บทคัดย่อ

(ภาษาไทย)

์ โปรตีนในน้ำยางธรรมชาติก่อให้เกิดการแพ้ การลดปริมาณโปรตีนในน้ำยางจึงเป็นการช่วยลดสาเหตุของการแพ้ ได้ งานวิจัยนี้เตรียมน้ำยางโปรตีนต่ำโดยกำจัดโปรตีนออกจากน้ำยางด้วยเอนไซม์ย่อยสลายโปรตีนและใช้สารลดแรงตึง ผิวชนิดไม่มีประจุ ได้แก่ Tween 80, Sucrose palmitate, Sucrose stearate, Triton X-100 และ Glycerol เพื่อ กระจายเนื้อยาง ทดสอบความเป็นพิษของสารลดแรงตึงผิวต่อเซลล์ผิวหนังโดยแปรผันความเข้มข้นของสาร ที่ระยะเวลา 24 และ 48 ชั่วโมง และวิเคราะห์ปริมาณเนื้อยางแห้ง ปริมาณโปรตีน และชนิดของโปรตีนแอลเลอเจนในน้ำยางโปรตีน ต่ำที่เตรียมได้ ผลการทดลองพบว่า ที่ระยะเวลา 24 ชั่วโมง Tween 80 ความเข้มข้น 0.125 เปอร์เซ็นต์ ไม่มีความเป็น พิษต่อเซลล์ แต่เมื่อระยะเวลาการทดสอบนานขึ้นเป็น 48 ชั่วโมง สารมีความเป็นพิษมากขึ้น โดยความเข้มข้นที่ไม่มีความ เป็นพิษต่อเซลล์เท่ากับ 0.0625 เปอร์เซ็นต์ Sucrose palmitate มีความเป็นพิษต่อเซลล์ลดลง ที่ระยะเวลานานขึ้น โดยความเข้มข้นที่ไม่เป็นพิษเท่ากับ 31.25 และ 250 ไมโครกรัมต่อมิลลิลิตร ที่เวลา 24 และ 48 ชั่วโมง ตามลำดับ Sucrose stearate, Triton X-100 และ Glycerol พบว่า ที่เวลา 24 และ 48 ชั่วโมง ความเข้มข้นที่ไม่เป็นพิษต่อเซลล์มี ค่าไม่แตกต่างกันเท่ากับ 50 ไมโครกรัมต่อมิลลิลิตร, 0.00313 เปอร์เซ็นต์ และ 10 เปอร์เซ็นต์ ตามลำดับ ในการเตรียม น้ำยางโปรตีนต่ำจึงเลือกใช้ความเข้มข้นสูงสุดของสารลดแรงตึงผิวทั้ง 5 ชนิดที่ไม่เป็นพิษต่อเซลล์ และพบว่าน้ำยางจับตัว กันเป็นก้อนหลังจากการปั่นเหวี่ยง ทำให้ไม่สามารถกระจายเนื้อยางได้ การเพิ่มค่า pH ของสารละลายและปรับความแรง ของไอออน ช่วยทำให้เนื้อยางกระจายตัวได้มากขึ้น แต่ยังเกิดการจับตัวเป็นก้อนขนาดเล็กภายหลังการเก็บไว้ ทำให้ไม่ สามารถนำไปใช้ขึ้นรูปเป็นวัสดุปิดแผลคอมโพสิทได้ เมื่อวิเคราะห์น้ำยางโปรตีนต่ำใน Glycerol พบมีปริมาณของเนื้อ ยางแห้งสูงที่สุดคิดเป็น 19.17 เปอร์เซ็นต์ ในขณะที่ปริมาณเนื้อยางแห้งของน้ำยางโปรตีนต่ำใน Tween 80, Sucrose palmitate, Sucrose stearate และ Triton X-100 มีค่าน้อยกว่า 10 เปอร์เซ็นต์ เปอร์เซ็นต์การลดลงของโปรตีนใน น้ำยางโปรตีนต่ำเมื่อใช้ Tween 80, Sucrose palmitate, Triton X-100 และ Glycerol ไม่แตกต่างกัน โดยมีค่าการ ลดลงมากกว่า 80 เปอร์เซ็นต์ ในขณะที่การใช้ Sucrose stearate ได้เปอร์เซ็นต์การลดลงน้อยที่สุดคิดเป็น 71.42 ใน ้น้ำยางขันและน้ำยางโปรตีนต่ำประกอบด้วยโปรตีนแอลเลอเจนที่มีน้ำหนักโมเลกุลประมาณ 13.5 และ 15 กิโลดาลตัน โดยความเข้มของแถบโปรตีนทั้งสองของน้ำยางข้นมากกว่าของน้ำยางโปรตีนต่ำ งานวิจัยนี้คัดเลือกสารลดแรงตึงผิวชนิด ไม่มีประจุในการใช้เตรียมน้ำยางโปรตีนต่ำ

คำสำคัญ: สารลดแรงตึงผิว, น้ำยางโปรตีนต่ำ, ความเป็นพิษต่อเซลล์, วัสดุปิดแผล

(ภาษาอังกฤษ)

It has been widely reported that some of the proteins present in the latex are mainly responsible for the allergic reactions. Significant reduction in the allergic response of natural rubber latex can be achieved by the reduction in its protein content. In this study, deproteinization of natural rubber latex was prepared with proteolytic enzyme in the presence of various types of nonionic surfactants. Conditions were investigated in terms of selective surfactants, including tween 80, sucrose palmitate, sucrose stearate, triton X-100 and glycerol, and their concentrations nontoxic to human dermal skin fibroblast at 24 and 48 hours. The properties of deproteinized latex were characterized by measurements of dry rubber content, protein content, and latex allergens. Results showed that tween 80 at the concentration of 0.125% (v/v) was not toxic after 24 hours of treatment. For a testing of 48 hours, the toxicity of tween 80 was increased. With a lower concentration of 0.0625% (v/v), there was no toxicity observed. On the other hand, toxicity of sucrose palmitate decreased with the increase in exposure time. Sucrose palmitate at concentrations of 31.25 and 250 µg/ml were not toxic at 24 and 48 hours of exposure, respectively. Exposure to the sucrose stearate, triton X-100 and glycerol at the concentrations of 50 µg/ml, 0.00313% (v/v) and 10% (v/v), respectively, did not alter cell viability regardless of exposure either 24 or 48 hours. The deproteinized latex was then prepared by using the highest concentration of surfactants that had no cytotoxic effect on the cells. It was observed that the rubber latex appeared to agglomerate after centrifugation and was not able to disperse. The increase of pH with ionic strength enhanced the stability of rubber particles of the deproteinized latex. agglomeration of rubber particle was occurred during storage and could not be used and casted. The dry rubber content of the deproteinized latex with glycerol as a surfactant was found to be 19.17%. The deproteinized latex when tween 80, sucrose palmitate, sucrose stearate and triton X-100 were incorporated had the dry rubber content less than 10%. The protein content in deproteinized latex with tween 80, sucrose palmitate, triton X-100 and glycerol was reduced for more than 80% comparing with that in the natural rubber latex. About 71.42% of protein reduction was observed as the lowest in the deproteinized latex with sucrose stearate. Allergen proteins from the deproteinized latex compared to those from natural rubber latex revealed that both latex samples contained similar proteins in molecular weights of 13.5 and 15 kDa. Both intensity bands of natural rubber latex were higher than those of deproteinized latex. This work demonstrates the importance of nonionic type surfactant alternatives in the preparation of deproteinized natural rubber latex.

Keywords: surfactant, deproteinized natural rubber latex, cytotoxicity, wound dressing