โครงการย่อยที่ 1

การถ่ายทอดลักษณะทางการเกษตรหลักของเชื้อพันธุกรรมอ้อยไทย Inheritance of Major Agronomic Traits in Thai Sugarcane Germplasm

บทคัดย่อ

การวิจัยเริ่มดำเนินการผสมพันธุ์อ้อยที่สถานีผสมพันธุ์อ้อยบ้านทิพูเย อ.ทองผาภูมิ จ.กาญจนบุรี สามารถผสมพันธุ์อ้อยที่เป็นแม่พันธุ์ 170 พันธุ์กับกลุ่มพันธุ์อ้อยทดสอบที่ใช้เป็นต้นพ่อ ได้คู่ผสมพันธุ์อ้อย จำนวน 520 คู่ผสม แต่มีเพียง 468 คู่ผสม ที่สามารถเพาะเมล็ดจนเกิดเป็นต้นกล้าได้ การปลูกทดสอบ ดำเนินการใน 3 สถานที่ คือ 1) อ.กำแพงแสน จ.นครปฐม 2) อ.เก้าเลี้ยว จ.นครสวรรค์ และ 3) อ.คง จ. นครราชสีมา ในแต่ละแปลงทดลองวางแผนแบบ Simple lattice ปลูกลูกผสมพันธุ์อ้อยร่วมกับต้นอ้อยชำข้อ ของต้นตัวผู้ที่ใช้เป็นพ่อพันธุ์ ใช้แปลงย่อยมีขนาด 75 ตารางเมตร แต่ละแปลงปลูกอ้อย 50 ต้น ระยะห่าง ระหว่างต้น 0.75 เมตร ทำการเก็บข้อมูลและเก็บเกี่ยวผลผลิตระหว่างเดือนมกราคม-กุมภาพันธ์ พ.ศ. 2559 ทำการเก็บข้อมูลใน 7 ลักษณะ ได้แก่ จำนวนลำต่อกอ เส้นผ่านศูนย์กลางลำ ความสูง ค่าบริกซ์ น้ำหนักลำ การออกดอก และการเกิดโรคแส้ดำ การวิเคราะห์ความแปรปรวนรวม 3 สถานที่ พบว่า อิทธิพลของตระกูลมี อิทธิพลปฏิกิริยาสัมพันธ์ระหว่างตระกูลกับสถานที่ปลูกไม่มีนัยสำคัญใน นัยสำคัญทางสถิติในทุกลักษณะ ลักษณะส่วนใหญ่ ยกเว้น เส้นผ่านศูนย์กลางลำ และการออกดอก ลักษณะที่มีอัตราพันธุกรรมแนวกว้าง ค่อนข้างสูง ได้แก่ เส้นผ่านศูนย์กลางลำ ค่าบริกซ์ การออกดอก จำนวนลำ และน้ำหนักลำ ขณะที่ h2b มีค่า ค่อนข้างต่ำในลักษณะน้ำหนักกอ ความสูง ผลผลิตอ้อย ผลผลิตบริกซ์ และร้อยละการเกิดโรคแส้ดำ การ ประเมินสมรรถนะการผสมพันธุ์ทั่วไป (gca) ของต้นแม่พันธุ์ที่มีค่าสูงในลักษณะค่าบริกซ์ ได้แก่ K93-219, LK95-118, Singhapore, UT4, DB671760, Q107, CP75-109, CP48-103, 26-1255, BL22, LF89-149, ROC24 ฯลฯ ในลักษณะผลผลิตอ้อย ได้แก่ SP80, CB38-22, Q107, K93-219, N6, F151, Co1148, 05-1083, ROC3, CAC57-11, BL22, CP32-224, 22-0663, CP48-103, Phil63-17 ฯลฯ ในลักษณะผลผลิตบ ริกซ์ ได้แก่ K93-219, SP80, Q107, CB38-22, N6, F151, 05-1083, CP48-103, BL22, UT4, CAC57-11, Co1148 ฯลฯ สมรรถนะการผสมพันธุ์เฉพาะ (sca) ของคู่ผสมพันธุ์อ้อยที่ดีเด่นในลักษณะค่าบริกซ์ ได้แก่ Phil65-33 x 20-1300, D158-41 x Kps01-12, Phil63-17 x 26-1255, Co245 x 05-0014, F148 x 05-0069, Co775 x Kps01-12, IRK67-1 x 05-0014 ฯลฯ ในลักษณะผลผลิตอ้อย ได้แก่ D158-41 x Kps01-12, 20-0214 x K99-72, Phil6607 x 26-1255, Phil65-33 x 20-1300, LK92-11 x 05-0895, PR76-3035 x 05-0033, CP75-109 x 26-1255, IAC48-65 x 26-1255, H59-3775 x 05-0080 ฯลฯ และลักษณะ ผลผลิตบริกซ์ ได้แก่ D158-41 x Kps01-12, 20-0214 x K99-72, Phil65-33 x 20-1300, Phil6607 x 26-1255, CP75-109 \times 26-1255, PR76-3035 \times 05-0033, LK92-11 \times 05-0895, IAC48-65 \times 26-1255, 26-1255 x MPTh96-273 ฯลฯ ข้อมูลจากการทดลองเหล่านี้สามารถใช้ในการวางแผนจับคู่ผสมพันธุ์ และการ คัดเลือกพันธุ์ในระยะต้นกล้าในแผนงานปรับปรุงพันธุ์อ้อยได้อย่างมีประสิทธิภาพ

Abstract

This research began crossing the sugarcane parents at Tiphuyae Sugarcane Crossing Station, Thong Pha Phum district, Kanchanaburi province. The 520 biparental crosses were conducted by 170 female parents with groups of male testers. But, there were only 468 biparental crosses can be produced as seedlings. The field experiments conducted in 3 locations, including Kamphaeng Saen, Nakhon Pathom; Kao Liao, Nakhon Sawan; and Kong, Nakhon Ratchasima. The seedling of sugarcane hybrids and propagated stem cutting of their male parents were planted together in the simple lattice design. The plot size was 75 square meters having 50 seedlings with 0.75 meters distance between plants. Data collection and crop harvesting were done during January to February 2016. Seven agronomic traits were collected, viz. number of stalks per stool, stalk diameter, stalk height, brix value, stalk weight, percent of flowering and smut disease. Combined analysis of variance showed a statistically significant influence of sugarcane families in all traits. But, families x location was not statistically significant in the most traits, except stalk diameter and flowering percentage. Broad-sense heritability (h²_b) has a relatively high in stalk diameter, brix value, flowering percentage, number of stalks and stalk weight. Whereas h²_b was a relatively low in stool weight, stalk height, cane yield, brix yield and percent of smut disease. The general combining ability of female parents were relatively high in brix value as K93-219, LK95-118, Singhapore, UT4, DB671760, Q107, CP75-109, CP48-103, 26-1255, BL22, LF89-149, ROC24 etc., in cane yield as SP80, CB38-22, Q107, K93-219, N6, F151, Co1148, 05-1083, ROC3, CAC57-11, BL22, CP32-224, 22-0663, CP48-103, Phil63-17 etc., and in brix yield as K93-219, SP80, Q107, CB38-22, N6, F151, 05-1083, CP48-103, BL22, UT4, CAC57-11, Co1148, etc. The specific combining ability of sugarcane hybrids were relative high in brix value as Phil65-33 x 20-1300, D158-41 x Kps01-12, Phil63-17 x 26-1255, Co245 x 05-0014, F148 x 05-0069, Co775 x Kps01-12, IRK67-1 x 05-0014, M147/44 x 05-0069, CP75-109 x 26-1255, 22-0663 x UT1, etc., in cane yield as D158-41 x Kps01-12, 20-0214 x K99-72, Phil6607 x 26-1255, Phil65-33 x 20-1300, LK92-11 x 05-0895, PR76-3035 x 05-0033, CP75-109 x 26-1255, IAC48-65 x 26-1255, H59-3775 x 05-0080, etc. and in brix yield as D158-41 x Kps01-12, 20-0214 x K99-72, Phil65-33 x 20-1300, Phil6607 x 26-1255, CP75-109 x 26-1255, PR76-3035 x 05-0033, LK92-11 x 05-0895, IAC48-65 x 26-1255, 26-1255 x MPTh96-273, etc. Data from these experiments will allow effective parent selection for crossing and individual selection at the early stage in sugarcane breeding program.