ่อำนาจขึ้นไปทางทิศเหนือและทิศ ตะวันตก จารึกเขมรที่ค้นพบทางทิศเหนือสุดในรัชกาลของพระองค์ คือ จารึกที่ทรายฟอง บนฝั่ง แม่น้ำโขงตรงข้ามกับเมืองเวียงจันทร์มีศักราชตรงกับ พ.ศ. 1729

ส่วนดินแดนด้านตะวันตกหลักฐานที่พบมีความเกี่ยวข้องกับข้อความในศิลาจารึกที่ ปราสาทพระขรรค์ ซึ่งพระองค์ทรงสร้างพระพุทธรูป 23 พระองค์ มีพระนามว่า "ชัยพุทธมหานาถ" และส่งไปประดิษฐานอยู่ตามเมืองต่างๆ และมีศาสนสถานบางแห่งที่อาจสร้างขึ้นเพื่อประดิษฐาน พระพุทธรูปที่มีพระนามเหมือนพระเจ้าชัยวรมันที่ 7

จารึกปราสาทพระบรรค์ได้กล่าวถึงคำว่า "บ้านซึ่งมีไฟ" หรือที่พักคนเดินทาง 121 แห่ง ตั้งอยู่ห่างกันประมาณ 15 กิโลเมตร โดยสร้างขึ้นตามเส้นทางเดินที่มีอยู่ในอาณาจักรเบมร การสร้าง ที่พักคนเดินทางเหล่านี้ ควบคู่ไปกับการสร้างสถานพยาบาลหรืออโรคยาศาล ซึ่งมีอยู่ทั่วอาณาจักร ขอม 102 แห่งและได้ค้นพบแน่นอนประมาณ 15 แห่ง

ศิลปกรรมในสมัยนี้ถือเป็นศิลปะเขมรยุคสุดท้ายที่เคยค้นพบในประเทศไทย ประมาณ พุทธศตวรรษที่ 18 ตรงกับศิลปะแบบบายนและปรากฏอย่างแพร่หลายมากโดยเฉพาะในภาค ตะวันออกเฉียงเหนือของประเทศไทย โบราณสถานสำคัญได้แก่ อโรคยาศาลประจำเมืองหินพิมาย กู่บ้านแดง อำเภอวาปีปทุม จังหวัดมหาสารคาม ปราสาทเมืองสิงห์ จังหวัดกาญจนบุรี ศาสนสถาน ภายในวัดกำแพงแลง จังหวัดเพชรบุรี เป็นต้น

จากภาพรวมข้างต้นแสดงให้เห็นการแพร่กระจาย อิทธิพลทางศาสนา การเมือง รวมทั้ง รูปแบบของงานศิลปกรรมจากศูนย์กลางอาณาจักรกัมพูชาในสมัยโบราณ มาสู่ดินแคนทางตะวันตก ซึ่งมีหลักฐานทางโบราณกดีที่พบเป็นจำนวนมาก ดังตัวอย่างที่กล่าวมาแล้ว

การศึกษาเรื่องอาคารที่พักคนเดินทางและเส้นทางที่ใช้ในการเดินทางระหว่างเมืองพระนคร ไปยังเมืองต่างๆ ในสมัยเขมร

บทที่ 122 บนถนนจากเมืองยโศธรปุระไปยังราชธานีแห่งประเทศจัมปา (พระองค์ได้ทรง สร้าง) ที่พักคนเดินทางพร้อมด้วยไฟ 57 แห่ง

บทที่ 123 จากราชธานี ใปยังเมืองวิมาย (มี) ที่พักคนเดินทางพร้อมด้วย ใฟ 17 แห่ง จาก ราชธานี ใปยังชัยวตี จากเมือชัยวดี ใปยังเมืองชัยสิงหวตี

ม.จ.สุภัทรคิศ คิศกุล. "ศิลาจารึกปราสาทพระขรรค์ของพระเจ้าชัยวรมันที่ 7" วารสาร ศิลปากร, ปีที่ 10 เล่ม 2, 2509 หน้า 52-60.

การศึกษาเรื่องอาคารที่พักคนเดินทางและเส้นทางที่ใช้ในการเดินทางระหว่างเมือง พระนคร ไปยังเมืองต่างๆ ในสมัยเขมร ได้มีการสำรวจศึกษาจากนักวิชาการฝรั่งเศส นักอ่านจารึก นักสำรวจ ของสำนักฝรั่งเศสแห่งปลายบรพทิศ ที่ทำการวิจัยประวัติความเป็นมาของอารยธรรม เขมร เมื่อประมาณ 1 ศตวรรษที่ผ่านมา และมีการตีพิมพ์เป็นเอกสาร แผนที่แสดงตำแหน่งถนนสาย ต่างๆ เช่น แผนผังการสำรวจของ ลูเนต์ เคอ ลาจองกิแยร์ ตีพิมพ์เมื่อ ค.ศ. 1907^1 การศึกษาวิเคราะห์ จำแนกคุณลักษณะของอาคารโคยหลุยส์ ฟิโนต์ พร้อมทั้งเสนอว่าควรเรียกอาคารเหล่านี้ว่า ธรรมศาลา 2 อาคารที่เรียกว่าธรรมศาลา หรือบ้านมีไฟนั้น สำรวจพบตามเส้นทางจากนครธมไป ทางทิศตะวันออกและตะวันตกเฉียงเหนือ บางส่วนพบอย่ในบริเวณปราสาทใหญ่ๆ เช่น ปราสาท ้ บึงมาลา ปราสาทพระบรรค์ ปราสาทบันทายฉมาร์ และปราสาทตาพรม ซึ่งสร้างด้วยหินทรายและมี หน้าบันสลักภาพรูปพระอวโลกิเตศวร ในขณะที่บ้านมีไฟตามเส้นทางสายตะวันตกเฉียงเหนือสร้าง ้ด้วยศิลาแลง³ อาคารทั้งหมดนี้มีรูปแบบเป็นเอกลักษณ์ โดยมีห้องยาวด้านตะวันออกและมียอดทรง ปราสาททางด้านตะวันตก ผนังด้านทิศใต้มีช่องหน้าต่างส่วนผนังด้านทิศเหนือเป็นหน้าต่างหลอก ยกเว้นที่ปราสาทผตุ ซึ่งมีหน้าต่างทั้งสองค้าน บ้านมีไฟเหล่านี้ก็ยังคงมีอยู่และทำให้นักเดินทางชาว ์จีนคือจิวตากวนบันทึกไว้เมื่อเดินทางมายังอาณาจักรเขมรในปี พ.ศ. 1839-1840 ว่า "บนถนนสาย ใหญ่ๆ มีที่พักคนเดินทางคล้ายกับที่พักม้าใช้ส่งหนังสือของเรา สถานที่เหล่านั้นเรียกกันว่าเซนมู (สำนัก)"⁴

¹ Lunet de Lajonquière E., Inventaire Descriptif des Monuments du Cambodge, Paris 1907.

² L. Finot, "Dharmaçâlâs au cambodge" B.E.F.E.O., 1925 pp. 417-412.

³ ยกเว้นบ้านมีไฟเพียงแห่งเคียวคือ บ้านกู่ อ.ห้วยแถลง จ.นครราชสีมา สร้างค้วยหินทราย

⁴ สุภัทรดิศ ดิศกุล, ศ.มจ. <u>ประวัติศาสตร์เอเชียอาคเนย์ถึง พ.ศ. 2000.</u> รุ่งแสงการพิมพ์: กรุงเทพฯ, 2535, หน้า 217.

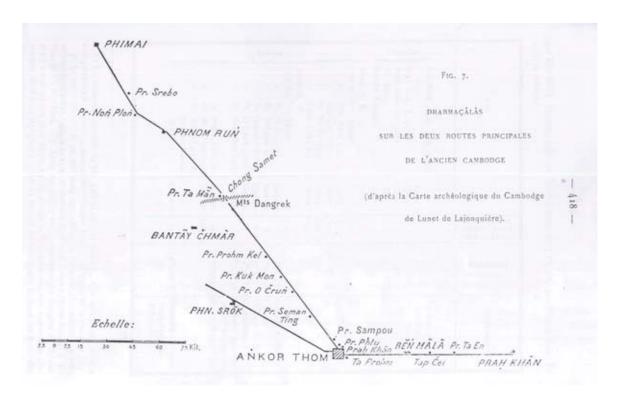
เส้นทางอารยธรรมสมัยพระเจ้าชัยวรมันที่ 7

การแปลความจากศิลาจารึกที่พบที่ปราสาทพระบรรค์ทำให้ทราบว่าพระเจ้าชัยวรมันที่ 7 (พ.ศ.1724-1761) ทรงโปรคให้สร้าง ศาสนสถาน รูปเคารพ พระพุทธรูป เป็นจำนวนมากในเขตที่ พระราชอำนาจของพระองค์แผ่ไปถึง พร้อมกับมีพระราชโองการให้มีการบำรุงรักษา กระทำพิธี บูชาต่อรูปเคารพ และศาสนาสถานต่างๆ อย่างสม่ำเสมอ สิ่งก่อสร้างในรัชสมัยของพระองค์ที่มี ความสำคัญในอีกด้านหนึ่งคือการเริ่มต้นระบบโครงสร้างพื้นฐาน และการบริการค้านสาธารณสุข แก่พสกนิกรของพระองค์ เช่น การก่อสร้างโรงพยาบาล การปรับปรุงถนนสายต่างๆ ที่มีอยู่ใน ราชอาณาจักร รวมทั้งการสร้างอาคารที่พักคนเดินทางไว้เป็นระยะบนเส้นทางสายสำคัญๆ

การศึกษาด้านจารึกและการสำรวจทางโบราณคดีพบว่ามีถนนที่ตัดออกมาจากศูนย์กลาง ราชอาณาจักรหลายเส้นด้วยกัน และตามถนนเหล่านี้ยังได้สำรวจพบที่พักคนเดินทางที่ยังคงสภาพ อยู่หลายแห่ง ทั้งในประเทศกัมพูชาและประเทศไทย อย่างไรก็ตาม ได้มีนักวิชาการเสนอไว้ว่า ในประวัติศาสตร์เขมรมีการสร้างอาคารทางศาสนาขึ้นหลายแห่งในราชอาณาจักรได้เคยเกิดขึ้นมา ก่อนแล้วในสมัยพระเจ้ายโศวรมันที่ 1 ซึ่งทรงครองราชสมบัติในช่วงพุทธศตวรรษที่ 15 แต่พระเจ้า ชัยวรมันที่ 7 ทรงนำมาใช้อย่างกว้างขวางกว่า ถึง 121 แห่งตามที่ปรากฏในจารึก ถนนที่ตัดออกมา จากเมืองพระนคร มี 5 เส้นทางได้แก่

- 1. จากเมืองพระนครมายังเมืองพิมาย
- 2. จากเมืองพระนครไปยังปราสาทวัคภู แขวงจำปาศักดิ์
- 3. จากเมืองพระนครไปยังสวายจิก
- 4. จากเมืองพระนครไปยังปราสาทพระขรรค์ ณ กำปงสวาย
- 5. จากเมืองพระนครไปยังสมโบร์และกำปงชม ตามเส้นทางเหล่านี้มีการสร้างที่พักคน เดินทางอยู่เป็นระยะ แต่มีหลายแห่งที่ยังหาหลักฐานไม่พบ

⁵ B. Dagens, <u>Centralism et Architecture les Hospitaux de Jayavarman VII en Thailande,</u> II SFT, PRAT, 1991.


ตาราง 1ง แสดงเส้นทางเชื่อมต่อไปยังเมืองต่างๆ

No.	เมือง	ระยะทาง (km.)
1	เสียมเรียบ - พิมาย [NW]	253.9
2	เสียมเรียบ - พนมสรก - สวายจิก [NW]	90
3	เสียมเรียบ - เบงมีเลีย - พระขรรค์ [E]	95
4	เบงมีเลีย - เกาะแกร์ - วัดภู [NE]	171
5	อังกอร์ - กำปงชม [SE]	120

เส้นทางสายตะวันตกเฉียงเหนือ

เส้นทางที่สำคัญเส้นหนึ่งคือเส้นทางจากเมืองพระนครมายังเมืองพิมาย ในปัจจุบันมีการ สำรวจพบว่าถนนมีอยู่อย่างแท้จริงตามที่กล่าวไว้ในจารึก ทิศทางถนนที่ตัดออกมาจากราชธานีจน มาถึงเมืองพิมายนั้น ได้ผ่านจุดที่เป็นที่ตั้งสำคัญทางศาสนาของอาณาจักรเขมรอยู่หลายแห่ง เช่น ปราสาทตาเมือนธม จังหวัดสุรินทร์ ปราสาทเมืองต่ำ ปราสาทพนมรุ้ง โบราณสถานในเขตวัด แพงพวย อำเภอนางรอง จังหวัดบุรีรัมย์ ซึ่งตามรายทางยังได้ปรากฏซากอาการที่พักคนเดินทางอยู่ เป็นระยะๆ ซึ่งสามารถกำหนดจุดที่ตั้งได้ชัดเจนแล้วในเขตประเทศไทยคือ

ปราสาทตาเมื่อน จังหวัดสุรินทร์
ปราสาทถมอ จังหวัดบุรีรัมย์
ปราสาทบ้านบุ จังหวัดบุรีรัมย์
ปราสาทโคกปราสาท จังหวัดบุรีรัมย์
ปราสาทหนองปล่อง จังหวัดบุรีรัมย์
ปราสาทเทพสถิตย์ จังหวัดบุรีรัมย์
ปราสาทห้วยแคน จังหวัดนครราชสีมา
ปราสาทกู่โกสีย์ จังหวัดนครราชสีมา

รูปที่ 1ง แผนที่เส้นทางโบราณจากเมืองพระนครถึงเมืองพิมาย

โครงการค้นหาและพัฒนาสารสนเทศของถนนโบราณสมัยพระเจ้าชัยวรมันที่ 7 เป็น โครงการวิจัยในลักษณะสหวิทยาการที่ได้นำความรู้ทางโบราณคดี มานุษยวิทยา เทคโนโลยี ภูมิสารสนเทศ เทคโนโลยีธรณีฟิสิกส์ และเทคโนโลยีสารสนเทศมาประยุกต์ใช้ในการศึกษา เส้นทางโบราณจากเมืองพระนครถึงเมืองพิมาย เพื่อให้ได้มาซึ่งองค์ความรู้เกี่ยวกับเส้นทางโบราณ ทั้งทางค้านกายภาพและทางภูมิศาสตร์ ข้อมูลทางโบราณคดี และของพื้นที่ตามแนวถนนโบราณ ซึ่งวิธีการในการศึกษาของโครงการนี้เป็นไปตามขั้นตอนดังนี้

- ขั้นตอนที่ 1 รวบรวมข้อมูลทางโบราณคดี มานุษยวิทยา และข้อมูลทางภูมิศาสตร์เบื้องต้น
- ขั้นตอนที่ 2 วิเคราะห์ข้อมูลเบื้องต้น และพัฒนาระบบสารสนเทศภูมิศาสตร์เริ่มต้นเพื่อใช้ ในการวางแผนดำเนินการสำรวจ
- ขั้นตอนที่ 3 ดำเนินการสำรวจเพื่อเก็บข้อมูลทางภูมิศาสตร์ โบราณคดี มานุษยวิทยา
- ขั้นตอนที่ 4 คำเนินการสำรวจทางธรณีฟิสิกส์
- ขั้นตอนที่ 5 คำเนินการขุดค้นทางโบราณคดี
- ขั้นตอนที่ 6 ดำเนินการวิเคราะห์ข้อมูลสารสนเทศภูมิศาสตร์เพื่อทำการขยายผลการศึกษา
- ขั้นตอนที่ 7 ดำเนินการพัฒนาฐานข้อมูลสารสนเทศภูมิศาสตร์ ฐานข้อมูลทางวัฒนธรรม
 และระบบจำลองภาพสามมิติของโบราณสถาน
- ขั้นตอนที่ 8 พัฒนาระบบแม่ข่ายเพื่อการเผยแพร่ข้อมูลทางเครือข่ายอินเตอร์เนต

ที่กล่าวมาข้างต้นเป็นขั้นตอนลำดับการดำเนินการของโครงการ การศึกษาในครั้งนี้ถือได้ว่า เป็นการนำสาสตร์ที่เกี่ยวข้องทุกแขนงวิชาที่เกี่ยวข้องมาใช้ในการศึกษาเส้นทางโบราณจากเมือง พระนครถึงเมืองพิมาย ทำให้เกิดการค้นพบองค์ความรู้ใหม่เกี่ยวกับเส้นทางโบราณสายนี้ เช่น จุดประสงค์ของการใช้งานของถนนสายนี้ในสมัยโบราณ สิ่งก่อสร้างที่ถูกสร้างขึ้นตามแนวถนน โบราณ ชุมชนโบราณ ชุมชนปัจจุบันที่มีความสัมพันธ์กับถนนโบราณ ซึ่งองค์ความรู้เหล่านี้ สามารถนำไปขยายการศึกษาในด้านต่างๆ ที่เกี่ยวข้อง เช่นการศึกษาเกี่ยวกับโลหะกรรม การผลิต สังคโลกโบราณ และการศึกษาทางชาติพันธุ์ของกลุ่มชนส่วย เป็นต้น

ข้อมูลที่ได้พัฒนาขึ้นมาจากโครงการนี้ สามารถนำไปใช้ในการศึกษาในด้านต่างๆ เช่น ข้อมูล สารสนเทศภูมิศาสตร์ของโครงการสามารถนำไปใช้ในการศึกษาในด้านการวางแผนการใช้ ที่ดิน การเกษตร สิ่งแวดล้อม เป็นต้น ข้อมูลทางโบราณคดี และมานุษยวิทยาสามารถนำไปใช้ใน การศึกษาทางสังคมวิทยา และข้อมูลทั้งหมดยังสามารถนำไปใช้ประโยชน์ในการพัฒนาการ ท่องเที่ยวได้เป็นอย่างดี

การดำเนินโครงการวิจัยร่วมเพื่อค้นหาและพัฒนาสารสนเทสภูมิสาสตร์ของถนนโบราณ สมัยพระเจ้าชัยวรมันที่ 7 ที่ผ่านมาเป็นการวิจัยในเชิงสหวิทยาการที่ประยุกต์ใช้เทคโนโลยี หลากหลายสาขาวิชาเพื่อการแปลความทางโบราณคดี ซึ่งการสึกษาที่ผ่านมาได้ผลที่มีความก้าวหน้า ขึ้นมากจากการสำรวจเส้นทางสายตะวันตกเฉียงเหนือของนักโบราณคดี นักสำรวจ จากสำนัก ฝรั่งเสสแห่งปลายบูรพทิสที่ค้นคว้าไว้เมื่อเกือบ 1 สตวรรษที่ผ่านมา โดยสามารถตรวจสอบและ เข้าถึงแหล่ง จนสามารถกำหนดตำแหน่งที่ตั้งที่แน่นอนของโบราณสถานที่เรียกว่า "ธรรมศาลา" หรือ "อัคนีศาลา" ได้อย่างครบถ้วนตามที่ปรากฏในจารึกปราสาทพระขรรค์ซึ่งจารึกไว้เมื่อ พุทธสตวรรษที่ 18 นอกจากนั้นยังได้ทำการขุดค้นทางโบราณคดีในพื้นที่ที่คาดว่าอาจเป็นเส้นทางที่ เคยใช้อยู่ในสมัยวัฒนธรรมเขมรโบราณ รวมทั้งสำรวจแหล่งโบราณคดีเพิ่มเติมและจัดทำ รายละเอียดบันทึกเป็นเอกสารโดยเฉพาะในแหล่งที่ตกสำรวจหรือแหล่งที่เคยมีการสำรวจแต่ยัง ไม่ได้รับการเผยแพร่และเข้าดำเนินการคุ้มครอง อนุรักษ์ ตามกฎบัตรสากล เช่น แหล่งวัตถุดิบ แหล่งตัดหิน แหล่งตัดศิลาแลง แหล่งโลหะกรรม เป็นต้น

จากการศึกษาวิจัยในกรณีศึกษาต่างๆ ได้ตั้งอยู่บนพื้นฐานของข้อมูลเดิมที่ปรากฏอยู่ พร้อม ทั้งจากข้อมูลการค้นพบใหม่จากกรมศิลปากร ทำให้เราสามารถขยายองค์ความรู้เดิมจากการใช้ เทคโนโลยีทางด้านสื่อระยะไกล และระบบสารสนเทศภูมิศาสตร์ และเทคโนโลยีธรณีฟิสิกส์มา ประยุกต์ขยายผลการศึกษาเดิม ดังเช่นที่ได้กล่าวมาแล้ว ในการศึกษาถนนโบราณสมัยพระเจ้า ชัยวรมันที่ 7 ซึ่งเป็นการวิเคราะห์ในเชิงภูมิศาสตร์ร่วมกับการศึกษาทางโบราณคดี ทำการ ตรวจสอบร่วมกับข้อมูลภาพถ่ายทางอากาศ ภาพถ่ายจากคาวเทียมประเภทต่างๆ และแผนที่โบราณ ร่วมกับการสำรวจทางโบราณคดีและมานุษยวิทยา การสำรวจทางธรณีฟิสิกส์ ซึ่งจะเห็นได้ว่าการ นำเทคโนโลยีมาประยุกต์ใช้นี้ จะสามารถช่วยให้เกิดมุมมองใหม่ในการศึกษาวิจัย คณะนักวิจัยมี

จากการศึกษาของโครงการนี้ ทำให้เราสามารถค้นพบหลักฐานต่างๆ ตามแนวถนนโบราณ จากเมืองพระนครถึงเมืองพิมายเส้นนี้ โดยมีหลักฐานที่สำคัญดังนี้

- 1. ธรรมศาลาหรืออัคนีศาลาสองหลังในประเทศกัมพูชาที่ยังตรวจสอบไม่พบ
- 2. สะพานศิลาแลงตลอดแนวถนนโบราณในฝั่งประเทศกัมพูชา
- 3. แหล่งอุตสาหกรรมโบราณตามแนวถนนโบราณทั้งในประเทศไทยและประเทศกัมพูชา
- 4. แหล่งชุมชนโบราณตามแนวถนนโบราณทั้งในประเทศไทยและประเทศกัมพูชา

นอกจากนี้ในโครงการนี้ยังได้มีการพัฒนาระบบแม่ข่ายสารสนเทศของข้อมูลจากการวิจัย ทั้งหมดเพื่อให้การเข้าถึงข้อมูลจากการวิจัยเป็นไปได้โดยสะดวก และยังได้มีการพัฒนาระบบ จำลองภาพสามมิติของธรรมศาลา อโรคยาศาลา และสะพานโบราณตามแนวถนนโบราณเพื่อใช้ใน การจำลองให้เห็นชีวิตในอดีตเพื่อใช้เป็นส่วนหนึ่งของการเผยแพร่ความรู้จากโครงการสู่เยาวชนใน อนาคตอันใกล้ด้วย

APPENDIX E

Living Angkor Road Project

Final Report on Ceramic Study

Ea Darith

During our survey along an ancient road from Angkor to Phimai, the ceramics shards were found and distributed at many places near by monuments, water structures, ancient roads, hospitals, bridges and habitation sites. The ceramics can be divided into two categories: the local ceramics and imported ceramics. The local ceramics are green glaze and brown glaze wares with the shapes of covered box, cylindrical box, bottle, dish, basin, storage jar, baluster jar, animal shaped jar, and roof-tiles. On the other hand, the imported ceramics are the ceramics came from China and Thailand. The ceramics from China are mostly blue and white bowl and some pieces of porcelain and celadon bowls. The fragment from Thailand is a celadon bowl produced probably at Sukhothai.

Beside of ceramics, we also found two groups of kiln site along the road from Angkor to Phimai. They are located at Uddor Meanchey and Buriram provinces. Moreover, other kiln sites are also found at Banteay Meanchey, Siem Reap and Kandal provinces.

1. Ceramics

1.1. Ceramics Along the Road from Angkor to Banteay Ampil

The pieces of ceramics were found at 66 sites, 37 villages, 19 communes, 9 districts, and 2 provinces along the road from Angkor of Siem Reap province to Kok Man commune of Uddor Meanchey province. Some pieces of ceramics were also found at Buriram area, but we do not have time to detail those sites as in Cambodia. Below is the list of ceramics type found at those sites.

No.	Name of sites	village	Commune	District	Province	Type of ceramics
1	Trapeang Krasang	Kok Beng	Kok Beng	Siem Reap	Siem	Blue and White
					Reap	(B&W)
2	Prasat Prei Prasat	Nokor Krao	-	-	-	Brown and
						Unglazed wares
3	Trapeang Khnar	Trapeang	Peak Sneng	Angkor	-	B&W and Brown
		Thom		Thom		glazed wares
4	Trapeang Chambak	Kandol	Svay Chek	-	-	B &W and
						Unglazed wares
5	Trapeang Donlev	Kandol	-	-	-	B &W and
						Unglazed wares
6	Prasat Kok Kdey	Kandol	-	-	-	Unglazed roof-tiles
7	Trapeang Khcav	Kandol	-	-	-	B &W
8	Kagnchan Kralagn	Tatrao	-	-	-	Brown glazed ware
9	Prasat Kok Pongra	Tatrao	-	-	-	Brown glazed wares
10	Prasat Tamoch	Tatrao	-	-	-	B &W , Porcelain
						wares, Green glazed
						wares
11	Trapeang Preah Ko	Preah Ko	-	-	-	B &W, Brown and
		Chas				Green glazed wares
12	Kagnchan Srakum	Preah Ko	-	-	-	Celadon wares
	Thom	Chas				
13	Prasat Kbal Khla	Preah Ko	-	-	-	B &W, Brown
		Chas				glazed wares
14	Trapeang Kbal Khla	Preah Ko	-	-	-	B &W
		Chas				
15	Prasat Trapeang	Svay Chek	-	-	-	B &W, Unglazed
	Chambak					wares
16	Prasat Kampork	Svay Chek	-	-	-	Green glazed wares
						and roof-tiles

No.	Name of sites	village	Commune	District	Province	Type of ceramics
17	Kok Krus	Kok Kroel	Leang Dai	-	-	Brown glazed
						wares
18	Trapeang Tkov	Phum Srah	Reul	Pourk	-	Brown glazed
						wares
19	Trapeang Chkekon	Phum Sreah	-	-	-	Brown, B&W
20	Prasat Sralau	Prasat Char	Don Keo	-	-	Brown, Green
						glazed wares,
						Green glazed roof-
						tiles
21	Spean Kon Khla	Loboek	Nokor Pheas	Angkor Chum	-	B&W
22	Trapeang Khtum	Loboek	-	-	-	Unglazed wares
23	Prasat Svay	Loboek	-	-	-	Unglazed wares
24	Trapeang Lbeuk	Loboek	-	-	-	Brown, Green, and
						Unglazed wares
25	Salarean Lbeuk	Loboek	-	-	-	B&W, Green
						glazed wares
26	Trapeang Prei	Kok Thmei	-	-	-	Porcelain
27	Kok Tamkrasar	Sambour	-	-	-	B&W
28	Trapeang Kvan	Sambour	-	-	-	Green, Porcelain,
						and Unglaze wares
29	Trapeang Run	Sambour	-	-	-	B&W, Green
30	Kok Krol	Kok Krol	Kok Dong	-	-	Green, Brown
31	Tanam	Kok Krol	-	-	-	B&W, Green,
						Porcelain wares
32	Kou	-	-	-	-	Green, Unglazed
						wares
33	Prasat Tatrav	-	-	-	-	Thai celadon,
						Green, Brown
34	Kok Areak	Rokar	-	-	-	B&W
35	Trapeang Tachi	-	-	-	-	Brown

No.	Name of sites	village	Commune	District	Province	Type of ceramics
36	Kok Singha	Ka Phdeak	-	-	-	Green
37	Kok Kho	Bat	-	-	-	Unglazed
38	Kok Samrong	Kok Thmei	Nokor Pheas	-	-	Brown, Unglazed wares
39	Kok Kou	Bat	Don Peng	-	-	Brown, Unglazed wares
40	Kuk Kros	Don Meiv	Kol	-	-	Green, Unglazed wares
41	Kuk Tamrang	-	-	-	-	B&W, Porcelain
42	Kuk Yeay Tuch	Kol	-	-	-	Green, unglaze and porcelain
43	Trapeang Kuk Pongro	Kok Khnang	Srae khvav	-	-	B&W
44	Kuk Andek Slab	Sleng Spean	Sleng Spean	Srei Snom	-	Green, Unglazed wares
45	Spean Memay	Chranieng	-	-	-	Unglazed basin
46	Spean Khmeng	-	-	-	-	Unglazed wares
47	Kuk Ampil	Trom	Chroy Neang Nourn	-	-	B&W, Brown, and Green glazed wares
48	Kuk Kapkam	-	-	-	-	B&W
49	Kuk Ach Dek	Chok	Krasang	Chong Kal	Uddor Meanchey	Unglazed wares
50	Kuk Prasat	Khnar	-	-	-	Unglazed wares
51	Kuk Yeay Degn	-	-	-	-	Brown, Green, and unglazed wares, kiln walls
52	Kok Bantat Bosh	Kok Samrech	-	-	-	Brown, unglazed

No.	Name of sites	village	Commune	District	Province	Type of ceramics
53	Prasat Kok Moeung	O Preal	Bos Sbov	Samrong	-	Brown, Green, and
						Celadon wares
54	Spean Khmeng	Krasang	-	-	-	kiln wall
55	Kok Mkak	-	-	-	-	Brown and Green
						glazed wares
56	Kok Treas	-	-	-	-	Brown and Green
						glazed wares
57	Kuk Prasat Tatan	Kuk Spean	Krasang	Chong Kal	-	Brown, Green, and
						unglazed wares
58	Kuk Kroeul	Keab	Kok Khpos	Banteay	-	B&W, Brown,
				Ampil		Green glazed
						wares
59	Kuk Khjeay	Srah Srang	-	-	-	Brown, porcelain
						wares
60	Kuk Trapeang Pring	-	-	-	-	Brown and Green
						glazed wares
61	Kok Samrong	Tonle Sar	-	-	-	Brown and Green
	Cheung					glazed wares
62	Monorom village	Monorom	Kok Man	-	-	Brown and
						Unglazed wares
63	Khreus	Prei Veng	-	-	-	Brown Green and
						unglazed wares.
						Part of kiln walls
64	Kuk Trapeang Prei	-	-	-	-	Brown and Green
						glazed wares
65	Trapeang Tbal	-	-	-	-	Brown Green and
						Unglazed wares
66	Prei Samlong	Ato	-	-	-	Brown and
						Earthenwares
						(tuyères)

1.2. Ceramics from Kol village

After finishing a survey of infrastructure along the ancient road from Angkor to Banteay Ampil district, we have selected an interresting structure for a detail study. Finally, Kol village has been selected as an interresting place for studying because the place composed of a very high potential archaeological complexes such as prehistory mound, stone tool and earthenwares, ancient roads, water structures, ancient bridges, hospital chapel, and rest house. The whole complexes structure seem a set of an Angkorian community.

Then, the systematic survey and excavation was conducted from 26 November to 5 December 2007 for studying the structure of ancient road connected with bridge and the territory management plan in that area. The research team of LARP project was divided into two groups: one group conducted an excavation at two places on a section of ancient road and on a Spean Hal bridge, Another group collected a data of ancient infrastructure in Kol village.

The result from the survey shows us that in Kol village, there are many pieces of ceramics and mounds around the village where probably, people lived there in ancient time. The ceramics from surface collection are earthenwares and stonewares which dated back to prehistory and Angkorian period. There are also Chinese blue and white ceramics which dated approximately from 14 to 16 century. The ceramics that we presented here are the pieces of ceramics from 7 places at Kol village where 5 of them from habitation sites and 2 from the excavation trench.

1.2.1. Ceramics from Habitation Sites

- Kok Preah Chang E

38 pieces of shards from this site were collected above the ground including Khmer and Chanese ceramics. The Khmer ceramics have 24 pieces in which 5 of them are stonewares and 19 are earthenwares. Among the 5 pieces of stonewares, 4 of them are pieces of brown glazed jars and a piece of unglazed ware. On the other hand, the 19 pieces of earthenwares are prehistory ceramics that decorated with impressed patterns. Moreover, the 14 pieces of Chinese ceramics are blue and white bowl and dish.

- Kok Chas

13 pieces of Khmer and Chinese ceramics were collected on the ground. Only one Chinese piece of bowl with gray glaze was collected. The Khmer ceramics are unglazed and brown glazed wares. The unglazed wares are piece of roof-tile and storage jar. The pieces of brown glazed are storage jar.

- On the road at Kol village, location named GPS 277

8 pieces of Khmer stonewares were collected. 2 of them are just burn clay, one piece is roof-tile, and 5 others are pieces of jar.

- Andong Kok

4 pieces of Khmer and Chinese were collected. A piece of Chinese ceramic is a gray glazed bowl. The Khmer ceramics are pieces of brown glazed jar and a piece of base of earthenware.

- Kok Rokar

13 pieces of Khmer ceramics were collected at Bat village. Among them, 10 pieces of stonewares are brown glazed jars and burned clay fragment. Other 3 pieces are earthenware and cooking pots.

1.2.2. Ceramics from Excavation

The excavation was conducted at two places: On the ancient road and in front of Spean Hal. Number of Khmer and Chinese ceramics were excavated from both places.

- Ceramics from the Ancient Road

We found 4 pieces of Khmer and Chinese wares from the depth approximately 20cm down. There are 3 pieces of chinese ceramics which we can not know the

shape well, but the glazes are white, green and dark brown. Only one piece of Khmer brown glazed jar was found.

- Ceramics from Spean Hal

We found 15 pieces of Khmer and Chinese ceramics from Spean Hal excavation. In the first layer about 40 cm down, we found one piece of Chinese celadon that we can not know the shape. Then, in layer 2, about 60 cm down, we found 8 pieces of Khmer and Chinese ceramics. 5 of them are Khmer brown glazed jar which dated approximately from 11 to 13 century. 3 other pieces are Chinese celadon that we can not identify the shape. They are probably dated back to Yuan period. In layer 3, about 100 cm down, we found one unglazed stonewares where probably produced at the kiln in Angkor area from 9 to 10 century. Other 5 pieces of earthenwares were found at an excavation trench on the west of Spean Hal. They are pieces of cooking pot with "XXX" pattern.

1.3. Analysing of Ceramics

20 pieces of ceramics from 6 kiln sites in Uddor Meanchey were selected to analyse in Thailand. 5 kinds of analysis were applied: wet chemical, thin section, porosity, temperature and chemical composition analysis. The samples from those 6 kiln sites were divided into 6 categories. Category 1 is Thlok Akaong kiln has 3 samples, category 2 is Thlok Khtom kiln has 2 samples, category 3 is Kok Cheng Meng kiln has 4 samples, category 4 is Kok Yeay Degn kiln has 7 samples, category 5 is Kok Treas kiln has 2 samples, and finally category 6 is Kok Kjeay kiln has 2 samples. Below are the results of analysis (see fig.1, 2, 3, 4, 5 and 6: Ceramics found on sites).

Samples from 6 kiln sites

No.	Name of Kiln Sites	Sample No.	Type of Glazes
1	Thlok Akaong	1.1	Unglaze
2	Thlok Akaong	1.2	Unglaze
3	Thlok Akaong	1.3	Green Glaze
4	Thlok Khtom	2.1	Brown Glaze
5	Thlok Khtom	2.2	Green Glaze
6	Kok Cheng Meng	3.1	Unglaze
7	Kok Cheng Meng	3.2	Unglaze
8	Kok Cheng Meng	3.3	Unglaze
9	Kok Cheng Meng	3.4	Green Glaze
10	Kok Yeay Degn	4.1	Unglaze
11	Kok Yeay Degn	4.2	Brown Glaze
12	Kok Yeay Degn	4.3	Brown Glaze
13	Kok Yeay Degn	4.4	Brown Glaze
14	Kok Yeay Degn	4.5	Brown Glaze
15	Kok Yeay Degn	4.6	Brown Glaze
16	Kok Yeay Degn	4.7	Green Glaze
17	Kok Treas	5.1	Brown Glaze
18	Kok Treas	5.2	Green Glaze
19	Kok Kjeay	6.1	Unglaze
20	Kok Kjeay	6.2	Green Glaze

Result of Wet Chemical Analysis

Sample				
No.	W 1	W 2	V	P
1.1	20.6389	21.6132	9.4	10.3
1.2	24.6166	24.8188	11.8	1.7
1.3	5.1879	5.3629	2.4	7.2
2.1	4.8621	4.9413	1.8	4.4
2.2	11.6191	12.1585	6.1	8.8
3.1	11.6393	11.9288	5.0	5.7
3.2	19.9411	20.4124	11.9	3.9
3.3	7.9824	8.0842	4.2	2.4
3.4	13.8443	14.1792	6.3	5.3
4.1	21.9226	23.6093	11.5	14.6
4.2	21.3011	22.1538	11.6	7.3
4.3	11.2087	11.6703	6.4	7.2
4.4	9.7884	10.0493	3.6	7.2
4.5	8.2054	8.4108	5.2	3.9
4.6	1.2285	1.3533	6.7	6.6
4.7	3.6363	3.8620	2.1	10.75
5.1	13.6531	13.8310	6.8	2.6
5.2	18.4102	18.6513	9.2	2.6
6.1	16.2746	17.3134	7.6	13.6
6.2	13.0083	13.2373	5.6	4.0

Result of Thin Section

The artifacts have almost mineral grains mainly single quartz grains, silt size to medium and size. The shapes are almost angular and few grains are sub round. Chert fragment are frequently fine. Some artifacts have few pedorelicts (probably artifacts). The iron oxide nodules of brown and unglazed wares are almost the similar, the size rang from 50 to 500 µm and present about 5 to 25%. However, the iron oxide nodules of green glazed wares almost could not be observed. Beside of iron oxide nodules, two kiln sites at Kok Treas and Kok Kjeay have manganese nodules with the size range from 50 to 300 µm and present about 2%. Moreover, the void pattern of green, grown and unglazed wares are different. The estimation of void spaces in green glaze wares range from 2 to 10% while the void spaces of brown and unglazed wares range from 10 to 40% of the area of the thin section. The following are the detail results of thin section description from sample No.1.1 to 6.2.

No. 1.1

Basic mineral components

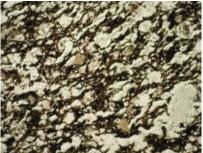
C/ f limit at 10 µm., c/f ratio 25:75

Coarse fraction: The mineral grains are mainly are single quartz grains, silt size to medium sand size almost angular and few grains are sub round. Chert fragment are frequent fine sand to medium sand size, few pedorelicts (probady artifacts) sized 500 μ m, brow to dark brown in color, rare zircon; poorly sorted the iron oxide nodules, various size, present about 5-7%.

Fine fraction: Grayish brown, clay to fine silt size material, dotted appear under transmitted light.

Basic organic components: none present.

Ground mass: the c/f related distribution pattern is open to close porphyric,


The b- fabric of the micro mass is undifferentiated.

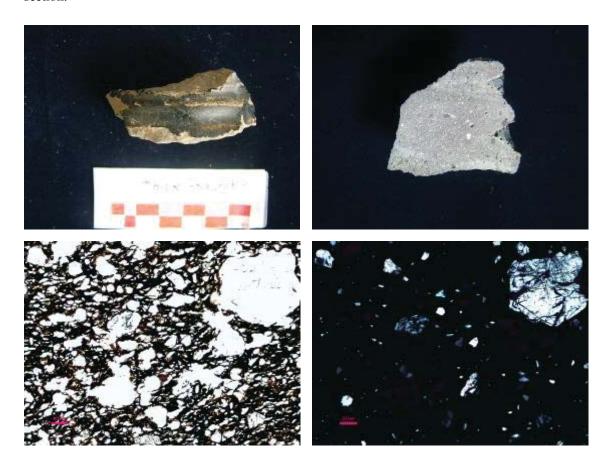
Void patterns: Vughs and channel are dominant and generally show parallel orientation. Estimated total void spaces 40% of the area of thin section.

No. 1.2

Basic mineral components

C/f limit at $10 \mu m.$, c/f ratio 30:70

Coarse fraction: The mineral grains are dominant in single quartz grains, sized up to 700 μm very fine sand to coarse sand size and usually are angular, few pedorelicts sized up to 1500 μm , the iron oxide nodules generally are manganiferous nodules and present about 5-7%.


Fine fraction: Dark brown, clay size material, under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is open to close porphyric,

The b- fabric of the micro mass is undifferentiated.

Void patterns: Vughs and channel are dominant and generally show parallel orientation. The voids spaces are slightly decrease to cover about 30% of the area of the thin section.

No. 1.3

Basic mineral components

C/f limit at 10 µm., c/f ratio 90:10

Coarse fraction : The mineral grains mostly are single quartz grains, generally are fine sand size to silt size and usually angular, a few chert fragments which are in fine sand size, few magnetite and very few leucoxene rare broken quartz sized 2000 μm .

Fine fraction : Pale grayish brown, clay to fine silt size, dotted appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric,

The b- fabric of the micro mass is weakly stipple speckled to undifferentiated.

Void patterns: Nearly massive, few Vughs and not interconnected. Estimated total about 5-7% of the area of the thin section.

No. 2.1

C/f limit at 10 µm, c/f ratio 25:75

Coarse fraction: The mineral grains almost are in single quartz grains, silt size to medium sand size and usually are angular to sub round. Chert fragment are few, fine sand to medium sand size, rare polycrystalline quartz and zircon; poorly sorted. The iron oxide nodules, various size, present about 10%.

Fine fraction: Pale grayish brown. Clay to fine silt size material, dotted appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b-fabric of the micro mass is weakly stipple speckled to undifferentiated

Void patterns: A faw Vughs and not interconnected. Estimated total about 5-7% of the area of the thin section.

No. 2.2

C/f limit at 10 µm., c/f ratio 40:60


Coarse fraction: The mineral grains almost are in single quartz grains, silt size to medium sand size and usually are angular to sub rounded, chert fragment are few, fine sand to medium sand size, rare polycrystalline quartz and zircon; poorly sorted. The iron oxide nodules, various size, present about 10%.

 $\label{eq:Fine fraction} Fine \ fraction: Pale \ grayish \ brown \ , \ clay \ to \ fine \ silt \ size \ material, \ dotted \ appear \ under \ transmitted \ light \ .$

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b-fabric of the micro mass is weakly stipple speckled to undifferentiated

Void patterns: Estimated total void space about 10-15% of the area of the thin section, generally are short planar voids and vughs.

No. 3.1

C/f limit at 10 µm., c/f ratio 20:80

Coarse fraction : The mineral grains dominant in single quartz grains , silt to medium sand size , angular to sub rounded . Common iron oxide nodules, sized $50-250~\mu m$. Chert fragment are frequent few polycrystalline quartz and metamorphic quartz rare biotite; and iron oxide imprgnative nodules sized $2500~\mu m$ with sharp boundaries.

Fine fraction: Brown, clay to fine silt size material, cloudy appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is open to close porphyric, The b- fabric of the micro mass is undifferentiated.

Void patterns : Generally are channel (100 -200 μm width) and short planar voids usually show parallel orientation. Estimated total void spaces 15% of the area of thin section.

No. 3.2


C/f limit at 10 μ m., c/f ratio 15:85

Coarse fraction : The mineral grains mostly are single quartz grains, generally are silt size to medium sand size and angular . The iron oxide nodules, sized $100-200~\mu m$ are frequents (10 %), chert fragment are frequent poorly sorted. Fine fraction : Dark brown ,clay sized material, cloudy appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is open porphyric, The b-fabric of the micro mass is undifferentiated.

Void patterns : Vughs and channels are dominant estimated total void space 20%.

No. 3.3

C/ f limit at 10 µm., c/f ratio 15:85


Coarse fraction : The mineral grains mostly are single quartz grains, generally are silt size to medium sand size and angular. The iron oxide nodules, sized 1500 μm are frequents (10%), chert fragment are frequent poorly sorted.

Fine fraction : Dark brown ,clay sized material, cloudy appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is open porphyric, The b-fabric of the micro mass is undifferentiated.

Void patterns : Vughs and channels are dominant estimated total void space 20%.

No. 3.4

C/ f limit at 10 μ m., c/f ratio 25:75


Coarse fraction: The mineral grains almost are angular in single quartz grains, silt size to very coarse sand size, few polycrystalline quartz, chert fragment very few and rare zircon; poorly sorted. The iron oxide nodules could not be observed.

Fine fraction: Pale grayish brown. Clay to fine silt size material, limpid appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b-fabric of the micro mass is undifferentiated.

Void patterns: The material is nearly massive, very few vughs. Estimated total void space about 2-5% of the area of the thin section.

No. 4.1

C/f limit at 10 µm. c/f ratio 25:75

Coarse fraction : The mineral grains are dominant in single quartz grains, silt size to medium sand size and usually are angular to sub rounded frequent polycrystalline quartz which are in medium sand size , highly weathered biotite, iron oxide nodules sized 50- 500 μ m, very few granite rock fragments sized 500 μ m; poorly sorted.

Fine fraction : Pale brown, clay to fine silt size material, speckled appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is open to close porphyric, the b- fabric of the micromass is stipple speckled grading to parallel striated.

Void patterns : A few vughs, estimated total void space about 2-5% of the area of the thin section.

No. 4.2

C/ f limit at 10 µm., c/f ratio 35:65

Coarse fraction: The mineral grains are dominant in single quartz grains, silt size to medium sand size and usually are angular to sub angular, few metamorphic quartz, polycrystalline quartz and zircon. The broken quartz are very few and are in very coarse sand size. The manganese oxide nodules, various size and shape, present about 15-20%.

Fine fraction: Pale grayish brown, grading to dark brown and locally grading to olive green and show fibrous aggregates of chlorite, sometime associated with magnetite. Clay to fine silt size material, limpid appear under transmitted light.

Basic organic components : none present.

Ground mass: The c/f related distribution pattern is close porphyric, the b-fabric of the micromass is undifferentiated, locally show stipple speckled b-fabric.

Void patterns : voids generally are vesicles (100-200 μm in diameter) and cover about 5% of the area of the thin section.

No. 4.3

Basic mineral components

C/f limit at $10 \mu m.$, c/f ratio 20:80

Coarse fraction : The mineral grains generally are angular single quartz grains, silt size to medium sand size, rare polycrystalline quartz, which are quartz sand size. The iron oxide typic nodules, and manganese oxide nodules, size 50-200 μ m, present about 2-5%, rare zircon.

Fine fraction: Brown, grading to dark brown, clay sized material, cloudy appear under transmitted light.

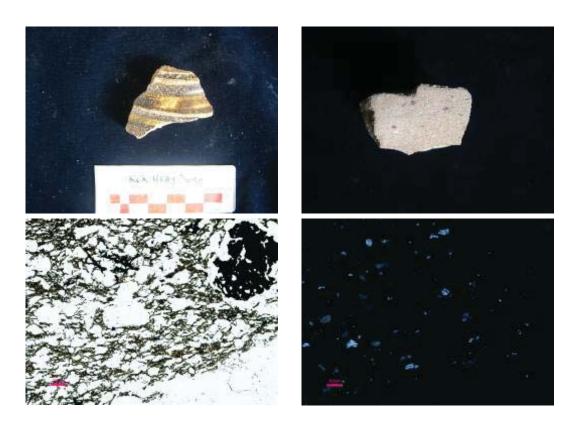
Basic organic components: none present.

Ground mass : The c/f related distribution pattern is open to close porphyric, the b- fabric of the micromass is generally show parallel striated b-fabric.

Void patterns: voids generally are short planer voids and usually have orientation, few vughs. Estimated total void space about 30% of the area of the thin section.

No. 4.4

C/f limit at $10 \mu m.$, c/f ratio 25:75


Coarse fraction : The mineral grains generally are angular single quartz grains, silt size to medium sand size, few chert frequents and metamorphic quartz. The broken quartz, coarse to very coarse sand size, and very few., rare tourmaline. The iron oxide nodule, sized $50 - 1000 \, \mu m$, present about 5-7%.

 $\label{eq:Fine fraction} Fine \ fraction: Pale \ grayish \ brown \ , \ clay \ to \ fine \ silt \ size \ material \ , \ dotted \ appear \ under \ transmitted \ light \ .$

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is open to close porphyric, the b- fabric of the micro mass is parallel striated b- fabric.

Void patterns : voids generally are vesicles (100-200 μm in diameter) and cover about 5% of the area of the thin section Iron oxide mottle 1-2%, Quartz very fine and fine-medium, Feldspar, Chert.

No. 4.5

b- fabric.

Basic mineral components

C/ f limit at 10 μ m., c/f ratio 25:75


Coarse fraction: The mineral grains are dominant in single quartz grains, silt size to medium sand size and usually are angular to sub angular, few metamorphic quartz, polycrystalline quartz and zircon. The broken quartz are very few and are in very coarse sand. The manganese oxide nodules, various size and shape, present about 15% and mainly are vughs, few vesicles.

Fine fraction: Pale grayish brown, grading to dark brown and locally grading to olive green and show fibrous aggregates of chlorite, sometime associated with magnetite. Clay to fine silt size material, limpid appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close to open porphyric, the b- fabric of the micro mass is undifferentiated, locally show stipple speckled

Void patterns : voids mainly are vughs, few vesicles and cover about 15% of the area of the thin section.

No. 4.6

C/ f limit at 10 μ m., c/f ratio 50:50

Coarse fraction : The grains mostly are single quartz grains, silt size to medium sand size, poorly sorted.

Fine fraction : Grayish brown, clay to fine silt size material, cloudy appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric,

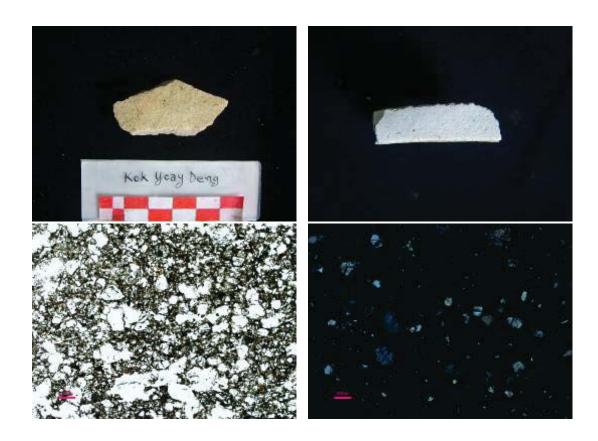
the b- fabric of the micro mass is undifferentiated.

Void patterns: generally are short planar voids which show parallel orientation.

No. 4.7

C/ f limit at 10 μ m., c/f ratio 80:20

Coarse fraction: The grains almost are angular quartz grains, silt size to medium sand size, poorly sorted; few broken quartz which are in coarse sand size., very few chert fragments and rare zircon, and metamorphic quartz.


Fine fraction : Pale grayish brown, fine silt size material, limpid appear under transmitted light.

Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric,

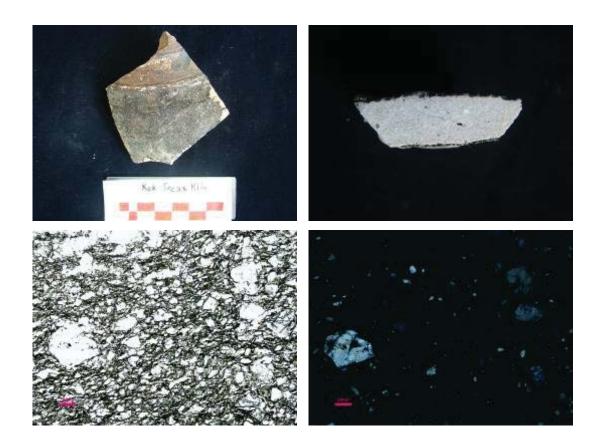
the b- fabric of the micro mass is stipple speckled b- fabric.

 $\label{eq:Void patterns} \mbox{Void patterns}: \mbox{Generally are vughs, not interconnected, and occupy about 10% of the area of the thin section.}$

No. 5.1

C/ f limit at 10 µm., c/f ratio 60:40

Coarse fraction : The grains mainly are angular quartz grains, silt size to medium sand size, few broken quartz which are in coarse sand size, poorly sorted; very few metamorphic quartz and chert frequents. The manganeses nodules, sized $50-300~\mu m$, present about 2%.


Fine fraction : Grayish brown, clay to fine silt size material, limpid appear under transmitted light.

Basic organic component: none present.

Ground mass: The c/f related distribution pattern is close porphyric,

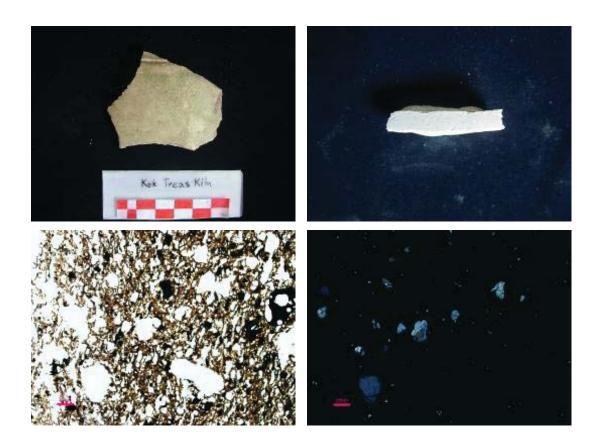
the b- fabric of the micro mass is weakly stipple speckled b- fabric.

Void patterns : Generally are vughs and vesicles (diameter up to 300 $\mu m)\,$ cover about 10% of the area of the thin section.

No. 5.2

C/f limit at 10 µm., c/f ratio 60:40

Coarse fraction: The grains mainly are angular quartz grains, silt size to medium sand size, few broken quartz which are in coarse sand size, poorly sorted; very few metamorphic quartz and chert frequents. The manganeses nodules, sized $50-300~\mu m$, present about 2%.


Fine fraction : Grayish brown, clay to fine silt size material, limpid appear under transmitted light.

Basic organic component: none present.

Ground mass: The c/f related distribution pattern is close porphyric,

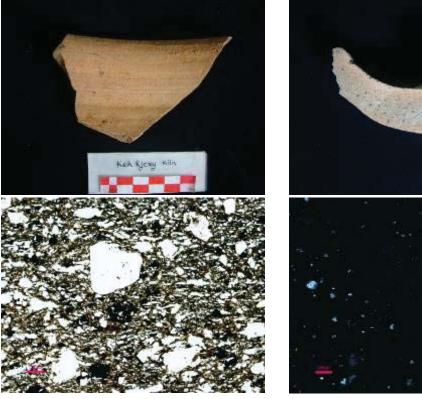
the b- fabric of the micro mass is weakly stipple speckled b- fabric.

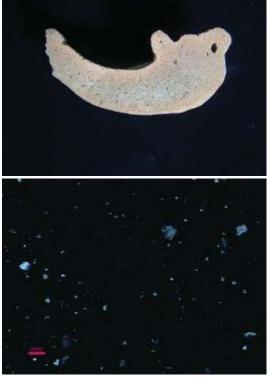
Void patterns : Generally are vughs and vesicles (diameter up to 300 $\mu m)\,$ cover about 10% of the area of the thin section.

No.6.1

C/f limit at 10 µm., c/f ratio 30:70

Coarse fraction : The mineral grains are dominant in angular quartz grains ,silt size to medium sand size, few broken quartz grains are in coarse sand size, and chert frequents (sized $\approx 700~\mu m$); poorly sorted The manganiferous nodules, various shape and size, present about 25%.


Fine fraction : Brown, clay to fine silt size material, speckled appear under transmitted light.


Basic organic components: none present.

Ground mass: The c/f related distribution pattern is close porphyric,

the b- fabric of the micro mass is undifferentiated, locally show stipple speckled b- fabric.

Void patterns : Generally are short planar voids, usually have parallel orientation, few vuqhs; Estimated total void space 20%.

No. 6.2

C/ f limit at 10 µm., c/f ratio 60:40

Coarse fraction: The grains mainly are angular quartz grains, silt size to medium sand size, few broken quartz which are in coarse sand size, poorly sorted; very few metamorphic quartz and chert frequents. The manganeses nodules, sized $50-300~\mu m$, present about 2%.

Fine fraction : Grayish brown, clay to fine silt size material, limpid appear under transmitted light.

Basic organic component: none present.

Ground mass: The c/f related distribution pattern is close porphyric,

the b- fabric of the micro mass is weakly stipple speckled b- fabric.

Void patterns : Generally are vughs and vesicles (diameter up to 300 $\mu m)$ cover about 10% of the area of the thin section.

Result of Porosity and Temperature Analysis

The ceramics from the kiln in Uddor Meanchey were made between semi-stoneware and stoneware with the temperature range from 1000 to 1350° C.

Result of Chemical Composition

The chemical composition analysis shows that the iron percentage in green, brown and unglazed wares are different. The iron percentage in green glazed wares is lower that range from 0.72% to 1.4% while the brown glazed wares range from 2.7% to 4.3% and finally the unglazed wares are higher than others that range from 4.3% to 5.9%. However, if we compare the iron percentage of brown and unglazed wares in Uddor Meanchey kilns and Banteay Meanchey kilns, the iron percentage of kiln in Banteay Meanchey are higher that range from 7 to 10 % (comparing with the Banteay Meanchey kiln ceramics analyzed at Arizona University in 2004). The following is the result of chemical composition analysis of those 6 kiln sites.

Sample											
No.	CaO	Fe2O3	Na2O	K2O	Al2O3	Sio2	MgO2	TiO2	MnO2	CuO	ZnO
1.1	0.15	5.1	0.51	2.0	17.4	69.7	0.61	0.43	0.03	ND	ND
1.2	1.0	5.3	0.29	1.8	16.7	69.9	0.59	0.55	0.02	ND	ND
1.3	1.1	1.4	0.36	2.0	14.8	75.8	0.46	0.48	ND	ND	ND
2.1	0.96	3.6	0.33	2.3	15.5	70.2	0.60	0.55	ND	ND	ND
2.2	0.32	0.73	0.08	1.0	11.2	81.6	0.24	0.55	ND	ND	ND
3.1	0.11	5.7	0.16	2.8	16.2	65.2	1.1	0.45	ND	ND	ND
3.2	0.10	5.4	0.25	2.9	17.9	64.1	1.1	0.54	0.01	ND	ND
3.3	0.37	5.9	0.35	3.5	15.4	61.7	1.1	0.57	0.01	ND	ND
3.4	0.64	0.92	0.12	1.5	11.5	75.7	0.43	0.55	0.03	ND	ND
4.1	0.61	4.5	0.57	0.25	11.6	75.5	0.20	0.89	0.37	ND	ND
4.2	0.29	4.3	0.30	1.9	16.5	71.4	0.65	0.47	0.03	ND	ND
4.3	0.63	3.7	0.48	1.5	18.6	69.7	0.53	0.42	0.02	ND	ND
4.4	1.5	3.3	0.34	2.1	14.6	73.0	0.65	0.48	0.04	ND	ND
4.5	0.85	3.7	0.43	1.6	18.7	69.5	0.55	0.50	0.02	ND	ND

Sample											
No.	CaO	Fe2O3	Na2O	K2O	Al2O3	Sio2	MgO2	TiO2	MnO2	CuO	ZnO
4.6	2.9	1.2	0.14	1.0	14.0	75.3	0.45	0.53	ND	ND	ND
4.7	1.5	0.72	0.17	1.3	9.7	80.3	0.44	0.45	ND	ND	ND
5.1	1.5	2.7	0.19	2.2	14.0	73.3	0.82	0.57	0.01	ND	ND
5.2	1.2	1.3	0.32	1.9	14.4	78.3	0.39	0.49	ND	ND	ND
6.1	0.06	4.3	0.15	1.7	19.4	66.2	0.66	0.40	ND	ND	ND
6.2	0.85	1.2	0.19	1.7	14.2	72.2	0.47	0.55	0.02	ND	ND
2.1	21.3	11.2	1.0	1.3	9.7	52.6	0.81	0.48	0.01	ND	ND
glaze											

Non

Detected: ND

2. Kiln Sites

2 locations of Angkor period kiln sites were identified along the ancient road from Angkor to Phimai. Location No. 1 is at Ban Kruat in Buriram province and location No. 2 is located in Uddor Meanchey province where we just found during our servey in 2006. Up to date, six royal roads network departed from Angkor capital to other areas were identified (Im 2005). To the eastern area, there are two roads named "the east road or the Beng road" and "the southeast road". To the western area, there are also two roads named "the west road" and the northwest road". To the northern area, there is one road named "the north road". And the last road to the south until the Tonle Sap (lake). The two roads to the east are: one to the east departed from Angkor passed by Beng Mealea and Koh Ker temples and finally to Vat Phou, and another one to the southeast goes to Sambo Prei Kuk. Other two roads to west are: one departed from northwest conner of western *Baray* (water reservoir) to Sdok Kak Thom, passed through the group of kilns in Beanteay Meanchey province, and another road departed from the northern part of Angkor Thom to Phimai temple passed through Tamean and Phnom Rung temples and kiln's groups in Uddor Meanchey and Buriram provinces. Along these roads, there are lots of infrastructure such as narrow and large water reservoirs, monuments, rest houses, bridges, metallic and habitation

sites, and especially ceramic kilns. All these infrastructures are very important network connected between people in the west and in Angkor capital (see fig. 7 and 8: Map).

Other kiln sites were also found at the provinces of Baneaty Meanchey, Siem Reap and Kandal.

2.1. Kilns at Buriram

The kiln sites in Buriram province are located along the ancient road from Angkor to Phimai. Many groups of kilns in eight districts that amounted to hundreds of kilns were found. The research on kiln sites in that area was earlier than Angkor area. In 1975, archaeologists from the Fine Arts Department (FAD) in Thailand conducted excavations at Nai Jian and Sawai kilns in Ban Kruat district. In 1984, they excavated other kilns at Khok Lin Fa in Lahan Sai district (Natthapatra 1990).

From the archaeological survey and excavations at Ban Kruat, we know that the kilns are located on a big mound which consists of kilns sharing the walls. The shape of kilns is oval measuring approximately 1.5m wide and 15m long. The kiln can be divided into three parts: combustion chamber, firing chamber, and chimney. The majority of ceramics produced in this area are similar shaped wares such as pumpkin shaped wares, small boxes, bird-shaped boxes, animal figurines, *kendi*, dishes, bowls, oil lamps, elongated water vessels with elaborated covers, gourd-shaped water vessels, and jars with decoration along the shoulder. Two kilns excavated in Ban Kruat district were preserved, covered with roofs and opened for public inspection.

2.2. Kilns at Uddor Meanchey

During our survey along the road in this province in 2006 and 2007, we found lots of brown glazed, unglazed, green glazed shards and pieces of kiln walls on the dam of water reservoir, and on the mounds. Unfortunately, the sites were looting, so the mounds were disappeared. From the result of this survey, we considered that at least 7 places existed the kilns. Among those, two places are very high potential of kilns. They are Kok Yeay Degn in Khnar village, Krasang commune, Chong Kal district and Kok Treas at Prey Veng village, Kok Man commune, Banteay Ampil district. Other places are: Tourl Trapeang Tbal and Thlok Akoang in Prey Veng village and Thlok Khtom at Kou village, Kok Man commune, Banteay Ampil district.

Other two sites at Kok Cheng Meng at Prei village and Kok Kjeay at Srah Srang village, Kok Kpous commune, and Banteay Ampil district. The ceramics from these places are mainly brown glazed, little green and unglazed wares with the shapes of baluster jars, big jars with ears, bowls, basins, and animal shaped jar lets.

2.3. Kilns at Banteay Meanchey

In 2003, we conducted a survey in this province at four places: Lboek Svay, Lboek Ampil, Torp Siem, and Svay Khmau. A great many ceramic shards and kiln's walls were scattered throughout, leading us to believe there are kilns in these areas. However, we can not confirm the number of kilns in those places as the sites were looted and the kiln mounds were disappeared. The ceramics collected from the sites are almost brown glazed wares, small number of green glazed wares, and unglazed wares. The ceramic types include: bowls, water jars, large storage jars with ears, basins, baluster jars, and zoomorphic jars. The location of these kiln sites are standing closely to the ancient royal road network connected from Angkor to Sdok Kak Thom temple.

- Lboek Svay Kilns

These kilns are located in the village of Lboek Svay, Svay Chek commune, Svay Chek district, about 18km southwest of Svay Chek district head office. According to the ceramic shards scattered to the south and to the east of the dyke near Lboek Svay temple, we believe kilns existed there. The kilns on the southern dyke are at a distance of 60m from the moat of Lboek Svay temple, lying over an area east-west measuring about 120m, north-south about 40m, and at a height of about 1.5m.

The ceramics from this site include: bowls, basins, storage jars with ears, zoomorphic wares, and baluster jars that are unglazed, brown glazed, and ash glazed. The number of brown glazed wares is higher than other types (see fig. 9).

- Lboek Ampil Kilns

These kilns are located in the village of Loboek Ampil, Svay Chek commune, Svay Chek district, about 14km southwest of Svay Chek district head office. We found two groups of kilns: one to the south, 5km from the moat of Loboek Ampil temple, and another to the west about 40m from the Loboek Ampil temple. We don't know the exact number of kilns to date and how these kilns are distributed as many trees grow in this area. There were many ceramic shards found on the ground that included: bowls, basins, water jars, jars with ears, and baluster jars that were ash glazed, brown glazed, and unglazed. In addition to these ceramic types, we also found some part of kiln walls (see fig. 10).

- Torp Siem Kilns

These kilns are located in the village of Torp Siem, Slar Kram commune, Svay Chek district, about 16km northwest of Banteay Meanchey town. To the west of this village - some 100m away, there is Ang Torp Siem (a water reservoir) measuring 100m by 50m. The kilns can be divided into 4 groups: 'A' group is located 50m on the east of Ang Torp Siem, 'B' group is located 100m to the southeast of Ang Torp Siem, 'C' group is located 200m to the southwest of Ang Torp Siem, and 'D' group is located 1,000m to the east of this village. There are two types of fired ceramics from this area, earthenware and stoneware: 'A' and 'B' groups are almost all earthenware that includes: cooking pots, basins, and water jars. However, 'C' and 'D' groups are mostly stoneware that includes: bowls, basins, cylindrical covered boxes, jars with ears, water jars, and baluster jars. Additionally, we also found some part of kiln walls (see fig. 11).

- Svay Khmau Kilns

These kilns are located at the village of Svay Khmau, Ponlay commune, Phnom Srok district, about 45km northeast of Banteay Meanchey town. The site is located about 1,000m to the west of village and 100m to the north of the Banteay Meanchey main road. The site is very small and on a hill measuring about 30m by 20m. A numbers of ceramic shards from this site includes: cooking pots, unglazed water jars, small jars and brown glazed baluster jars. Additional finds included prehistoric pottery similar to those excavated at Phum Snay. People were digging these pots from the soil when I visited the site and selling the pottery and others finds. Among these were two small Buddhist moulds made of clay. These moulds appear to date to the Angkorian period (fig 12).

2.4. Kilns at Siem Reap

Among the kiln sites found in Cambodia, only kiln sites in Siem Reap have been extensively studied. In this area, there are ten groups of kiln sites: Anlong Thom, Sar Sey, Tani, Khnar Po, Bang Kong, Teuk Lech, , Mouryroy Bei, Mouryrou Bourn, and Chan Hea. Among them Tani, Anlong Thom, Sar Sey and Khnar Po kilns have been completely excavated.

- Anlong Thom kilns

The number of kilns at Anglong Thom is not clear because of illegal looting and vegetation covered over the site. However, we considered that Anglong Thom site is a big ceramic production centre in Angkor area due to the large numbers of ceramic shards scatted on the site. The ceramic shards were identified both sides of a 7-8 m high dam which runs southnorth. In January 2007, we excavated two kilns: Kiln number 001 (ALK 001) was excavated by APSARA National Authority and Tabata and the kiln number 002 (ALK 002) was excavated by APSARA National Authority and National University of Singapore leaded by John Miksic. The kiln structure remained only half of lower part, unfortunately the roof and chimney was disappeared. The shapes of these kiln structures are oval and divided into three parts as kilns at Tani site: combustion chamber, firing chamber, and chimney. The ALK 001 measures approximately 1.8m wide and 5.6m long (Chhay et al. 2007). The floor of kiln is deep sloping and rough because of using the ball of clay to make the floor and finally they did not polish it. Some supports of wares were struck permanently on the floor probably as a result of a deep sloping floor. In the combustion chamber, we found dark soil at the bottom and brick inner the chamber. We also observed the both side of combustion chamber wall measuring approximately 50-120cm high, 5-7cm thick, and found 3 or 4 lines which considered that the kiln were repaired many times. On the other hand, the ALK 002 is located about 100m to the south of ALK 001 and the kiln was constructed on each other. The last kiln was constructed on the half part (half part of firing chamber) of previous kiln. The size of previous kiln is smaller measuring 2.9m wide and unknown length, and the last kiln measures 3.6m wide and 5.7m long which is the largest wide of kilns in Angkor area. The thickness of kiln walls of these two kilns are different: the previous kiln is about 6-8cm and the last kiln is about 18 to 20cm. As the time was limited, we excavated only the half right part of kiln until the floor, but the left part of kiln still remained. The floor of the kiln is different from other kilns, sloping in a form of stair and on each step, we found a lots of

supports which were stuck permanently on the steps. The condition of the steps are mostly preserved, and we still confirmed 9 steps among probably the whole 13 steps. On the top of supports, we see the print of small round base of ceramics approximately 8-12 cm in diameter that put on the base during firing. The supports were arranged closely to each other on each steps. Beside the round shaped supports, we also see the other supports in the form of solid cylindrical shapes measuring approximately 10-15cm long and 3-5cm in diameter. These kind of supports were found a lots on each steps. The ceramics from these kilns are mostly green glazed wares and a few number of unglazed wares. The green glazed wares are cylindrical covered boxes, round covered boxes, bottles, bowls, flower vase and roof-tiles. The unglazed wares are basins and water jars. The quality of glaze from this kiln is better than other kilns: thicker, greener, and stick on the body. The decoration is also beautiful and have more variety patterns than other kilns (see fig. 13 and 14).

- Sar Sey kilns

The Sar Sey kiln site consisted approximately 28-29 kilns which divided into three groups. The first group of Trapeang Neang Snay have 12 kilns, the second group have 9 kilns along the Or Neang Snay (Steam), and the last group have 7-8 kilns on a dike according to the villager. We can not identify the number of the last group clearly by our self because of security (Sok 2003). The Sar Sey kiln project was started from 2002 by a joint research between APSARA National Authority and NRICPN, then we drew the map in 2003 and 12 kiln's mounds on the dikes of Trapeang Neang Snay were mapped. The excavation started little by little according to the suitable time of NRICPN from 2004 to the end of 2007. The structure of kiln looks similar to Tani kiln. The ceramics were found both green glaze and unglazed as Anlong Thom kiln. The water jar seems produced a lots in this site (see fig. 15 and 16).

- Tani kilns

The Tani kiln site consisted of 26 kilns divided into 5 groups. This is the first kiln in Cambodia which was conducted an excavation from 1996 to 2001 in a joint research project between the APSARA National Authority, the NRICPN and Sophia University Angkor International Mission. Three kilns were excavated, but unfortunately less than half of the kiln structures remained. The shapes of these kiln structures are oval, made of clay, has the clay pillars

in the centre of kilns, and divided into three parts: combustion chamber, firing chamber, and chimney, measuring 2.8m wide and 8.5m long for large A6 kiln (Sugiyama et al. 2005), and 2m wide and 8m long for small B4 kiln (Tabata 2004). A number of ceramic shards and complete shapes were found. The ceramics can be divided into two categories: green glazed wares and unglazed stonewares. The shapes of green glazed wares are normally small in size: covered boxes, bowls, bottles and small-size jars. The shapes of unglazed stonewares are large: basins, large jars with ears, *kendi*, water jar with small neck and wide rim, and roof-tiles: round tiles, flat tiles, eave tiles, and ridge ornament tiles (Sugiyama et al. 2005).

- Khnar Po kilns

The Khnar Po kiln project was started in 2006 by a joint research project between APSARA National Authority and Osaka Otani university with the support of NRICPN. This site consisted of 19 kilns which divided into four groups (Em 2004). The "A" group on the western dike of *Tonle Bet* (water reservoir) has 10 kilns, the "B" group has 3 kilns which are located about 100m on the west of the first group. The "C" groups are located on the southern dike which consisted of 3 kilns. The "D" group is located on the south of the *Tonle Bet*. One kiln named B1 in "B" group was excavated half right part of the kiln. The structure of kiln looks similar to Tani kiln, measuring approximately 2.7 by 6m. The ceramics from this kiln are only unglazed wares: water jars, basin, jars with four ears, and roof tiles (see fig. 18).

- Bang Kong Kilns

Bang Kong kiln site is located at Bang Kong village, Bang Kong commune, Prasat Bakong district, Siem Reap province. It is approximately 20km northeast of the town of Siem Reap and 4km from the northwest conner of the Baray Indradataka. The kilns are recently identified and distributed approximately 1,000m along the western embankment of the Roluos river and continue approximately 200m to the west of red soil road connected from Phnom Bok to national road no. 6.

There are two group of kiln in this area: group 1 is located on the north of group 2 approximately 500m and concisted of 10 kiln mounds. The number of kiln at group 2 is unclear because the mounds were destroyed and only some kiln walls remained on the ground.

The ceramics from this kiln are mostly unglazed wares, but there are also some green glazed wares with the shape of water jar, storage jar with ears, basin, bottle, and covered boxes.

- Teuk Lech Kilns

This group of kilns are located in the village of Teuk Lech, Beng Mealea commune, Svay Leu district, about 40km to the east of Angkor Thom. The kilns are located on Toul Teuk Lech dike lying north-south, about 1km to the southwest of Beng Mealea temple. We found a few kilns by chance on a dike because numbers of ceramic shards and kiln wall pieces were scattered around the area. The ceramics are almost all unglazed roof tiles with a few brown glazed wares. However, I am not sure these kilns made brown glazed wares or not because we found very few shards and also its were on the surface.

Besides of kilns found on this dike, we also found many pieces of roof tiles and a few brown glazed wares at the southern section of Tumnup Teuk Lech dike which is located some 200m from the Toul Teuk Lech dike. We can't be sure whether the last location had kilns or not.

According to local villagers, many ceramic shards could also be found at Khnar Mouy Dam, Beng Mealea commune, Svay Leu district. We haven't visited this place to date as this is the wet season and the area is flooded. I believe there may be more kilns to be discovered in this area.

- Kantourt Kilns

This group of kilns is located in Kantourt village, Kantourt commune, Svay Leu district. This kiln site is located on the North of Phnom Kulen, little bit far from other groups on the southern part of Phnom Kulen. This kiln site was found in 22 July 2003 by chance by the Inventory Team of the Department of Culture and Research, APSARA National Authority in collaboration with the EFEO that was working to verify all ancient structures documented at the end of 19th and early 20th century. The mounds of kilns were found in two places which are separated by about 500m from each other, nearby Or Tahou (Tahou stream). However, the detailed information is not completed to date as the field trip was limited. Moreover many trees covered the site and it is difficult to count the exact number of kiln mounds. The ceramic shards scattered around these kilns are almost all brown glazed and unglazed wares which are similar to

those found in the Banteay Meanchey, Uddor Meanchey and Buriram areas. There are large storage jars with ears, baluster jars, water jars and other shapes. Besides these ceramics, the team also found the fragments of the kiln roof which retain the imprint of bamboo or wood traces as is the case in Buriram.

- Mouroy Bei (103) kilns

Mouroy Bei kiln was found early 2008 at Mouroy Bei village, Beng Mealea commune, Svay Leu district, Siem Reap province. We found only one kiln mound that upper part of kiln was decayed and the both sides wall of kiln appeared above the ground. The mound is oval shape measuring approximately 10 by 20m and the size of kiln on the mound is 1.2 by 11m. The ceramics from this kiln are storage jar with four ears and unglazed shards. We did not find any green glazed shards.

- Mouroy Bourn (104) kilns

Mouroy Bourn kiln was found at the same time as Mouroy Bei kiln. It is located in Mouroy Bourn village, Beng Mealea commune, Svay Leu district, Siem Reap province. We found 10 kiln mounds and many ceramic shards appeared above the ground. The ceramics from these kilns are almost brown glazed and unglazed wares with the shape of storage jar with four ears, baluster jar, basin. The green glazed shards appeared only one fragment.

- Chan Hea kilns

Chan Hea kiln is located in Chan Hea village, Beng Mealea commune, Svay Leu district, Siem Reap province, near by the Torp Chhey rest house along the road from Beng Mealea to Bakan (know as Preah Khan of Kampong Svay). 5 kiln mounds in the area were identified and many brown glazed shards with the shapes of storage jar with ears, baluster jar and basin were scattered above the ground. The site just found in early 2008 and no scientific research on the kiln yet.

2.5. Kilns at Kandal

In Kandal province, about 10km to the south of Phnom Penh city, there is a large site named Beung Cheung Ek that was found in 2001. This site is located on a high area (a circular earthwork) and to the north, there is a huge water reservoir which is located between this site and a dike to protect Phnom Penh city from floods. The kilns can be divided into four groups and large numbers of ceramic shards were found at this site. The ceramics are almost all brown glazed and unglazed stoneware. Some shapes looked very similar to ceramics found in the Angkor area and northeast Thailand - such as basins, water jars, and jars with ears, but they may not date to the Angkor period because of differing shapes and glazes. This site is under serious threat by people who live there. They destroy the kiln mounds to make houses, grow vegetables, and built tombs. Moreover, the most serious problem is the area has been dug by backhoes and the soil carted away by trucks to be sold as fill in Phnom Penh. In 2001, Phon Kaseka, a postgraduate student at the Royal Academy of Cambodia studied the ceramic production of this area for his master degree thesis.

3. Conclusion

In Angkor period, many ceramics were produced for local demands from early to the end of Angkor period. The kilns probably commanced from early Angkor period from Angkor area and spreaded to other big communities when the Khmer empire became more powerfull from around 11 century. The brown glazed ceramics were found all the Angkor period sites including along the ancient road network.

At the beginning, some kilns in Angkor area such as Anlong Thom, Sar Sey, Tani, Bang Kong and Khnar Po produced the ceramics very limited shapes and glaze. The shapes of unglazed wares are big storage jar with ears, basin, water jar, and some roof-tile while the shapes of green glazed wares are covered boxes, bottle, small jar with inflated body and short neck, some small amount of roof-tile and water jar. We did not find those ceramics above the ground during our survey along the road from Angkor to Banteay Ampil area. We found only one piece of ceramic from a kiln in Angkor area in the trench of Spean Hal excavation in the depth approximately 1m down. However, we found a lot of unglazed green and brown glazed wares associated Chinese wares along the ancient road. The kilns of brown glazed wares were identified along the ancient road from Angkor to Phimai at Uddor Meanchey and Buriram provinces. Other brown glazed kiln

sites were also found along the road from Angkor to Sdok Kak Thom in Banteay Meanchey province. And recently, we also found some brown glazed kiln sites located along the ancient road from Angkor to Bakan. The brown glazed kilns were probably produced from 11 century along the ancient road when Khmer empire became more powerfull and at the same time, many more shapes were also invented for local demands.

4. Sample of Images

Fig. 1 Kok Ach Dek

Fig. 3 Kok Kjeay

Fig. 5 Kok Treas

Fig. 2 Kok Cheng Meng

Fig. 4 Kok Yeay Degn

Fig. 6 Thlok Akong

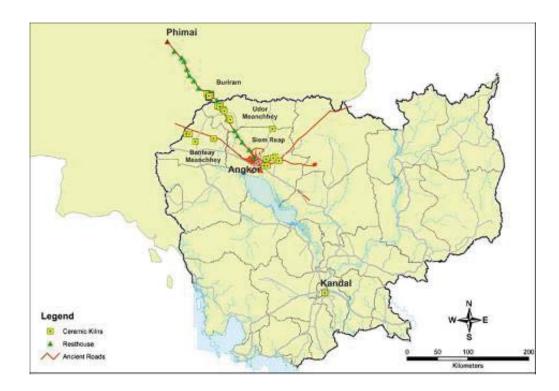


Fig. 7 Map of Kiln Location

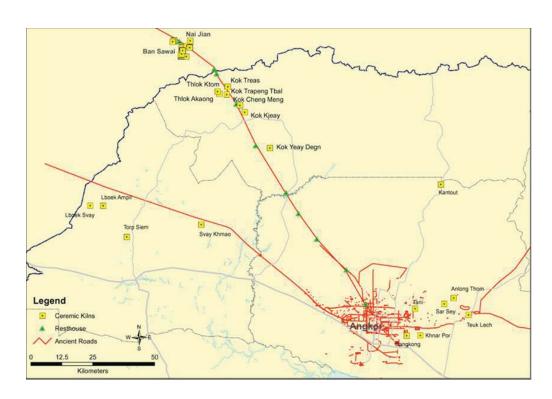


Fig. 8 Map Kilns along the Ancient Road Network

Fig. 9 Loboek Ampil

Fig. 10 Loboek Svay

Fig. 11 Svay Khmao

Fig. 12 Torp Siem

Fig. 13 Ceramic Anlong Thom

Fig. 14 Anlong Thom Kiln structure

Fig. 15 Ceramic Sarsei Kiln



Fig. 17 Knar Po kiln Structure

Fig. 18 Tani Kiln structure