บทคัดย่อ

เทคโนโลยีเครื่องปฏิกรณ์นิวเคลียร์ขนาดเล็กแบบโมดูลาร์กำลังได้รับความสนใจเป็นอย่างมากใน ปัจจุบัน ทั้งจากประเทศที่มีประสบการณ์การใช้พลังงานนิวเคลียร์มาเป็นระยะเวลายาวนาน และจากประเทศ ที่อยู่ในช่วงเริ่มต้นของการพัฒนาโครงการโรงไฟฟ้านิวเคลียร์เพื่อตอบสนองต่อความต้องการทางพลังงานที่ เพิ่มขึ้นอย่างรวดเร็ว ความสนใจนี้ได้รับอิทธิพลมาจากจุดเด่นหลายอย่างของเครื่องปฏิกรณ์นิวเคลียร์ขนาด เล็กแบบโมดูลาร์ ทั้งในทางวิศวกรรม เศรษฐศาสตร์ สังคม และสุขภาพ ซึ่งมีความแตกต่างไปจากเครื่อง ปฏิกรณ์ขนาดใหญ่ และคาดว่าจะสามารถตอบสนองต่อความต้องการจำเพาะของประเทศต่างๆ ได้เพิ่มขึ้น

ประเทศไทยไปเป็นอีกประเทศหนึ่งที่ให้ความสนใจกับการนำเทคโนโลยีนิวเคลียร์มาใช้ในการผลิต ไฟฟ้า โดยในแผนพัฒนาพลังงานแห่งชาติฉบับล่าสุดประจำปี พ.ศ. 2553 ฉบับแก้ไขที่ 3 ได้ระบุสัดส่วนการ ผลิตไฟฟ้าจากพลังงานนิวเคลียร์ไว้ตั้งแต่ปี พ.ศ. 2569 เป็นต้นไป ซึ่งเทคโนโลยีเครื่องปฏิกรณ์นิวเคลียร์ขนาด เล็กแบบโมดูลาร์นับเป็นอีกทางเลือกหนึ่งที่อาจจะสามารถตอบสนองต่อความต้องการหลายอย่างของประเทศ ได้ดีกว่าโรงไฟฟ้าขนาดใหญ่ จึงได้ริเริ่มโครงการวิจัยนี้ขึ้นเพื่อศึกษาอย่างจริงจังถึงจุดเด่นของเทคโนโลยีชนิดนี้

อย่างไรก็ดี เทคโนโลยีเครื่องปฏิกรณ์นิวเคลียร์ขนาดเล็กแบบโมดูลาร์ที่มีอยู่ในปัจจุบันนับว่ามีความ หลากหลายเป็นอย่างมาก และทั้งหมดกำลังอยู่ในระหว่างการพัฒนาซึ่งยังไม่มีการใช้งานเชิงธุรกิจในประเทศ ใดๆ ดังนั้น คณะผู้วิจัยจึงได้ศึกษาเทคโนโลยีต่างๆ ที่มีอยู่และทำการคัดเลือกจนเหลือเพียง 6 เทคโนโลยี ได้แก่ mPower (สหรัฐอเมริกา), NuScale (สหรัฐอเมริกา), SMART (เกาหลีใต้), CAREM25 (อาร์เจนตินา), ACP-100 (จีน) และ KLT-40S (รัสเซีย) โดยอาศัยเกณฑ์ต่างๆ ที่ตั้งขึ้นตามความต้องการของประเทศไทยและ จากคำแนะนำของผู้เชี่ยวชาญจากทบวงการพลังงานปรมาณูระหว่างประเทศ และได้นำทั้ง 6 ประเภทนี้ไป ศึกษาในรายละเอียดเพื่อเปรียบเทียบและให้คะแนนในด้านต่างๆ เพื่อคัดเลือกเทคโนโลยีที่เหมาะสมกับ ประเทศไทย ซึ่งพบว่าเครื่องปฏิกรณ์แต่ละชนิดมีจุดเด่นที่แตกต่างกัน และเทคโนโลยีที่เหมาะสมกับประเทศ ไทยจะขึ้นอยู่กับว่าประเทศจะให้ความสำคัญกับจุดเด่นข้อใดมากกว่าในการตัดสินใจเลือกเทคโนโลยี

Abstract

Small Modular Reactor (SMR) technology currently attracts many attentions from both the country with extensive experience in utilizing nuclear power and the country that are at the initial phase of the development of its nuclear power program to cope with the rapid increase of power demand. These attentions are influenced by many engineering, economic, social, and health features of the SMR which differ from the large nuclear reactor, and are expected to be able to better answer the specific needs of the countries.

Thailand is another country that has been interested in utilizing nuclear technology for power production. The latest Power Development Plan (PDP 2010 rev. 3) has specified a proportion of power to be produced by nuclear from the year 2026 onward. The SMR technology is another alternative that may be able to fulfill the country's need better than the large nuclear power plant. This project has been initiated to study the features of SMR in more details.

There are wide varieties of the SMR technologies at the present. All of them, however, are still underdevelopment and not commercially operating in any country. This study has narrowed the list of existing SMR technologies down to 6 technologies, namely mPower (USA), NuScale (USA), SMART (RoK), CAREM-25 (Argentina), ACP-100 (China), and KLT-40S (Russia), using the selection criteria that reflect the need of Thailand and based upon the suggestions of expert from the International Atomic Energy Agency (IAEA). More detail study has been conducted on the 6 SMR technologies to compare and assign score to various aspects of the technologies in order to select suitable technology for Thailand. It is found that each reactor possesses different features, and which technology is the suitable for Thailand depends on what kind of feature is given more importance for the country when conducting the technology selection.