สัญญาเลขที่ RDG5750036

โครงการ "การปรับปรุงพันธุ์อ้อยให้ทนดินเค็มโดยวิธีการเพาะเลี้ยงเนื้อเยื่อร่วมกับการก่อกลายพันธุ์"

นรุณ วรามิตร และคณะ ภาควิชาพืชไร่นา คณะเกษตร กำแพงแสน ม.เกษตรศาสตร์

บทคัดย่อ

พื้นที่ปลูกอ้อยของประเทศไทยส่วนใหญ่เป็นพื้นที่นอกเขตชลประทานในภาคตะวันออกเฉียงเหนือ มีปัญหาดินเค็ม ส่งผลให้การเจริญเติบโต ปริมาณ และคุณภาพผลผลิตของอ้อยลดลง แนวทางหนึ่งในการ เพิ่มผลผลิตอ้อยที่ปลูกในพื้นที่ดินเค็มคือ การปรับปรุงพันธุ์อ้อยให้ทนทานต่อความเค็มมากขึ้น ดังนั้น โครงการวิจัยนี้จึงมีวัตถุประสงค์เพื่อปรับปรุงสายพันธุ์อ้อยพันธุ์ใหม่ให้มีความทนทานต่อดินเค็มมากขึ้น และให้ผลผลิตสูงด้วยการใช้วิธีซักนำให้แคลลัสอ้อยเกิดการแปรปรวนทางพันธุกรรมโดยเทคนิคเพาะเลี้ยง เนื้อเยื่อ และการฉายรังสีแกมมาในการเหนี่ยวนำให้แคลลัสอ้อยกลายพันธุ์ โดยนำปลายยอดอ้อย จำนวน 3 พันธุ์ ได้แก่ K92-80, LK92-11 และ KK3 มาเพาะเลี้ยงเนื้อเยื่อบนอาหารแข็งสูตรชักนำแคลลัส คือ MS ที่เติม 2,4-D ที่ความเข้มข้น 3 mg L $^{-1}$ ร่วมกับน้ำมะพร้าว 10 % (โดยปริมาตร) และซูโครส 20 g L $^{-1}$ pH 5.7 เพาะเลี้ยงในที่มืด ที่อุณหภูมิ 25 องศาเซลเซียส นำแคลลัสอ้อยทั้งสามพันธุ์ที่ได้จากรอบการย้าย เปลี่ยนอาหารที่ 4 5 และ 6 และแคลลัสที่ได้รับการฉายรังสีที่ระดับ 0, 1.5 และ 2 กิโลแรด ไปทดสอบ ความสามารถในการทนเค็มโดยคัดเลือกในอาหารเหลวสูตรชักนำแคลลัส ซึ่งเติมเกลือโซเดียมคลอไรด์ ที่ ความเข้มเข้ม 0, 0.25, 0.5 และ 1 เปอร์เซ็นต์ เป็นระยะเวลา 4 สัปดาห์ จากการศึกษา พบว่า แคลลัสของ ้อ้อยทั้งสามพันธุ์มีอัตราการเจริญเติบโตสัมพัทธ์ลดลง และมีคะแนนความเสียหายของก้อนแคลลัสเพิ่มขึ้น เมื่อเพิ่มจำนวนรอบการย้ายเปลี่ยนอาหาร และได้รับความเข้มข้นเกลือสูงขึ้น โดยแคลลัสอ้อยพันธุ์ K92-80 และ LK92-11 มีการเจริญเติบโตได้ดีกว่าพันธุ์ KK-3 หลังจากคัดเลือกในอาหารที่เติมเกลือโซเดียมคลอ ไรด์ เป็นเวลา 4 สัปดาห์ พบว่า เปอร์เซ็นต์การรอดชีวิตและการเกิดแคลลัสใหม่ของอ้อยทั้งสามพันธุ์ มี แนวโน้มลดลงเมื่อผ่านจำนวนรอบการย้ายเปลี่ยนอาหาร และมีความเข้มข้นของเกลือโซเดียมคลอไรด์ เพิ่มขึ้น เมื่อนำแคลลัสมาชักนำให้เกิดยอด พบว่า พันธุ์ KK3 สามารถชักนำให้เกิดยอดใหม่ได้จากแคลลัสที่ ผ่านการคัดเลือกที่ระดับเกลือโซเดียมคลอไรด์ 0.25 และ 0.5 % จากรอบการย้ายเปลี่ยนอาหารที่ 4 รวม จำนวน 15 โคลนพันธุ์ ส่วนพันธุ์ K92-80 สามารถชักนำให้เกิดยอดใหม่ได้จากแคลลัสที่ผ่านการคัดเลือกที่ ระดับเกลือโซเดียมคลอไรด์ 0.25 % จากรอบการย้ายเปลี่ยนอาหารที่ 4 รวมจำนวน 2 โคลนพันธุ์ นอกจากนี้ พบว่า แคลลัสอ้อยทั้งสามพันธุ์มีอัตราการเจริญเติบโตสัมพัทธ์ลดลงและมีคะแนนความเสียหาย เพิ่มขึ้น เมื่อได้รับปริมาณรังสีและความเข้มข้นเกลือสูงขึ้น โดยแคลลัสอ้อยพันธุ์ K92-80 และ LK92-11 มี การเจริญเติบโตดีกว่าพันธุ์ KK-3 การเลี้ยงแคลลัสในอาหารที่มีเกลือโซเดียมคลอไรด์ 1 % ทำให้แคลลัส เสียหายได้สูงสุด เมื่อนำแคลลัสของอ้อยที่ผ่านการฉายรังสีแกมมาและคัดเลือกในอาหารร่วมที่มีเกลือ โซเดียมคลอไรด์ มาเพาะเลี้ยงบนอาหารแข็งสูตรชักนำแคลลัส เป็นเวลา 1 เดือน พบว่า แคลลัสอ้อยทั้ง สามพันธุ์ที่ผ่านการฉายรังสีแกมมามีเปอร์เซ็นต์การเกิดแคลลัสใหม่ได้สูงกว่าแคลลัสที่ไม่ผ่านการฉายรังสี โดยเฉพาะเมื่อเพาะเลี้ยงในอาหารที่เติมเกลือโซเดียมคลอไรด์ ที่ความเข้มเข้ม 0.5 และ 1 % อย่างไรก็ตาม ควรนำแคลลัสของพันธุ์กลายเหล่านี้ไปชักนำพัฒนาเพิ่มจำนวนต้นให้มากขึ้น และนำไปทดสอบ ความสามารถทนเค็มในระดับห้องปฏิบัติการและสภาพแปลงในโครงการวิจัยระยะต่อไป

Sugarcane Improvement for Saline Soil Tolerance via Tissue Culture and Mutation

Naroon Waramit et al.

Deparment of Agronomy, Faculty of Agriculture Kamphaeng Saen, KU

ABSTRACTS

In Thailand, much sugarcane grown in non-irrigated area of the Northeast has the problem about salinity. This affects and leads to relatively decreased growth, poor yield and quality of sugarcane. One of the effective solutions economically imporving the yield of sugarcane in saline soil is likely the breeding program for salt tolerance. Therefore, this research project aimed to improve new suagarcane variety for saline soil tolerance. The crop improvement was conducted by tissue culture technique and mutation via gammarays irradiation. The young and healthy shoot tips of 3 sugarcane varieties including K92-80, LK92-11, and KK-3 were cultured on MS-medium supplemented with the growth regulator, 2,4-D of 3 mg L^{-1} with 10% coconut juice and sucrose 20 g L^{-1} , pH 5.7, in the dark condition at 25 °C. Calluses at the 4th, 5th, and 6th subcultures and irradiated by gamma rays at 0, 1.5, and 2 Krad were examined for salt tolerance by which selected in liquid medium adding NaCl at 0, 0.25, 0.5, and 1 % by volume, for 4 weeks.-The results showed that the relative growth of calluses for 3 sugarcane varieties was lower and injury score was higher as increasing the amount of subcultures and higher NaCl rate. Growth of K92-80 and LK92-11 calluses was faster than that of KK-3. After selection for 4 weeks, survival rate and regrowth rate of calluses for all varieties tended to decrese as increasing subcultures and higher NaCl rate. Fifteen clones of sugarcane plantlets were considerably regenerated from KK-3 calluses selected on culture media with 0.25 and 0.5% NaCl at the 4th subculture. For K92-80, calluses selected in culture media added with 0.25% at the 4th subculture regenerated 2 clones. Additionally, calluses of all variety provided lower relative growth rate and higher injury score as higher gamma rays irradiation and higher concentration of NaCl. The growth of K92-80 and LK92-11 calluses was more rapidly than that of KK-3 calluses. Calluses cultured on the medium added with 1% NaCl had the highest injury score. Across all varieties, calluses irradiated with gamma rays at different intensities were more developed than the calluses without gamma rays irradiation. In particular, calluses irradiated with gamma rays and added with 0.5 and 1% NaCl were developed the most. However, these calluses of sugarcane mutants should be subcultured to increase plantlet numbers enough and investigated their salt tolerance for both laboratory and field experimental levels at the next research phase.