บทคัดย่อ

การขยายการผลิตพืชพลังงานเพื่อใช้เป็นวัตถุดิบในการผลิตพลังงานทดแทน เพื่อลดการพึ่งพา พลังงานจากต่างประเทศ ส่งผลกระทบต่อการผลิตพืชในภาคเกษตร ทั้งในด้านการจัดสรรการใช้ทรัพยากร ในการผลิตพืชอาหารและพืชพลังงาน อาทิ ที่ดิน แรงงาน ทุน และปัจจัยการผลิตอื่น ตลอดจน ปริมาณ ผลผลิต และราคา ของพืชอาหาร ที่มีความจำเป็นต่อประชากรทั้งในและต่างประเทศ ดังนั้นการศึกษาใน ครั้งนี้จึงมีวัตถุประสงค์หลักเพื่อศึกษาผลกระทบของการเพิ่มการผลิตพืชพลังงานในประเทศไทย โดยพัฒนา แบบจำลองดุลยภาพบางส่วนของภาคการเกษตรไทย (PEM-TAS หรือ Partial Equilibrium Model of Thailand Agriculture Sector) เพื่อใช้อธิบายถึงผลของการเพิ่มการผลิตพืชพลังงานที่มีต่อภาคการเกษตร โดยพยากรณ์แนวโน้มของการผลิตสินค้าเกษตรที่เกี่ยวข้องกับพืชพลังงาน โดยทำการศึกษาในพืชพลังงาน หลักคือ อ้อยและมันสำปะหลัง และพืชทดแทนอื่น เช่น ข้าว ข้าวโพด ถั่ว สับปะรด

แบบจำลองแบ่งเป็น 2 องค์ประกอบหลักคือ 1) แบบจำลองมหภาค เพื่อหาแนวโน้มการจัดสรร ปัจจัยการผลิต ทุน ที่ดิน แรงงาน และพลังงาน โดยใช้หลักการของ Optimal Control เพื่อวิเคราะห์หาค่า ดุลยภาพในเชิงพลวัตรของทุกตัวแปรต่างๆในสมการและดุลยภาพของระบบเศรษฐกิจ และ 2) แบบจำลอง จุลภาค เพื่อใช้ในการวิเคราะห์หาผลกระทบของการผลิตพืชพลังงานและพืชอาหาร โดยการสร้าง แบบจำลองดุลยภาพบางส่วนของพืชแต่ละชนิดด้วยวิธีการทางเศรษฐมิติด้วย SUR และ 2SLS พร้อมทั้ง คำนวณหาค่าดุลยภาพในแต่ละช่วงเวลาด้วยวิธีการทางคณิตศาสตร์

ผลการศึกษาสรุปได้ดังต่อไปนี้ กล่าวคือการพยากรณ์แนวโน้มจากแบบจำลอง พบว่าผลของ แบบจำลองมหภาค มีแนวโน้มการผลิตพืชพลังงานทั้งมันสำปะหลังและอ้อยในระยะยาวช่วงเวลา 30 ปี มี อัตราการขยายตัวเฉลี่ยร้อยละ 0.23 ต่อปีและ 0.18 ต่อปี ตามลำดับอัตราการขยายตัวของการผลิตเอทา นอลเพิ่มขึ้นในอัตราเฉลี่ยร้อยละ 0.32 ต่อปี แต่อย่างไรก็ตามการนำเข้าพลังงานยังคงมีอัตราการเพิ่มมาก ขึ้นตามไปด้วยในอัตราเฉลี่ยร้อยละ 0.42 ต่อปี และผลจากแบบจำลองจุลภาค พบว่าพื้นที่เพาะปลูกมัน สำปะหลัง อ้อย ถั่ว และสับปะรดมีแนวโน้มเพิ่มขึ้น โดยเฉพาะมันสำปะหลัง และราคาผลผลิตของพืชทุก ชนิดมีแนวโน้มเพิ่มขึ้นอย่างต่อเนื่อง

ผลการศึกษาในครั้งนี้จึงมีข้อเสนอแนะดังนี้โดยเกษตรกรควรเลือกทำการผลิตพืชอาหารและพืช พลังงานควบคู่ไป โดยเน้นความหลากหลายของพืชที่ทำการผลิต การลงทุนในฟาร์ม และพัฒนาเทคโนโลยี การผลิต และภาครัฐควรมีนโยบายควบคุมพื้นที่เพาะปลูกพืชแต่ละชนิดให้เหมาะสม เพื่อบรรเทาความผัน ผวนของปริมาณและราคาผลผลิต

Abstract

In order to reduce foreign energy dependent, energy crops production for using as feedstock in renewable energy production are expanding. It effects to crop production in agriculture sector on quantities, prices and resource allocation for food and energy crop production such as land labor capital and other production factors. These dilemma influences not only on domestic but also on foreign population. Thus, the objective of this study is to analyze the effects of an increase in energy crop production on Thai agriculture sector. The study developed the Partial Equilibrium Model of Thailand Agriculture Sector or PEM-TAS to explain the consequences of an increase in energy crop production on agriculture sector. The model was applied to project trends of agricultural goods related to energy crops. The study focused on important energy crops which are cane and cassava and food crops which are rice, maize, beans, and pineapple.

The model has 2 components; 1) the macro model which was developed to simulate dynamic projection of resource allocation, capital, land, labor, and energy. The optimal control theory was used to solve for optimum solution for all variables of the model in continuous time. 2) the micro model which was developed to simulate the effects of food and energy crop production. The partial equilibriums of quantity and price of each food and energy crops were estimated in econometric method by Seemingly Unrelated Regression and Two-Stage Least Square and in mathematic method for solving matrixes.

The results of the study show that the trend projections from macro model indicate the optimal time path in expansion of cassava and cane production in thirty years period that are increasing at 0.23 and 0.18 percent per year respectively. The expansion rate of ethanol production is increasing at 0.32 percent per year. However, imported energy has continuous increased at 0.42 percent per year. The micro model found the agricultural land expansion of cassava, cane, beans, and pineapple cultivation. Cassava land cultivation was especially expanded. In addition, all prices of crops have increasing in long term projection.

The recommendations from the study are that farmers should parallel cultivate food and energy crops which emphasize on varieties of crop production, farm investment, and production technology development and Government should make suitable policy to control and zoning of food and energy crop lands to relief the fluctuation of quantities and prices of crops.