บทคัดย่อ

แผนงานวิจัยและพัฒนายางล้อรถประหยัดพลังงานมีวัตถุประสงค์ที่จะพัฒนาความรู้ และ เทคโนโลยีในการผลิตยางล้อรถประหยัดพลังงาน 2 ชนิด ได้แก่ ยางล้อรถบรรทุกเล็กเรเดียลและยางล้อตัน สำหรับรถฟอร์คลิฟท์ เพื่อสนับสนุนผู้ประกอบการผลิตยางล้อไทยให้มีความสามารถในการผลิตยางล้อรถ ประหยัดพลังงาน ซึ่งเป็นความต้องการของตลาดยางล้อรถในอนาคตอันใกล้ หากผู้ประกอบการผลิตยางล้อรถ ไทยไม่พัฒนาความสามารถดังกล่าวจะทำให้สูญเสียความสามารถในการแข่งขันและโอกาสในการส่งออกยาง ล้อรถไปยังประเทศต่างๆที่กำหนดมาตรฐานยางล้อรถประหยัดพลังงานสำหรับยางล้อรถนำเข้า

แผนงานวิจัยประกอบด้วยโครงการย่อย 4 โครงการ ได้แก่ โครงการออกแบบยางล้อรถ เชิง วิศวกรรมสำหรับยางล้อรถประหยัดพลังงาน, โครงการพัฒนายางคอมพาวด์สำหรับยางล้อรถประหยัดพลังงาน , โครงการสร้างความรู้ พื้นฐานสนับสนุนการพัฒนายางล้อรถประหยัดพลังงาน และโครงการดัดแปรผิวซิลิกา เพื่อเพิ่มประสิทธิภาพการเสริมแรงยางล้อรถประหยัดพลังงาน แต่ละโครงการจะศึกษาตัวแปรที่มีผลต่อการ สูญเสียพลังงานของยางล้อรถขณะวิ่ง ได้แก่ โครงสร้างยางล้อ แบบดอกยาง เนื้อยาง การติดระหว่างยางกับ เส้นลวดเหล็กที่ใช้เสริมแรง การกระจายตัวของตัวเติมเสริมแรง (ซิลิกา) ในยางและการติดระหว่างยางกับ ตัว เติมเสริมแรง ความรู้และเทคโนโลยีที่ได้รับจะนำไปใช้ในการพัฒนายางล้อรถประหยัดพลังงานร่วมกับบริษัทที่ เข้าร่วมในโปรแกรมวิจัย ได้แก่ หจก.ป. สยามอุตสาหกรรมยาง และบริษัท วี.เอส.อุตสาหกรรมยาง ในปีที่ 2 ของงานวิจัย

ผลการศึกษาพบว่า 1) ลายดอกยาง พื้นที่ผิวสัมผัสของดอกยางและความลึกของดอกยางมีผล ต่อความต้านทานการหมุนของยางล้อโดยที่พื้นที่ผิวสัมผัสที่มากจะทำให้ค่าความต้านทานการหมุนของยางล้อ ลดลงและดอกยางที่ลึกจะทำให้เกิดการสูญเสียพลังงานของยางล้อขณะวิ่งสูงขึ้น 2) ยางล้อตันที่มีโครงสร้าง 3 ขั้นมีค่าความต้านทานการหมุนต่ำกว่ายางล้อตันที่มีโครงสร้าง 2 ชั้น 3) สูตรยางคอมพาวด์ที่เหมาะสมที่จะ นำไปผลิตยางล้อรถบรรทุกเล็กเรเดียลประหยัดพลังงานต้นแบบคือสูตรที่มีค่า tan delta ที่ 60 ℃ เท่ากับ 0.147 และ 0.121 สำหรับคอมพาวด์ดอกยางและแก้มยางตามลำดับ ซึ่งต่ำกว่าของบริษัทชั้นนำของโลกที่ นำมาเปรียบเทียบและสูตรยางที่เหมาะสมสำหรับนำไปผลิตยางล้อตันประหยัดพลังงานต้นแบบมีค่า tan delta ที่ 60 °C เท่ากับ 0.08 และ0.09 สำหรับยางชั้นกลางและดอกยางตามลำดับ 4) สูตรยางคอมพาว ด์ที่ สามารถยึดติดกับเส้นลวดเหล็ก (เคลือบทองเหลือง) ได้ดีควรมี resorcinol formaldehyde resin 1.85 phr สารทำให้แข็งตัว 2.22 phr และโคบอลต์สเตียเรต 1.3 phr 5) เส้นลวดเหล็กที่นำมาใช้ผลิตยางล้อควรเคลือบ ้ด้วยทองเหลืองที่มีทองแดงผสมอยู่ มากกว่า 60% 6) การผสมยางกับซิลิกาเพื่อให้เกิดการกระจายตัวของซิลิ กาในยางที่ดีและยึดติดกับยางได้ดี ต้องใช้ไซเลน (silane) เป็นสารช่วยการยึดติด โดยที่การผสมต้องใช้อุณหภูมิ การผสมสูงกว่า 130 ℃ แต่ก็ต้องระวังไม่ให้อุณหภูมิการผสมสูงจนเกินไป (เช่น 160 ℃) เพราะอาจทำให้เกิด การเสื่อมสภาพของยางและทำให้สมบัติของยางลดลงได้ 7) การดัดแปรผิวซิลิกาด้วยพอลิไอโซพรีนโดยใช้ เทคนิคแอดไมเซลล่าพอลิเมอไรเซชันช่วยให้ซิลิกากระจายตัวในยางได้ง่ายขึ้นและดีขึ้นแต่การยึดติดกับยางไม่ดี เท่าการดัดแปรผิวซิลิกาด้วยไซเลนทำให้เกิดการสูญเสียพลังงา เนื่องจากแรงสั่นสะเทือนสูงกว่าซิลิกาที่ดัดแปร ด้วยพอลิไอโซพรีนโดยวิธีแอดไมเซลล่าพอลิเมอไรเซชัน จึงไม่เหมาะที่จะนำไปใช้ผลิตยางล้อรถประหยัด พลังงานและยังมีต้นทุนการผลิตสูงกว่าซิลิกาปรกติมาก

Abstract

The Research and Development of Energy-saving Tyres Programme aims to develop knowledge and technology for production of 2 types of energy-saving tyres, viz. radial light truck tyres and solid tyres for forklift. The objective is to support the Thai tyre manufacturers to build-up their capability in manufacturing of energy-saving tyres. Modern global tyre market requires energy-saving tyres for sustainability of the tyre industry. If Thai tyre manufacturers do not develop their capability in building energy-saving tyres, they may lose their competitiveness in the world market and lose their opportunity to export their tyres to countries which impose regulations on the tyres that are imported to those countries including energy-saving tyres.

The Research Programme comprises 4 related projects, viz. Engineering Design of Tyres for Energy-saving Tyres, Development of Rubber Compounds for Energy-saving Tyres, Production of Basic Knowledge Supporting the Development of Energy-saving Tyres and Modification of Silica Surface to Improve Reinforcement of Energy-saving Tyres. Parameters which affect energy loss of tyres in motions were studied in each project, including tyre structures, thread design, rubber compounds used to build tyres, adhesion between rubber and steel cord, dispersion of silica in the rubber and its adhesion to the rubber. The knowledge and technologies gained would be used to develop and build energy-saving tyres with the tyre manufacturers which participate in the present project.

The following results were obtained: 1) tyre thread design has significant effects on the rolling-resistance of light truck tyre and solid tyre. Increasing the thread contact area results in lowering of rolling-resistance whereas increasing the thread depth causes increase of the rolling-resistance.2) Solid tyre with 3 layers structure exhibits smaller rolling-resistance than tyre having 2 layers structure. 3)The rubber compounds which are suitable for production of energy-saving light truck tyre are the ones which have tan delta values (measured at 60 °C) of 0.147 and 0.121 for thread compound and side-wall compound, respectively. These tan delta values are lower than those of a leading tyre manufacturer which was used to benchmark. The rubber compounds which are suitable for production of energy-saving solid tyre possess the tan delta values (measured at 60 °C) of 0.08 and 0.09 for the middle layer compound and the thread compound, respectively. 4) The rubber compound which gave good adhesion to steel cords (coated with brass) should contain 1.85 phr of resorcinol formaldehyde resin, 2.22 phr of hardener and 1.3 phr of cobalt stearate 5) The steel cords which are suitable for the production of tyres should be coated with brass containing at least 60% of copper. 6) Good dispersion of silica in the rubber requires a use of silane as coupling agent and mixing temperature greater than 130°C but too high a mixing temperature (e.g. 160 °C) can cause degradation of the rubber and possible deterioration of the rubber properties.

7) Modification of silica by polyisoprene employing admicellar polymerisation technique could be easily and well dispersed in the rubber but showed inferior adhesion to the rubber compare with silica modified by silane. Therefore, the polyisoprene-modified silica exhibited higher energy loss when subjected to dynamic force and would not be suitable for production of energy-saving tyres.