## **Abstract**

Melatonin is natural occurring hormone biosynthesized from the pineal gland of vertebrate. It is also identified in various kinds of plants. There are several potential mechanisms proposed for the melatonin including antioxidative effect. Results from previous studies had demonstrated an increasing of serum melatonin concentration following fruit consumption. Nonetheless, the correlation between the amount of tropical fruit consumption and serum melatonin concentration is currently limited. The crossover study was intentionally conducted in healthy volunteers to determine of serum concentration of melatonin. Participants were assigned to take one of the following fruit preparations, juice extracted from one kilogram of orange or that of pineapple or 2 bananas, with one week wash-out period for each kind of fruit consumption. Enzyme-linked immunosorbent (ELISA) assay was used for measuring the serum melatonin concentration. Antioxidant capacity was determined by Ferric reducing antioxidant power (FRAP) assay and Oxygen radical antioxidant capacity (ORAC) assay. Twelve young males were enrolled in the study. Serum melatonin concentration at 120 minutes after fruit consumption compared with before consumption were significantly increased in pineapples (145.31 vs 47.95 pg/mL p=0.002), orange (151.02 vs 39.94 pg/mL, p=0.005) and banana (140.33 vs 32.37 pg/mL, p=0.008), respectively. Corresponding to serum melatonin concentration, the serum antioxidant capacity following fruit consumption was also significantly increased in both assays. For FRAP assay the antioxidant capacity in pineapple (12.61% increase, p=0.003), orange (7.72% increase, p=0.004) and banana (14.26% increase, p=0.002), respectively. For ORAC assay the antioxidant capacity increase in pineapple (8.62% increase, p=0.002), orange (5.74% increase, p=0.002) and banana (8.35% increase, p=0.002), respectively. These findings suggest that tropical fruit consumption can increase the serum melatonin concentration and could potentially demonstrate the antioxidant effect in healthy volunteers.

## บทคัดย่อ

เมลาโทนินเป็นสารสื่อประสาทสำคัญมีการสังเคราะห์และคัดหลั่งจากต่อมไพเนียลของสัตว์มี กระคกสันหลัง นอกจากนี้ยังพบเมลาโทนินในพืชหลากหลายชนิคอีกด้วย กลไกการออกฤทธิ์ของเมลา โทนินมีการอธิบายไว้อย่างกว้างขวางโดยเฉพาะฤทธิ์ในการเป็นสารต้านอนมลอิสระ ผลจากการศึกษา ก่อนหน้านี้พบว่าการรับประทานผลไม้ที่มีเมลาโทนินสามารถเพิ่มความเข้มข้นของเมลาโทนินในเลือด ได้ แต่ยังมีข้อจำกัดถึงปริมาณของผลไม้ที่รับประทานต่อผลการเพิ่มของความเข้มข้นของเมลาโทนินใน เลือดและฤทธิ์ต้านอนุมูลอิสระที่เกิดขึ้น งานวิจัยนี้ทำการศึกษาทดลองแบบไขว้ถึงผลการรับประทาน ผลไม้ 3 ชนิค ได้แก่ สับปะรค ส้ม และกล้วย ต่อการเพิ่มความเข้มข้นของเมลาโทนินและฤทธิ์การต้าน อนุมูลอิสระในอาสาสมัครสุขภาพดี 12 คน โดยมีช่วง wash-out period 1 สัปดาห์ ในวันที่ทำการวิจัย อาสาสมัครแต่ละคนต้องรับประทานน้ำส้มหรือสับปะรคคั้นสดจากผลไม้ 1 กิโลกรัม หรือกล้วยหอม 2 ลูก และมีการเก็บตัวอย่างเลือดเพื่อนำไปวิเคราะห์ปริมาณเมลาโทนินในซีรั่มด้วยวิธี Enzyme-linked immunosorbent (ELISA) และฤทธิ์การเป็นสารต้านอนุมูลอิสระด้วยวิธี Ferric reducing antioxidant power (FRAP) assay และ Oxygen radical antioxidant capacity (ORAC) ผลการศึกษาพบว่าความ เข้มข้นของเมลาโทนินในซีรั่มที่ 120 นาทีภายหลังรับประทานผลไม้ที่ศึกษาเพิ่มสูงขึ้นเมื่อเทียบกับก่อน รับประทานผลไม้อย่างมีนัยสำคัญทางสถิติทั้งในสับปะรด (145.31 เปรียบเทียบกับ 47.95 pg/mL p=0.002) ส้ม (151.02 เปรียบเทียบกับ 39.94 pg/mL, p=0.005) และกล้วย (140.33 เปรียบเทียบกับ 32.37 pg/mL, p=0.008) สอคกล้องกับร้อยละของฤทธิ์การเป็นสารต้านอนุมูลอิสระที่พบว่าเพิ่มสูงขึ้นอย่างมี นัยสำคัญทางสถิติภายหลังรับประทานผลไม้ ทั้งวิธี FRAP ในสับปะรค (12.61% increase, p=0.003) ส้ม (7.72% increase, p=0.004) และกล้วย (14.26% increase, p=0.002) และวิธี ORAC ในสับปะรค (8.62% increase, p=0.002) ส้ม (5.74% increase, p=0.002) และกล้วย (8.35% increase, p=0.002) โดยสรุปแล้ว การรับประทานสับปะรค ส้ม และกล้วยสามารถเพิ่มความเข้มข้นของเมลาโทนินในเลือดและเพิ่มฤทธิ์ ในการต้านอนุมูลอิสระในอาสาสมัครสุขภาพดี