

Abstract

In order to create knowledge and develop alternative technology for planting material and slow-release fertilizer with low cost materials, the objective of this research is to develop novel clay pellets from local materials (China clay, diatomite, and sawdust) as a planting material and using as a medium for a slow-release fertilizer. The research was done by dividing into four phases. Phase 1 and Phase 2 studies included preparations and analyzes of raw materials, clay pellet productions, studies of clay pellet mixture formula (15 mixture formula, triangle formula), shapes (cube and sphere), sizes, and cost, as well as evaluations (physical, chemical, and structural properties) of the developed clay pellet to determine an optimal condition for using as planting material and slow-release fertilizer. Phase 3 trial was conducted to examine chemical properties and contents under leaching of impregnated urea (conc. 10%) into clay pellet and to investigate release patterns of N at different test conditions (temperatures; $75\pm5^{\circ}\text{C}$ and ambient, leaching solutions; distill (DI) water and synthesis soil solution, fertilizers; Osmocot and urea) of leaching laboratory. Phase 4 was also carried out to determine the effect of impregnated urea (conc. 10%) into clay pellet on N dynamics by soil (Sansai loamy sand, Group no. 22) incubation test. Means and standard deviations were reported. Samples were also tested for statistical significance by the analyses of variance (ANOVA) and least significant differences (LSD) at alpha = 0.05.

Results revealed the most two suitable mixture formula for the production of clay pellet in this study were China clay: diatomite: sawdust of 25:60:15 (formula 3) and 40:45:15 (formula 6). By using machine, the suitable shape for industrial production of the clay pellet is the cube shape with an estimation cost of the clay pellet production in cube shape was 0.4-0.5 baht/kg. The size of the cube shape clay pellets producing from formula 3 and 6 were 0.5x0.5x0.5 cm and 1.0x1.0x1.0 cm, respectively. It has suitable properties for using as a planting material according to assigned criteria with the following criteria, neutral pH (7.1 ± 0.19 - 7.7 ± 0.13), low to moderate Cation-Exchange Capacity (CEC) (13.17 ± 0.09 - 17.27 ± 0.01 cmol(e)/kg), low specific density (1.5 ± 0.71 - 1.6 ± 0.35 g/cm³), light weight, good water absorption capability ($63\pm2.56\%$ - $73\pm1.23\%$), low water solubility ($0.05\pm0.06\%$), high compressive strength ($11,296.00\pm21.10$ - $13,275.00\pm65.98$ kg/cm³). The major compositions included 72.379-73.716% of Silica (SiO₂), 12.708-13.529% of Alumina (Al₂O₃) and 7.23-9.561% of Ferric Oxide (Fe₂O₃). The results of heavy metal analysis indicated that the clay pellets produced under formula 3 and 6 can be safely applied as planting material and it is not toxic to the plants. The clay pellets produced from both formula and sizes which had been prepared with 10% urea solution contained total

nitrogen (TN) for approximately 2.57-2.79%. When the effect of drying process on TN value was investigated, it was found that drying at room temperature (TN = 1.78-2.00%) resulted in a significantly ($P<0.05$) lower TN content than drying at $75\pm5^\circ\text{C}$ (TN = 2.17-2.45%) for 16-22% under every testing condition. However, the study found that the different drying condition did not cause a significant difference ($P<0.05$) in NO_3^- -N content in the clay pellets but resulted in a significant ($P<0.05$) moisture content between treatments.

Results of leaching test were found that the pH of the leachate of urea fertilizer was in alkaline condition (pH 8-9) for the first 24 hours and the pH of the leachate of the clay pellet was slightly acidic to neutral (pH 4.5-7.7) throughout the study period. Meanwhile pH of leachate of Osmocote in the first 24 hour was in quite acidic (pH 4-5), after that the pH was increased with an increase in experiment period. After finished testing (720 hours or 1 month), pH in leachate of clay pellet, Osmocote and urea fertilizer was 5.42-6.73, 5.53-5.79 and 5.25-5.98, respectively. The major factors that had significant effect on the changing of pH were the mixture formula of the clay pellets and the type of solution used for leaching. The electrical conductivity (EC) in leachate of Osmocote was very high (1-14 $\mu\text{S}/\text{cm}$) at the beginning of the testing, and it was significantly difference with the clay pellets and urea fertilizer ($P<0.05$). Moreover, the EC in the DI water and synthesis soil solution after leaching the clay pellets and urea fertilizer was within the level of non effect (non-saline $<400\mu\text{S}/\text{cm}$, 0.4 mS/cm) to having small effect (very slightly saline 400-800 $\mu\text{S}/\text{cm}$) on plantation. The major factors that have significant effect on the changing of EC in the leachate were the mixture formula, size of the clay pellets, and type of solution used for leaching. The accumulated TN in the leachate of all clay pellet experiments was as high as 64.60 ± 7.307 - $83.68\pm7.112\%$ of the starting TN. On the contrary, there was a constant release of TN from the Osmocote throughout the experiment period (1 month) for both leaching with DI water and synthesis soil solution with the TN content of 60-500 mg/kg. It was found that the clay pellets produced from materials that had been modified with 10% urea solution did not meet with European standard for slow-release fertilizer and American and Japan standard for controlled-release fertilizer. However, the content of TN from the leachate of clay pellet was slower than from urea fertilizer which it has 100% solubility. The major factors that had a significant effect on the changing of TN were mixture formula, size of the clay pellet, the leachate solution, and drying temperature.

Results of soil incubation test indicated starting moisture content of soil was decreased to 4-5% after the clay pellets were amended. It was found that every testing condition of the clay pellets (except the control condition), there was a constant release

of urea and there was an enhancement of mineralization, as a result there was a balance in moisture content more than the control condition (unmodified with urea). The factor that had a significant effect on the changing of moisture content in the soil was the mixture formula of the clay pellets. It was found that in every testing condition (except the control condition), there was a rapid increase in pH (8-9) and (200-400 mg/kg) within week 1 of the testing, until the end of the experiment (1 month). The factor that had a significant effect on the changing of NH_4^+ -N contents in the soil was the sizes of the clay pellets. Throughout the study, there was no significant effect ($P>0.05$) on the changing of NO_4^+ -N contents (1.5-2.4 mg/kg) and organic matters in the soil (week 1-4) and the TN content in clay pellets after the end of the testing was remained at 1,100–1,670 mg/kg which it was higher than the control condition for 5.5-8.4 times.

บทคัดย่อ

ด้วยความต้องการสร้างองค์ความรู้และพัฒนาทางเลือกใหม่ด้านการเกษตร สำหรับเทคโนโลยีวัสดุ ปลูกพืชและปุ๋ยละลายช้าภายใต้ดินทุนที่ต่ำ โครงการวิจัยนี้จึงมีวัตถุประสงค์หลักเพื่อพัฒนาวัสดุเม็ดลูกดิน จากวัสดุธรรมชาติในท้องถิ่น ได้แก่ ดินขาว ไดอะทومไมท์ และชีลีอิอย สำหรับประยุกต์ใช้เป็นวัสดุปลูกพืช และทำหน้าที่เป็นตัวกลางปลดปล่อยธาตุอาหารเมื่อainปุ๋ยละลายช้า แผนการทดลองถูกแบ่งออกเป็น 4 ระยะหลัก คือ ระยะที่ 1) การพัฒนาและผลิตเม็ดลูกดินโดยศึกษาฐานแบบ สูตรผสม และขนาดที่เหมาะสม ของเม็ดลูกดิน ระยะที่ 2) การศึกษาสูตรการผลิตที่เหมาะสมสำหรับการใช้เป็นวัสดุปลูกพืช โดยทำการ วิเคราะห์และประเมินลักษณะสมบัติทางกายภาพ เช米 และทางกล ระยะที่ 3) การศึกษาพฤติกรรมการ ปลดปล่อยธาตุอาหารหลัก (N) ภายใต้สภาวะการชีวะล้าง โดยการเตรียมปุ๋ยละลายช้าจากเม็ดลูกดินด้วย สารละลายยูเรียที่ความเข้มข้นร้อยละ 10 ภายใต้เงื่อนไขอุณหภูมิการทำแห้งที่แตกต่างกัน (อุณหภูมิ ห้อง/ $75\pm5^{\circ}\text{C}$) และทำการเปรียบเทียบภายใต้สภาวะการชีวะด้วยน้ำกลั่นและสารละลายดินสังเคราะห์ ทั้ง ชุดการทดลองของเม็ดลูกดิน Osmocote และปุ๋ยยูเรีย และระยะที่ 4) การศึกษาผลลัพธ์การปลดปล่อย ธาตุอาหารหลัก (N) ในดิน ภายใต้สภาวะการบ่มดิน (ชุดดินสันทราย) โดยศึกษาเปรียบเทียบระหว่างชุดการ ทดลองของเม็ดลูกดิน (modified and unmodified with urea) และปุ๋ยยูเรีย การศึกษาจะทำการ วิเคราะห์ข้อมูลค่าทางสถิติและการทดสอบสมมติฐานปัจจัยโดยการวิเคราะห์ความแปรปรวน Analysis of Variance (ANOVA) ที่ระดับนัยสำคัญทางด้านสถิติที่ 0.05 หรือระดับความเชื่อมั่นทางสถิติร้อยละ 95

ผลการศึกษาพบว่า รูปแบบ สูตรผสม และขนาดที่เหมาะสมของเม็ดลูกดิน คือ รูปแบบท่อนลูกบาศก์ ขนาด $0.5 \times 0.5 \times 0.5 \text{ cm}^3$ และ $1 \times 1 \times 1 \text{ cm}^3$ (2 ขนาด) และสูตรผสม (2 สูตร) ดินขาว: ไดอะทอมิท์: ชีลีอิอย เท่ากับ 25:60:15 และ 40:45:15 โดยมีคุณสมบัติที่เหมาะสมสำหรับการประยุกต์ใช้เป็นวัสดุปลูกตามเกณฑ์ที่กำหนด คือ มีค่า pH เป็นกลาง (7.1 ± 0.19 - 7.7 ± 0.13) ค่าความชื้นหรือความสามารถในการแลกเปลี่ยนประจุบวก (CEC) ต่ำ-ปานกลาง (13.17 ± 0.09 - $17.27 \pm 0.01 \text{ cmol/kg}$) ค่าความหนาแน่นต่ำ (1.5 ± 0.71 - $1.6 \pm 0.35 \text{ g/cc}$) มีน้ำหนักเบา อุ้มน้ำหรือดูดซึมน้ำได้ดี ($63\% \pm 2.56$ - $73\% \pm 1.23$) ไม่ยุ่งตัวในน้ำ ($0.05 \pm 0.06\%$) และมีความแข็งหรือความคงตัวสูง ($11,296 \pm 21.10$ - $13,275 \pm 65.98 \text{ kg/cm}^2$) สำหรับค่าใช้จ่ายในการผลิตเม็ดลูกดินชนิดท่อนลูกบาศก์อยู่ที่ประมาณ 0.4-0.5 บาท/กิโลกรัม นอกจากนี้ยังพบว่า วัสดุเม็ดลูกดินทั้งสองสูตรมีปริมาณองค์ประกอบหลักที่พบ ได้แก่ ซิลิค้า (SiO_2) ออกมีนา (Al_2O_3) และ สนิมเหล็ก (Fe_2O_3) โดยมีค่าอยู่ในช่วงร้อยละ 72.4-73.7, 12.7-13.5, และ 7.2-9.6 และผลทดสอบการซีโลหะหนัก บ่งชี้ว่าเม็ดลูกดินที่พัฒนาขึ้นสามารถประยุกต์ใช้เป็นวัสดุปลูกได้อย่างปลอดภัยและไม่ส่งผลเป็นพิษต่อพืช สำหรับการเตรียมเม็ดลูกดิน (ทั้งสองสูตรและสองขนาด) ด้วยสารละลายน้ำเรียกที่ความเข้มข้นร้อยละ 10 พบว่าเม็ดลูกดินมีค่า TN อยู่ในช่วงร้อยละ 2.57-2.79 เมื่อเปรียบเทียบอิทธิพลของวิธีการทำให้แห้งที่แตกต่างกัน พบร่วงการทำให้แห้งที่อุณหภูมิห้อง ($\text{TN}=1.78$ - 2.00%) ส่งผลให้ค่า TN มีค่าต่ำกว่าการทำให้แห้งที่อุณหภูมิ $75 \pm 5^\circ\text{C}$ ($\text{TN}=2.17$ - 2.45%) อย่างมีนัยสำคัญ ($P<0.05$) ถึงร้อยละ 16-22 อย่างไรก็ตามค่า $\text{NO}_3\text{-N}$ ในเม็ดลูกดิน ไม่แตกต่างกันอย่างมีนัยสำคัญ ($P>0.05$) แต่มีผลให้ค่าความชื้นของเม็ดลูกดินแตกต่างอย่างมีนัยสำคัญ ($P<0.05$) ถึงร้อยละ 10-18

ผลการทดสอบภายใต้สภาวะการชั่งลังพบร่วมค่า pH ในน้ำชาของปุ๋ยหยดเรียจะมีค่าค่อนข้างเป็นต่าง (8-9) ในช่วง 24 ชั่วโมงแรก กรณีของชุดการทดลองเม็ดลูกดินพบว่าค่า pH โดยส่วนใหญ่มีค่าค่อนข้างเป็นกรดเล็กน้อยถึงกลาง (4.5-7.7) ตลอดการทดสอบ ขณะที่ค่า pH ในน้ำชาของ Osmocote ในช่วง 24

ข้าวโน้มแรกของการทดสอบพบว่ามีค่าค่อนข้างเป็นกรด (4-5) ที่สิ้นสุดการทดลอง (720 ชั่วโมง) ค่า pH ในน้ำชาของเม็ดลูกดิน Osmocote และปุ๋ยยูเรียอยู่ในช่วง 5.42-6.73, 5.53-5.79 และ 5.25-5.98 ตามลำดับ สำหรับปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงค่า pH ในน้ำชาอย่างมีนัยสำคัญ ($P<0.05$) ได้แก่ สูตรผสมเม็ดลูกดินและชนิดสารที่ใช้ในการฉาบลัง สำหรับการเปลี่ยนแปลงค่าการนำไฟฟ้า (EC) พบว่าเฉพาะเงื่อนไขของ Osmocote ค่า EC ในน้ำชา มีค่าค่อนข้างสูงมากในช่วงแรก (1-14 mS/cm) และแตกต่างจากชุดการทดลองของเม็ดลูกดินและปุ๋ยยูเรียอย่างมีนัยสำคัญ ($P<0.05$) นอกจากนี้ยังพบว่าค่า EC ในน้ำชาของชุดการทดลองปุ๋ยยูเรียและเม็ดลูกดินทั้งสองสภาวะ (นำกลั่นและสารละลายดินสังเคราะห์) อยู่ในระดับที่ไม่ส่งผลกระทบ (Non-saline $<400 \mu\text{S}/\text{cm}$, 0.4 mS/cm) ถึงส่งผลต่อพืชน้อยมาก (Very slightly saline 400-800 $\mu\text{S}/\text{cm}$) สำหรับปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงค่า EC ในน้ำชาอย่างมีนัยสำคัญ ($P<0.05$) ได้แก่ สูตรผสมและขนาดของเม็ดลูกดิน รวมทั้งชนิดสารที่ใช้ในการฉาบลัง และการเปลี่ยนแปลงของค่า TN พบว่า ร้อยละสะสมของค่า TN ที่ถูกชะออกมานในทุกชุดการทดลองของเม็ดลูกดินเฉลี่ยสูงถึง $64.60\% \pm 7.307-83.68\% \pm 7.112$ ของค่าเริ่มต้น ขณะที่ Osmocote ยังคงปลดปล่อยค่า TN ได้อย่างสม่ำเสมอ ในช่วงประมาณ 60-500 mg/kg ภายหลัง 120 ชั่วโมงเป็นต้นไป การฉาบค่า TN ของเม็ดลูกดินพบว่าไม่ผ่านเกณฑ์มาตรฐานปุ๋ยปลดปล่อยช้า (slow release) ของยูโรป ($<15\% \text{ at } 24\text{hr}$) และมาตรฐานปุ๋ยควบคุมปลดปล่อย (controlled release) ของอเมริกาและญี่ปุ่น ($<40\% \text{ at } 24\text{hr}$) อย่างไรก็ตามการฉาบค่า TN ออกจากวัสดุเม็ดลูกดินยังคงช้ากว่าปุ๋ยยูเรียซึ่งละลายนำไปได้เกือบ 100% สำหรับปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงค่า TN ในน้ำชาอย่างมีนัยสำคัญ ($P<0.05$) ได้แก่ สูตรผสม ขนาดของเม็ดลูกดิน ชนิดสารที่ใช้ในการฉาบลัง และอุณหภูมิในการทำแห้ง

ผลการทดสอบภายใต้สภาวะการบ่มติดนับพบว่า ค่าความชื้นในดินลดลงประมาณร้อยละ 4-5 ภายหลังการผสมเม็ดลูกดิน นอกจากนี้ชุดการทดลองของเม็ดลูกดิน (modified with urea) และชุดการทดลองปุ๋ยยูเรียพบว่าสามารถสมดุลความชื้นได้ดีกว่าชุดการทดลองควบคุม (control) สำหรับปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงค่าความชื้นในดินอย่างมีนัยสำคัญ ($P<0.05$) ได้แก่ สูตรผสมของเม็ดลูกดิน ในทุกชุดการทดลองยกเว้นชุดการทดลองควบคุม พบว่าค่า pH และ NH_4^+-N ของดินเพิ่มขึ้นอย่างรวดเร็ว คือ 8-9 และ 200-400 mg/kg ภายใน 1 สัปดาห์จนสิ้นสุดการทดลอง (1 เดือน) สำหรับปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงค่า NH_4^+-N ในดินอย่างมีนัยสำคัญ ($P<0.05$) ได้แก่ ขนาดของเม็ดลูกดิน ตลอดช่วงการศึกษาไม่พบการเปลี่ยนแปลงของค่า NO_3^-N (1.5-2.4 mg/kg) และปริมาณอินทรีย์วัตถุ (1.92-2.24%) ในทุกชุดการทดลองแตกต่างกันอย่างมีนัยสำคัญ ($P>0.05$) และที่สิ้นสุดการทดลอง (1 เดือน) พบว่าชุดการทดลองเม็ดลูกดิน (modified with urea) มีค่า TN ประมาณ 1,100-1,670 mg/kg ซึ่งสูงกว่าชุดการทดลองควบคุม (unmodified with urea) 5.5-8.4 เท่า