

## บทคัดย่อ

การปลูกพืชร่วมกับการเลี้ยงปลาเป็นระบบมิวศจำลอง ที่คิดค้นขึ้นเพื่อประยุกต์การใช้น้ำ ลดปริมาณน้ำเสียจากการเลี้ยงปลา ลดการใช้น้ำใน การปลูกพืช และเกษตรกรได้ประโยชน์ทั้งจากพืชและปลา ระบบที่ทำงานอย่างสมบูรณ์จะสามารถติดตั้งในพื้นที่อยู่อาศัยได้โดยไม่ก่อให้เกิดปัญหามลพิษ ผู้จัดได้ออกแบบระบบปลูกเลี้ยงที่มีส่วนประกอบสำคัญ 3 ส่วน คือ ถังเลี้ยงปลา ถังแปลงสภาพสารอาหารและควบคุมความเป็นกรดเป็นด่าง และภาชนะปลูกผัก ทดลองเลี้ยงปลา尼ล (Nile tilapia : *Oreochromis niloticus*) จำนวน 50 ตัว ในถังเลี้ยงปริมาตร 500 ลิตร เป็นเวลา 17 สัปดาห์ โดยไม่ถ่ายเทสารละลายออกจากระบบเลย เลี้ยงโดยใช้อาหารปลาที่ผู้ผลิตระบุว่า มีปริมาณไนโตรเจนกว่า 30 % ไขมันไม่น้อยกว่า 3 % และการไนโตรเจนกว่า 8 % เติมสารประกอบเชิงชั้นของเหล็ก (11.3% Fe-DTPA) 15 mg/L และสารประกอบเชิงชั้นของธาตุอาหารจุลภาคผสม (DTPA chelated Fe 5.6%, Mn 2.0%, Cu 0.2%, Zn 1.1%, B 0.9%, Mo 0.2%) 15 mg/L ผลการทดลองพบว่า ปลาสามารถเจริญเติบโตได้ดี อัตราการหมุนเวียนสารละลายส่งผลต่อความเข้มข้นของ  $\text{NH}_4/\text{NH}_3$  และอัตราการกินอาหารของปลา เมื่อความเข้มข้นของ  $\text{NH}_4/\text{NH}_3$  สูงกว่า 2 mg/L ทำให้ปลากินอาหารลดลงอย่างมาก และปลา กินอาหารได้ปกติเมื่อความเข้มข้นต่ำกว่า 1 mg/L อัตราการไหลที่เหมาะสมสำหรับเงื่อนไขดังกล่าว คือ ไม่น้อยกว่าสองเท่าของปริมาตรถังเลี้ยงในแต่ละชั่วโมง การปลูกผัก 4 ชนิด คือ ผักบุ้ง ผักกาดขาว ผักกาดตุ้ง และคะน้า หมุนเวียนกันพบว่า ผักเจริญเติบโตได้ดีในระยะ 8 สัปดาห์แรก แม้ อัตราการเจริญเติบโตจะช้ากว่าการปลูกโดยไม่ใช้ดิน หลังจากนั้น ผักแสดงอาการขาดธาตุอาหารอย่างรุนแรง และแครอฟต์ การสังเกตอาการและการวิเคราะห์ความเข้มข้นของธาตุในสารละลาย พบว่า ผักขาดในต่อจาน โพแทสเซียม เหล็ก และสังกะสี ในขณะที่ฟอฟอรัส แคลเซียม แมกนีเซียม กำมะถัน คลอริน และโซเดียม มีความเข้มข้นใกล้เคียงกับความต้องการใช้ของผักหรือสะสมเพิ่มขึ้นในระบบ การทดลองบ่งชี้ว่า ผักต้องการเหล็กและสังกะสีเดือนละ 206.2 และ 20.6 mg/m<sup>2</sup> ตามลำดับ ผักบุ้งมีอัตราการเจริญเติบโตสูงที่สุด รองลงมาคือ ผักกาดขาว ผักกาดตุ้ง และคะน้า ตามลำดับ ความเป็นกรดเป็นด่างเพิ่มขึ้นจาก 6.0 เข้าสู่สมดุล ในเวลา 4 สัปดาห์ หลังจากนั้นเปลี่ยนแปลงอยู่ในช่วง 6.9 - 7.2 ซึ่งเป็นค่าที่ต้องการของระบบโดยไม่ต้องเติมกรดหรือด่างเลย แสดงให้เห็นว่า ซากประการังสามารถควบคุมความเป็นกรดเป็นด่างของสารละลายในระบบได้ดี สัดส่วนของธาตุอาหารพืชที่เป็นองค์ประกอบในอาหารปลา ไม่สอดคล้องกับความต้องการของผัก และมีความเข้มข้นของโซเดียมสูง ซึ่งน่าจะเป็นสาเหตุให้ผักขาดธาตุอาหารอย่างรุนแรงหลัง 8 สัปดาห์ ระบบปลูกพืชร่วมกับการเลี้ยงปลา มีความตื้นด้านการจัดการธาตุอาหารและแยกต่อการดูแลระบบ ดังนั้นจึงจำเป็นต้องมีการศึกษาเพิ่มเติมเพื่อให้ได้ระบบที่มีเสถียรภาพเพียงพอต่อการนำไปใช้

**คำสำคัญ :** ธาตุอาหารพืช การปลูกพืชโดยไม่ใช้ดิน ไฮโดรปอนิกส์ การปลูกพืชร่วมกับการเลี้ยงปลา

## Abstract

Aquaponic is an artificial ecosystem, which is invented in order to reduce water requirement and waste water from aquaculture. On the same time, it can reduce fertilizer demand for crop cultivation and farmers can acquire benefit both from crops and fishes. A complete system can be installed in urban area without any cause of pollution. A system comprises of three major components: fish tank, nutrient conversion and pH control tank, and growing basin; was installed and tested. Fifty fishes of Nile tilapia (*Oreochromis niloticus*) were cultivated in the 500 L tank for 17 weeks with completely recycle of solution. The fishes were fed manually with floating pellet feed containing not less than 30 % crude protein, not less than 3 % lipid and not more than 8 % fiber. Each 15 mg/L of Fe-DTPA (11.3 % Fe) and DTPA chelated micronutrients (Fe 5.6%, Mn 2.0%, Cu 0.2%, Zn 1.1%, B 0.9%, Mo 0.2%) were added. All fishes were survival, and fairly growth. Flow rate of the solution affected concentration of  $\text{NH}_4/\text{NH}_3$  and feed consumption. The fishes consumed very little feed when the concentration was higher than 2 mg/L. The consumption rapidly increased when the concentration was lower than 1 mg/L. The solution should be re-circulated double of fish tank volume in an hour to achieve optimum condition for fish. Water spinach, Daitokyo Bekana, Caisim and Chinese Keli were cultivated alternatively. All of the vegetables grew well only for the first 8 weeks, although their growing rates were lower than those growing by hydroponics. After that they showed severe nutrient deficiency and stunning. Visual observation and solution analysis indicated that the deficiency caused from N, K, Fe and Zn. P, Ca, Mg S, Cl and Na tended to reach equilibrium or accumulation in the system. The vegetables required Fe and Zn monthly of 206.2 and 20.6 mg/m<sup>2</sup>, respectively. Water spinach was the fastest growth and followed by Daitokyo Bekana, Caisim and Chinese Keli, respectively. pH of the solution increased from 6.0 to equilibrium within 4 weeks, and varied between 6.9 - 7.2 after that. The ideal pH can be maintained using dead coral without addition of any chemicals. Ratios of plant nutrients in fish feed differed from vegetable requirement. High Na content in the feed may contributed to severe nutrient imbalance in the solution. Aquaponic is a complicated system for nutrient management, and difficult to maintain. It has to be studied in more detail for a stable system.

**Keyword :** plant nutrition, soilless culture, hydroponics, aquaponics