บทคัดย่อ

การพัฒนาเทคโนโลยีการผลิตทุเรียนยุคใหม่แบบมีส่วนร่วมประกอบด้วย 3 กิจกรรมหลัก คือ การพัฒนารูปแบบการจัดการทรงพุ่มทุเรียน การพัฒนาเทคโนโลยีเพื่อผลิตทุเรียนเพื่อการแปรรูป และ การจัดการผลิตทุเรียนภายใต้สภาพภูมิอากาศแปรปรวน สำหรับการวิจัยการจัดการทรงต้นแบบลดการ ใช้แรงงานสำหรับการผลิตทุเรียนยุคใหม่พบว่า การจัดการทรงต้นแบบดั้งเดิมประยุกต์ ทรงพุ่มเล็กความ สูงไม่เกิน 5 เมตร ควบคุมความยาวกิ่งประธานโดยการตัดยอดของกิ่งประธานออก 50% เหลือความยาว กิ่งประมาณ 3.5 เมตร และการจัดการทรงต้นแบบใหม่ ทรงพุ่มเล็กลงความสูงไม่เกิน 5 เมตร ควบคุม ความยาวกิ่งเหลือประมาณ 2.5 เมตร ภายหลังตัดแต่งปริมาณแสงภายในทรงพุ่มของกรรมวิธีการตัดแต่ง กิ่งทรงพุ่มแบบใหม่มีปริมาณแสงมากที่สุด (241.25 ไมโครโมลต่อตารางเมตร) ต้นทุเรียนสามารถ เจริญเติบโต เกิดยอดใหม่และใบมีความสมบูรณ์และมีปริมาณแสงภายในทรงพุ่มไม่แตกต่างกันทางสถิติ (p>0.05) สามารถออกดอกและให้ผลผลิตได้ในฤดูกาลเดียวกันสูงกว่าการจัดการทรงต้นแบบดั้งเดิม (กรรมวิธีควบคุม) และมีผลตอบแทนต่อต้นทุน (BCR) ได้เท่ากับ 8.67-8.96 การปลูกระยะชิด 4x8 เมตร ทุเรียนสามารถเจริญเติบโตได้ดี ปริมาณแสงภายในทรงพุ่มมากกว่าต้นทุเรียนที่ปลูกตามแบบเกษตรกร ระยะ 8x8 เมตร และสามารถให้ผลผลิตได้ในปีที่ 3

การพัฒนาเทคโนโลยีเพื่อผลิตทุเรียนเพื่อการแปรรูป ผลการทดลองพบว่า การใส่ปุ๋ยสูตร 15-9-20 ร่วมกับสูตร 15-0-0 และ 14-7-32+1.8 แมกนีเซียมออกไซด์และมีตัดแต่งผลให้เหลือ 60 % ของ กรรมวิธีควบคุม ส่งผลให้ผลทุเรียนมีขนาดผลใหญ่ที่สุด และมีน้ำหนักสูงที่สุด 3,160 กรัม แตกต่างอย่าง มีนัยสำคัญยิ่งทางสถิติ (p<0.01) กับการใส่ปุ๋ยในกรรมวิธีอื่น และมีเปอร์เซ็นต์เนื้อที่บริโภคได้เฉลี่ยสูง ที่สุดเท่ากับ 28.05% มีความแตกต่างกันทางสถิติ (p<0.05) สำหรับกรรมวิธีที่ 2 ใส่ปุ๋ยสูตร 15-9-20 ร่วมกับสูตร 15-0-0 และ 14-7-32+1.8 แมกนีเซียมออกไซด์ และกรรมวิธีควบคุมมีค่าเปอร์เซ็นต์เนื้อที่ บริโภคได้เฉลี่ยเท่ากับ 26.8 และ 25.1 เปอร์เซ็นต์ ตามลำดับ

การจัดการผลิตทุเรียนภายใต้สภาพภูมิอากาศแปรปรวน พบว่า ต้นทุเรียนที่มีการแตกยอดอ่อน ในช่วงเดือนตุลาคมเดือนมีนาคมและเดือนสิงหาคม มีความสมบูรณ์ของใบ ความยาวของยอด ปริมาณ คลอโรฟิลล์ในใบ พื้นที่ใบ และสีใบมีมากกว่าการแตกใบอ่อนในช่วงเดือนมกราคม ซึ่งเป็นช่วงฤดูหนาว การบานของดอกทุเรียนพบว่า ดอกทุเรียนที่บานในช่วงที่มีอากาศหนาวและมีอุณหภูมิต่ำการบานของ ดอกซ้าและความพร้อมรับการผสมของยอดเกสรเพศเมียน้อย ทำให้มีการติดผลน้อย และต้นทุเรียนที่มี การบานของดอกในช่วงที่มีฝนตก ทำให้ความพร้อมรับการผสมของยอดเกสรเพศเมียน้อย และเกสรเพศ ผู้ถูกทำลายจึงมีการติดผลน้อย ผลทุเรียนที่มีการเจริญเติบโตในช่วงปลายฤดูมีการเจริญเติบโตและการ พัฒนาของผลมากกว่าผลที่มีการเจริญเติบโตในช่วงต้นฤดู และสามารถเก็บเกี่ยวผลผลิตได้เมื่อผลมีอายุ 14-15 สัปดาห์ ซึ่งเร็วกว่าช่วงต้นฤดู 1-2 สัปดาห์

Abstract

Technology development of novel durian production based participatory research consisted of 3 main research activities including 1) development of durian tree canopy management 2) development of durian production technology for processing and 3) durian orchard management in the climate variability. A study of canopy management compared the growth, yield of durian trees and benefit-cost ratio (BCR) of the old method of pruning with the new method. The height and branches of the old method were controlled at 5 and 3.5 meters, respectively; while the length of branches was reduced to 2.5 meters in the new method. Our results showed that light intensity within the canopy of the trees using the new method of pruning was higher with the amount of 241.25 μ mole/m². Although growth of trees from both treatments was not significant, yield of the trees using the new management method was higher and BCR of the new method was 8.67-8.96. In the closed planting system,vthe plant spacing of 4x8 meters had higher light intensity within the canopy than that of the spacing of 8x8 meters, and the tree started to bear fruit within 3 years.

Development of durian production technology for processing showed that application of 15-9-20 fertilizer in combination with 15-0-0 fertilizer, and 14-7-32+1.8 magnesium oxide with fruit thinning to 60% increased size of fruit. Fruit produced with this method had the highest fruit weight of 3,160 grams and the highest percentage of edible pulp (28.05%), while fruit produced using the same fertilizer without fruit thinning (method 2) and the control had 26.8 and 25.1 percent of edible pulp, respectively.

For durian orchard management in the climate variability, durian trees that budded out in October, March, and August had healthier leaf, longer shoot, greater chlorophyll content and leaf area than that of the trees that budded out in January during winter season. The flowers blooming in winter caused a delay in blooming process and the flowers were less receptive resulting in less fruiting. Blooming during rainy period also had less fruit setting because the flowers were less receptive, and the rain destroyed stamens. Fruit setting during the late season had a better fruit growth rate and the fruit became mature after 14-15 weeks which was 1-2 weeks faster than that of fruit set early in the season.