บทคัดย่อ

การปรับปรุงพันธุ์ที่ผ่านมาเน้นการคัดเลือกจากผลผลิตและความหวาน ไม่ได้พิจารณาลักษณะ สรีรวิทยาร่วมในการคัดเลือก แม้ว่ามีบางพันธุ์ที่สามารถปรับตัวได้ดีเมื่อปลูกในเขตภาคตะวันออกเฉียงเหนือ แต่ไม่สามารถอธิบายได้ว่าเป็นเพราะเหตุใด อีกทั้ง บางพันธุ์ปรับตัวได้ดี แต่ไม่เป็นที่ยอมรับของเกษตรกร เนื่องจากเป็นพันธุ์ที่มีบางลักษณะที่เกษตรกรไม่ชอบ จึงไม่ได้รับความนิยมแพร่หลาย ดังนั้น วัตถุประสงค์ของ การวิจัยครั้งนี้เพื่อ 1) เพื่อทดสอบพันธุ์อ้อยดีเด่นจากแหล่งต่างๆ ที่มีการปรับตัวได้ดีในสภาพดินทรายเขตภาค ตะวันออกเฉียงเหนือ 2) เพื่อศึกษาลักษณะทางสรีรวิทยาของอ้อยที่เกี่ยวข้องกับการปรับตัวของอ้อยในสภาพ ดินทรายในเขตไร่อ้อยภาคตะวันออกเฉียงเหนือ 3) เพื่อทราบลักษณะของอ้อยที่เกษตรกรภาค ตะวันออกเฉียงเหนือต้องการ พันธุ์อ้อยดีเด่นที่นำมาศึกษาจากแหล่งพันธุ์ต่างๆ จำนวน 17 พันธุ์ ได้แก่ KKU99-01, KKU99-02, KKU99-03, KKU99-06, V38(28-0941), V46 (28-1211), CSB 07-79, CSB 07-219, UT84-12, UT84-13, TP06-419, TP06-501, MP-187, MP458, KK3, K88-92 และ KPS01-1-12 ดำเนินการรวบรวมพันธุ์อ้อยดีเด่นและปลูกในเดือนพฤศจิกายน 2556 ดำเนินการทดลองในสภาพแปลงดิน ทราย และอาศัยน้ำฝน จำนวน 2 สถานที่ ได้แก่ หมวดพืชไร่ คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น และ ไร่เทียมพืชผล อ.กุมภวาปี จ. อุดรธานี เก็บข้อมูลการคัดเลือกพันธุ์อ้อยโดยเกษตรกร 2 ครั้ง เมื่ออ้อยอายุ 6 และ 10 เดือนหลังปลูก เก็บข้อมูลทางสรีรวิทยา ข้อมูลการเจริญเติบโต ผลผลิต การสะสมน้ำตาลและความ หวาน พบว่า อ้อยสายพันธุ์ดีเด่น 17 สายพันธุ์ มีลักษณะทางสรีรวิทยา ลักษณะประจำพันธุ์ การเจริญเติบโต ผลผลิต คุณภาพความหวาน และรูปแบบการสะสมน้ำตาลที่แตกต่างกัน และจากคัดเลือกพันธุ์โดยเกษตรกรมี ส่วนร่วม กลุ่มพันธุ์ที่เกษตรกรแต่ละกลุ่มยอมรับ และได้รับความนิยม คือ KPS01-12 และ K88-92 และมีบาง พันธุ์มีแนวโน้มมีความนิยมสูง คือ พันธุ์ V38(28-0941) และ KK3 แต่พบเพียงสถานที่เดียวเท่านั้น โดย เกษตรกรพิจารณาความชอบจากลักษณะ ความสูง ขนาดลำ ทรงกอ และการหลุดล่วงของกาบใบ จำนวน จำนวนลำต่อกอ ซึ่งพันธุ์เหล่านี้ เป็นพันธุ์ที่มีผลผลิต น้ำหนักลำ จำนวนลำต่อไร่ และขนาดลำสูง การสะสม น้ำตาลเร็ว และผลผลิตน้ำตาลสูง (ยกเว้นพันธุ์ K88-92) นอกจากนี้ พันธุ์ดังกล่าว มีการปรับตัวด้านการใช้น้ำ เพื่อให้สามารถอยู่รอดในช่วงสภาพขาดน้ำ โดยลดเจริญเติบโตด้านความสูง และพื้นที่ใบเมื่อข้ามแล้ง แต่เมื่อ ได้รับน้ำฝนตามฤดูกาล กลุ่มพันธุ์อ้อยดังกล่าวจะมีความสูงและพื้นที่ใบเพิ่มขึ้นอย่างรวดเร็ว ในช่วงขาดน้ำควร มีค่าการนำของปากใบและปริมาณน้ำสัมพันธ์ในใบสูง ส่งผลให้อ้อยพันธุ์เหล่านี้มีประสิทธิภาพการสังเคราะห์ แสงที่ดี การคายน้ำในช่วงหลังจากได้รับน้ำฝนมีผลต่อการสร้างน้ำหนักลำ ซึ่งน้ำหนักลำมีความสัมพันธ์ ทางบวกกับผลผลิตอ้อย ค่าปริมาณน้ำสัมพันธ์ในใบสูงในช่วงได้รับน้ำฝนเสริมสร้างจำนวนลำต่อพื้นที่ และ ปริมาณน้ำสัมพันธ์ในใบในช่วงเดือนที่ 10 ส่งเสริมการให้ผลผลิตของอ้อย ดังนั้น สามารถใช้ลักษณะสถานน้ำใน ใบและการคายน้ำในการคัดเลือกพันธุ์ที่มีการปรับตัวที่ดีในเขตภาคตะวันออกเฉียงเหนือ องค์ความรู้และข้อมูล จากการวิจัยครั้งนี้ สามารถนำไปใช้แนะนำพันธุ์ และได้ลักษณะทางการเกษตรและสรีรวิทยาที่สามารถใช้ คัดเลือกในระบบการปรับปรุงพันธุ์อ้อยในภาคตะวันออกเฉียงเหนือ ซึ่งจะนำไปสู่การผลิตอ้อยอย่างมี ประสิทธิภาพและยั่งยืนในภาคตะวันออกเฉียงเหนือต่อไป

Abstract

Previously, the selection in sugarcane breeding focuses on cane and sugar productivity, but not physiological traits. Even some cultivar showed good performance for suitable adaptation in Northeastern of Thailand sugarcane production system, but the way had not been unexplainably clear. In addition, particular cultivar are not acceptable to farmers due to it obtains some undesirable characteristic, even though it showed high performance for yield. Therefore, the objectives of this investigation were to i) evaluate elite lines of sugarcane from different sources with suitable adaptation for sandy soil in Northeast of Thailand ii) investigate physiological traits of sugarcane involved with the suitable adaptation iii) find the desirable characteristics that Northeastern of Thailand farmer needed. 17 elite lines of sugarcane derived from different sources as KKU99-01, KKU99-02, KKU99-03, KKU99-06, V38(28-0941), V46 (28-1211), CSB 07-79, CSB 07-219, UT84-12, UT84-13, TP06-419, TP06-501, MP-187, MP458, KK3, K88-92 and KPS01-1-12 were used in this experiment. Canes were conducted in two rain-fed field conditions as agronomy research station, Khon Kaen University and farmer field in Udon Thani province at November 2013. Data collections included two times of farmer selection for favorite cultivars and traits (as 6 and 10 months after planting), physiological traits, cane characteristics, growth, yield, sugar yield and sugar accumulation patterns. KPS0 1-12 and K8 8-92 were the most preferred cultivars. Moreover, V38(28-0941) and KK3 tend to acceptably choose by farmers, but not were consistent for two locations. These cultivars were selected considering cane height, stalk size, tiller shape, defoliation and stalk per tiller. The desirable cultivars obtained high yield, high stalk weight, high millable cane, big stalk size, early sugar accumulation and high sugar yield (except K88-92). Furthermore, the favorite cultivars reduced water use by transpiration when encounter drought conditions by low cane height and leaf area. Afterwards, the canes speed up for height and leaf area at rainy season. Stomatal conductance and RWC of these canes were also high in water stress period. This relates to maintain high photosynthesis efficiency. Transpiration (stomatal conductance) in rainy season connected with high cane weight, and this yield component contributed to cane yield. RWC contributed to millable cane in rainy season and RWC at 10 months after planting also showed positive correlation to yield. Thus, stomatal conductance and RWC are able to use for selection criteria of cane with suitable adaptation in Northeast of Thailand. The applications of consequence are recommendations of cultivars and suggestions for agronomic and physiological traits in sugarcane breeding program. This could lead to the efficient and sustainable sugarcane productions in Northeastern of Thailand.