บทคัดย่อ

หอยนางรม (Crassostrea belcheri) หรือที่เรียกว่า หอยตะโกรมกรามขาว เป็นสัตว์น้ำเศรษฐกิจที่สำคัญและเป็น เอกลักษณ์ของจังหวัดสุราษฎร์ธานี จนได้รับการรับรองให้เป็นสินค้าซึ่งมีสิ่งบ่งชี้ทางภูมิศาสตร์ที่สำคัญของจังหวัด แต่อย่างไร ก็ตามการบริโภคหอยนางรมนิยมบริโภคในรูปแบบสดหรือกึ่งสุกกึ่งดิบ ทำให้มีความเสี่ยงสูงด้านสุขอนามัยและความ ซึ่งอาจมีสาเหตุสำคัญประการหนึ่งมาจากการปฏิบัติหลังการเก็บเกี่ยวที่ไม่เหมาะสมโดยเฉพาะใน ปลอดภัยในการบริโภค ระหว่างการเก็บรักษาและการขนส่ง ดังนั้นจึงมีความจำเป็นต้องมีการศึกษาวิจัยเพื่อหาการจัดการที่เหมาะสมในการดูแลหอย นางรมภายหลังการเก็บเกี่ยวโดยเฉพาะในขั้นตอนการเก็บรักษาและการขนส่ง ที่สามารถนำไปสู่การประยุกต์ใช้ได้จริงในทาง ปฏิบัติ โดยการประยุกต์ใช้วัสดุเศษเหลือทางการเกษตร (กาบกล้วย แกลบ และขี้เลื่อย) ร่วมกับการใช้ความเย็นจาก ้น้ำแข็งแห้ง การใช้น้ำ น้ำทะเลและน้ำแข็ง รวมทั้งการบรรจุในถุงพลาสติกที่มีน้ำเกลือและน้ำทะเล บรรจุหอยนางรมมีชีวิตใน เพื่อรักษาสภาพความมีชีวิตและคุณภาพของหอยนางรมระหว่างการเก็บรักษาและการขนส่ง เปรียบเทียบกับ วิธีการปฏิบัติที่ใช้อยู่ในปัจจุบัน คือการบรรจุในกระสอบพลาสติกบรรทุกด้วยรถบรรทุกเพื่อขนส่งไปยังแหล่งรวบรวมและ แหล่งค้าปลีก จากผลการศึกษาพบว่าการใช้ความเย็นทั้งในรูปแบบของน้ำแข็งแห้งร่วมกับแกลบหรือขี้เลื่อย ้น้ำแข็งสามารถยืดอายุการเก็บรักษาได้นานกว่าการบรรจุในกระสอบป่าน ในขณะที่คุณภาพทางจุลินทรีย์ เคมี และทาง ประสาทสัมผัสมีแนวโน้มลดลงเมื่อระยะเวลาในการเก็บรักษายาวนานขึ้นในทุกสภาวะในการเก็บรักษา อย่างไรก็ตามการเก็บ รักษาด้วยการบรรจุหอยนางรมในถุงพลาสติกที่มีน้ำเกลือและน้ำทะเลไม่เหมาะสมสำหรับการเก็บรักษาและการขนส่ง พบว่า หอยนางรมมีชีวิตได้เพียง 1 วันเท่านั้น ในขณะที่การใช้แกลบหรือขี้เลื่อยร่วมกับน้ำแข็งแห้ง และการใช้น้ำแข็ง สามารถรักษา ความมีชีวิตของหอยนางรมได้อย่างน้อยเป็นเวลา 3 วัน ดังนั้นการใช้ความเย็นร่วมกับขี้เลื่อยจึงเป็นสภาวะที่เหมาะสมในการ ทดลองขึ้นต่อไป

จากการศึกษาคุณภาพทางจุลินทรีย์ เคมี และประสาทสัมผัสของหอยนางรมมีชีวิต เพื่อคัดเลือกสภาวะการทดลองที่ เหมาะสมในการศึกษาขั้นต่อไป โดยใช้น้ำแข็งแห้งหรือน้ำแข็งบดร่วมกับขี้เลื่อยในการเก็บรักษาหอยนางรมมีชีวิต โดยทำการ เก็บรักษาหอยนางรมมีชีวิตจำนวน 50 ตัว ใช้น้ำแข็งจำนวน 4 กิโลกรัมร่วมกับขี้เลื่อยในการเก็บรักษา สามารถเก็บรักษา หอยนางรมมีชีวิตได้นาน 3 วันโดยไม่จำเป็นต้องเปลี่ยนน้ำแข็ง เมื่อเปรียบเทียบกับการเก็บรักษาหอยนางรมมีชีวิตใน กระสอบพลาสติกวางที่อุณหภูมิห้อง ซึ่งเก็บรักษาไว้ได้นานเพียง 2 วัน เช่นเดียวกับการเก็บรักษาโดยการใช้น้ำแข็งแห้ง จำนวน 4 กิโลกรัมร่วมกับขี้เลื่อย โดยคุณภาพด้านต่างๆ ที่ทำการศึกษามีแนวโน้มลดลงเมื่อระยะเวลาในการเก็บรักษาเพิ่ม มากขึ้น

จากการที่อุณหภูมิในการเก็บรักษาเป็นปัจจัยสำคัญในการมีชีวิต และการรักษาคุณภาพของหอยนางรมในระหว่าง การเก็บรักษาและการขนส่ง ดังนั้นคณะผู้วิจัยจึงได้ทดลองทำการรักษาอุณหภูมิภายในกล่องโฟมให้ต่ำรวมทั้งการจัดวาง ตำแหน่งของหอยนางรมในกล่องโฟมด้วย ผลการศึกษาพบว่า การใช้น้ำแข็งร่วมกับขี้เลื่อยโดยการเปลี่ยนน้ำแข็งทุก 48 ชั่วโมง เป็นสภาวะที่เหมาะสมและสามารถรักษาอุณหภูมิภายในกล่องโฟมให้อยู่ที่ประมาณ 10-15 องศาเซลเซียส โดยการจัด วางตำแหน่งในกล่องโฟมดังนี้ ขี้เลื่อย/หอยนางรม/ขี้เลื่อย/น้ำแข็ง/ขี้เลื่อย/หอยนางรม/ขี้เลื่อย โดยการใช้น้ำแข็ง 7 กิโลกรัม และใช้หอยนางรมจำนวน 70 ตัว ซึ่งเมื่อศึกษาสภาวะดังกล่าวในการขนส่งหอยนางรมระหว่างการขนส่งไปยังห้องปฏิบัติการ ของคณะประมง มหาวิทยาลัยเกษตรศาสตร์ โดยใช้หอยนางรมที่ไม่ผ่านและผ่านการบำบัดเบื้องตัน ผลการทดลองพบว่า สามารถรักษาความมีชีวิตและคุณภาพของหอยนางรมได้นานกว่าการขนส่งในสภาวะปัจจุบันคือ การบรรจุกระสอบพลาสติก

ซึ่งผลการทดลองเป็นไปในทำนองเดียวกันกับการเก็บรักษาที่ห้องปฏิบัติการของมหาวิทยาลัยสงขลานครินทร์ วิทยาเขต สุราษฎร์ธานี โดยที่คุณภาพทางจุลินทรีย์ เคมี และประสาทสัมผัสมีแนวโน้มลดลงตามระยะเวลาที่ยาวนานขึ้นในทุกสภาวะ การทดลอง

คำหลัก วิธีการปฏิบัติที่เหมาะสม การรักษาคุณภาพและยืดอายุ หอยนางรมมีชีวิต การเก็บรักษาและการขนส่ง

Abstract

Oyster (Crassostrea belcheri), so-called white scar oyster, an importance economical marine fish, has been well recognized as a geological indication product of Surat Thani province. However, the tradition consumption is very risky for foodborne diseases due to fresh or partially-cooked consuming. Post-harvest processes should be more emphasized relating to both hygienic and safety of the product, particularly product handling and transportation. This research was then focusing on finding suitable useless-agricultural raw materials (leaf sheaf of banana tree, rice husk, & sawdust) together with dry-iced, the used of water, brine, sea water and ice in order to keep moisture and temperature, including kept in plastic bag and foam box filled with sea water and brine to preserve lived oyster as long as possible. All the treatments were compared with the current material which using only a plastic-bag. As a result, using dry-ice together with rice husk or sawdust and using ice only showed longer shelf-life comparing to a plastic-bag. Meanwhile, microbiological, chemical and sensory parameters tended to decrease in all treatments. However, oyster in brine and sea water were not recommended since oysters were alive for only one day. Using rice husk or sawdust together with dry-ice and ice only treatment could preserve the sample at lease 3 days. Therefore, application of cooling method and sawdust were selected. Moreover, three treatments including 4 kilograms of dry-ice with sawdust, 4 kilograms of ground-ice with sawdust and control (lived oyster in plastic bag at room temperature) were observed with 50 lived oysters. Application of ground-ice with sawdust could preserve the oyster up to 3 days while the others could at 2 days.

Storage temperature is very important factor for transportation. Thus, to maintain the low temperature in the foam box, the position of sample and the ice & sawdust were optimized together with ice replacing. The study showed that replacing the ice every 48 hour could maintain temperature of the ice in the box around 10-15 °C. Position of sample and cooling agents from bottom to top was recommended as sawdust/oyster/sawdust/ice/sawdust/oyster/sawdust. The size of 7 kilograms of ice and 70 lived oysters was suggested for single box.

The trial transportation was observed from Faculty of Fishery, Kasetsart University. The selected treatment could preserve the oysters (raw oyster and preliminary depuration oyster) longer than the conventional one could. This result was in accordance with the trial experiment performed intra-lab at Prince of Songkla University, Surat Thani campus. While microbiological, chemical and sensory qualities trend to decrease in all treatments.

Keywords: Practical procedure, Quality maintaining and shelf-life extension, Live oyster, Storage and transportation