

รายงานวิจัยฉบับสมบูรณ์

โครงการ ผลกระทบของประชาคมเศรษฐกิจอาเซียนต่อตลาดทุนไทย

The Effect of ASEAN Economic Community on the Thai Capital Market

โดย ผศ.ดร. อัญชดา เจริญรุกข์

มหาวิทยาลัยธรรมศาสตร์

30 พฤษภาคม 2559

รายงานวิจัยฉบับสมบูรณ์

โครงการ ผลกระทบของประชาคมเศรษฐกิจอาเซียนต่อตลาดทุนไทย
The Effect of ASEAN Economic Community on the Thai Capital Market

ผศ.ดร. อัญชดา เจริญรุกข์

มหาวิทยาลัยธรรมศาสตร์

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย
(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป

Acknowledgements

กิตติกรรมประกาศ

The author wishes to thank Thailand Research Fund for financial support. The research has also benefited from comments from participants at workshop seminars at the Thailand Research Fund and Stock Exchange of Thailand. The author is grateful for wonderful research assistance from Chayapol Sirinonthak and Krittanut Chaithawiwat.

The Effect of ASEAN Economic Community on the Thai Capital Market

Executive summary

The ASEAN Economic Community (AEC) is the newest and largest integration effort attempted in the developing world. When realized, it creates an economic zone that and allows free movement of capital among nearly 600 million people which currently produce \$US1800 Billion in GDP. The plan is set to proceed slowly and be implemented by 2015 (Petri, Plummer, and Zhai, 2011). The other two largest economic zones are the north American free trade zone (NAFTA) and the EU (European) union zone.

The goal of the AEC's integration encompasses aspects of traded good and services, human capital, and financial capital. While there is existing literature that investigates the economic side, little has been investigated on the effects on the capital market. This study aims at understanding the advantages and disadvantages in establishing the AEC from the capital markets' perspective. Conventional wisdom (Henry 2000) tells us liberalization is beneficial to the country opening up. However, this year in 2012, from the EU union we learned that there are both benefits and cost to establishing an economically and financially integrated zone. It is more complicated as we have recently learned from the European Union. For the AEC, we need to ask the question whether an integrated financial zone is beneficial. Even though there is no currency unification there is usually some expectation of coordination of currency exchange rate which takes away a little autonomous financial policy from participating countries. Research that provides a glimpse, prior to the event, at the possibility of the future which potentially help policy makers decision making and, more importantly, a follow up feedback to policy success after the event.

Specifically this research addresses the following questions: 1) What is the impact to the cost of equity (cost of doing business) to the Thai capital market? and 2) What is the impact to the liquidity in the Thai stock market and cost of trading to Thai investors?

To answer the first question, we analyze the choices between investing in ASEAN countries through mutual funds and investing directly. The countries participating are Singapore, Indonesia, Malaysia, Thailand, and Vietnam. Previously to this time the easiest way for investors in ASEAN countries to invest in ASEAN members' equity markets is to invest in foreign investment funds. Currently investors can invest more easily and inexpensively in individual stocks listed in each market through ASEAN Link. As a result, investors can diversify with more local choices directly. This study analyzes diversification benefits of directly choosing individual stock investments in the AEC rather than investment constraint in country funds as currently applies. Emerging market stock returns show skewness. Therefore we use portfolio optimization with skewness technique to analyze our data. It incorporates skewness in the optimization by employing the Polynomial Goal Programing ("PGP"). Our study finds that there is a parameter instability problem in correlation structure, unlike the previous papers which report the estimated results only once, the rolling window method is used to mitigate the problem and the actual returns are presented. We perform both in-sample and out of sample analysis using a rolling window of 5 yeas analyzing data of 10

years. Our results show that the ability to invest directly in individual stocks will benefit ASEAN investors from most countries. A numbers of cross-broader investment are expected. Stocks of Malaysian market are perceived as a good investment choice for Sharpe-ratio-concerning investors, while Stocks of Indonesian market are for Skewness-coefficient-concerning investors.

To answer the second question in a forward looking manner, we analyze the implementation of ASEAN Linkage and ASEAN STARS index which provides unique opportunity to study the effect of index inclusion on stocks that are not easily accessible prior to the effective inclusion. The aim is to investigate the index inclusion effect of ASEAN STARS index on stock liquidity. The research investigates both short term (2.5 months) and long term (one year) changes of stock liquidity up on index inclusion. A significant improvement of transaction cost during the two months period following index inclusion was observed. Tests of other long term liquidity changes found significant improvement in price impact (illiquidity decreased by 17.43 percent), volume (increased by 29.89 percent), and free float adjusted turnover (increased by 6.82 percent) during one year period after index inclusion and ASEAN Linkage implementation.

In sum, the financial integration of the AEC, at first glance, that is using the data before the integration, supports benefits to many countries. AEC financial liberalization affords investors in many countries to better diversify their portfolios. Using current data also suggest that financial integration would lower cost of trading and increase liquidity. The challenge, however, lies in investigating if ex-ante methods can predict and anticipate actually happens due to policy and how policy adjusts to emerging situations.

Keywords: Financial integration; International Finance; General Financial Markets; Emerging markets; Portfolio diversification, liquidity in emerging markets

ผลกระทบของผลกระทบของประชาคมเศรษฐกิจอาเซียนต่อตลาดทุนไทย

าเทคัดย่อ

การรวมกลุ่มประชาคมเศรษฐกิจอาเซียน (AEC) เป็นการรวมตัวทางเศรษฐกิจล่าสุดที่เกิดขึ้นในกลุ่มประเทศอาเซียน เพื่อให้เกิดผลประโยชน์จากการค้าและการลงทุนเสรีระหว่างกัน จากการคาดการณ์ของ Petri, Plummer, and Zhai, (2011) การรวมกลุ่มทางเศรษฐกิจดังกล่าวคาดว่าจะทำให้ผลผลิตมวลรวมผนวกของกลุ่มสูงถึง 1,800 พัน ล้านดอลล่าห์สหรัฐและสร้างตลาดผู้บริโภคและแรงงาน 600 ล้านคน ซึ่งย่อมทำให้กลุ่มสมาชิก AEC เพิ่มอำนาจการ ต่อรองกับกลุ่มประชาคมความตกลงการค้าเสรือเมริกาเหนือ (NAFTA) และ สหภาพยุโรป (EU)

ปัจจุบันการศึกษาเกี่ยวกับ AEC นั้นเน้นหนักด้านผลกระทบด้านเศรษฐกิจแต่การศึกษาผลกระทบต่อตลาดทุนนั้นมี จำกัดทั้งที่วัตถุประสงค์ของ AEC มีทั้งด้านการค้า การเคลื่อนใหวของแรงงาน และเงินทุนที่เสรีระหว่างกัน ในด้านการ เปิดเสรีด้านเงินการลงทุนนั้น ส่วนหนึ่งของแผนงาน คือ การเชื่อมโยงการลงทุนในตลาดหลักทรัพย์ของประเทศสมาชิก เข้าด้วยกัน หรือที่เรียกว่า "ASEAN Linkage" ที่จะทำให้การระดมทุนและการลงทุนแบบข้ามชาติในภูมิภาคทำใด้ง่าย ขึ้น งานวิจัยของ Henry (2000) ได้แสดงผลเชิงประจักษ์ของประโยชน์จากการเปิดตลาดทุนให้นักลงทุนต่างชาติเข้า ร่วมลงทุนอันมีผลให้ค่าของทุนของบริษัทจดทะเบียนต่ำลงจากการเพิ่มขึ้นของระดับราคา อย่างไรก็ตามเหตุการณ์ใน สหภาพยุโรปในปัจจุบันได้แสดงให้เห็นถึงปัญหาที่อาจเกิดขึ้นจากการผนวกรวมตลาดเงินตลาดทุนและอัตรา แลกเปลี่ยน แม้ว่า AEC มิได้มีวัตถุประสงค์ที่จะใช้เงินสกุลร่วมกันดังกลุ่มสหภาพยุโรปแต่การรวมตัวทางเศรษฐกิจ และเปิดเสรีด้านการค้าและเงินทุนมักต้องอาศัยการกำหนดนโยบายอัตราแลกเปลี่ยนที่สอดคล้องกัน ซึ่งจะนำไปสู่ ความสูญเสียเสรีภาพในการกำหนดนโยบายการเงินระดับประเทศไปบางส่วน งานวิจัยนี้มีวัตถุประสงค์เพื่อ ศึกษา ผลกระทบของ การเชื่อมโยงการลงทุนในตลาดทุนที่มีต่อ 1) ค่าของทุนของส่วนผู้ถือหุ้นของบริษัท และ 2) สภาพคล่อง และต้นทนการลงทนในหลักทรัพย์จดทะเบียน

ในประเด็นแรกผู้วิจัยศึกษาผลของการเชื่อมโยงการลงทุนในตลาดหลักทรัพย์ของประเทศสมาชิกที่ทำให้นัก ลงทุนในกลุ่มประเทศสมาชิกสามารถกระจายความเสี่ยงในการลงทุนโดยตรงในหลักทรัพย์ในตลาดกลุ่มประเทศ AEC แทนการลงทุนโดยอ้อมผ่านกองทุนเป็นประโยชน์ต่อนักลงทุนใน AEC เนื่องจากตลาดหลักทรัพย์ใน AEC มีลักษณะ ผลตอบแทนที่มีความเบ้ (skewness) ในอัตราผลตอบแทนค่อนข้างสูง งานวิจัยนี้จึงได้นำวิธีการนำ Polynomial Goal Programing ("PGP") มาใช้ในการเลือกน้ำหนักการลงทุนในตลาดหลักทรัพย์ AEC ต่างๆ ที่ทำให้

ระดับผลตอบแทนที่ปรับความเสี่ยงสูงสุด สำหรับนักลงทุนที่คำนึงถึงความเสี่ยงจากค่าเบี่ยงเบนมาตรฐานและใน ขณะเดียวกันต้องการเพิ่มผลตอบแทนจากการกระจายแบบเบ้ทางบวกของอัตราผลตอบแทน การศึกษานี้ทดสอบผลที่ ได้ทั้งในกลุ่มตัวอย่าง และนอกกลุ่มตัวอย่างจากข้อมูลอนุกรมเวลาราคาหลักทรัพย์ 10 ปี นอกจากนี้ผู้วิจัยยังพบว่า ตลาดหลักทรัพย์มาเลเซียมีความโดดเด่นในการสร้างอัตราส่วนผลตอบแทนต่อความสี่ยง (ค่าเบี่ยงเบนมาตรฐาน) Sharpe ratio มากที่สุด ในขณะที่ตลาดหลักทรัพย์อินโดนีเซียมีความโดดเด่นในการสร้างความอัตราผลตอบแทนจาก ความเบ้สำหรับนักลงทุนมากที่สุด โดยสรุปผลของการที่นักลงทุนใน AEC สามารถ สร้างกลุ่มหลักทรัพย์ลงทุนที่มี ประสิทธิภาพสูงขึ้นน่าจะนำไปสู่การเพิ่มของระดับราคาหลักทรัพย์ในตลาดกลุ่มสมาชิกและลดค่าของทุนของบริษัท จดทะเบียนในที่สุด

ในประเด็นที่สองผู้วิจัยศึกษาผลกระทบทางสภาพคล่องในการซื้อขายหลักทรัพย์ในระยะสั้น (2.5 เดือน) และ ระยะยาว (1 ปี) หลังการประกาศรวมหลักทรัพย์ในดัชนี ASEAN Stars ที่ประกอบด้วยหุ้นที่มีขนาดใหญ่โดย พิจารณาจากมูลค่าของหลักทรัพย์ตามราคาตลาดและสภาพคล่องของหลักทรัพย์จำนวน 30 หลักทรัพย์ต่อประเทศ ใน AEC รวม 180 หลักทรัพย์ งานวิจัยพบว่าสภาพคล่องที่วัดโดยมาตรวัดต่าง ๆเพิ่มขึ้นอย่างมีนัยสำคัญ ซึ่งการ เพิ่มขึ้นของสภาพคล่องต่าง ๆเป็นตัวบ่งชี้การลดลงของต้นทุนในการทำธุรกรรมซื้อขายหลักทรัพย์

โดยสรุปงานวิจัยชิ้นนี้ได้แสดงให้เห็นว่าการเชื่อมโยงการลงทุนในตลาดหลักทรัพย์ของประเทศสมาชิกทำให้ นักลงทุนในกลุ่มประเทศสมาชิกสามารถกระจายการลงทุนได้อย่างมีประสิทธิภาพมากกว่า และยังเป็นการเพิ่มสภาพ คล่องและลดต้นทุนในการทำธุรกรรมซื้อขายหลักทรัพย์ อย่างไรก็ตามการศึกษาในลักษณะนี้ควรมีการติดตามอย่าง ต่อเนื่องเพื่อพิจารณาการตอบสนองของตลาดที่อาจแปรผันตามนโยบายและสถานการณ์ในตลาดเงินตลาดทุนที่มี การปรับเปลี่ยนอยู่ตลอดเวลา

Part I Does AEC help diversification among ASEAN stock market?

Portfolio optimization with skewness

Abstract

In the end of 2015 the ASEAN equity market liberalization went into effect. The countries participating are Singapore, Indonesia, Malaysia, Thailand, and Vietnam. Previously to this time the easiest way for investors in ASEAN countries to invest in ASEAN members' equity markets is to invest in foreign investment funds. Currently investors can invest more easily and inexpensively in individual stocks listed in each market through ASEAN Link. As a result, investors can diversify with more local choices directly. This study analyzes diversification benefits of directly choosing individual stock investments in the AEC rather than investment constraint in country funds as currently applies. Emerging market stock returns show skewness. Therefore we use portfolio optimization with skewness technique to analyze our data. It incorporates skewness in the optimization by employing the Polynomial Goal Programing ("PGP"). We distinguish investors who have utility functions of only mean-variance and mean-variance-skewness. Skewness matters significantly for selection of ASEAN stocks. Our study finds that there is a parameter instability problem in correlation structure, unlike the previous papers which report the estimated results only once, the rolling window method is used to mitigate the problem and the actual returns are presented. We perform both in-sample and out of sample analysis using a rolling window of 5 yeas analyzing data of 10 years. Our results show that the ability to invest directly in individual stocks will benefit ASEAN investors. A numbers of cross-broader investment are expected. Stocks of Malaysian market are perceived as a good investment choice for Sharpe-ratio-concerning investors, while Stocks of Indonesian market are for Skewness-coefficient-concerning investors.

JEL classification F36; F3; G1

 $\label{thm:condition} \textbf{Keywords: ASEAN financial integration; International Finance; General Financial Markets;}$

Emerging markets; Portfolio diversification

I. INTRODUCTION

At present, the easiest way for investors in ASEAN countries to invest in ASEAN members' equity markets is to invest in foreign investment funds. These funds often set an investment policy to track benchmark indices which normally are market indices. Then, looking at diversification perspective, the available investment choices for investors are limited. However, due to the coming ASEAN equity market liberalization in 2015, investors can invest more easily and inexpensively in individual stocks listed in each market through ASEAN Link. As a result, investors have more diversifying investment choices. Therefore, this paper, based on diversification perspective, attempts to study and illustrate the difference of investment allocation when (1) investors in each ASEAN members can only invest in country index funds and (2) when investing in individual stocks in ASEAN is possible.

To complete the objective, this paper is going to do the optimization on two sets of

securities. The first set represents the case that investors can invest in their own country individual securities and invest in other country index funds. This consists of top-rank individual stocks of a country, ASEAN equity market indices and other-region country indices. The second set represents the case when investing in individual ASEAN stocks is possible. It consists of ASEAN top-rank individual stocks and other-region country indices. For instance, looking from Thai investors' perspective, the first portfolio is a set of Thai top-rank individual stocks with MSCI of Indonesia, Malaysia, Philippines and Singapore (Vietnam is excluded due to a limitation of information) and MSCI of other-region. The second is a set of the top-rank individual stocks from Thai market, the top-rank individual stocks from Indonesia, Malaysia, Philippines and Singapore, and MSCI of other-region. We perform the same analysis for other ASEAN countries. In this paper, MSCI indices are used as country indices to represent the country index funds. Finally, the results of the optimizations are compared (the portfolio formed from the first set is called "Before Portfolio" and another is called "After Portfolio").

ASEAN countries in this study are Indonesia, Malaysia, Philippines, Singapore, and Thailand which are the first countries joining the ASEAN Link. Vietnam is excluded due to a limitation of information. For other-region MSCI indices, only the ones which are available in USD are chosen.

After obtaining the time series of return, it is found that the returns of most assets are skew and not normal distributed. Therefore, optimization which considers only mean and

variance in

the work of Markowitz (1952) is not appropriated. His framework argues that investors are interested in the portfolio with the maximum expected return, given a certain level of risk representing by variance. Then, one assumption underlying Markowitz's work is that the asset returns have the normal distribution pattern. However, in this case, this assumption is not true.

The finding of skew and non-normal distribution is consistent with many previous studies. Fama (1965), Arditti and Levy (1971) and Simkowitz and Beedles (1987) indicate that the return of individual stocks are not normally distributed. Haque (2004) shows that the distributions of country MSCI indices are skew and not normal, especially in emerging markets.

Another assumption under Markowitz (1952) is that the investor's utility function is quadratic trading off between only marginal return and risk. However, there are many studies which indicate that skewness is important for investors' decision and it cannot be ignored. Arditti (1967, 1971), Jean (1971, 1973), and Levy and Sarnat (1972) demonstrate that one of the important factors explaining security and portfolio returns is skewness. Samuelson (1970) illustrates that

the higher moment is relevant to the investor's decision on portfolio selection. Other than that, Hanoch and Levy (1970) and Levy and Sarnat (1972) point out that there is some serious drawback to assuming investors' utility function are quadratic function. More recently, some researchers demonstrate the relationship between the portfolios expected return and higher moments. Harvey and Siddique (1999, 2000) show that, in the presence of high positive skewness, investors may be willing to accept a negative expected return due to the higher probability to obtain the profit in

an investors' perspective. Fang and Lai (1997) show evidence that investors forego the expected excess return for taking the benefit of increasing the systematic skewness. Also, investors would prefer high (low) values of odd (even) moments.

Consequently, instead of using Markowitz (1952)'s mean-variance optimization, this paper incorporate skewness in the optimization by employing the Polynomial Goal Programing (PGP) applied by many previous studies, i.e., Lai (1991), Chunhachinda et al. (1997), Prakash et al. (2003), and Sun and Yan (2003). This method allows us to add skewness maximization into the optimization objective, along with the expected return maximization. When expected return and skewness are simultaneously taken into account, there will be two objective functions to be optimized which cannot be satisfied by a single solution. However, PGP link those two objectives

into one new minimization objective by introducing investors' preference function into the process. More detail is discussed in the methodology section.

This paper has three main contributions; (1) this paper provides a good picture of ASEAN cross-equity-market investment after the liberalization in the near future which now is the interesting event, (2) the optimization with skewness has not been used to test ASEAN return data which obviously is skewed, and (3) the ex-ante portfolios are formed on monthly-rolling basis and their results are compared with ex-post returns, unlike previous studies which report only ex-ante estimates.

The related literatures are reviewed in Section 2. Theoretical framework, methodology, and data used in this study are explained in Section 3, 4, and 5. Section 6 describes how the stocks are screened for optimization. Section 7 and 8 are the results of normality and parameter stability tests. Section 9 is the comparison of result between two data sets. Finally, Section 10 is the conclusion.

II. LITERATURE REVIEW

Skewness in the asset return and investor's preference to higher moments

Harvey and Siddique (1999, 2000) illustrate that single factor asset pricing model, whose systematic risk measured by the covariance (or the beta) with the market, does not satisfactorily explain the cross-sectional variation of expected excess return. They then incorporate the coskewness in the cross-sectional test and find that the explanatory power of the variation increases. They intuitively interpret that if investors know that the asset returns have conditional coskewness at time t, expected returns are partially attributed to coskewness.

Harvey et al. (2003) construct the port of four assets and provide the difference of possible space portfolio when skewness is taken and not taken into account. Moreover, they show that

the optimal portfolio is pushed up further along the efficient frontier. This means that for the same level of risk aversion, an investor can get a higher return if they consider skewness in the decision process, especially positive skewness.

Fang and Lai (1997) show that investors forego the expected excess return for taking the benefit of increasing the systematic skewness. Also, investors would prefer high (low) values of odd (even) moments because the high (low) value of an odd moment can be interpreted as

an increasing (decreasing) in the gain (loss) side probability. Conversely, even moments are taken as measures of volatility (risk) of the returns which investors do not prefer. As a result, we can conclude that investors' decision on portfolio selection is subject to their preference on both expected return and skewness.

Optimization with skewness

Lai (1991) and Chunhachinda et. al. (1997) illustrates the difference of weight investing in 14 indices of developed market when investors have different preference to expected return and skewness. The mean-variance portfolio produces highest expected return, while the skewness values of the mean-variance-skewness portfolio are higher than those from the mean-variance portfolio. This evidence implies that an investor will make a decision in such a way that maximizes their utility by trading off between maximizing expected return or maximizing skewness.

Sun and Yan (2003) and Canela and Collazo (2007) extend the method of Lai (1991) to test on the 46 industry indices which present a clear non-normal distribution pattern. The extension of these papers is the change of detail of the PGP. Unlike work of Lai (1991), these papers make some modifications to the objective function and deviational variables. The maximization objective functions are changed to be Sharp Ratio and Coefficient of Skewness (the formulas are shown in the methodology section). They also normalize the deviational variables by the value of objectives that can be achieved when optimizing them separately. They adjust the problem of PGP in order to take into account the different magnitudes of the mean and skewness and avoid the problem when deviational variables are less than one. The results are consistent with previous studies.

The weights are different in each combination of investor's preference.

III. THEORETICAL FRAMEWORK

This section outlines the assumptions of the portfolio selection theory used in the analysis. All of these assumptions are generally accepted and justified in many previous literatures. Following Lai (1991), as mentioned in Chunhachinda et al. (1997), the following assumptions are necessarily under the portfolio selection theory:

 Investors are risk-averse individuals who maximize the expected utility of their end-of-period wealth.

- 2. There are n+1 asset and the $(n+1)^{th}$ asset is the risk free asset.
- 3. All assets are marketable, perfectly divisible and have limited liability.
- 4. The borrowing and lending rates are equal to the rate of return *r* on the risk-free asset.
- 5. The capital market is perfect. There are no taxes and transaction costs.

In addition, to incorporate the moment higher than second, this paper assumes that only skewness is behaviorally justified, and ${\sf let}^1$

- w_i = the weight investing in the i^{th} risky asset in the portfolio, for i=1,...,n),
- r_i = the excess rate of return of asset i^{th} , for i = 1,...,n,
- $\mathbf{W} = (w_1, w_2, ..., w_n)$ be the vector of the weights,
- $\mathbf{r} = (r_1, r_2, ..., r_p)$ be the vector of the excess returns,
- μ = the vector of means of the excess returns,
- V =the variance-covariance matrix,
- I = the identity matrix,
- E = the expectation operator, and
- T = the transpose operator.

Then, the mean, the variance and the skewness of the portfolio returns can be defined as:

Mean
$$= \mathbf{w}^T \boldsymbol{\mu}$$
,

Variance
$$= \mathbf{w}^T \mathbf{V} \mathbf{w}$$
,

Skewness =
$$E[\mathbf{w}^T(\mathbf{r} - \boldsymbol{\mu})]^3$$
,

IV. METHODOLOGY

-

¹ Kraus and Litzenberger (1976) argue that any moment beyond the third are not behaviorally justified

This section describes the methodology we choose to optimize the portfolios. The original and most recent works on optimization with skewness are by Lai (1991) and Canela and Collazo (2007), respectively. They both have different ways of reducing the multi-optimization problem to a more manageable optimization problem. For our analysis we use the work proposed in Canela and Collazo (2007) for our optimization.

When we introduce the skewness in the optimization, the optimal solution is to select a portfolio component \boldsymbol{w} such that the expected portfolio's rate of return and skewness are maximized, while the expected portfolio's variance is minimized. Then, the portfolio selection can be formulated by solving the following multiple objective problems:

Maximize
$$O_1(w)$$
: $\pmb{w}^T\pmb{\mu}$, Minimize $O_2(w)$: $\pmb{w}^T\pmb{V}\pmb{w}$, Maximize $O_3(w)$: $E[\pmb{w}^T(\pmb{r}-\pmb{\mu})]^3$, subject to : $\pmb{w}^T\pmb{I}=1$.

Canela and Collazo (2007) alternatively suggest dividing the first $(O_1(w))$ and the third $(O_3(w))$ objectives by the second objective $(O_2(w))$. Consequently, we get the new two objectives; Sharp Ratio $(\widetilde{O_1}(w))$ and Skewness Coefficient $(\widetilde{O_3}(w))$. The problem is stated as follow:

$$(P1) \begin{cases} \text{Maximize} & \widetilde{O_1}(w) \colon O_1(w) \ast O_2(w)^{-\frac{1}{2}} = (\pmb{w}^T \pmb{\mu}) \ast (\pmb{w}^T \pmb{V} \pmb{w})^{-\frac{1}{2}}, \\ \\ \text{Maximize} & \widetilde{O_3}(w) \colon O_3(w) \ast O_2(w)^{-\frac{3}{2}} = (E[\pmb{w}^T (\pmb{r} - \pmb{\mu})]^3) \ast (\pmb{w}^T \pmb{V} \pmb{w})^{-\frac{3}{2}}, \\ \\ \text{subject to} & : \pmb{w}^T \pmb{I} = 1 \end{cases}$$

Normally, there is no single solution that simultaneously satisfies various objectives. Therefore, investor's preferences to objectives are introduced (or the marginal rate of substitution between the objectives) into the construction of PGP problem. Here, there are two more steps added prior to a solving of investment portion in each asset. First, before taking the investor's preferences into account, objective $\widetilde{O_1}(w)$ and $\widetilde{O_3}(w)$ are solved for maximum value $(\widetilde{O_1}^*(w))$ and $(\widetilde{O_3}^*(w))$ separately. Then, the investor's preferences (p_1) and (p_3) are incorporated

in

the programing in order to allow the objectives' achievement.

In PGP, the objective function contains deviational variables, but not choice variables. These deviational variables represent deviations between goals $(\widetilde{O_1}^*(w))$ and $(\widetilde{O_3}^*(w))$ and what can be achieved $(\widetilde{O_1}(w))$ and $(\widetilde{O_3}(w))$ under some set of constrains. Therefore, the objective function causes deviational variables to determine the values of choice variables. As a result, the objective of PGP (O(w)) is to minimize the sum of the deviational variables which can be different when

the investor's preferences are changed. Noticeably, if the goals are at the same priority level, the relative amount of deviational variables from the goals is always positive.

As mentioned above that in order to take into account the different magnitudes of the mean and skewness, unlike Lai (1991), Canela and Collazo (2007) normalize the deviational variables $(\widetilde{O_1}^* - \widetilde{O_1}(w))$ and $\widetilde{O_3}^* - \widetilde{O_3}(w)$ by the maximum values $(\widetilde{O_1}^*(w))$ and $\widetilde{O_3}^*(w)$. Moreover, to avoid the problem when the deviational variables are less than one, they use the problem as follow:

$$(P2) \begin{cases} \text{Minimize} & O(w) \colon (1+d_1(w))^{p_1} + (1+d_3(w))^{p_3}, \\ \vdots & d_1(w) = (\widetilde{O_1}^*(w) - \widetilde{O_1}(w))/\widetilde{O_1}^*(w) \\ \vdots & d_3(w) = (\widetilde{O_3}^*(w) - \widetilde{O_3}(w))/\widetilde{O_3}^*(w) \\ \vdots & \mathbf{w}^T \mathbf{I} = 1 \end{cases}$$

where

- ullet ${O_i}^*=$ the maximum values of objective O_i , when they are optimized separately,
- ullet $d_i=$ non-negative normalized deviational variables, representing the deviations of O_i from ${O_i}^*$,
- $p_i=$ non-negative investor's preference parameters, representing degree of preference between objectives. If $p_3>p_1$, investors prefer skewness to expected return. If $p_1=1$ and $p_3=0$, a result is the same as Markowitz (1952)

From the problem P2, the solution of various combination of preference p_i can be aggregated to create the efficient frontier of each investor. Jean (1973) illustrates that, even investors have homogeneous expectations about the asset returns' distribution, they will select different set of risky assets.

This paper will employ the modified PGP proposed by Canela and Collazo (2007) shown in P1 and P2 due to its advantages. Modification in P1 eliminates the weight rescaling process, so it is easier to implement. Additionally, normalizing the deviational variables by $\widetilde{O_1}^*$ and changing minimization objective from $\widetilde{d}_i(w)$ to $1+\widetilde{d}_i(w)$ in P2 can solve the problem when there is large difference in magnitudes of the mean and skewness and when $\widetilde{d}_i(w)$ are less than one, respectively.

V. DATA

As the purpose of this paper is to illustrate the possible difference of investment allocation before and after ASEAN market liberalization in 2015, two difference situations are assumed; (1) investors in each ASEAN members can only invest in country index funds and (2) investing in individual stocks is possible (through ASEAN Link) with easier mechanism and cheaper cost. Then, this paper is going to do the optimization on two sets of portfolio. ² The first portfolio consists of 30 individual stocks, obtained from screening process, of a particular ASEAN market, other ASEAN MSCI indices and other-region MSCI indices. The second portfolio consists of the 30 individual stocks of a particular ASEAN market, the 30 individual stocks from other 4 ASEAN markets, and other-region MSCI indices. For instance, looking from Thai investors' perspective, the first portfolio is a set of Thai 30 individual stocks with MSCI of Indonesia, Malaysia, Philippines and Singapore (Vietnam is excluded due to a limitation of information) and MSCI of other-region. The second is a set of the 30 individual stocks from Thai market, the 30 individual stocks from Indonesia, Malaysia, Philippines and Singapore, and MSCI of other-region. Then, obtained from DataStream, the involved data in this study are

Total Stock Return Index, including return from dividend, of individual stocks of ASEAN
 countries; Indonesia (ID), Malaysia (MY), Philippines (PH), Singapore (SG), and Thailand (TH),

² See detail of ASEAN Link's mechanism in appendix I

- MSCIs of ASEAN countries and countries out of this region, consisting of only 39 MSCIs available in US Dollars term are used; Australia, Austria, Belgium, Brazil, Canada, Chile, China, Colombia, Czech Republic, Denmark, Egypt, Finland, France, Germany, Hong Kong, Hungary, India, Ireland, Israel, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Peru, Poland, Portugal, Russia, South Africa, Spain, Sweden, Switzerland, Taiwan, Turkey, UK, and, USA.
- T-bill Yield of each ASEAN countries, representing risk-free asset return using for excess return calculation, and
- Exchange rate of each ASEAN countries against US Dollars, using to convert returns to local currency of a particular investor (as some exchange rate of pairs of countries quoted against each other are not available, the cross currency calculation is applied using those exchange rate quoted against US Dollars).

These data in monthly basis, covering the period from January 2003 through December 2013, are obtained (some needed data are not available before January 2003). Therefore, the complete data set of each asset cover 132 observations.

VI. STOCK SELECTION CRITERIA

As there are more than 500 individual stocks in each market, stock screening process is performed with 3 criteria, which are

- <u>Data Available</u>: If a stock has limited data, it is eliminated from the study because the reliable parameters cannot be obtained.
- Market Capitalization: In portfolio selection framework, statistical stability is very important.
 Considering only stocks having high market capitalization prevent us from picking small stocks

being under a speculating pressure. Prices of those stocks are very volatile; the estimated parameters are not reliable.

3. Liquidity: A stock might not be liquidated at a desire price when that stock has low liquidity, especially when the amount of liquidation is high at a time. Therefore, investors are concerned about liquidity of stocks when they form a portfolio. This paper employs the illiquidity ratio in the work of Amihud (2002).

$$ILLIQ_{iy} = \frac{1}{D_{iy}} \sum_{t=1}^{Diy} |R_{iyd}| / VOLD_{ivyd}$$

where

- D_{iy} = the number of days for which data are available for stock i in year y.
- R_{iyd} = the return on stock / on day d of year y
- $VOLD_{ivvd}$ = the respective daily volume in dollars.

There are many measurements testing the liquidity/illiquidity of stocks. For standard-size transaction, the bid-ask spread is used as a measure of price impact resulting from order flow, whereas larger excess demand induces a greater price impact on prices. ³ Additionally, the quoted bid-ask spreads on stock returns ⁴, the quotes and subsequent transactions⁵, and the price response to signed order flow (order size)⁶ are used to examine the cross-section effect of illiquidity in expected stock returns. However, all of these measurements require a calculation of microstructure data on transactions and quotes which are not available and requires a lot of efforts to perform. Unlike those measurements, illiquidity ratio by Amihud (2002), while it is coarser and less accurate, is readily to implement.

⁵ See Chalmer and Kadlec (1998)

³ See Kraus and stoll (1972), and Keim and Madhavan (1996)

⁴ See Amihud and Mendelson (1986)

⁶ See Brennan and Subrahmanyam (1996)

The screening process involves 3 steps; (1) remove all stocks which have past data less than 72 month (2) rank all stocks by their market capitalization and select 50 highest ones, and, then, (3) calculate illiquidity ratio of each, and select only 30 stocks, which have lowest ratio, for optimization. This process is done at the ending of each year, starting from 2008 to 2012, in order to pick the stocks for optimization in 2009 through 2013 (the details of rolling optimization are discussed in section 9).

There are 205 stocks left from the screening process; 43 from Indonesia, 42 from Malaysia, 41 from Philippines, 36 from Singapore, and 43 from Thailand. These stocks are at least once included in the optimization. ⁷

To check whether this process is robust enough to pick proper stocks for investment, the obtained lists of stocks (only the lists of 2013 as it is the most recent period) are compared with the lists of top 30 ASEAN Stars⁸ (as of December 2013), screened by ASEAN Exchange. The comparison illustrates that our criteria are comparable as the ASEAN Exchange standard. The number of stocks overlapping from our list and ASEAN 30 starts are 24, 21, 25, 25, and 24 from the list of Indonesia, Malaysia, Philippines, Singapore, and Thailand, respectively.

VII. TESTING FOR NORMALITY OF RETURN DISTRIBUTIONS

To confirm the need to use skewness in the optimization, we test for non-normality of the returns of our data sample. The Shapiro–Wilk test and Shapiro–Francia test are chosen in this paper as a methodology for Platykurtic sample and Leptokurtic sample, respectively. However, the rejection of normality can occur when either the distribution is asymmatric or non-mesokurtic. Then, the skewness and kurtosis test (D'Agostino et. al. (1990)) are performed to identify what actually is the cause of a non-normality. As this paper focus on the international investment among ASEAN markets, the distribution of return of stock indices and currencies are tested and the results are shown in Table I. 9

⁷ The lists of stocks in this study are shown in appendix II

⁸ The lists of ASEAN Stars are shown in appendix III

⁹ The values of the test and p-values of each asset are not shown here to save the space, as there are a lot of assets under consideration.

TABLE I:

Normality, Skewness, and Kurtosis Test

This table reports the number of securities under this study whose returns are not normally distributed at 95% confidence level of 2-tail test. The Shapiro–Wilk test and Shapiro–Francia test (H_o: the data set are normal, H₁: the data set are non-normal) are chosen for testing normality of Platykurtic sample and Leptokurtic sample respectively. The skewness test (H_o: the data set are symmetric, H₁: the data set are asymmetric) and kurtosis test (H_o: the data set are mesokurtic, H₁: the data set are non-mesokurtic) are performed to identify the causes of non-normality. There are 205 stocks obtained from screening process; 43 from Indonesia (ID), 42 from Malaysia (MY), 41 from Philippines (PH), 36 from Singapore (SG), and 43 from Thailand (TH). There are 43 MSCIs; 5 ASEAN MACIs and 38 MSCIs for other countries. There are 25 exchange rates; particular ASEAN country against other 4 ASEAN currencies and USD.

	ID	$\mathbf{M}\mathbf{Y}$	PH	SG	TH	MSCI	Ex	To	tal
							Rate		%
No. of stocks	44	43	45	37	50	43	25	287	
No. of non-normal stocks	37	39	39	35	45	39	20	254	89%
- No. of asymmetric stocks	0	0	0	2	0	3	2	7	2%
- No. of non-mesokurtic stocks	13	18	10	12	20	1	1	75	26%
- No. of asymmetric and non-mesokurtic stocks	24	21	29	21	25	35	17	172	60%

The result in Table I shows that the return distributions of assets in this study are not normal. The non-normal return distributions are 254 from 287 (89%)). This result is consistent with many previous works, i.e. Fama (1965), Arditti (1971) and Simkowitz and Beedles (1987) who indicate that the return of individual stocks are not normally distributed and Haque (2004) who shows that the distributions of country MSCI indices are skew and not normal, especially in emerging markets.

Interestingly, asymmetric (the third moment) and non-mesokurtic (the forth moment) attributes are simultaneously the main cause of a non-normality (172 from 287 (60%)). In other word, asymmetric attributes always come with non-mesokurtic attributes, but not vice versa.

Although both asymmetric and non-mesokurtic attributes are found in the samples, we neglect the non-mesokurtic attributes in our optimization because, as stated in Kraus and Litzenberger (1976), any moment beyond the third are not behaviorally justified.

VIII. TESTING FOR INTER-TEMPORAL STABILITY OF ESTIMATED PARAMATERS

Permutation Test

As mentioned earlier that the assets to be optimized is not normal distributed, nonparametric test should be applied. Permutation Tests is used following Canela and Collazo (2007). The whole data set in time series of 132 observations is equally divided into 2 sub-periods. In this case, the first sub-period is from January 2003 through June 2008 and the second sub-period is from July 2008 through December 2013. Data points of each asset between 2 sub-periods are reshuffled for 1,000 times. At each time, the difference of an interesting parameter is recorded and combined to create the distribution of differences. Then, the actual differences of an interesting parameter of those 2 sub-periods are compared with the value at confidence level of 95% and 90% (2-tails test) to show whether or not they are significant from zero.

Tests of correlation structure among countries

Under the portfolio framework, the correlation matrix is assumed to contain all the information about the statistical dependence among the assets to be optimized. Therefore, the correlation matrix of the assets is the fundamental importance in the portfolio selection process, given that the matrix is involved in the calculation of the first three moments in the portfolio optimization. The change in the correlation structure indicates that the efficient frontier is not stable over time, which is something to bear in mind when using past pattern of co-movement to predict the future co-movement of the assets. If there are changes in correlation coefficient, there are increasing or diminishing diversification benefits between those assets across time.

For the purpose of investigating the benefits of investment across countries, although individual stocks are involved in our study, only MSCI of each interesting countries are used in this section in order to illustrate the changing structure in country-level. In the case of using permutation test to test changed in correlation, data points of each pairs of asset, not an individual, between 2 sub-periods are reshuffled. While we are looking from ASEAN investors' perspective, only the results between ASEAN countries and others are shown in Table II.

TABLE II:

Parameters Stability Test Using Permutation Method

(January 2003 – December 2013)

The table reports the result of the parameters stability test using permutation test with the MSCI data starting from January 2003 – December 2013. The permutation test is the non-parametric tests which divides the data series into 2 parts and randomly reshuffle the series for 1,000 times. Each time, the difference of interesting parameters, in this case is correlation and skewness, of those two periods are recorded. Finally, the distributions of differences are drawn. For 95% (90%) confidence level, if the actual difference is higher than the difference at 97.5% (95%) or lower than the difference at 2.5% (5%) of the distribution, it is marked with * (**) as significant change.

Panel A:

This panel reports the changes in correlation between MSCI indices (January 2003 – December 2013)

	1. INDONESIA	2. MALAYSIA	3. PHILIPPINES	4. SINGAPORE	5. THAILAND
1. INDONESIA		0.42 *	0.31 **	0.31 **	0.39 *
2. MALAYSIA	0.42 *		0.27	0.23	0.40 *
3. PHILIPPINES	0.31 **	0.27		0.40 *	0.39 *
4. SINGAPORE	0.31 **	0.23	0.40 *		0.22
5. THAILAND	0.39 *	0.40 *	0.39 *	0.22	
6. AUSTRALIA	0.30	0.19	0.36 *	0.07	0.19
7. AUSTRIA	0.33 **	0.35 *	0.32 **	0.25	0.27
8. BELGIUM	0.34 *	0.33 **	0.22	0.20	0.29
9. BRAZIL	0.35 **	0.42 *	0.49 *	0.24	0.25
10. CANADA	0.36 *	0.28 **	0.50 *	0.16	0.24
11. CHILE	0.27	0.30 **	0.37 *	0.25	0.31 **
12. CHINA	0.34 *	0.23	0.37 *	0.03	0.13
13. COLOMBIA	0.29 **	0.35 *	0.36 *	0.33 *	0.40 *
14. CZECH REPUBLIC	0.36 *	0.41 *	0.48 *	0.22	0.12
15. DENMARK	0.22	0.38 *	0.33 **	0.24	0.22
16. EGYPT	0.22	0.39 *	0.10	0.38 *	0.22
17. FINLAND	0.23	0.20	0.35 **	0.20	0.37 *
18. FRANCE	0.23	0.35 **	0.27	0.20	0.19
19. GERMANY	0.25	0.34 **	0.19	0.25	0.21
20. HONG KONG	0.28	0.19	0.45 *	0.03	0.34 **
21. HUNGARY	0.40 *	0.39 *	0.48 *	0.28 **	0.31 **
22. INDIA	0.23	0.12	0.33 **	0.10	0.19
23. IRELAND	0.26	0.26	0.08	0.19	0.18
24. ISRAEL	0.25	0.38 *	0.39 *	0.42 *	0.33 **
25. ITALY	0.13	0.30 **	0.29	0.18	0.22
26. JAPAN	0.44 *	0.29	0.36 *	0.20	0.22
27. KOREA	0.34 *	0.25	0.29	0.09	0.19
28. MEXICO	0.36 *	0.39 *	0.33 *	0.46 *	0.51 *
29. NETHERLANDS	0.30 **	0.33 *	0.24	0.20	0.20
30. NEW ZEALAND	0.32 **	0.08	0.19	0.18	0.23
31. NORWAY	0.37 *	0.29 **	0.42 *	0.14	0.27
32. PERU	0.43 *	0.14	0.51 *	0.15	0.16
33. POLAND	0.37 *	0.33 *	0.35 **	0.23	0.11
34. PORTUGAL	0.19	0.23	0.14	0.23	0.17
35. RUSSIA	0.33 **	0.50 *	0.51 *	0.33 *	0.36 *
36. SOUTH AFRICA	0.42 *	0.22	0.56 *	0.07	0.30 **
37. SPAIN	0.16	0.23	0.14	0.11	0.00
38. SWEDEN	0.29	0.37 *	0.33 **	0.26	0.26
39. SWITZERLAND	0.18	0.40 *	0.27	0.30 **	0.23
40. TAIWAN	0.44 *	0.25	0.37 *	0.09	0.14
41. TURKEY	0.29	0.20	0.34 **	0.03	0.09
42. UK	0.19	0.34 **	0.32 **	0.15	0.17
43. USA	0.35 *	0.24	0.24	0.13	0.29 **

Panel B:

This panel reports the changes in correlation between exchange rate (January 2003 – December 2013)

	1. IDR/MYR	2. IDR/PHP	3. IDR/SGD	4. IDR/THB	5. IDR/USD
1. IDR/MYR		0.07	0.09	0.20	-0.15
2. IDR/PHP	0.07		0.24	0.33 **	0.11
3. IDR/SGD	0.09	0.24		0.11	-0.07
4. IDR/THB	0.20	0.33 **	0.11		0.19
5. IDR/USD	-0.15	0.11	-0.07	0.19	
	1. MYR/IDR	2. MYR/PHP	3. MYR/SGD	4. MYR/THB	5. MYR/USD
1. MYR/IDR		-0.06	-0.22	-0.15	0.02
2. MYR/PHP	-0.06		0.44 *	0.47 *	0.45 *
3. MYR/SGD	-0.22	0.44 *		-0.21	-0.07
4. MYR/THB	-0.15	0.47 *	-0.21		0.37 *
5. MYR/USD	0.02	0.45 *	-0.07	0.37 *	
	1. PHP/IDR	2. PHP/MYR	3. PHP/SGD	4. PHP/THB	5. PHP/USD
1. PHP/IDR		-0.06	-0.20	-0.22	-0.35 *
2. PHP/MYR	-0.06		0.00	-0.12	-0.66 *
3. PHP/SGD	-0.20	0.00		-0.35 **	-0.60 *
4. PHP/THB	-0.22	-0.12	-0.35 **		-0.12
5. PHP/USD	-0.35 *	-0.66 *	-0.60 *	-0.12	
	1. SGD/IDR	2. SGD/MYR	3. SGD/PHP	4. SGD/THB	5. SGD/USD
1. SGD/IDR		0.02	-0.15	0.00	-0.03
2. SGD/MYR	0.02		-0.40 *	0.20	-0.52 *
3. SGD/PHP	-0.15	-0.40 *		0.39 *	0.04
4. SGD/THB	0.00	0.20	0.39 *		0.45 *
5. SGD/USD	-0.03	-0.52 *	0.04	0.45 *	
	1. THB/IDR	2. THB/MYR	3. THB/PHP	4. THB/SGD	5. THB/USD
1. THB/IDR		-0.13	-0.27	-0.17	-0.44 *
2. THB/MYR	-0.13		-0.32 **	0.01	-0.75 *
3. THB/PHP	-0.27	-0.32 **		-0.02	-0.37 *
4. THB/SGD	-0.17	0.01	-0.02		-0.59 *
5. THB/USD	-0.44 *	-0.75 *	-0.37 *	-0.59 *	

Expectedly, the change in correlation between ASEAN countries and others in Panel A are all positive and many of them are significant, especially for Indonesia, Malaysia, and Philippines. However, Singapore does not share the instability of correlations like other ASEAN countries most likely because the stock market is more integrated with other develop world countries. 10

While investment is made across country, currency is also an asset held by investor. Thus, the test is also performed on the exchange rate. The results in Panel B consistently show that exchange rate correlation structures are also changing overtime.

¹⁰ This paper also extendedly investigates whether correlations are gradually increasing or dynamically fluctuating overtime. The result is presented in appendix IV

These results indicate that the diversification benefit to ASEAN investors is changing overtime and the stability of variance of the portfolio derived from these assets should be considered.

Skewness of each asset

Stability of skewness is a key issue in the portfolio selection process when the skewness is taken into account. Individual stocks having high skewness tend to be included in the portfolio. If the skewness of a particular stock is less persistent than that of other stocks with lesser weight in the portfolio, the whole approach in flawed.

Consequently, the Permutation Test is also applied, but this time the interesting parameter between 2 sub-periods is skewness.

The results of the test, performing with individual stocks and MSCIs, indicate that skewness, for the sample data, only 37 from 205 stocks and 3 from 43 MSCIs are unstable. The exchange rates are also tested, but all of them are stable. ¹¹ In conclusion, the problem of inter-temporal instability of estimated parameters seems to occur more seriously with only the correlation structure.

IX. COMPARISONS OF OPTIMIZATION RESULTS

In this section, the comparisons of the optimal solutions, in-sample estimates, and out-of-sample actuals between portfolios optimizing from available investment choice before market liberalization (called "Before") and portfolios optimizing from available investment choice after market liberalization (called "After") are presented.

Because many ASEAN markets are in developing stage and have restrictions on short sale transactions or have high cost on short sale transactions, this paper constrains the investment weight in each asset to be non-negative. That is the weights are constrained $w_i \geq 0$ in the optimization. There is a point to note here. There is a probability that the optimal solutions obtained from the optimizing algorithm might not be the global, but local minimum, when the set of initial points are not adequate. To avoid that problem, at the beginning of every year where the set of stocks is decomposed according to the screening criteria, 20 initial points are randomly

¹¹ To save the space, the results are not shown here.

generated to find an optimal solution set. Then, for the rest of the year, the optimal solution set is used as initial points for next period.

Theoretically, an investor's utility is the function of the realized return, not the parameter estimates. Unlike the previous papers; Chunhachinda et al. (1997) and Canela and Collazo (2007), which do the optimization only once and report only the in-sample estimated results, but not the actual out-of-sample performance of the optimal solutions, this paper also analyzes out-of-sample performance of the optimum portfolio.

As per the discussion in the earlier section resulting that the estimated parameter is not stable overtime, the results of the previous papers are arguable. Chunhachinda et al. (1997) tests the stability of correlation matrix of developed country MSCIs by utilizing Sen and Puri (1968) methodology and illustrates that there exists stability of correlation between assets. Thus, the efficient frontier can be considered relatively stable overtime and the results of the test are accuracy. However, in the real world, especially in the emerging market, data stability rarely occurs. Canela and Collazo (2007), consistent with many studies, illustrates that the correlation structure is not stable, some of them are significant. This issue makes the optimal solutions reported in this study less convincing.

Moreover, when Chunhachinda et al. (1997) and Canela and Collazo (2007) report only the in-sample estimated portfolio parameters, Expected Return and Skewness, and Sharpe Ratio and Skewness Coefficient, respectively, their results can be arguable. As the reward to investors is the realized future return of their portfolio, not the parameters, this paper test whether investors can achieve those estimates when they bring the optimal solutions to do a real investment.

Consequently, this paper decides to use the rolling window and form a portfolio follow the optimal solution obtained from optimization on monthly basis to mitigate the parameter instability problem and make the result more convincing. Each asset in each window consists of 72 monthly observations. The estimated parameters of each asset from each window are optimized to find the optimal solutions and the expected in-sample portfolio parameters, Sharpe Ratio and Skewness Coefficient. For example, to find the optimal solution for January 2009, monthly data covering January 2003 – December 2008 are used, for February 2009, monthly data covering February 2003 – January 2009 are used, and so on. Total of 60 expected in-sample portfolio parameters for each different investor preference set ((1) p_1 = 1, p_3 = 0, (2) p_1 = 0, p_3 = 1, (3) p_1 = 1, p_3 = 1, (4) p_1 = 2, p_3 = 1, and (5) p_1 = 1, p_3 = 2) are obtained and, then averaged. Finally, the portfolio is formed following the solutions of each month, series of returns are recorded, and

the actual out-of-sample portfolio parameters are compared with the averaged expected insample portfolio parameters. This process is applied to both portfolios ("Before" and "After"). Results are compared in Table III.

Panel A presents the monthly averaged estimated in-sample parameters of "Before" and "After" portfolio looking from each ASEAN countries' perspectives, given different sets of investor's preferences. The results of this paper are consistent with the previous paper. Precisely, optimization with $p_1 = 1$ and $p_3 = 0$ ($p_1 = 0$ and $p_3 = 1$) get highest SR (SC) while optimization with $p_1 = 1$ and $p_3 = 1$ ($p_1 = 1$ and $p_3 = 2$) get 2nd-highest SR (SC). Optimization with $p_1 = 1$ and $p_3 = 1$ give the result in between those cases. This ensures that our process is right.

Most of the results in Panel A indicate that investors will benefit from market liberalization in term of both Sharpe Ratio ("SR") and Skewness Coefficient ("SC") regardless the different preferences. There are some exceptions that investors are worst off; for instance, Investors from Malaysia, Philippines, and Singapore who prefer only the SR (p_1 = 1, p_3 = 0) get lower SC and investors from Singapore who prefer SR to SC (p_1 = 2, p_3 = 1) get lower SC. However, the investors are worst off in the factor which is not or less relevant to them. So that, from insample estimates, it can be concluded that investor will benefit from market liberalization.

Panel B reports the actual parameters calculated from the series of 60 actual out-of-sample returns. It is obvious that the actual results are quite different from the estimates; investors do not benefit for all cases.

The actual performance of the investors having one preference (p_1 = 1, p_3 = 0 and p_1 = 0, p_3 = 1) is in line with the estimates. To be specific, all of investors with SR-only preference get highest SR. Conversely, most of investors with SC-only preference get highest SC. However, when the two preferences are combined into an optimization, the clear pattern cannot be seen.

There are some investors who obtain less benefit in both SR and SC with After portfolio, or, in other word, they do not gain any benefit from market liberalization. For example, Investors from Malaysia who prefer SR to SC (p_1 = 2, p_3 = 1), Investors from Singapore who prefer SC to SR (p_1 = 1, p_3 = 2), and Investors from Singapore, Philippines and Thailand who prefer SR and SC equally (p_1 = 1, p_3 = 1) do not benefit from liberalization.

From these two panels, it is clear that the actual out of sample results are quite different from the in sample estimates. The instability of the estimated parameters might be the main causes of this result. This issue is also a controversial topic studied by many papers, including Harvey et. al. (2003). However, it is out of scope of this paper.

Although it cannot be made a strong conclusion that market liberalization will benefit all ASEAN investors, from the repeatedly experiment of out-of-sample investment, at least most of Indonesian, Malaysian, Singaporean, and Thai investors can expect gains from cross-border investment.

Panel C show the asset allocation to the stocks of each country, given that investors expect the benefit from investing aboard. The results are consistent with many previous papers, using PGP for optimizing with skew. The weight allocation is different when the skewness is incorporated into investors' preference. Deviously, from the table, there are 5 main points to be noted. 13

- Before market opening, investing in ASEAN county funds (ASEANs' MSCIs) cannot help investor to diversify, so weights are mainly allocated within a country where investors are living in and a few to foreign fund.
- 2. After market opening, only ASEAN stocks are enough for ASEAN investors to diversify their portfolio and no need to invest in foreign fund anymore.
- 3. The weight investing in a certain country reduces a lot, which means that there will be a remarkable fund flow moving between ASEAN markets (assuming that other difficulties are minimized, such as, information a symmetry between country, communication language skill, and etc.).
- 4. For investors who prefer only the SR ($p_1 = 1$, $p_3 = 0$), in the past five years, Stocks of Malaysia (i.e. Petronas Dagangan and Telekom Malaysia) are always considered as a good source of expected return with less variance. Consequently, Malaysian investors with $p_1 = 1$, $p_3 = 0$ gain less benefit (from 0.58 to 0.63). While Thai Stock (i.e. Advance Info Ser. and

_

 $^{^{12}}$ See 3 of highest-weighted stocks from each ASEAN country in appendix V

 $^{^{13}}$ Only the cases of p1 = 1, p3 = 0 and p1 = 0, p3 = 1 are shown to save the space as the solutions of other cases are actually in combination of these two case.

CP All) is becoming more interesting, Philippines and Singapore shows a downward trend in weight.

5. For investors who prefer only the SC ($p_1 = 0$, $p_3 = 1$), no very clear pattern is found. The weights are sometime allocated to Indonesian, Malaysian, Philippines, and Singaporean stocks. However, for the most recent year, it is obviously that Indonesian stocks are a good source of skewness with less variance. Then, compared to other countries except Philippines, Indonesian investors with $p_1 = 0$, $p_3 = 1$ gain less benefit (from 0.05 to 0.14).

From the five noticeable points above, we can do a summary in two perspectives; (1) perspective of investors and (2) perspective of country stock market. However, while there is no certain pattern in the result of the combination set of preferences (p_1 and p_3), the summary is focusing on the case $p_1 = 1$, $p_3 = 0$ and $p_1 = 0$, $p_3 = 1$.

- 1. <u>Perspective of investors</u>: Malaysian investors who have $p_1 = 1$, $p_3 = 0$ will get less benefit, compared to investors who have the same preference in other ASEAN countries, because Malaysian stocks provide highest SR already. On the other hand, Indonesian, Philippines, and Singaporean investors who have $p_1 = 0$, $p_3 = 1$ will get relatively less benefit, because they already obtain high SC from investing in their own country. That investors are the highest-benefited ones because That stocks generate relatively lowest SR and SC.
- Perspective of country stock market: The main fund flows are believably expected to be moved to
 Malaysia stock market due to its benefit in term of both SR and SC. The rest, depending on the
 investor preferences, will be moved to Indonesia, Philippines, Singapore, and Thailand.

X. CONCLUSION

This paper, based on diversification perspective, attempts to study and illustrate the difference of investment allocation when (1) investors in each ASEAN members can only invest in country index funds and (2) when investing in individual stocks is possible. Two sets of data, representing available assets to investor before and after market liberalization in 2015.

We found that series of return of such assets are not normal, which breach the assumption of Markowitz (1952). As an any moments more third moment are not justified in the practical, PGP method, introduced by Lai (1991) with some adjustment by Canela and Collazo (2007), is used to incorporate the skewness into the optimization.

As the stability of the parameters is the concern the parameter estimates, the permutation test is used to perform stability test. The result shows that the correlation structure is changing overtime, unlike skewness which is quite stable. These results are in line with Canela and Collazo (2007). Consequently, we decide to do the rolling optimization for 60 monthly periods and report both portfolio in-sample estimated and actual out-of-sample parameters in order to mitigate

the parameter instability problem.

The results show that, even though the actual parameters are not equal to all estimates, most of them are reported in the same direction (most investor will gain the benefit from market liberalization). Therefore, our results show that there will be benefits to ASEAN investors. Moreover, the numbers of cross-broader investment are expected be higher. Stocks of Malaysian market are perceived as a good investment choice for Sharpe-ratio-concerning investors, while Stocks of Indonesian market are for Skewness-coefficient-concerning investors.

TABLE III:

Comparisons of Optimization Results

This table reports the comparisons of results between portfolios assuming investors can only invest in individual securities in their countries and can invest in index in other countries around the world ("Before") and portfolios assuming investors can invest in individual securities in their countries, individual securities in ASEAN countries, and can invest in index in other countries around the world ("After"). $P_1 = 1$ and $P_3 = 0$, $P_1 = 0$ and $P_3 = 1$, $P_1 = 1$ and $P_3 = 1$, and $P_1 = 1$ and $P_3 = 1$ and $P_3 = 1$, and $P_1 = 1$ and $P_3 = 1$ and $P_3 = 1$, and $P_1 = 1$ and $P_3 = 1$ and $P_3 = 1$, and $P_3 = 1$ and P

Panel A:

This panel reports the averaged in-sample estimates of Sharpe Ratio and Skewness Coefficient of Before and After portfolio, resulting from 60 monthly rolling-windows optimization. There are 72 historical data in each monthly rolling-windows; i.e. January 2003 to December 2008, December 2007 to November 2013, and so on.

Sharpe		ID inve	stors	MY inve	estors	PH inve	estors	SG inve	stors	TH inve	estors
Ratio		Before	After								
P1 = 1	P3 = 0	0.38	0.64 🁚	0.55	0.69 👚	0.44	0.61 👚	0.37	0.66 👚	0.36	0.61 👚
P1 = 0	P3 = 1	0.13	0.14	0.12	0.17 👚	0.18	0.18	0.17	0.17	-0.02	0.15
P1 = 1	P3 = 1	0.21	0.30 🁚	0.28	0.28	0.25	0.28	0.22	0.28	0.03	0.27 👚
P1 = 2	P3 = 1	0.30	0.54	0.45	0.55 👚	0.38	0.49 👚	0.28	0.53 🎓	0.05	0.49 👚
P1 = 1	P3 = 2	0.16	0.23 🎓	0.17	0.20 🎓	0.21	0.21	0.18	0.20 👚	0.13	0.18

Skewnes	s	ID inve	stors	MY invo	estors	PH inve	estors	SG inve	stors	TH inve	estors
Coefficie	nt	Before	After								
P1 = 1	P3 = 0	-0.68	-0.41 👚	-0.18	-1.01 棏	-0.61	-0.72 棏	-0.61	-0.79 棏	-1.06	-0.92 👚
P1 = 0	P3 = 1	1.24	2.37 👚	1.39	2.24 👚	1.03	2.31 👚	1.55	2.29 👚	0.65	2.31
P1 = 1	P3 = 1	1.18	2.21 👚	1.29	2.03 👚	0.95	1.80 👚	1.49	2.07 👚	0.21	2.01 👚
P1 = 2	P3 = 1	0.75	0.86 👚	0.85	0.87 👚	0.48	1.11 👚	1.02	0.87 棏	0.10	0.78 👚
P1 = 1	P3 = 2	1.18	2.31	1.35	2.16	1.03	2.20	1.53	2.27	0.64	2.29

Panel B:

This panel reports the actual Sharpe Ratio and Skewness Coefficient of Before and After portfolio, calculated from series of 60 actual returns which are an out-of-sample prediction of portfolio construction. The actual out-of-sample returns are obtained from using the in-sample optimal weights, optimized from 72 historical data, to construct an optimum portfolio for the next month. The 60 rolling-windows start from January 2003 to December 2008 through December 2007 to November 2013. So that, the actual monthly portfolio returns are from January 2009 through December 2013.

Sharpe		ID inve	stors	MY invo	estors	PH inve	estors	SG inve	stors	TH inve	estors
Ratio		Before	After								
P1 = 1	P3 = 0	0.17	0.55 👚	0.58	0.63 👚	0.44	0.53	0.43	0.51 👚	0.26	0.50 🎓
P1 = 0	P3 = 1	0.10	0.33 👚	0.19	0.21 👚	0.13	0.16 👚	0.36	0.18 🚚	0.15	0.19 🁚
P1 = 1	P3 = 1	0.07	0.33 👚	0.12	0.27	0.27	0.17 🔱	0.34	0.32 🗸	0.25	0.20 🗸
P1 = 2	P3 = 1	0.03	0.38 👚	0.50	0.49 🦊	0.38	0.40	0.38	0.39 👚	0.21	0.35 🎓
P1 = 1	P3 = 2	0.00	0.23	0.26	0.18 🔱	0.15	0.16	0.36	0.19 🗸	0.27	0.20 🗸

Skewnes	S	ID inve	stors	MY invo	estors	PH inve	estors	SG inve	stors	TH inve	estors
Coefficie	nt	Before	After								
P1 = 1	P3 = 0	-0.19	-0.88 棏	0.31	-0.03 棏	0.15	-0.19 🦊	-0.17	0.19 🁚	-0.93	-0.50 👚
P1 = 0	P3 = 1	0.05	0.14 🁚	-0.02	0.35 👚	1.29	0.57 棏	0.27	0.39 👚	-0.64	0.25
P1 = 1	P3 = 1	-0.24	-0.07 👚	-0.50	-0.06 👚	0.51	-0.74 棏	0.37	0.27 🞝	-0.28	-0.47 棏
P1 = 2	P3 = 1	-0.25	-0.89 棏	0.02	-0.09 🔱	-0.12	-0.03 👚	-0.07	-0.25 🔱	-0.43	-0.43
P1 = 1	P3 = 2	-0.03	0.13	-0.53	0.16	0.07	-0.08 👢	0.32	0.09 👃	-0.93	0.09 👚

Panel C:

This panel reports the yearly averages of monthly optimal weights of Before and After portfolio, resulting from optimization of 60 rolling-windows which start from January 2009 to December 2013. Each table report the yearly averaged optimal weights looking from investors from each ASEAN country starting from Indonesia, Malaysia, Philippines, Singapore, and Thailand. Only the weights of investor preference set with P₁ = 1 and P₃ = 0 and P₁ = 0 and P₃ = 1 are shown while the weights of the other sets are actually in between these two sets. The weighted stock markets include Indonesia (ID), Malaysia (MY), Philippines (PH), Singapore (SG), and Thailand (TH), Australia, Austria, Belgium, Brazil, Canada, Chile, China, Colombia, Czech Republic, Denmark, Egypt, Finland, France, Germany, Hong Kong, Hungary, India, Ireland, Israel, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Peru, Poland, Portugal, Russia, South Africa, Spain, Sweden, Switzerland, Taiwan, Turkey, UK, and, USA. All of the non-ASEAN stock markets are reported as "Other Region".

Indonesia Investors' Perspective

P1 = 1	II)	M	Y	PI	ł	SO	Ĵ	T]	Ħ	Other I	Region
P3 = 0	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After
2009	76%	23% 👢	0%	36% 👚	0%	20% 👚	0%	21% 👚	0%	0%	24%	0% 🕂
2010	88%	26% 👢	0%	31% 👚	0%	24% 👚	0%	14% 👚	0%	5% 👚	12%	0% 🗸
2011	100%	16% 棏	0%	39% 👚	0%	20% 👚	0%	12% 👚	0%	13% 👚	0%	0%
2012	100%	21% 🚚	0%	48% 👚	0%	16% 👚	0%	5% 👚	0%	10% 👚	0%	0%
2013	99%	19% 🗸	0%	38% 👚	0%	19% 👚	0%	4% 👚	0%	20% 👚	1%	0% 🗸

P1 = 0	II)	M	Y	PI	H	SC	J	Tl	H	Other I	Region
P3 = 1	Before	After	Before	After								
2009	79%	24% 👢	0%	4% 🁚	0%	42% 👚	0%	0%	0%	30% 👚	20%	0% 🔱
2010	69%	26% 棏	0%	7% 👚	0%	46% 👚	0%	20% 👚	0%	0%	30%	1% 棏
2011	100%	44% 🚚	0%	38% 👚	0%	0%	0%	15% 👚	0%	2% 👚	0%	0%
2012	99%	11% 🚚	1%	6% 👚	0%	6% 👚	0%	76% 👚	0%	0%	0%	0%
2013	94%	49% 👢	0%	27% 👚	0%	0%	0%	11% 👚	0%	13% 👚	6%	0% 🚚

Malaysia Investors' Perspective

P1 = 1	II)	M	Y	PI	H	SC	j	Tl	Ŧ	Other I	Region
$\mathbf{P3} = 0$	Before	After	Before	After								
2009	0%	11% 👚	90%	55% 🕂	0%	21% 🁚	0%	13% 👚	0%	0%	10%	0% 👢
2010	0%	5% 👚	96%	61% 🚚	0%	22% 👚	0%	8% 👚	0%	5% 👚	4%	0% 棏
2011	0%	2% 👚	100%	67% 🚚	0%	13% 👚	0%	7% 👚	0%	11% 👚	0%	0%
2012	0%	5% 👚	100%	64% 🚚	0%	16% 👚	0%	3% 👚	0%	12% 👚	0%	0%
2013	0%	6% 👚	100%	57% 棏	0%	16% 👚	0%	5% 👚	0%	15% 👚	0%	0%

$\mathbf{P1} = 0$	II)	M'	Y	PI	H	SC	Ġ.	T	H	Other I	Region
P3 = 1	Before	After	Before	After								
2009	0%	8% 👚	95%	9% 🕂	0%	50% 👚	0%	0%	0%	32% 👚	5%	0% 👢
2010	0%	23% 👚	100%	0% 🞝	0%	31% 👚	0%	46% 👚	0%	0%	0%	0%
2011	0%	31% 👚	99%	68% 棏	0%	0%	0%	0%	0%	0%	1%	0% 棏
2012	0%	11% 👚	89%	4% 🚚	0%	16% 👚	0%	61% 👚	0%	9% 👚	11%	0% 棏
2013	0%	52% 👚	92%	42% 🚚	0%	0%	0%	6% 👚	0%	0%	8%	0% 棏

Philippines Investors' Perspective

P1 = 1	II)	M	Y	PI	Ŧ	SO	G	TH		Other Region	
$\mathbf{P3} = 0$	Before	After	Before	After								
2009	0%	14% 👚	0%	47% 👚	76%	30% 👢	0%	10% 👚	0%	0%	24%	0% 🗸
2010	0%	8% 👚	0%	46% 👚	78%	28% 🚚	0%	12% 👚	0%	6% 👚	22%	0% 棏
2011	0%	2% 👚	0%	43% 👚	93%	25% 🚚	0%	16% 👚	0%	14% 👚	7%	0% 棏
2012	0%	7% 👚	0%	55% 👚	100%	22% 🚚	0%	1% 👚	0%	16% 👚	0%	0%
2013	0%	7% 👚	0%	46% 👚	100%	24% 🚚	0%	2% 👚	0%	22% 👚	0%	0%

$\mathbf{P1} = 0$	ID		MY		PH		SG		TH		Other Region	
P3 = 1	Before	After	Before	After								
2009	0%	8% 👚	0%	2% 👚	87%	54% 👢	0%	0%	0%	36% 👚	13%	0% 👢
2010	0%	23% 👚	0%	7% 👚	93%	30% 🚚	0%	39% 👚	0%	0%	7%	1% 棏
2011	0%	25% 👚	0%	75% 👚	63%	0% 🚚	0%	0%	0%	0%	37%	0% 棏
2012	0%	37% 👚	0%	45% 👚	85%	11% 棏	0%	5% 👚	0%	1% 👚	15%	0% 棏
2013	0%	57% 👚	0%	34% 👚	95%	0% 🗸	0%	7% 👚	0%	2% 👚	5%	0% 👢

Singapore Investors' Perspective

P1 = 1	ID		MY		PH		SG		TH		Other Region	
$\mathbf{P3} = 0$	Before	After	Before	After								
2009	0%	11% 👚	0%	52% 👚	0%	20% 👚	84%	18% 棏	0%	0%	16%	0% 🕂
2010	0%	6% 👚	0%	58% 👚	0%	20% 👚	91%	11% 🗸	0%	5% 👚	9%	0% 🗸
2011	0%	3% 👚	0%	61% 👚	0%	13% 👚	99%	10% 棏	0%	12% 👚	1%	0% 🗸
2012	0%	8% 👚	0%	61% 👚	0%	16% 👚	100%	3% 🗸	0%	13% 👚	0%	0%
2013	0%	8% 👚	0%	53% 👚	0%	16% 👚	97%	7% 🗸	0%	16% 👚	3%	0% 🗸

$\mathbf{P1} = 0$	ID		MY		PH		SG		TH		Other Region	
P3 = 1	Before	After	Before	After								
2009	0%	8% 👚	0%	3% 👚	0%	53% 👚	100%	0% 🖶	0%	35% 👚	0%	0%
2010	0%	24% 👚	0%	0%	0%	29% 👚	100%	47% 棏	0%	0%	0%	0%
2011	0%	34% 👚	0%	62% 👚	0%	0%	100%	4% 棏	0%	0%	0%	0%
2012	0%	8% 👚	0%	0%	0%	13% 👚	100%	71% 棏	0%	7% 👚	0%	0%
2013	0%	59% 👚	0%	30% 👚	0%	0%	100%	10% 棏	0%	0%	0%	0%

Thailand Investor Perspective

P1 = 1	ID		MY		PH		SG		TH		Other Region	
P3 = 0	Before	After	Before	After								
2009	0%	11% 👚	0%	43% 👚	0%	24% 👚	0%	19% 👚	38%	2% 🗸	62%	0% 🗸
2010	0%	6% 👚	0%	40% 👚	0%	23% 👚	0%	16% 👚	63%	14% 🗸	37%	0% 🚚
2011	0%	2% 👚	0%	39% 👚	0%	22% 👚	0%	16% 👚	91%	21% 🗸	9%	0% 🚚
2012	0%	7% 👚	0%	53% 👚	0%	17% 👚	0%	1% 👚	100%	23% 🗸	0%	0%
2013	0%	6% 👚	0%	43% 👚	0%	19% 👚	0%	2% 👚	100%	30% 棏	0%	0%

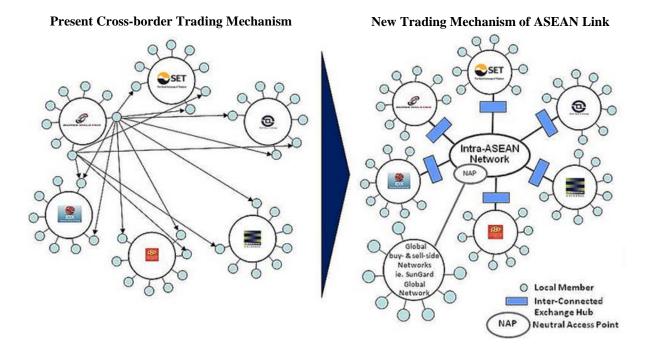
P1 = 0	ID		MY		PH		SG		TH		Other Region	
P3 = 1	Before	After	Before	After								
2009	0%	7% 👚	0%	4% 👚	0%	47% 👚	0%	0%	100%	42% 棏	0%	0%
2010	0%	23% 👚	0%	0%	0%	32% 👚	0%	45% 👚	100%	0% 👢	0%	0%
2011	0%	31% 👚	0%	63% 👚	0%	0%	0%	0%	94%	6% 棏	6%	0% 🚚
2012	0%	6% 👚	0%	0%	0%	16% 👚	0%	65% 👚	97%	13% 棏	3%	0% 棏
2013	0%	65% 👚	0%	28% 👚	0%	0%	0%	7% 👚	66%	0% 👃	34%	0% 👢

REFERENCES

- Amihud, Y., Mendelson, H., 1986. Asset pricing and the bid—ask spread. Journal of Financial Economics 17, 223–249.
- Amihud, Y., 2002. Illiquidity and stock returns: cross-sectional and time series effects. Journal of Finance Markets 5, 31-56.
- Arditti, F.D., 1967. Risk and the required return on equity. The Journal of Finance 22, 19–36.
- Arditti, F.D., Levy, H., 1971. Portfolio efficiency analysis in three moments: the multi-period case.

 The Journal of Finance 30, 797–809.
- Brennan, M.J., Subrahmanyam, A., 1996. Market microstructure and asset pricing: on the compensation for illiquidity in stock returns. Journal of Financial Economics 41, 441–464.
- Canela, M.A., Collazo, E.P., 2007. Portfolio selection with skewness in emerging market industries.

 Emerging Markets Review 8, 230–250
- Chalmers, J.M.R., Kadlec, G.B., 1998. An empirical examination of the amortized spread. Journal of Financial Economics 48, 159–188.
- Chunhachinda, P., Dandapani, K., Hamid, S., Prakash, A.J., 1997. Portfolio selection and skewness: evidence from international stock markets. Journal of Banking and Finance 21, 143–167.
- D'agostino, R.B., Belanger, A., D'agostino Jr., R.B., 1990. A Suggestion for Using Powerful and Informative Tests of Normality. The American Statistician 44, 316-321.
- Fama, E.F., 1965. Portfolio analysis in a stable paretian market. Management Science 11, 404-419.
- Fang, H., Lai, T.Y., 1997. Co-kurtosis and capital asset pricing. The Financial Review 32, 293–307.
- Hanoch, G., Levy, H., 1970. Efficient portfolio selection with quadratic and cubic utility. The Journal of Business 43, 181-89.
- Haque, M., Hassan, K.M., Varela, O., 2004. Safety-first portfolio optimization for U.S. investors in emerging global, Asian And Latin America markets. Pacific-Basin Finance Journal 12, 91–116
- Harvey, C.R., Siddique, A., 1999. Autoregressive conditional skewness. Journal of Financial and Quantitative Analysis 34, 465–487.


- Harvey, C.R., Siddique, A., 2000. Conditional skewness in asset pricing tests. The Journal of Finance 55, 1263–1295.
- Harvey, C.R., Liechty, J.C., Liechty, M.W., Müller, P., 2010. Portfolio Selection with Higher Moments.

 Quantitative Finance 10, 469-485.
- Jean, W.H., 1971. The extension of portfolio analysis to three or more parameters. Journal of Financial and Quantitative Analysis 6, 505-515.
- Jean, W.H., 1973. More on multidimensional portfolio analysis. Journal of Financial and Quantitative Analysis 8, 475-490.
- Keim, D.B., Madhavan, A., 1996. The upstairs market for large-block transactions: analysis and measurement of price effects. Review of Financial Studies 9, 1–36.
- Krans, A., Litzenberger, R.H., 1976. Skewness preference and the valuation of risk assets. Journal of Finance 31, 1085-1100.
- Kraus, A., Stoll, H.R., 1972. Price impacts of block trading on the New York Stock Exchange. Journal of Finance 27, 569–588.
- Lai, T.Y., 1991. Portfolio selection with skewness: a multiple-objective approach. Review of Quantitative Finance and Accounting 1, 293–305.
- Levy, H. and Sarnat, M., 1972. Investment and portfolio analysis (Wiley, New York).
- Markowitz, H., 1952. Portfolio selection. Journal of Finance 8, 77-91
- Prakash, A.J., Chang, C.H., Pactwa, T.E., 2003. Selecting a portfolio with skewness: recent evidence from US, European, and Latin American equity markets. Journal of Banking and Finance 27, 1375–1390.
- Samuelson, P.A., 1970. The fundamental approximation theorem of portfolio analysis in terms of means, variances and higher moments. The Review of Economic Studies 37, 537-542
- Simkowitz, M.A., Beedles, W.L., 1978. Diversification in a three moment world. Journal of Financial and Quantitative Analysis 13, 927-941.
- Sun, Q., Yan, Y., 2003. Skewness persistence with optimal portfolio selection. Journal of Banking and Finance 27, 1111–1121.

APPENDIX I: NEW TRADING MECHANISM OF ASEAN LINK

New mechanism of ASEAN Link is established in order for increasing the easiness of cross-border investment, the efficiency of the trading, settling and data distributing process. Investors can buy or sell stocks in every market of ASEAN.

This mechanism allows investor to buy or sell stock of other countries even they have no trading account in those countries. They can send orders to brokers, who register to use this system, in their country with certain brokerage fees.

Source of data: www.set.or.th/th/asean_exchanges/asean_link.html

APPENDIX II: LIST OF STOCKS IN THIS STUDY (obtained from the 3 criteria; (1) data availability, (2) market capitalization, and (3) illiquidity ratio)

No.	Indonesia Stock Market	Malaysia Stock Market	Philippines Stock Market	Singapore Stock Market	Thailand Stock Market
1.	* AKR CORPORINDO	AFFIN HOLDINGS	* ABOITIZ EQUITY VENT.	ASCENDAS REAL ESTATE IT.	* ADVANCED INFO SER.
2.	ANEKA TAMBANG	AIRASIA	* ALLIANCE GLOBAL GP.	CAPITACOMMERCIAL TRUST	* AIRPORTS OF THAILAND
3.	* ASTRA AGRO LESTARI	ALLIANCE FINANCIAL GP.	ATLAS CONS.MNG.& DEV.	* CAPITALAND	AP (THAILAND)
4.	BAKRIE & BROTHERS	* AMMB HOLDINGS	* AYALA	* CAPITAMALL TRUST	BANGCHAK PETROLEUM
5.	BAKRIE SUMATERA PLTNS.	BERJAYA	* AYALA LAND	* CITY DEVELOPMENTS	* BANGKOK BANK
6.	BAKRIELAND DEVELOPMENT	BERJAYA SPORTS TOTO	* BANK OF THE PHILP.ISLE.	* COMFORTDELGRO	* BANGKOK DUSIT MED.SVS.
7.	* BANK CENTRAL ASIA	BOUSTEAD HOLDINGS	* BDO UNIBANK	COSCO (SING.)	BANGKOK EXPRESSWAY
8.	* BANK DANAMON INDONESIA	* BRIT.AMER.TOB.(MALAYSIA)	BELLE	* DBS GROUP HOLDINGS	* BANK OF AYUDHYA
9.	BANK INTL.INDONESIA	BURSA MALAYSIA	BERJAYA PHILIPPINES	* FRASER AND NEAVE	* BANPU
10.	* BANK MANDIRI	* CIMB GROUP HOLDINGS	CHINA BANKING	* GENTING SINGAPORE	* BEC WORLD
11.	* BANK NEGARA INDONESIA	DIALOG GROUP	* DMCI HOLDINGS	* GOLDEN AGRI-RESOURCES	BERLI JUCKER
12.	* BANK RAKYAT INDONESIA	* DIGI.COM	* ENERGY DEVELOPMENT	* HONG KONG LAND HDG.	* BIG C SUPERCENTER
13.	BARITO PACIFIC	DRB-HICOM	FILINVEST LAND	INDOFOOD AGRI RESOURCES	BTS GROUP HDG.
14.	* BUMI RESOURCES	GAMUDA	* FIRST GEN	* JARDINE CYC.& CARR.	* CENTRAL PATTANA
15.	* CHAROEN POKPHAND INDO.	* GENTING	FIRST PHILIPPINE HDG.	* JARDINE MATHESON HDG.	* CHAROEN POKPHAND FOODS
16.	CIPUTRA DEVELOPMENT	* GENTING MALAYSIA	* GLOBE TELECOM	* KEPPEL	* CP ALL
17.	DELTA DUNIA MAKMUR	GENTING PLANTATIONS	* INTL.CTNR.TERM.SVS.	KEPPEL LAND	* ELECTRICITY GENERATING
18.	ENERGI MEGA PERSADA	* HONG LEONG BANK	ISM COMMUNICATIONS	NEPTUNE ORIENT LINES	HOME PRODUCT CENTER
19.	* GLOBAL MEDIACOM	IGB	* JG SUMMIT HDG.	* NOBLE GROUP	* IRPC
20.	* GUDANG GARAM	IJM	* JOLLIBEE FOODS	* OLAM INTERNATIONAL	ITALIAN-THAI DEVELOPMENT
21.	* HOLCIM INDONESIA	* IOI	LEPANTO CONS.MNG.A	* OVERSEA-CHINESE BKG.	* KASIKORNBANK
22.	* ICT.TUNGGAL PRAKARSA	KNM GROUP	LOPEZ HOLDINGS	* SEMBCORP INDUSTRIES	* KRUNG THAI BANK
23.	INDAH KIAT PULP & PAPER	* KUALA LUMPUR KEPONG	MANILA ELECTRIC	* SEMBCORP MARINE	LAND AND HOUSES
24.	* INDOFOOD SUKSES MAKMUR	KULIM (MALAYSIA)	* MANILA WATER	* SINGAPORE AIRLINES	LIVE
25.	INDOSAT	* MALAYAN BANKING	* MEGAWORLD	* SINGAPORE EXCHANGE	MINOR INTERNATIONAL
26.	* KALBE FARMA	* MISC BHD.	* METRO PACIFIC INVS.	SINGAPORE POST	PRECIOUS SHIPPING
27.	* LIPPO KARAWACI	MMC	* METROPOLITAN BK.& TST.	* SINGAPORE PRESS HDG.	PRUKSA REAL ESTATE
28.	MEDCO ENERGI INTL.	PARKSON HOLDINGS	* PETRON	* SINGAPORE TECHS.ENGR.	* PTT
29.	MITRA ADIPERKASA	* PETRONAS DAGANGAN	* PHILEX MINING	* SINGAPORE TELECOM	* PTT EXPLORATION & PRDN.
30.	MNC INVESTAMA	* PETRONAS GAS	PHILIPPINE NATIONAL BANK	SMRT	QUALITY HOUSES
31.	PAKUWON JATI	* PPB GROUP	PHILP.LONG DSN.TEL.	* STARHUB	* RATCHABURI ELECTRICITY
32.	* PERUSAHAAN GAS NEGARA	* PUBLIC BANK	PHILWEB	SUNTEC RLST.IT.	* SHIN
33.	PP LONDON SUMATRA INDO.	* RHB CAP.	RIZAL COML.BKG.	UMW HOLDINGS	* SIAM CEMENT
34.	* SEMEN GRESIK	* SIME DARBY	* ROBINSONS LD.	* UNITED OVERSEAS BANK	* SIAM COMMERCIAL BANK
35.	SINAR MAS MULTIARTHA	SP SETIA	* SAN MIGUEL	VENTURE CORP.	SRI TRANG AGRO-INDUSTRY
36.	SUMMARECON AGUNG	* TELEKOM MALAYSIA	SECURITY BANK	* WILMAR INTL.	THAI AIRWAYS INTL.
37.	* TAMBANG BTBR.BUKIT ASAM	* TENAGA NASIONAL	* SEMIRARA MINING		* THAI OIL
38.	* TELEKOMUNIKASI INDONESIA	TOP GLOVE	* SM INVESTMENTS		* THAI UNION FROZEN PRDS.
39.	TIMAH	* UMW HOLDINGS	* SM PRIME HOLDINGS		THANACHART CAPITAL
40.	* UNILEVER INDONESIA	WCT HOLDINGS	UNION BK.OF THE PHILPS.		THORESEN THAI AG.
41.	* UNITED TRACTORS	YTL	* UNIVERSAL ROBINA		TISCO FINANCIAL GROUP
42.	* VALE INDONESIA	* YTL POWER INTERNATIONAL			* TMB BANK
43.	* XL AXIATA				TRUE CORPORATION

APPENDIX III: ASEAN STARS LIST (as of December 2013)

No.	Indonesia Stock Market	Malaysia Stock Market	Philippines Stock Market	Singapore Stock Market	Thailand Stock Market
1.	ASTRA INTERNATIONAL	CIMB GROUP HOLDINGS	AYALA LAND	CAPITALAND	ADVANCED INFO SER.
2.	BANK CENTRAL ASIA	PUBLIC BANK	AYALA	CAPITAMALLS ASIA	AIRPORTS OF THAILAND
3.	TELEKOMUNIKASI INDONESIA	SIME DARBY	ABOITIZ EQUITY VENT.	COMFORTDELGRO	BANPU
4.	UNILEVER INDONESIA	TENAGA NASIONAL	ALLIANCE GLOBAL GP.	CAPITAMALL TRUST	BANK OF AYUDHYA
5.	BANK MANDIRI	AXIATA GROUP	ABOITIZ POWER	CITY DEVELOPMENTS	BANGKOK BANK
6.	BANK RAKYAT INDONESIA	MAXIS	BANK OF THE PHILP.ISLE.	DBS GROUP HOLDINGS	BEC WORLD
7.	GUDANG GARAM	PETRONAS CHEMICALS GP.	SM PRIME HOLDINGS	FRASER AND NEAVE	BANGKOK DUSIT MED.SVS.
8.	SEMEN GRESIK	PETRONAS GAS	SM INVESTMENTS	GOLDEN AGRI-RESOURCES	BIG C SUPERCENTER
9.	UNITED TRACTORS	GENTING	BDO UNIBANK	GENTING SINGAPORE	CP ALL
10.	INDOFOOD SUKSES MAKMUR	MALAYAN BANKING	GLOBE TELECOM	GLOBAL LOGISTIC PROPS.	CHAROEN POKPHAND FOODS
11.	KALBE FARMA	DIGI.COM	UNIVERSAL ROBINA	HONG KONG LAND HDG.	CENTRAL PATTANA
12.	ASTRA AGRO LESTARI	IOI	DMCI HOLDINGS	JARDINE MATHESON HDG.	TOTAL ACCESS COMMS.
13.	BANK DANAMON INDONESIA	GENTING MALAYSIA	INTL.CTNR.TERM.SVS.	JARDINE CYC.& CARR.	ELECTRICITY GENERATING
14.	MEDIA NUSNT.CITRA	HONG LEONG BANK	LT GROUP	JARDINE STRATEGIC HDG.	GLOW ENERGY
15.	XL AXIATA	IHH HEALTHCARE	GT CAPITAL HOLDINGS	KEPPEL	SHIN
16.	ADARO ENERGY	PETRONAS DAGANGAN	JOLLIBEE FOODS	NOBLE GROUP	IRPC
17.	CHAROEN POKPHAND INDO.	KUALA LUMPUR KEPONG	METROPOLITAN BK.& TST.	OVERSEA-CHINESE BKG.	INDORAMA VENTURES
18.	VALE INDONESIA	AMMB HOLDINGS	PETRON	OLAM INTERNATIONAL	KASIKORNBANK
19.	AKR CORPORINDO	SAPURA-KENCANA PETROLEUM	SAN MIGUEL	SEMBCORP INDUSTRIES	KRUNG THAI BANK
20.	BANK NEGARA INDONESIA	MISC BHD.	BLOOMBERRY RESORTS	SEMBCORP MARINE	LH FINANCIAL GP.
21.	BUMI RESOURCES	RHB CAP.	ENERGY DEVELOPMENT	SINGAPORE EXCHANGE	PTT
22.	INDOFOOD CBP SUKSES MKM.	BRIT.AMER.TOB.(MALAYSIA)	MEGAWORLD	SIA ENGINEERING	PTT EXPLORATION & PRDN.
23.	ICT.TUNGGAL PRAKARSA	TELEKOM MALAYSIA	METRO PACIFIC INVS.	SINGAPORE AIRLINES	PTT GLOBAL CHEMICAL
24.	INDO TAMBANGRAYA MEGAH	HONG LEONG FINL.GP.	SEMIRARA MINING	SINGAPORE PRESS HDG.	RATCHABURI ELECTRICITY
25.	JASA MARGA	ASTRO MALAYSIA HOLDINGS	ROBINSONS LD.	STARHUB	SIAM COMMERCIAL BANK
26.	LIPPO KARAWACI	PPB GROUP	FIRST GEN	SINGAPORE TECHS.ENGR.	SIAM CEMENT
27.	PERUSAHAAN GAS NEGARA	UMW HOLDINGS	MANILA WATER	SINGAPORE TELECOM	SIAM CITY CEMENT
28.	TAMBANG BTBR.BUKIT ASAM	YTL POWER INTERNATIONAL	SAN MIGUEL PURE FOODS	THAI BEVERAGE PUBLIC	TMB BANK
29.	HOLCIM INDONESIA	FELDA GLOBAL VENT.HDG.	JG SUMMIT HDG.	UNITED OVERSEAS BANK	THAI OIL
30.	GLOBAL MEDIACOM	UEM SUNRISE	PHILEX MINING	WILMAR INTL.	THAI UNION FROZEN PRDS.

Source of data: www.aseanexchanges.org/Default.aspx

APPENDIX IV: TESTING FOR FLUCTUATION OF ESTIMATED PARAMETERS

Extended to the section 8, this paper investigate whether correlations are steadily increasing or dynamically fluctuating overtime, the whole data sets are divided into 5 rolling-period; (1) January 2003 to December 2009, (2) January 2004 to December 2010, (3) January 2005 to December 2011, (4) January 2006 to December 2012, and (5) January 2007 to December 2013. Then, permutation test are performed to each rolling-periods.

The test results of the first 2 rolling-periods illustrate the notable increasing correlation structure, except Singapore as expected. For the third rolling-periods, the result shows the slightly increasing structure, only some of them are significant at 90% confidence level. Surprisingly, for the last two rolling-periods, the differences of correlation are all negative, including Singapore, or, in other word, the correlation structure is decreasing, which some of them are statistical significant. The significant values of the 5th rolling-periods are shown in Table IV.¹⁴

TABLE IV:

Parameters Stability Test Using Permutation Method

(January 2007 – December 2013)

The table reports the result of the parameters stability test using permutation test with the MSCI data starting from January 2007 – December 2013. The permutation test is the non-parametric tests which divides the data series into 2 parts and randomly reshuffle the series for 1,000 times. Each time, the difference of interesting parameters, in this case is correlation and skewness, of those two periods are recorded. Finally, the distributions of differences are drawn. For 95% (90%) confidence level, if the actual difference is higher than the difference at 97.5% (95%) or lower than the difference at 2.5% (5%) of the distribution, it is marked with * (**) as significant change.

_

 $^{^{14}}$ To save the space, the only the result of the $5^{\rm th}$ rolling-periods are shown here.

	1. INDONESIA	2. MALAYSIA	3. PHILIPPINES	4. SINGAPORE	5. THAILAND
1. CZECH REPUBLIC	-0.42 **	-0.01	-0.14	-0.12	-0.15
2. DENMARK	-0.42 **	-0.28	-0.16	0.00	-0.22
3. EGYPT	-0.49 *	-0.27	-0.15	-0.12	-0.31
4. FINLAND	-0.38 **	-0.06	0.00	0.05	-0.12
5. ITALY	-0.45 *	-0.21	-0.18	-0.09	-0.35 **
6. JAPAN	-0.42 **	-0.39 **	-0.22	-0.33	-0.29
7. PORTUGAL	-0.39 **	-0.27	-0.27	-0.11	-0.35
8. SPAIN	-0.45 *	-0.27	-0.25	-0.21	-0.39 **

However, when the test is performed on the exchange rate, like what have been done for correlation, no concrete pattern; some are positive or negative, is found.

APPENDIX V: 3 HIGHEST-WEIGHTED STOCKS FROM EACH ASEAN COUNTRY

Indonesia Investors' Perspective

Country	P1 = 1, P3 = 0							
	Stock	2009	2010	2011	2012	2013		
	UNILEVER INDONESIA	11.3%	11.5%	10.1%	14.8%	15.9%		
ID	BANK CENTRAL ASIA	3.2%	5.2%	2.5%	0.0%	0.9%		
	GUDANG GARAM	0.0%	0.0%	0.5%	1.8%	0.7%		
	TELEKOM MALAYSIA	7.8%	10.8%	17.5%	24.4%	25.1%		
MY	PETRONAS DAGANGAN	-	-	-	9.0%	8.5%		
	DIGI.COM	5.3%	5.1%	20.2%	14.9%	3.3%		
	ABOITIZ EQUITY VENT.	0.0%	2.7%	7.7%	9.6%	11.2%		
PH	SM PRIME HOLDINGS	0.0%	0.1%	0.0%	0.5%	2.8%		
	SEMIRARA MINING	-	-	-	1.0%	2.2%		
	JARDINE MATHESON HDG.	16.9%	-	-	4.7%	3.7%		
SG	STARHUB	-	-	4.1%	0.0%	0.0%		
	SINGAPORE TELECOM	0.0%	0.0%	0.0%	0.0%	0.0%		
	ADVANCED INFO SER.	0.0%	0.0%	1.9%	8.2%	10.6%		
TH	HOME PRODUCT CENTER	-	-	-	0.8%	4.6%		
	CP ALL	-	0.0%	0.2%	0.5%	4.1%		

Stock
MITRA ADIPERKASA
TELEKOMUNIKASI INDON
GUDANG GARAM
BRIT.AMER.TOB.(MALAYS
AIRASIA
TELEKOM MALAYSIA
SAN MIGUEL
ENERGY DEVELOPMENT
METRO PACIFIC INVS.
GENTING SINGAPORE
STARHUB
JARDINE MATHESON HDC
HOME PRODUCT CENTER
CP ALL
PTT

Malaysia Investors' Perspective

Country		P1 :	= 1, P3 =	0		
	Stock	2009	2010	2011	2012	2013
	UNILEVER INDONESIA	0.7%	2.2%	0.9%	4.7%	6.4%
ID	LIPPO KARAWACI	7.7%	3.1%	0.0%	0.0%	0.0%
	MITRA ADIPERKASA	-	-	-	-	0.0%
	TELEKOM MALAYSIA	10.2%	13.2%	18.1%	26.2%	22.6%
MY	PETRONAS DAGANGAN	-	-	-	19.7%	20.4%
	BRIT.AMER.TOB.(MALAYSIA)	6.5%	0.0%	12.8%	-	4.7%
	ABOITIZ EQUITY VENT.	0.0%	4.7%	4.4%	6.7%	7.0%
PH	SM PRIME HOLDINGS	0.0%	0.0%	0.8%	4.7%	4.1%
	SEMIRARA MINING	-	-	-	1.0%	2.5%
	STARHUB	-	-	3.1%	1.1%	3.2%
SG	JARDINE MATHESON HDG.	8.5%	-	-	1.9%	2.1%
	SINGAPORE PRESS HDG.	0.0%	0.0%	0.0%	0.0%	0.0%
	ADVANCED INFO SER.	0.0%	0.0%	3.7%	7.5%	9.0%
TH	CP ALL	-	0.0%	0.2%	1.6%	5.0%
	BERLI JUCKER	-	-	-	-	0.8%

Stock
MITRA ADIPERKASA
LIPPO KARAWACI
TELEKOMUNIKASI INDON
BRIT.AMER.TOB.(MALAYS
AIRASIA
YTL POWER INTERNATIO
ENERGY DEVELOPMENT
FIRST GEN
METRO PACIFIC INVS.
GENTING SINGAPORE
STARHUB
SINGAPORE EXCHANGE
CP ALL
THANACHART CAPITAL
LAND AND HOUSES

APPENDIX V: 3 HIGHEST-WEIGHTED STOCKS FROM EACH ASEAN COUNTRY (continue)

Philippines Investors' Perspective

Country	P1 = 1, P3 = 0						
	Stock	2009	2010	2011	2012	2013	
	UNILEVER INDONESIA	0.3%	3.6%	1.7%	6.9%	7.1%	
ID	MITRA ADIPERKASA	-	-	-	-	0.0%	
	CHAROEN POKPHAND INDO.	0.0%	-	0.0%	0.0%	0.0%	
	TELEKOM MALAYSIA	7.1%	5.5%	12.5%	21.4%	22.8%	
MY	PETRONAS DAGANGAN	-	-	-	18.8%	19.6%	
	DIGI.COM	6.9%	9.6%	17.9%	14.2%	1.9%	
	ABOITIZ EQUITY VENT.	0.0%	4.0%	10.0%	8.9%	10.0%	
PH	SEMIRARA MINING	-	-	-	4.7%	5.0%	
	SM PRIME HOLDINGS	0.0%	0.0%	0.0%	2.9%	4.9%	
	STARHUB	-	-	4.2%	0.7%	1.7%	
SG	JARDINE MATHESON HDG.	6.7%	-	-	0.0%	0.0%	
	COMFORTDELGRO	-	0.0%	-	-	0.0%	
	ADVANCED INFO SER.	0.0%	0.0%	4.7%	13.8%	12.7%	
TH	CP ALL	-	0.6%	3.9%	2.2%	7.7%	
	BERLI JUCKER	-	-	-	-	1.4%	

Stock
MITRA ADIPERKASA
LIPPO KARAWACI
GUDANG GARAM
BRIT.AMER.TOB.(MALAYS
AIRASIA
YTL POWER INTERNATION
FIRST GEN
ENERGY DEVELOPMENT
METRO PACIFIC INVS.
GENTING SINGAPORE
STARHUB
SINGAPORE EXCHANGE
CP ALL
HOME PRODUCT CENTER
ADVANCED INFO SER.

Singapore Investors' Perspective

Country	P1 = 1, P3 = 0							
	Stock	2009	2010	2011	2012	2013		
	UNILEVER INDONESIA	1.1%	3.1%	2.1%	7.6%	8.0%		
ID	MITRA ADIPERKASA	-	-	-	-	0.0%		
	CHAROEN POKPHAND INDO.	0.0%	-	0.0%	0.0%	0.0%		
	TELEKOM MALAYSIA	8.2%	10.2%	14.9%	23.0%	20.3%		
MY	PETRONAS DAGANGAN	-	-	-	18.9%	18.8%		
	HONG LEONG BANK	0.0%	0.0%	0.0%	1.0%	5.6%		
	ABOITIZ EQUITY VENT.	0.0%	1.9%	2.9%	5.7%	6.3%		
PH	SM PRIME HOLDINGS	0.0%	0.0%	0.4%	3.3%	3.6%		
MY	SEMIRARA MINING	-	-	-	1.9%	3.3%		
	STARHUB	-	-	3.6%	1.8%	5.2%		
SG	JARDINE MATHESON HDG.	12.6%	-	-	1.4%	1.4%		
	SINGAPORE PRESS HDG.	0.0%	0.0%	0.0%	0.0%	0.0%		
	ADVANCED INFO SER.	0.2%	0.0%	4.0%	9.3%	9.9%		
TH	CP ALL	-	0.0%	0.1%	0.9%	4.7%		
	BERLI JUCKER	-	-	-	-	1.2%		

Stock
MITRA ADIPERKASA
TELEKOMUNIKASI INDON
LIPPO KARAWACI
BRIT.AMER.TOB.(MALAYS
AIRASIA
MISC BHD.
ENERGY DEVELOPMENT
METRO PACIFIC INVS.
FIRST GEN
GENTING SINGAPORE
STARHUB
JARDINE MATHESON HDC
CP ALL
HOME PRODUCT CENTER
THANACHART CAPITAL

APPENDIX V: 3 HIGHEST-WEIGHTED STOCKS FROM EACH ASEAN COUNTRY (continue)

Thailand Investor Perspective

Country	P1 = 1, P3 = 0						
	Stock	2009	2010	2011	2012	2013	
	UNILEVER INDONESIA	0.1%	2.3%	1.3%	6.7%	6.2%	
ID	MITRA ADIPERKASA	-	-	-	-	0.1%	
	SINAR MAS MULTIARTHA	-	-	-	-	0.0%	
	TELEKOM MALAYSIA	7.5%	8.8%	15.8%	21.4%	22.1%	
MY	PETRONAS DAGANGAN	-	-	-	20.3%	19.0%	
	BRIT.AMER.TOB.(MALAYSIA)	0.5%	0.0%	1.0%	-	0.9%	
	ABOITIZ EQUITY VENT.	0.0%	2.6%	6.8%	8.5%	9.1%	
PH	SM PRIME HOLDINGS	0.0%	0.0%	0.0%	1.8%	4.2%	
	SEMIRARA MINING	-	-	-	1.5%	3.1%	
	STARHUB	-	-	5.9%	0.9%	1.6%	
SG	JARDINE MATHESON HDG.	10.8%	-	-	0.0%	0.0%	
	SINGAPORE PRESS HDG.	0.0%	0.0%	0.0%	0.0%	0.0%	
	ADVANCED INFO SER.	0.7%	0.0%	4.7%	15.0%	17.1%	
TH	CP ALL	-	0.9%	5.1%	1.7%	7.0%	
	HOME PRODUCT CENTER	-	-	-	1.3%	3.1%	

Stock
MITRA ADIPERKASA
LIPPO KARAWACI
GUDANG GARAM
BRIT.AMER.TOB.(MALAYS
AIRASIA
GENTING MALAYSIA
FIRST GEN
ENERGY DEVELOPMENT
JOLLIBEE FOODS
GENTING SINGAPORE
STARHUB
SINGAPORE EXCHANGE
CP ALL
THANACHART CAPITAL
LAND AND HOUSES

Part II) The Impact of AEC inclusion on equity trading of ASEAN stocks:

A forward assessment before integration

Abstract

Full financial integration of ASEAN Economic Community (AEC) development plan is taking place at the end of 2015. Provided institutional infrastructures are in place, investors across AEC member should be able to trade individual equity stocks in the region. It has been widely reported that financial openness is beneficial. However the impact to financial markets of the integrated zone is unclear since there are very few natural experiments. This paper intends to answer if the AEC will be beneficial to equity investors of the integrated zone. The implementation of ASEAN Linkage and ASEAN STARS index in 2012 provides unique opportunity to study the effect of index inclusion on stocks that are not easily accessible prior to the effective inclusion. These stocks are already in the local Thai index and MSCI indices. Thus, it is not the inclusion to the index that we test, but rather if inclusion to international index in which each stock will be traded cross-country has an impact on liquidity short-term and long-term. This research investigates short term using intraday data of 2.5 months and long term daily data of one year. We test changes of stock liquidity in event studies of inclusion day. A significant improvement of transaction cost during the two months period following index inclusion was observed. Tests of other long term liquidity changes found significant improvement in price impact (illiquidity decreased by 17.43 percent), volume (increased by 29.89 percent), and free float adjusted turnover (increased by 6.82 percent) during one year period after index inclusion and ASEAN Linkage implementation.

JEL classification F36; F3; G1

Keywords ASEAN financial integration; International Finance; General Financial Markets; Index Inclusion

1. INTRODUCTION

There is some evidence that financial openness spurs economic growth. For example, Bekaert, Harvey, and Lundblad (2005) and Quinn and Toyoda (2008) document strong growth effects. Prasad, Rogoff, Wei, and Kose (2009) report the evidence "mixed." Also, there are few natural experiments of financial openness and its benefits. In the standard "neo-classical" model, a capital market liberalization lowers the cost of capital, thereby inducing additional investment and a temporary growth response. However, direct decrease in the cost of capital appears rather modest (Bekaert & Harvey, 2000; Henry, 2000). This paper employs the natural experiment of ASEAN Economic Community (AEC) development to assess if there are benefits in the financial markets for lower cost of capital in an economic zone through efficiency and higher liquidity in the capital market. Prior to year 2012, the price settling system among stock markets in ASEAN were separated resulting in a practical barrier for most retail investors to invest in cross-markets. As part of AEC development plan to be fully integrated in 2015, ASEAN Linkage, which is a system of transaction settling and clearing for stock markets of ASEAN countries, was established in early 2014. Although this platform has become fully functional for all member countries in 2014, the preliminary establishment of ASEAN Linkage between Singapore Stock Exchange (SGX) and Malaysia Bursa (MB) was firstly initiated in 2012. Later on, in October 2012, Stock Exchange of Thailand (SET) joined this stock market integration.

Before the stock market integration among the three markets in 2012, the stocks available in each country could not available for investment by retail investors from the other ASEAN countries. With the introduction of ASEAN Linkage and ASEAN STARS index, investors could trade stocks in the ASEAN STARS index even though they were listed in another country. This provided a unique opportunity to understand cross-border stock trades that have not been available before.

Accompanying this new integration, ASEAN STARS index was introduced to promote investment in cross-markets. The index consists of 30 largest as measured by market capitalization and most liquid stocks in each member market, except Vietnam where 15 stocks for each of its market were included. Similar to the case of ASEAN Linkage, the early introduction of this index was implemented along with the SGX-MB-SET initial linkage. The selection criteria is based on the size and liquidity of the stocks in each exchange.

Stock inclusion into indices usually has positive effect to its price and volume. Several studies have documented these evidences (Harris and Gurel (1986); Hegde and McDermott (2003); Liu (2006)). The main differences of these studies were in the persistency of these so called "index effect" in the longer term period. However, study has detected positive liquidity improvement accompanied the stock inclusion (Hegde and McDermott (2003)). These evidences suggested that the liquidity of stocks may be improved through inclusion into index. This improvement was also consistently observed in international index listing (Chakrabarti, Huang, Jayaraman and Lee (2005)). The stocks that we analyzed are already in local indices and in MSCI index. Thus, we investigate the promotion and actual direct trade availability across country through the ASEAN community. Is there liquidity improvement resulting from the adoption of ASEAN Linkage and ASEAN STARS index?

Understanding the potential effects of this inclusion would provide useful insights for both market participants and regulators. This may be a potential indicator of future responses to market integration within the AEC work plan. According to the AEC memorandum of understanding, the capital market would be fully opened to all ASEAN members in the end of 2015, and this research would shred some understanding on the potential outcome of the market. Hence, studying the liquidity changes of stock included in the index is not only interesting in the sense that the stocks were included in an international index, which should increase the investor attention toward the firms, it was also interesting because of the potential insights toward AEC market integration.

In this study, the target index to be studied was ASEAN STARS, which has been recently established accompanied by the implementation of ASEAN Linkage. Since similar indices have been available for a long period prior to introducing ASEAN STARS, the funds that have ability to invest in cross-border markets would have obtain their position in these stocks already. The initial introduction of this index would not attract attention of index at once since there was not any index fund following the ASEAN STARS. This study would then elucidate the effect of ASEAN STARS index stock inclusion of stock liquidity. This would provide useful information regarding to the cross-border trading activities of retail investors from other markets.

The study focused on both the short term effect and long term effect of this inclusion. Intraday percent quoted spread was used for short term liquidity study of up to 51 days before

and after the effective trading date. Other measures were also used to study the impact of ASEAN Linkage. They include price impact, daily percent quoted spread, volume, and turnover. One year study period before and after effective date was used. The period set to study the long term effect was relatively long because market participants, especially the retail investors may need time before engaging in this newly introduced platform and the index.

The main contributions of this research were (1) the study explored the index effect under a unique condition; stocks that are not easily accessible to foreign individual investors prior to the inclusion (2) this research provided useful insights about the future liquidity development after AEC integration.

The remainder of this paper is as follows. The next section provided related literatue mostly on index inclusion effects. The methodology employed in this study is presented in the third section. Then we present empirical results in section 4. Section 5 presents conclusions and implications of our study.

2. LITERATURE REVIEW

2.1 Index effect

There are rich existing literatures supporting the increase in abnormal return of index included stocks as well as the positive index effect on stock volume. In general, consistent results on positive abnormal return and volume of the included stocks were observed widely in literatures (Harris and Gurel (1986); Hegde and McDermott (2003); Shleifer (1986)). However, the differences lied in the persistency of these outcomes once the stocks were effectively added into the indices. Harris and Gurel observed reversion of stock prices after effective date (Harris and Gurel (1986)), whereas others detected a permanent increase in stock prices instead (Dhillon and Johnson (1991); Jain (1987); Shleifer (1986)).

On the other hand, some studies found a long term increase in volume even after the effective adjustment period while other evidence the reversion of the elevated volume after added (Harris and Gurel (1986)). In addition, other dimensions of liquidity were also elucidated in literatures, and the findings were both reversion and without reversion of these liquidity measures (Hegde and McDermott (2003)). Hence, these variations in the findings

from different markets lead to different hypotheses in explaining the index effect phenomenon. Several hypotheses were proposed including price pressure, downward sloping demand, information hypothesis, attention hypothesis, and liquidity.

Study observed that the abnormal return occurred before the effective date gradually decrease afterward, thus it was hypothesized that the increase in price was resulted from the stock purchase of index funds as dictated by the index rebalancing. Since index funds mainly adjust their position according to the change of the index inclusion and exclusion, the increase in stock trading was only temporally, and a reversion of stock price level should be observed after the effective rebalancing was accomplished (Harris and Gurel (1986)).

On the contrary, for studies with less or no return reversion after effective date, downward sloping demand curve hypothesis was proposed. The hypothesis was rather opposite of the efficient market hypothesis in which all of the current information of the stock should be priced in, and no additional change in prices should occur without new information available. Therefore, this suggests that stock price is elastic and should have a linear stock demand curve. The downward sloping demand curve hypothesis argued that the abnormal return came from the permanent elevated demand since stock is unique and imperfectly substitutable for each other. Hence, resulting in a downward sloping demand curve until the market reaches new equilibrium (Shleifer (1986)).

Information hypothesis proposed that the index or the large funds in other cases possess superior information of the firms, and therefore select these firms to include accordingly. Hence, an index inclusion should represent hidden value of the targeted stocks, and the price should be traded at greater level (Dhillon and Johnson (1991); Jain (1987)).

Moreover, study also argued that the abnormal return was generated from the higher liquidity of stocks included. With this increase in liquidity, the cost of carrying out a trade with the stock is reduced. According to Hedge and McDermott, although initially study observed long term abnormal return increase but not the liquidity, and hence ruled out the possibility of improved liquidity as the cause of abnormal return. However, recent study found permanent (60 days) increase of liquidity as determined by bid-asked spreads (Hegde and McDermott (2003)). This indicated that the liquidity may not be discarded as the source of permanent price increase.

Since evidences supporting each hypothesis were observed, it should be emphasized that these mechanisms are not mutually exclusive meaning that they can collectively affect stock price at the same time. This concept has been well illustrated by the literature where no single underlying hypothesis has been proven as the sole source of abnormal return following index inclusion.

2.2 Effect of index rebalancing on stock price, volume, and liquidity

2.2.1 Effect of index rebalancing in developed markets

In the US, early investigation of the index effect of Standard and Poor's 500 (S&P500) index was conducted and abnormal return or abnormal wealth effect was observed (Shleifer (1986)). Positive abnormal return was detected for the stock inclusion, and the positive effect persisted within the study period of 20 days. Furthermore, research focus was extended to include the volume effect of index inclusion (Harris and Gurel (1986)). Beside the observed abnormal return, a non-persistent significant positive volume effect was observed during the index rebalancing. More recent studies also observed both increase asset prices as well as volume during the rebalancing period; nonetheless, they differed in the persistency of the price and volume index effect. Some studies found persistent wealth effect while other observed only short term increase of return with a price reversion after stock addition (Lynch and Mendenhall (1995)).

For other developed countries beside the US, positive index effect on both price and volume was consistently observed. In Japan, effect of index rebalancing of Nikkei500 and Nikkei225 were thoroughly investigated (Liu (2000); Liu (2006); Okada, Isagawa and Fujiwara (2006)). The studies revealed increase in abnormal return and temporally increase in volume. Interestingly, a study in Nikkei500 revealed a persistent increase in return(Liu (2000)). It is noteworthy that this study focused solely on the announcement date as the event date without considering the effective date. Thus, the same researcher later on focused on the Nikkei225, which was claimed to be more closely watched by investors in order to confirm the previous study as well as to study the arbitrage effect during the announcement and effective date (Liu (2006)). Results indicated a more pronounce temporally volume effect of the index comparing to the finding from Nikkei500. As for the price level, the increase in price, although

was accompanied by a significant reversal due to the arbitrage activities, still remained persistently at elevated level after index addition. Similar finding but with different conclusion in terms of return persistency was observed. A study also detected the return reversal presumably due to the arbitrage effect between the announcement date and effective date was detected (Okada, Isagawa and Fujiwara (2006)).

Index effect on international country indices was examined (Chakrabarti, Huang, Jayaraman and Lee (2005)). The study determined effect of index inclusion and exclusion of 29 country indices. The results were consistent with previous studies where positive abnormal return and increase in volume were detected accompanying the index rebalancing. However, part of the gain in prices declined after the effective change date. As for the volume, a permanent increase of up to 10 days after the effective date was observed. Interestingly, the study noted that this significant permanent volume effect was observed mainly in the developing markets and other non-US markets but not in the US stocks.

In contrast to the price and volume effect of index inclusion and exclusion, which was well-studied, study regarding to the changes in other liquidity measures following an index rebalancing is rather limited. A research focused on the liquidity changes of stocks included and deleted from S&P500 stock index during 1993 to 1998 (Hegde and McDermott (2003)). Permanent liquidity improvement (3-month period as the study window) of stock included into the index was observed, whereas stock deleted from the index faced gradual decline in liquidity. The mean and median of both the quoted and effective spreads were found to be significantly decreased as well as the quoted dollar dept, trading volume, and trading frequency. These changes were found to resulting from the decrease in direct-price of trades as indicated by the decrease in both time-weighted absolute and relative spreads. Highest period of spread decrease was observed after the stock addition. This study suggested that the long term liquidity did improve after index inclusion, and the improvement in liquidity may not be totally excluded from explaining abnormal return.

2.2.2 Effect of index rebalancing in emerging markets

Index rebalancing effect in emerging markets was also examined by studies (Bildik and Gülay (2008); Yun and Kim (2010)). In Turkey, a study was conducted to evaluate the stock

inclusion and exclusion effects on the Istanbul Stock Exchange (ISE) index (Bildik and Gülay (2008)). The aim of the research was to determine the potential cause of the index effect because the ISE index at that time was argued by the author to be free of information effect and contain limited price pressure effect from the index funds due to the small size of those institutions. The result of ISE-100 and ISE-30 confirmed the existence of abnormal return during the announcement date, and the effect increases and persists until after the effective index adjustment date. The study therefore concluded that the index effect was due to the price pressure, downward sloping demand, and attention hypotheses.

In the case of Korea, which was in the process of moving toward being a developed country, research targeting the index effect of Korea Stock Exchange Price Index (KOSPI) 200 was carried out (Yun and Kim (2010)). The study suggested a permanent (up to 60 days) positive price effect associating with the stock inclusion as well as the observed significant short-run (around 10 days) elevated volume during the index rebalancing period.

2.2.3 Effect of index rebalancing in Thailand

There were a few previous studies in Thailand focusing on the index effect of SET50 index (Keratithamkul (2005); Teerapongpratya (2010); Triempanichgul (2010)). Early study of SET50 inclusion and exclusion on stock price and return was studied (Keratithamkul (2005)). Significant abnormal return of 0.33% and 0.37% was observed on the announcement date in the case of inclusion and exclusion, respectively. The positive abnormal return of the inclusion was concluded as resulting from the downward sloping demand curve, whereas the positive return of index exclusion was claimed to be from the use of private information.

The scope of SET50 study was then extended to increase the study period and include the volume effect into consideration (Teerapongpratya (2010)). Consistently with the previous research, the study detected positive abnormal return of 0.27% for inclusion and a slightly negative return of -0.02% for the exclusion on the announcement date. In addition, the long term abnormal return was still observed at 7 days after effective date. As for the volume effect, the study detected significant positive volume effect one day prior the effective date.

Furthermore, the effect of index inclusion and exclusion of SET50 was further extended to include the liquidity effect as measured by quoted spread, volume, turnover, and price impact (Triempanichgul (2010)). The permanent effect window of 30 days was implemented, and the study detected positive abnormal return of 0.48% and 0.01% based on the market model in the case of inclusion and exclusion, respectively. However, when employed the market-adjusted method the returns were 1.15% and - 0.03% for inclusion and exclusion accordingly. The study also found persistent positive and negative abnormal returns for inclusion and exclusion, respectively. Collectively, no significant volume and liquidity increase was observed at announcement date, whereas significant changes were detected around the effective date indicating the rebalancing of index funds.

2.3 Liquidity measures

Liquidity is rather an elusive concept, which is hard to be measured completely by any single measure. This is mainly due to the various dimensions of liquidity including tightness, depth, and resiliency (Lesmond (2005)). Definition of being liquid may include an ability to issue large trade at ease any time without affecting the price of the asset. Hence, empirically liquidity maybe measures through direct-cost of trade such as those determined by bid-asked spreads, indirect-cost as measured by market depth and price impact.

Lesmond (2005) found that volume only captures the order flow of any given stocks not exactly the cost of transactions. Amihud in 2002 has developed a volume based daily liquidity measure that captures both the order flow and the transaction cost (Amihud (2002)). Specifically, the Amihud illiquidity measure captures the price response toward order flow or price impact. The illiquidity measure has been widely employed by various studies due to its rather simple computation using mostly available data available in most markets. The effectiveness of this measure in being a proxy of illiquidity (therefore also liquidity) was tested against other volume based liquidity measures. The studies revealed high efficacy of Amihud measure over others. Lesmond found that the measure better explained the domestic liquidity comparing to other similar measures (Lesmond (2005)).

2. DATA AND RESEARCH METHODOLOGY

3.1 Data

The stocks initially included in the ASEAN STARS index on 15 October 2012 were used. The listed firms included into the ASEAN STARS index were screened for removal of any stock that had undergone major merger and acquisition within the 6-month period before index inclusion. This was to avoid observing any significant changes of liquidity due to confounding events. The list of the included stocks on 15 October 2012 was presented in the appendix A. Both intraday and daily stock data of the corresponding stocks were employed in this study.

This study collected the inter-daily submitted order from the SET. The intraday consisted of 2 and a half month period trading data (51 trading days) prior and after index effective date on 15 October 2012. Dataset included all bid and ask orders submitted to the exchange within the day. The first few minutes of each trading session as well as the pre-open and call market periods were discarded to avoid market open/close procedure, additional information arrived overnight, and dividend payout.

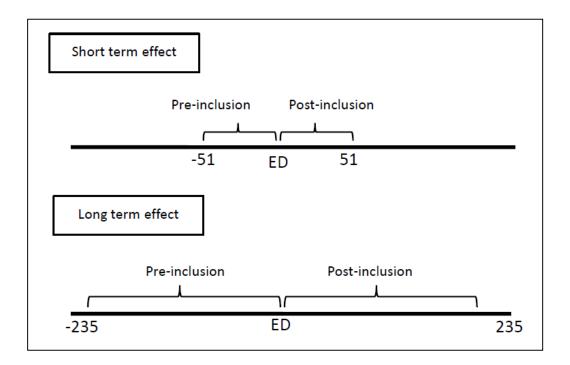
The daily data were retrieved from SETSMART as provided by the SET. The information of stock prices and trading volume of about one year before (235 trading days) and one year after the index effective date were collected.

These periods were chosen since the study aims to elucidate both short-term effect and long-term effect of the ASEAN STARS index and ASEAN Linkage implementation. However, due to the limited intraday data, which was available up to the end of 2012 when this research was carried out, daily liquidity measures were employed to evaluate the potential long-term liquidity change.

A one year long term liquidity changes of the included stocks were analyzed. This is included in order to determine the long term effect of index rebalancing since most literatures have consistently detected abnormal return and volume increase after the index inclusion but not collectively agree on the persistency of long term changes of liquidity (Chakrabarti, Huang, Jayaraman and Lee (2005); Hegde and McDermott (2003)). Hence, it is also important to determine whether stock inclusion into index would provide a sustainable improvement in

trading cost and other dimensions of liquidity, especially in the case of ASEAN market integration.

Moreover, the ASEAN Linkage and ASEAN STARS index might have more influences on retail investors and liquidity traders than index fund investors since the large institutional investors might already have the access to the cross-border trading. As a result, the effect of this new market connection platform and the newly introduced index may not trigger significant change in the short period of time. Thus, the long term liquidity investigation of up to one year was focused.


3.2 Event window

In the case of short term liquidity investigation using intraday short-term liquidity measure, the index effective date (ED) is 15 October 2012. Since the list of included stocks in the index was not available to investors prior to the effective date, no announcement period was setup in this study. The data available for short term effect ranges between the 51 trading days before ED (ED-51) to 51 days after ED (ED+51). The liquidity of stocks after being included in the index as indicated by the ED was compared with measure prior to the inclusion. The ending period was set to (ED+51) due to the limited intraday data available when the study was conducted. Moreover, most of the previous studies regarding to index effect in Thai stock only limited the window to 30 days, hence the selected study period should provide sufficient information. The event window for this study is illustrated in figure 3.1.

As for the long-term study period selected to evaluate the persistency of liquidity changes, the data 235 days before and after ED, (ED-235) to (ED+235) were applied. The length of this research window was around one year before and after the event date. Moreover, the ending period was set to (ED+235) which is rather long in order to capture the potential late liquidity development after the ASEAN Linkage is fully implemented.

Figure 3.1 Study periods

This study investigated both short term and long term changes in liquidity following the event date. The event date is on 15 October 2012 when the ASEAN Linkage was first implemented and the 30 stocks were initially included into the ASEAN STARS index.

Although previous research studies also focused on the liquidity changes during the announcement period, in this study only the effective date were focused. This was because the ASEAN Link network was officially connected on the same effective date as ASEAN STARS index, there should be no transactions contributed from other two linked markets (e.g. SGX and MB). More importantly, the list of targeted stocks for the ASEAN STARS index was not officially available prior to the effective date when the index was newly established. As a result, only the effective date was studied in order to elucidate the liquidity effect from the establishment of this central connecting hub.

3.3 Intraday liquidity measures

The intraday percent quoted spread was chosen as the measure of liquidity; specifically this is to determine the direct-transaction cost of the trade. The intraday data of each day were used in creating a time-weighted average daily quoted spread. An advantage of implementing intraday measure of percent quoted spread over daily percent quoted spread was that intraday data also capture the changes of this spread within the trading hours. The short few minutes at the beginning of each session, the pre-open, and call-market were excluded in order to avoid the trading fluctuation during market open and market close procedures. For each of the 30 stocks, the trading orders were separated into different intervals of 5, 10, 15, and 20 minute interval. The interval with least missing trading interval within the day was then chosen for further study. For each interval, the highest bid price, lowest asks price, quoted spread, and the mid price were determined (eq. (1) and (2)). The percent quoted spread for each interval was computed by (3) (Ananpattanakul (2009));

where, i = stock i, and t = time interval t of that day

Mid Price_{it} =
$$\frac{Best \ Ask \ Price_{it} - Best \ Bid \ Price_{it}}{2}$$
 (2)

Percent Quoted Spread_{it} =
$$\frac{QuotedSpread_{it}}{Mid\ Price_{it}}$$
 (3)

Daily percent Quoted Spread_i =
$$\frac{1}{T}\sum_{t}^{T} Percent \ Quoted Spread_{it}$$
,(4)

where, T = total number of interval of each day

All of the percent quoted spreads of each particular stock in the trading day were used in computing time-weighted average daily quoted spread of each stock at each day as in (4). The percent quoted spread of the included stocks after the ED was then compared with their levels before the index establishment. Student t-test analysis was performed in order to determine whether statistically significant change occurs in stock percent quoted spread.

3.4 Daily liquidity measures

3.4.1 Illiquidity measure

Illiquidity measure (ILLIQ) (Amihud (2002)), percent quoted spread, volume, and stock turnover were employed as the liquidity measures for investigating the long-term liquidity effect. The illiquidity measure was calculated in the spirit of Amihud as in (5);

ILLIQ_{it} =
$$\frac{|R_t|}{THBvolume_t} x \ 10^7$$
 (5)

where, i = stock i, t = day t, and $R_t = \text{stock } return at time t$

Monthly ILLIQ_i =
$$\frac{1}{T} \sum_{t}^{T} ILLIQ_{it}$$
 (6)

where, T = total number of trading day of the month

This approach provides the price impact that is normalized by each traded THB, and hence facilitates comparison. The illiquidity measure of any particular day of each stock was compared with the illiquidity measure from the period prior to the index inclusion. The comparison was achieved by using student t-test. If the liquidity was improved (illiquidity decrease) then the measure obtained following index inclusion would decrease. For the advantages of using Amihud illiquidity measure, the same daily prices are not of concern since the proxy captures both the price change and volume. However, it is also noteworthy that too many zero-return (no price change) may result in alter the measure to reflect more of the informed trader fixed cost than the price impact. For low liquidity sample, as classified by zero return and small volume, illiquidity measure maybe downward biased. This measure should not be significant in the selected dataset since the stocks included in the ASEAN STARS index were classified by their market capitalization and liquidity.

3.4.2 Daily percent quoted spread

Besides Amihud's illiquidity measure, this study also focused on other measurements of liquidity. Illiquidity measure represents the price impact on stocks, which is only one dimension of liquidity. Percent quoted spread helps elaborate the transaction cost when market participants take market positions. Furthermore, this was also to determine long-term change in trading cost after being included into the ASEAN STARS index, and allowed comparison with the result analyzed by intraday data. Similarly to the intraday percent quoted spread computation, the daily measure was computed as shown in eq. (6) to (8).

where, i = stock i, and t = day t

Mid Price_{it} =
$$\frac{Best \ Ask \ Price_{it} - Best \ Bid \ Price_{it}}{2}$$
 (8)

Percent Quoted Spread_{it} =
$$\frac{QuotedSpread_{it}}{Mid\ Price_{it}}$$
 (9)

From the daily bid and ask prices retrieved from SETSMART, quoted spread and mid price of each stock of each day were calculated as (6) and (7), respectively. Then, the percent quoted spread was computed as in eq. (8). The percent quoted spread obtained from before and after index inclusion were compared using student t-test. If the index inclusion posts positive effect on transaction costs, the percent quoted spread measured after the inclusion would be decreased.

3.4.3 Volume

In order to determine whether more trading activity was induced via ASEAN STARS index inclusion, the change in trading volume after index inclusion was analyzed comparing with its level prior to the inclusion. The automatic order matching (AOM) volume, which is the volume of the orders matched by price and time priority, was used. Statistical analysis was conducted by applying student t-test.

3.4.4 Turnover

Similarly to the trading volume, stock turnover indicates the trading activity of that particular stock. However, since the volume is an absolute measurement, turnover ratio in which trading volume is normalized by the outstanding shares provides information from another perspective. Moreover, the turnover ratio employed in this study was constructed such that it accounts for the tradability of the stocks. Instead of using number of outstanding shares directly, the number of shares was adjusted by the free float published by the SET. Free float level is calculated as the percentage of shares not held by strategic partners as defined by the SET. The turnover ratio was computed as shown in eq. (9).

Percent Quoted Spread_{it} =
$$\frac{Tarding \, Volume_{it}}{Free \, Float_{it} \, x \, Outstanding \, Shares_{it}}$$
, (10) where, i=stock i, t = day t

Monthly Volume = $\frac{1}{T} \sum_{t}^{T} Volume$, (11)

where, T = total number of trading day of the month

3. RESULTS AND DISCUSSION

4.1 Data and liquidity measures

Liquidity of 30 stocks included in the ASEAN STAR index both before and after the inclusion on 15 October 2012 was investigated. The stock liquidity in this study was separated into long-term and short-term liquidity changes. In the case of short-term liquidity effect, intraday tick-by-tick data was applied. The data ranges from 2.5 months (51 trading days) prior to the inclusion until 2.5 after. The percent quoted spread was selected as liquidity measures. For long-term liquidity effect, daily data of up to one year before and after the index inclusion was used. Amihud's illiquidity ratio, percent quoted spread, volume, and turnover were implemented to measure the liquidity of these stocks. The t-test was applied to test the null hypothesis that there are no statistical differences in mean of the liquidity measures before and after the event date.

4.2 Short-term liquidity effects of index inclusion

4.2.1 Intraday percent quoted spread

The percent spread was calculated by separating each day order file data into time intervals. The highest bid and lowest asked prices of each stock within these time intervals were used for percent quoted spread calculation. The daily average of the percent quoted spread was then calculated for each stock. With this implementation, the sample size of the percent quoted spread measure would be 1530 (30 stocks x 51 trading days) as for prior and after event date accordingly.

The interval for the intraday analysis was determined by examining different time intervals including 5, 10, 15, and 20 minutes. After separating the dataset into intervals, the number of days, where not all of the intervals have order submitted, was recorded as shown in table 4.1. According to table 4.1, the number of day with incomplete data decreased along with the increasing time frame. The 15-minute time frame was selected for further analysis as the larger time frame (20-minute) did not improve the data availability substantially.

Table 4.1 Number of days with missing trading in intervals

This table showed the number of days with some missing trading within the intervals. The intraday data was separated into the interval of 5, 10, 15, and 20-minute to determine appropriate value for further analysis. Since the trading may not occur all the time, some of the intervals may not be filled with orders, and hence missing. If trading information of any of the interval is missing in any day, the particular day will be counted.

		Number of Days without Complete Trading Activity									
Ticker	N	5-minute	10-minute	15-minute	20-minute						
		interval	interval	interval	interval						
ADVANC	103	15	0	0	0						
АОТ	103	92	35	16	9						
BANPU	103	44	8	3	2						
BAY	103	42	3	0	0						
BBL	103	49	8	1	1						
BEC	103	99	55	21	19						
BGH	103	84	11	1	1						
BIGC	103	96	56	16	16						
CPALL	103	17	1	0	0						
CPF	103	4	0	0	0						
CPN	103	88	38	10	9						
DTAC	103	59	13	2	3						
EGCO	103	102	78	38	38						
GLOW	103	103	93	58	49						
INTUCH	103	18	2	0	0						
IRPC	103	54	3	0	0						
IVL	103	34	3	0	0						
IVL	103	34	3	0	0						

KBANK	103	65	7	0	0
ктв	103	14	0	0	0
LH	103	101	45	13	13
PTT	103	13	0	0	0
PTTEP	103	47	6	0	0
PTTGC	103	13	1	0	0
RATCH	103	103	86	47	44
SCB	103	48	3	0	0
scc	103	84	24	5	5
sccc	103	103	99	86	80
ТМВ	103	73	10	1	3
ТОР	103	49	5	3	0
TUF	103	101	44	15	10

The statistical analysis of the percent quoted spread before and after index inclusion was analyzed using two-tails paired student t-test. The statistical analysis of the intraday percent quoted spread along with other measurements was listed in table 4.2. The P-value of 0.0043 indicated that the percent quoted spread after index inclusion is significantly different from the level prior to the event. Following the inclusion, the percent quoted spread decreased from 0.4392 percent to 0.4142 percent, which accounted for a 5.69 percent reduction. The results suggested that stock liquidity, specifically, the trading cost, decreased after being included into the ASEAN STARS index.

Recent research studied the SET50 index effect of stock rebalancing by comparing the bid-ask spread of any particular day within the event window with the estimation period prior to the inclusion. The study observed an improvement in quoted spread one day after the index rebalancing without observing any significant long term improvement following the event (Triempanichgul (2010)). This study investigated the overall change in percent quoted spread during the two and a half months of intraday prior and after the inclusion together with the

ASEAN Linkage implementation. An improvement of 5.69 percent decrease in percent quoted spread was observed.

According to the summary statistics provided in table 4.3 as well as the computed data, some of the bid-ask spreads were negative, hence leading to some negative percent quoted spread. This is due to the higher level of the highest bid price than the lowest asked price retrieved within the time intervals. However, the occurrence of these negative spreads were limited (only 80 entries from more than 3000 samples); therefore, these data were treated as noises for the analysis. Moreover, in order to assure the robustness of the analysis, the test was repeated with the same data where negative spreads were removed. The obtained results remained the same with statistically significant decrease in percent quoted spread after index inclusion (data not shown).

Table 4.2 Statistical analysis of the calculated intraday liquidity measures

This table presented the statistical analyses results of the computed liquidity measures employed in this study. The paired test analysis was carried out to examine the difference between the measures before and after index inclusion together with ASEAN Linkage implementation. The intraday percent quoted spread was calculated by computing the measure for each 15- minute interval as; 100*(quoted spread/mid price). The daily average of the measure was calculated as the mean of measure from these intervals.

Measure	N Before	N After	Mean Before	Mean After	% Change (After-Before)	t-Statistic	P-Value			
Intraday measure of 51 days prior and after event date										
Percent Quoted Spread (%)	1530	1530	0.4392	0.4142	-5.69%	-2.86	0.0043			
Robustness 1 (removed all incomplete)*	663	663	0.3515	0.3336	-5.09%	-1.99	0.0475			
Robustness 2 (removed incomplete > 21)**	1326	1326	0.3732	0.3479	-6.78%	-3.44	0.0006			

^{*}Robustness 1tested the percent quoted spread after removing all stocks that did not have all interval filled.

^{**} Robustness 2tested the percent quoted spread after removing all stocks with more than 20 percent of interval unfilled.

Table 4.3 Summary statistics of intraday percent quoted spread

This table presented the summary statistics of the calculated intraday percent quoted spread of the 51 trading days prior and after index inclusion and ASEAN Linkage implementation. The intraday data was separated into 15-minute intervals and the best bid and ask prices were computed. The percent quoted spread measure of each interval was then calculated as; percent quoted spread = 100*mid price/quoted spread. Daily average of the measure was computed, and the descriptive statistics of them was presented.

Intraday Percent Quoted Spread (%)												
	N	ı	Me	ean	S	D	Max		M	in		
	Befor	Afte	Befor		Befor		Befor		Befor			
Ticker	е	r	е	After	е	After	е	After	е	After		
ADVAN			0.259	0.116	0.110	0.176	0.422	0.528	0.000	- 0.272		
С	51	51	4	5	9	1	8	5	7	4		
									-	-		
			0.431	0.187	0.345	0.122	2.367	0.501	0.241	0.206		
AOT	51	51	9	0	9	8	9	3	9	6		
			0.238	0.277	0.200	0.131	0.652	0.611	0.652	0.000		
BANPU	51	51	6	2	1	0	4	6	7	8		
									-			
			0.639	0.644	0.261	0.156	1.545	0.993	0.120	0.231		
BAY	51	51	7	9	6	0	7	7	3	7		
										-		
			0.164	0.155	0.076	0.103	0.340	0.437	0.028	0.190		
BBL	51	51	4	3	9	4	9	6	6	0		
										-		
BEC	51	E 1	0.573	0.484 6	0.269	0.235	1.253	0.967 6	0.116	0.067		
DEC	51	51	1	б	5	б	5	б	Ь	6		
			0.463	0.434	0.200	0.116	1.065	0.685	0.044	0.126		
BGH	51	51	1	7	5	9	7	8	0	3		
l	l		l		l		l		l			

BIGC 51 51 8 8 8 6 .226 0.272 0.875 1.400 0.642 0.06 BIGC 51 51 8 8 8 6 4 5 4 7 6 6 0.525 0.421 0.181 0.152 0.757 0.776 0.037 0.07 CPALL 51 51 0 9 5 5 0 0 7 2 0.528 0.554 0.212 0.156 0.830 0.760 0.203 0.04 CPF 51 51 3 8 5 6 6 5 8 CPN 51 51 4 6 4 4 5 5 3 3 0.154 0.212 0.111 0.128 0.428 0.519 0.215 0.11 DTAC 51 51 0 0 7 2 7 7 5 0.799 0.606 0.390 0.253 2.022 1.334 0.241 0.06 EGCO 51 51 5 2 2 3 8 5 7 2 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.138 INTUC 1 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.138										-	
CPALL 51 51 0 9 5 5 5 0.776 0.037 0.076 CPALL 51 51 0 9 5 5 5 0 7 2 CPF 51 51 3 8 5 6 6 6 5 8 CPN 51 51 0 0 0 7 2 CPN 51 51 0 0 0 7 2 CPN 51 51 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 51 51 0 0 0 0 7 2 7 7 7 5 CPN 6 0.683 0.379 0.543 2.517 3.244 0.342 0.23 CPN 51 51 0 0 0 0 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136				0.352	0.488	0.226	0.272	0.875	1.400	0.642	0.064
CPALL 51 51 0 9 5 5 0 7 2 CPF 51 51 51 0.528 0.554 0.212 0.156 0.830 0.760 0.203 0.04 CPN 51 51 4 6 4 4 5 5 3 CPN 51 51 4 6 4 4 5 5 3 DTAC 51 51 0.00 0.212 0.111 0.128 0.428 0.519 0.215 0.11 DTAC 51 51 0 0 7 2 7 7 5 GCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.133	BIGC	51	51	8	8	6	4	5	4	7	0
CPALL 51 51 0 9 5 5 0 7 2 CPF 51 51 51 0.528 0.554 0.212 0.156 0.830 0.760 0.203 0.04 CPN 51 51 4 6 4 4 5 5 3 CPN 51 51 4 6 4 4 5 5 3 DTAC 51 51 0.00 0.212 0.111 0.128 0.428 0.519 0.215 0.11 DTAC 51 51 0 0 7 2 7 7 5 GCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.133				0.525	0.421	0.181	0.152	0.757	0.776	0.037	0.072
CPF 51 51 3 8 5 6 6 5 8 CPN 51 51 4 6 4 4 5 5 3 CPN 51 51 51 4 6 4 4 5 5 3 DTAC 51 51 0 0 7 2 7 7 5 EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136	CPALL	51									
CPF 51 51 3 8 5 6 6 5 8 CPN 51 51 4 6 4 4 5 5 3 CPN 51 51 51 4 6 4 4 5 5 3 DTAC 51 51 0 0 7 2 7 7 5 EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136										_	
CPF 51 51 3 8 5 6 6 5 8 CPN 51 51 4 6 4 4 5 5 3 CPN 51 51 51 4 6 4 4 5 5 3 DTAC 51 51 0 0 7 2 7 7 5 EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136				0.528	0.554	0.212	0.156	0.830	0.760	0.203	0.042
CPN 51 51 4 6 4 4 5 5 3 DTAC 51 51 0.212 0.111 0.128 0.428 0.519 0.215 0.11 DTAC 51 51 0 0 7 2 7 7 5 EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136	CPF	51									
CPN 51 51 4 6 4 4 5 5 3 DTAC 51 51 0.212 0.111 0.128 0.428 0.519 0.215 0.11 DTAC 51 51 0 0 7 2 7 7 5 EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136											
CPN 51 51 4 6 4 4 5 5 3 DTAC 51 51 0.212 0.111 0.128 0.428 0.519 0.215 0.11 DTAC 51 51 0 0 7 2 7 7 5 EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136				0.558	0.203	0.203	0.207	1.131	0.509	0.208	0.504
DTAC 51 51 0 0 7 2 7 7 5 EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136	CPN	51									
DTAC 51 51 0 0 7 2 7 7 5 EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136											
DTAC 51 51 0 0 7 2 7 7 5 EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136				0.154	0.212	0.111	0.128	0.428	0.519	0.215	0.111
EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 0.379 0.543 2.517 3.244 0.342 0.23 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136	DTAC	51									
EGCO 51 51 2 2 3 8 5 7 2 GLOW 51 51 9 3 0.379 0.543 2.517 3.244 0.342 0.23 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136				0.700	0 606	0.200	U 3E3	2 022	1 22/	0.241	0.062
GLOW 51 51 9 3 3 8 8 3 1 INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136	EGCO	51									
GLOW 51 51 9 3 3 8 8 3 1											
INTUC 0.232 0.201 0.106 0.133 0.466 0.381 0.041 0.136	CLOW	Г1									
	GLOW	21	31	9	3	3	0	٥	3	1	3
										-	-
		Г1									
	п	21	21	5	2	/	U	U	1	8	4
-										-	
IRPC 0.357 0.447 0.152 0.142 0.614 0.864 0.242 0.100 0.100	1000	F.4									
IRPC 51 51 9 4 7 9 7 0 3	IRPC	51	51	9	4	/	9	/	U	3	8
										-	-
0.610 0.601 0.197 0.343 0.958 1.150 0.050 0.16		F.4	- 4								
IVL 51 51 8 8 5 7 7 5 1	IVL	51	51	8	8	5	/	/	5	1	3
											-
0.210 0.154 0.280 0.075 2.104 0.326 0.015 0.03			- 4								
KBANK 51 51 7 9 3 4 6 0 2	KBANK	51	51	/	9	3	4	6	0	2	7
										-	-
0.392 0.387 0.160 0.112 0.667 0.623 0.317 0.029											
KTB 51 51 4 4 3 3 7 7 0	KTB	51	51	4	4	3	3	7	7	0	3

									0.095	
LH	51	51	1	4	3	3	2	3	7	6
			0.176	0.107	0.075	0.004	0.220	0.384	- 0.033	- 0.035
PTT	51		3				0.320			0.035
			0.230	0.217	0.093	0.174	0.401	1.012	0.055	0.162
PTTEP	51	51	6	4	8	9	3	6	1	3
									-	-
	F.4	-4						0.360	0.564	
PTTGC	51	51	6	6	0	4	0	0	2	0
DATOU	F.4								0.438	
RATCH	51	51	1	9	5	8	4	8	7	5
			0.200	0.100	0.006	0.101	0.422	0 504	0.049	- 0.016
SCB	51			0.190		0.101			0.049	
										_
			0.278	0.280	0.114	0.153	0.587	0.710	0.030	0.182
scc	51	51	5	6	2	2	7	5	2	4
			0.947	1.268	0.569	0.518	2.816	2.890	0.196	0.531
sccc	51	51	4	6	7	6	7	6	7	1
										-
TAAD	F1								0.001 9	
TMB	51	51								
TOD	F1	Г1							0.040	
ТОР	51	21		5		2		1	4	8
TUF	51	51		0.441	0.187	0.278 9	1.116	2.047	0.126 1	0.172 1
101	31	31			0	9	U	3	1	
Λ	verage		0.439	0.414						
	verage			2						

4.2.2 Robustness test of intraday percent quoted spread

According to table 4.1, there were several firms lacking of complete trading activities within the intervals chosen for the study (15-minute). In order to evaluate whether these firms with incomplete trading within the days would be influential to the obtained results, robustness check using subset of data was carried out. Two other extreme scenarios including 1) excluding stock with any incomplete trading, and 2) excluding stock with more than 21 (20 percent) trading days were set up.

The statistical analyses of these sub-datasets using two-tailed paired t-test were carried out. With the full dataset exhibiting P-value of 0.0043, the smallest dataset with the exclusion of all incomplete trading stocks revealed the P-value of 0.0475, which is significant at 95% confidence interval. Consistently, with the exclusion of stocks with more than 21 incomplete trading days (about 20% of the total trading days), the obtained P-value of 0.0006 indicated significant decrease in percent quoted spread.

All of these intraday percent quoted spread analyses collectively suggested that the trading cost following index inclusion significantly decreased. Nonetheless, this study also aimed at evaluating the effect of ASEAN STARS index and ASEAN Linkage implementation in the relatively long term, thus the liquidity change within one year period was further analyzed applying daily data.

4.3 Long-term liquidity effects of index inclusion

4.3.1 Amihud's illiquidity ratio

The sample size for this measure was 360 samples (30 monthly stocks illiquidity measure x 12 months). Statistical analysis of Amihud's illiquidity ratio and summary statistics before and after index inclusion were presented in table 4.4 and 4.5, respectively.

Table 4.4 Statistical analysis of the calculated daily liquidity measures

This table presented the statistical analyses results of the computed liquidity measures employed in this study. The paired t-test analysis was carried out to examine the difference between the measures before and after index inclusion together with ASEAN Linkage implementation. The liquidity measures were calculated as; illiquidity ratio = absolute stock return/ THB volume*10⁷, percent quoted spread = 100*(quoted spread/ mid price), and turnover = 100*trading volume/free float x outstanding shares. In the case of intraday percent quoted spread, the daily average of the measure was calculated as the mean of measure from each interval. For illiquidity ratio and volume analyses, the monthly average of the daily measures was calculated and tested. As for the daily percent quoted spread and turnover, daily measures were tested directly.

Measure	N Before	N After	Mean Before	Mean After	% Change (After-Before)	t-Statistic	P-Value					
Daily measure of 235 trading days prior and after event date												
Illiquidity Ratio	360	360	0.0837	0.0691	-17.43%	-3.35	0.0009					
Percent Quoted Spread (%)	7050	7050	0.5125	0.5213	1.72%	2.40	0.0164					
Volume	360	360	15507971	20144016	29.89%	2.60	0.0098					

Turnover (%) 7050 7050 0.5290 0.5651 6.82% 4.09 < 0.0001

The P-value of 0.0009 indicated that stock illiquidity after index inclusion was different from the liquidity before the event at α = 0.05. This suggested that, upon index inclusion, stock liquidity changes. Most of the stocks, 20 out of 30 stocks revealed the decreased level of illiquidity as referred from the lower mean of Amihud illiquidity measure (table 4.5). The mean value of illiquidity decreased by 17.43 percent from 0.0838 to 0.0690, indicating the higher liquidity after entering into the index. Since the Amihud's measure of illiquidity mainly captures the price impact dimension of liquidity, the result suggested that, for most of the stocks, the price impact reduced once the stocks are included.

Comparing to previous research conducted on SET50 index adjustment, the study found immediate significant increase in illiquidity (elevated price impact) right after the event date; followed by an insignificant decrease afterward(Triempanichgul (2010)). In this study, as oppose to examining the change day by day, overall long term impact of inclusion was elucidated. As discussed previously, the obtained results indicated long term improvement of price impact after the adaptation of ASEAN Linkage as well as ASEAN STARS index.

4.3.2 Daily percent quoted spread

In order to capture the long term index inclusion effect on the trading cost of stocks, percent quoted spread of the target stocks were computed from daily data, and the spread before and after index inclusion were compared. The sample size for the analysis was 7050 (30 stocks x 235 trading days) for before and after the inclusion. The percent quoted spreads of each stock prior and after the event was analyzed using two-tailed paired t-test to determine whether the stock percent quoted spread after being included was different. The tested results and summary statistics of the calculated percent quoted spreads were shown table 4.4 and 4.6, respectively.

Statistically significant differences between the measures before and after the index inclusion were observed with P-value of 0.0164. Interestingly, the spread after index inclusion increased slightly comparing to the period prior to the inclusion from 0.5125 percent to 0.5213. The elevated spread accounted for 1.71 percent increase in percent quoted spread.

This result provided different finding from short term intraday percent quoted spread analysis where a 5.69 decrease in spread was observed. Overall this may suggest that the transaction cost improvement following the index was not persistent. This may due to the nature of the included stock,

which were highly liquid with tight relatively spread even before the implementation of the index and trading link.

Table 4.5 Summary statistics of amihud's illiquidity measures

This table presented the summary statistics of the calculated Amihud's illiquidity ratio of the 235 trading days prior and after index inclusion and ASEAN Linkage implementation. The illiquidity ratio of each day was calculated as; illiquidity ratio = absolute stock return/ THB volume*10⁷.

	Amihud's Illiquidity Ratio												
	N		Me	ean	S	D	М	ах	Min				
Ticker	Before	After	Before	After	Before	After	Before	After	Before	After			
ADVANC	235	235	0.0167	0.0116	0.0125	0.0086	0.0692	0.0571	0	0			
АОТ	235	235	0.0922	0.0460	0.1066	0.0376	1.2078	0.1938	0	0			
BANPU	235	235	0.0172	0.0369	0.0155	0.0850	0.0883	1.2592	0	0			
BAY	235	235	0.0526	0.0206	0.0509	0.0223	0.3364	0.1542	0	0			
BBL	235	235	0.0144	0.0129	0.0133	0.0104	0.0839	0.0460	0	0			
BEC	235	235	0.2095	0.1218	0.2133	0.1073	1.4781	0.6209	0	0			
BGH	235	235	0.0707	0.0346	0.0834	0.0244	0.6909	0.1256	0	0			
BIGC	235	235	0.1475	0.1680	0.1473	0.1936	1.0391	1.4453	0	0			
CPALL	235	235	0.0248	0.0143	0.0262	0.0120	0.2326	0.0632	0	0			
CPF	235	235	0.0139	0.0279	0.0136	0.0320	0.0755	0.2230	0	0			
CPN	235	235	0.1688	0.0743	0.1701	0.0902	1.2273	1.1349	0	0			
DTAC	235	235	0.0286	0.0382	0.0273	0.0361	0.2646	0.2046	0	0			
EGCO	235	235	0.1864	0.1491	0.1893	0.1427	1.1256	0.7950	0	0			
GLOW	235	235	0.2859	0.2501	0.4900	0.2205	6.5755	1.2052	0	0			
INTUCH	235	235	0.0262	0.0097	0.0403	0.0079	0.3418	0.0448	0	0			

IRPC	235	235	0.0685	0.1106	0.0635	0.1152	0.2939	0.6501	0	0
IVL	235	235	0.0301	0.0906	0.0275	0.0888	0.1621	0.4230	0	0
KBANK	235	235	0.0139	0.0104	0.0105	0.0085	0.0549	0.0678	0	0
ктв	235	235	0.0233	0.0156	0.0193	0.0121	0.1160	0.0656	0	0
LH	235	235	0.1406	0.0717	0.1355	0.0633	1.0046	0.3343	0	0
PTT	235	235	0.0092	0.0076	0.0068	0.0055	0.0322	0.0305	0	0
PTTEP	235	235	0.0204	0.0146	0.0188	0.0120	0.1414	0.0837	0	0
PTTGC	235	235	0.0149	0.0171	0.0123	0.0129	0.0784	0.0658	0	0
RATCH	235	235	0.1891	0.2028	0.2182	0.1812	1.3458	0.9877	0	0
SCB	235	235	0.0157	0.0116	0.0119	0.0085	0.0637	0.0372	0	0
scc	235	235	0.0148	0.0246	0.0112	0.0177	0.0639	0.0938	0	0
sccc	235	235	0.4200	0.3115	0.4568	0.2869	3.3785	1.6021	0	0
ТМВ	235	235	0.0869	0.0441	0.0971	0.0473	0.5182	0.2703	0	0
ТОР	235	235	0.0255	0.0368	0.0214	0.0290	0.1047	0.1745	0	0
TUF	235	235	0.0829	0.0884	0.1010	0.0868	0.8641	0.4536	0	0
A	Average		0.0837	0.0691						

Table 4.6 Summary statistics of daily percent quoted spread

This table presented the summary statistics of the calculated daily percent quoted spread of 235 trading days prior and after index inclusion and ASEAN Linkage implementation. The daily percent quoted spread of each day was calculated as; daily percent quoted spread = 100*mid price/quoted spread.

Percent Quoted Spread (%)											
	N Mean SD Max Min										
Ticker	Before	After	Before	After	Before	After	Before	After	Before	After	
ADVANC	NC 235 235 0.3899 0.4377 0.1517 0.1437 1.4085 1.2072 0.2541 0.2503										

АОТ	235	235	0.5702	0.4241	0.2991	0.2172	2.1739	1.3605	0.2869	0.2554
BANPU	235	235	0.3894	0.3636	0.0865	0.1606	0.9217	1.5625	0.2503	0.2503
ВАҮ	235	235	0.7194	0.7434	0.2143	0.0758	1.7544	1.4388	0.4008	0.6557
BBL	235	235	0.3295	0.4309	0.1359	0.1834	1.3870	1.4815	0.2503	0.2503
BEC	235	235	0.7269	0.5921	0.4237	0.3977	2.5974	2.7833	0.4073	0.3252
BGH	235	235	0.4022	0.4521	0.1955	0.2036	1.7789	1.3514	0.2503	0.2861
BIGC	235	235	0.4524	0.6122	0.2032	0.3716	1.6393	2.0888	0.2503	0.2503
CPALL	235	235	0.6020	0.6198	0.1803	0.1643	1.4815	2.8169	0.3263	0.4819
CPF	235	235	0.7176	0.7533	0.0579	0.1649	0.8439	1.8182	0.5970	0.4008
CPN	235	235	0.6353	0.5372	0.2264	0.3362	1.6713	3.4682	0.3795	0.2503
DTAC	235	235	0.3347	0.4103	0.0675	0.1876	0.7246	1.3730	0.2721	0.2516
EGCO	235	235	0.5052	0.5124	0.3166	0.3021	2.1277	2.2989	0.2509	0.3044
GLOW	235	235	0.6300	0.6700	0.3736	0.4768	2.3753	3.3557	0.3552	0.2999
INTUCH	235	235	0.4708	0.3393	0.0875	0.0632	0.7435	0.8097	0.3540	0.2574
IRPC	235	235	0.4911	0.5585	0.0648	0.1437	1.0363	1.2739	0.4141	0.4376
IVL	235	235	0.7958	0.6385	0.0864	0.2431	0.9569	1.2270	0.6006	0.4008
KBANK	235	235	0.3844	0.3729	0.1337	0.1465	1.2320	0.9852	0.2685	0.2503
КТВ	235	235	0.6164	0.5652	0.0475	0.1713	0.7117	0.9950	0.5333	0.4008
LH	235	235	0.7667	0.8123	0.2270	0.2180	1.9048	1.8692	0.5510	0.5038
PTT	235	235	0.3087	0.3219	0.0436	0.0812	0.6849	0.9050	0.2736	0.2729
PTTEP	235	235	0.3409	0.3595	0.1247	0.1226	1.1834	0.9820	0.2692	0.2920
PTTGC	235	235	0.4039	0.4007	0.0896	0.1514	1.3730	1.4184	0.3317	0.3101
RATCH	235	235	0.6271	0.5471	0.2941	0.2247	4.4693	1.4670	0.4640	0.3883
SCB	235	235	0.3978	0.3452	0.1201	0.1187	1.1050	0.9539	0.2928	0.2548
scc	235	235	0.3145	0.4842	0.0873	0.2021	1.2085	1.8100	0.2759	0.2503

sccc	235	235	0.5787	0.6852	0.3414	0.3780	1.7762	1.9802	0.2554	0.2509
ТМВ	235	235	0.6340	0.7531	0.1003	0.1318	1.4815	0.9950	0.5305	0.5038
ТОР	235	235	0.3986	0.4245	0.0592	0.1467	0.8511	1.1928	0.3284	0.3295
TUF	235	235	0.4420	0.4717	0.1838	0.2183	1.3652	2.2676	0.3231	0.3306
Α	verage		0.5125	0.5213						

4.3.3 Volume

Since ASEAN STARS inclusion along with ASEAN Linkage implementation allows more convenient trans-border trading of the selected stocks, the change in stock trading volume was also investigated. If the index inclusion attracted more foreign investors, elevated trading volume should be observed. The monthly average volume of each stock was computed and used for the analysis. Similarly, the sample size was 360 samples (30 stock monthly average trading volumes x 12 months (before/after)). Related statistical summary of stock volume was presented in table 4.4.

The result with the P-value of 0.0098, which is less than α = 0.05, indicated that the volume after index inclusion was statistically different from the prior level. Most of the included stocks (20 out of 30 stocks) have increased average trading volume comparing to period before inclusion. The overall average volume of these stocks after the index inclusion was also greater, with the increase accounted for 29.89 percent higher than the before inclusion.

Similarly to the index effect on volume detected in SET50 index rebalancing, inclusion into ASEAN STARS index accompanied by the implementation of ASEAN Linkage promoted trading volume of the targeted stocks. Previous studies have investigated using both volume adjusted by the market volume as well as trading volume(Teerapongpratya (2010); Triempanichgul (2010)). The study observed significant increase in volume ratio within the three days prior to the index effective date. Elevated volume was also increased at one day before the inclusion without further improvement after the event date.

Instead, this study focused on overall change of trading volume within the study period of one year after index inclusion, and the observed results suggested an overall increase in trading volume during the study period. Although the aim of this research was to investigate overall changes in liquidity within

the whole study period, for comparison purpose, the trading volume during each of the three day period prior to the index inclusion was tested against the level of the one year period before those dates, and no significant increase in trading was observed (data not shown). These results revealed the overall long term improvement in trading volume of the targeted stocks, whereas no significant improvement in volume around the event date was observed.

Table 4.7 Summary statistics of daily trading volume

This table presented the summary statistics of the calculated trading volume of 235 trading days prior and after index inclusion and ASEAN Linkage implementation. The automatic order matching (AOM) volume was used for the test.

				V	olume ('0	000)				
	N]	Me	ean	S	D	М	ах	Min	
	Befor	Afte							Befor	
Ticker	е	r	Before	After	Before	After	Before	After	е	After
ADVAN										
С	235	235	4658	7060	1959	3505	10993	29638	772	1410
AOT	235	235	3103	3896	1990	3579	10418	46565	362	484
BANPU	235	235	1739	1950	1390	4567	16542	60204	248	190
BAY	235	235	13692	20171	10609	18269	97026	132854	2282	3268
BBL	235	235	5049	5486	2450	2987	14570	22670	810	1091
BEC	235	235	2113	2917	1506	1970	15250	20651	264	309
вдн	235	235	2412	3533	1812	3027	15876	36919	109	856
BIGC	235	235	925	632	758	471	5294	4825	101	65
CPALL	235	235	15050	34777	15634	43748	172685	488147	1157	5510
CPF	235	235	26358	24333	19925	14758	184980	155142	4102	2897
CPN	235	235	2275	5723	1389	5948	7885	62086	403	894
DTAC	235	235	7001	5136	5133	3430	35991	28760	1277	1029

EGCO	235	235	628	712	494	634	3981	6896	45	92
GLOW	235	235	1168	1039	931	575	8848	3545	37	156
INTUCH	235	235	12409	22453	7877	14735	62183	99138	1127	2799
IRPC	235	235	74705	47293	69154	49413	498535	445868	11419	9238
IVL	235	235	25948	13607	18337	11089	107334	79686	5147	2304
KBANK	235	235	6865	7776	3133	5327	18636	36294	770	1809
КТВ	235	235	39415	57154	23050	33570	134826	175154	7751	7942
LH	235	235	18313	29971	12081	20854	86884	129250	2749	4193
PTT	235	235	3944	4421	1923	2134	15559	15911	631	1059
PTTEP	235	235	3949	5990	2190	3270	13485	19101	612	1138
PTTGC	235	235	18511	13788	12223	6470	62287	48041	2890	3524
RATCH	235	235	1189	1166	832	815	5198	7119	91	253
SCB	235	235	6365	7837	3014	4362	20280	26414	747	1088
scc	235	235	2037	1458	1259	734	11940	5342	213	333
sccc	235	235	120	155	107	137	914	1541	17	19
			15246	26388	17362	22794	144628	115796		1558
ТМВ	235	235	4	6	1	7	6	5	16736	1
ТОР	235	235	10114	6842	5912	3921	36210	26878	1510	1433
TUF	235	235	2723	3162	2035	2056	14067	15640	191	420
А	Average		15508	20144						

This may due to the difference in the cases of SET50 and ASEAN STARS index where the former was followed by index funds but the latter one was firstly established. Hence, no adjustment of index funds occurred when the 30 stocks were initially included. Nonetheless, in the long run, being included in the ASEAN STARS index as well as the ASEAN Linkage may attract more investor activities. This may also suggest the possibility that the improvement in illiquidity, as measured by Amihud's method, may result from the increase in investor attention and trading.

4.3.4 Turnover

In order to confirm the test conducted on volume, analysis on turnover was also implemented. The turnover was computed as the ratio of stock trading volume to the tradable shares of that stock (eq. (9)). This tradable share number was calculated as the number of free floating shares (percent free float x total outstanding shares). The totals of 7050 samples (30 stocks x 235 trading days) from before and after the inclusion were tested. The t-test results and summary statistics of the adjusted turnover were illustrated in table 4.4 and 4.8, respectively.

The paired t-test was applied for the analysis of the daily turnover. Statistically significant result was observed as indicated by the P-value of less than 0.0001. This indicated significant difference in the turnover levels prior and after index inclusion, which increased from 0.529 percent turnover to 0.5651 percent. The change following index inclusion accounted for 6.82 percent comparing to the average turnover level prior to the ASEAN Linkage implementation.

Similarly to the volume measurement, recent study has investigated the turnover ratio during index readjustment (Triempanichgul (2010)). Comparable to the volume effect observed in the same study, the turnover ratio increased significantly during the one day period before the new list of stocks was included. Although the turnover in previous study used outstanding shares without adjusting by free float like what was employed in this study, the results should also provide some comparable information. As discussed previously, turnover analysis in this research detected long term improvement of turnover after the event date.

Table 4.8 Summary statistics of daily turnover

This table presented the summary statistics of the calculated turnover of 235 trading days prior and after index inclusion and ASEAN Linkage implementation. The turnover ratio was adjusted by the free float level which was defined by the SET as the number of shares less strategic partner ownership. The turnover of each day was calculated as; turnover = 100*trading volume/free float x outstanding shares.

Daily Turnover (%)										
Ticker	N	Mean	SD	Max	Min					

	Before	After	Before	After	Before	After	Before	After	Before	After
ADVANC	235	235	0.4325	0.6556	0.1819	0.3255	1.0209	2.7523	0.0717	0.1309
АОТ	235	235	0.7243	0.9094	0.4644	0.8353	2.4316	10.8687	0.0846	0.1130
BANPU	235	235	0.7607	0.6725	0.6029	0.6077	7.1605	3.9979	0.1074	0.0823
ВАҮ	235	235	0.3082	1.0625	0.2377	1.0923	2.1398	7.8142	0.0503	0.0812
BBL	235	235	0.2708	0.2945	0.1314	0.1603	0.7814	1.2158	0.0434	0.0585
BEC	235	235	0.2229	0.2896	0.1589	0.1929	1.6083	2.0290	0.0278	0.0304
BGH	235	235	0.3181	0.5296	0.2363	0.4309	2.0762	4.8280	0.0154	0.1250
BIGC	235	235	0.2788	0.1847	0.2250	0.1378	1.5485	1.4112	0.0343	0.0191
CPALL	235	235	0.4329	0.6668	0.5632	0.8308	6.9587	9.2763	0.0498	0.1111
CPF	235	235	0.7392	0.6038	0.5540	0.3861	5.1244	4.2978	0.1172	0.0692
CPN	235	235	0.3235	0.4434	0.1961	0.5973	1.1114	8.7516	0.0575	0.1032
DTAC	235	235	1.0085	0.7382	0.7397	0.4931	5.2505	4.1342	0.1862	0.1478
EGCO	235	235	0.2973	0.3336	0.2372	0.2962	1.9127	3.2087	0.0192	0.0441
GLOW	235	235	0.2584	0.2299	0.2060	0.1272	1.9580	0.7845	0.0082	0.0345
INTUCH	235	235	0.9678	1.2445	0.6007	0.7760	4.3115	5.2988	0.1727	0.1941
IRPC	235	235	0.7934	0.5023	0.7345	0.5249	5.2922	4.7362	0.1212	0.0981
IVL	235	235	1.6060	0.8426	1.1349	0.6867	6.6433	4.9351	0.3186	0.1427
KBANK	235	235	0.3695	0.4090	0.1687	0.2788	0.9996	1.9025	0.0421	0.0948
ктв	235	235	0.7847	0.9140	0.4589	0.5333	2.6841	2.7893	0.1543	0.1265
LH	235	235	0.3503	0.5733	0.2311	0.3989	1.6620	2.4725	0.0526	0.0802
PTT	235	235	0.2828	0.3169	0.1378	0.1530	1.1156	1.1403	0.0452	0.0759
PTTEP	235	235	0.3430	0.4486	0.1902	0.2490	1.1712	1.4121	0.0532	0.0988
PTTGC	235	235	0.8045	0.5988	0.5314	0.2810	2.7087	2.0863	0.1257	0.1531
RATCH	235	235	0.2102	0.2112	0.1471	0.1468	0.9339	1.2547	0.0164	0.0461

SCB	235	235	0.2637	0.3066	0.1249	0.1687	0.8403	1.0209	0.0309	0.0451
scc	235	235	0.2508	0.1794	0.1550	0.0903	1.4699	0.6576	0.0262	0.0409
sccc	235	235	0.2130	0.2774	0.1903	0.2456	1.6367	2.7580	0.0306	0.0331
ТМВ	235	235	0.8001	1.3827	0.9112	1.1944	7.5910	6.0628	0.0878	0.0817
ТОР	235	235	0.9920	0.6711	0.5799	0.3846	3.5514	2.6362	0.1481	0.1406
TUF	235	235	0.4616	0.4597	0.3523	0.2976	2.5290	2.2589	0.0373	0.0629
•	Average			0.5651			1		ı	

Additional test was conducted to measure the change in turnover ratio during the period of three days preceding the event date comparing to its average level in one year trading prior to the inclusion. As a result, no significant increase in turnover was detected (data not shown). In fact, the turnover level was slightly decreased just before the effective date. The results were consistent with finding observed in the volume study. As oppose to the immediate increase in trading volume and turnover due to portfolio readjustment of index funds observed in SET50 (Triempanichgul (2010)), the ASEAN STARS index was established for the first time, and there was no index fund following it. This may lead to no significant improvement in trading turnover of the targeted stocks after event date. More importantly, during the one year period after the index was establish as well as the implementation of ASEAN Linkage, long term improvement of both turnover and volume was detected.

5. CONCLUSIONS AND IMPLICATIONS

This research study has investigated the liquidity effect of ASEAN STARS index inclusion and the adaptation of ASEAN trading linkage on the 30 stocks initially covered by the index. The ASEAN Linkage has provided a unique opportunity to study index effect in the sense that the included stocks were not conveniently traded prior to the establishment, especially for the retail investors who have limited resources to invest across countries. The aim of the study was to determine whether the implementation of these index and infrastructure would influent the liquidity of the targeted stocks.

The result observed from the intraday percent quoted spread analysis indicated a significant improvement during the two months period following index inclusion. This was different from the

previous study where the decrease in trading cost as measure by quoted spread occurred only on the index adjustment date. The tests of other long term liquidity changes found significant improvement in price impact (illiquidity decreased by 17.43 percent), volume (increased by 29.89 percent), and free float adjusted turnover (increased by 6.82 percent) during one year period after index inclusion and ASEAN Linkage implementation.

Interestingly, the investigation of percent quoted spread within one year using daily data where trading cost was increased slightly contradicted with the short term intraday results. This suggested that the improvement in trading cost may exist only in the short term since the included stocks were considered as highly liquid with tight spread.

The observed improvement in liquidity was different from the previous studies on SET50 index rebalancing where the changes of volume and turnover were observed within the a few days prior to index adjustment. This may due to the fact that the ASEAN STARS index was just established and there was no index funds following it. More importantly, the overall improvements in price impact, volume, and turnover suggested a long term improvement of liquidity after adopting the ASEAN STARS index and ASEAN Linkage.

As for the future study, the long term effect on trading cost should be confirmed using intraday data when they become available since it may contain more information comparing to the daily data. Moreover, it is interesting to further investigate changes in other dimension of liquidity as well as in market microstructure such as market dept, order size, frequency of trade and so on. After the ASEAN markets are fully integrated, it may be interesting to extend the data to other less liquid stock where the change in liquidity may be more profound.

REFERENCES

Amihud, Yakov, 2002, Illiquidity and stock returns: Cross-section and time-series effects, *Journal of Financial Markets* 5, 31-56.

Ananpattanakul, Thatree, 2009, The liquidity effect of introduction of tdex on set50 constituents, *Independent Study, Thammsat University*.

Bekaert, G., & Harvey, C. R. (2000). Foreign speculators and emerging equity markets. Journal of Finance, 55(2), 565–614.

Bekaert, G., Harvey, C. R., & Lundblad, C. (2005). Does financial liberalization spur growth?. Journal of Financial Economics, 77(1), 3–56

Bildik, Recep, and Güzhan Gülay, 2008, The effects of changes in index composition on stock prices and volume: Evidence from the istanbul stock exchange, *International Review of Financial Analysis* 17, 178-197.

Chakrabarti, Rajesh, Wei Huang, Narayanan Jayaraman, and Jinsoo Lee, 2005, Price and volume effects of changes in msci indices – nature and causes, *Journal of Banking & Finance* 29, 1237-1264.

Dhillon, Upinder, and Herb Johnson, 1991, Changes in the standard and poor's 500 list, *The Journal of Business* 64, 75-85.

Harris, Lawrence, and Eitan Gurel, 1986, Price and volume effects associated with changes in the s&p 500 list: New evidence for the existence of price pressures, *The Journal of Finance* 41, 815-829.

Hegde, Shantaram P., and John B. McDermott, 2003, The liquidity effects of revisions to the s&p 500 index: An empirical analysis, *Journal of Financial Markets* 6, 413-459.

Henry, P. B. (2000). Stock market liberalization, economic reform, and emerging market equity prices. Journal of Finance, 55(2), 529–564.

Jain, Prem C., 1987, The effect on stock price of inclusion in or exclusion from the s&p 500, *Financial Analysts Journal* 43, 58-65.

Keratithamkul, C., 2005, The effect on stock price of inclusion or exclusion from the set50 index, *Independent Study, Thammasat University*.

Lesmond, David A., 2005, Liquidity of emerging markets, Journal of Financial Economics 77, 411-452.

Liu, Shinhua, 2000, Changes in the nikkei 500: New evidence for downward sloping demand curves for stocks, *International Review of Finance* 1, 245-267.

Liu, Shinhua, 2006, The impacts of index rebalancing and their implications: Some new evidence from japan, Journal of International Financial Markets, Institutions and Money 16, 246-269.

Lynch, A., and R. Mendenhall, 1995, New evidence on stock price effects associated with changes in the s&p500 index NYU Working Paper Series.

Okada, Katsuhiko, Nobuyuki Isagawa, and Kenya Fujiwara, 2006, Addition to the nikkei 225 index and japanese market response: Temporary demand effect of index arbitrageurs, *Pacific-Basin Finance Journal* 14, 395-409.

Prasad, E., Rogoff, K., Wei, S., & Kose, M. (2009). Financial globalization: A reappraisal. IMF Staff Papers, 56, 8–62.

Quinn, D., & Toyoda, A. M. (2008). Does capital account liberalization lead to economic growth? An empirical investigation. Review of Financial Studies, 21(3), 1403–1449

Shleifer, Andrei, 1986, Do demand curves for stocks slope down?, The Journal of Finance 41, 579-590.

Teerapongpratya, Teerapong 2010, The effects of index changes in thai stock market, *Independent Study, Thammasat University*.

Triempanichgul, Chuleekorn, 2010, The impacts of index rebalancing and their implications: The case of set50 index, *Independent Study, Thammasat University*.

Yun, Jooyoung, and Tong S. Kim, 2010, The effect of changes in index constitution: Evidence from the korean stock market, *International Review of Financial Analysis* 19, 258-269.

ภาคผนวก

การนำงานวิจัยไปใช้ประโยชน์

Output จากโครงการ ผลกระทบของประชาคมเศรษฐกิจอาเซียนต่อตลาดทุนไทย

1. การนำเสนอผลงาน

1.1 การประชุมสัมมนา Capital Market Research Forum ตลาดหลักทรัพย์แห่งประเทศไทย 1.2 การ ประชุมกลุ่มนโยบาย สกว.

2. การนำผลงานวิจัยไปใช้ประโยชน์

เชิงนโยบาย:

It is possible to assess policy implications before events happen when possible. This is beneficiary for comparison with after event and understanding and adjustment of policy. Financial large-scale events are rare. To sustain economic stability and each-country's self-interest, possible events need to be analyzed as soon as they can be and learned from.

เชิงสาธารณะ: Paper presented at Capital Market Research Forum and Stock Exchange of Thailand and presentations at schools' meetings.

3. การสร้างเครือข่ายความร่วมมือทางวิชาการ

Proceedings of Asian Financial Association meeting 2016 (26-28 June). The papers have also been sent to be considered for publications in peer-review journals.