บทคัดย่อ

แผนงานวิจัยการศึกษาสมดุลคาร์บอนและน้ำ เพื่อใช้เป็นข้อมูลจัดทำคาร์บอนฟุตปริ้นต์และวอเตอร์ ฟุตปริ้นต์ของสวนยางพารา: ระยะที่ 3 นี้ มีวัตถุประสงค์เพื่อตรวจวัดสมดุลคาร์บอนและน้ำด้วยเทคนิค Eddy Covariance เพื่อใช้เป็นข้อมูลพื้นฐานในการคำนวณคาร์บอนฟุตปริ้นต์ และวอเตอร์ฟุตปริ้นต์ของระบบนิเวศ ยางพารา และเพื่อศึกษาอิทธิพลของปัจจัยสภาพแวดล้อมต่อสมดุลคาร์บอนและน้ำของระบบนิเวศยางพารา การวัดสมดุลคาร์บอนและน้ำของระบบนิเวศยางพารานั้น ดำเนินการศึกษาในพื้นที่ปลูกยางพารา 2 แห่ง ได้แก่ (1) ศูนย์วิจัยยางฉะเชิงเทรา จังหวัดฉะเชิงเทรา พื้นที่ประมาณ 50 ไร่ ต้นยางมีอายุ 20 ปี (ในปี 2557) และ เปิดกรีดมาแล้ว 11 ปี และ (2) แปลงเกษตรกร จังหวัดบึงกาห พื้นที่ประมาณ 100 ไร่ ต้นยางมีอายุ 5 ปี (ในปี 2557) และยังไม่เปิดกรีด พื้นที่ศึกษาทั้ง 2 แห่งปลูกยางพาราพันธุ์เดียวกัน คือ พันธุ์ RRIM600

โครงการที่ 1 เป็นการศึกษาคาร์บอนฟุตปริ้นต์ของพื้นที่ปลูกยาง โดยแบ่งออกเป็น 2 ส่วน คือ (1) การศึกษาสมดุลคาร์บอนของพื้นที่ปลูกยางพารา ด้วยเทคนิค Eddy Covariance เพื่อใช้เป็นข้อมูลในการ จัดทำคาร์บอนฟุตปริ้นต์ของสวนยางพารา และ (2) การศึกษาปัจจัยที่มีผลกระทบต่อคาร์บอนฟุตปริ้นต์จาก การเขตกรรม ดั้วยวิธี LCA ของพื้นที่ปลูกยางพาราในภาคตะวันออกเฉียงเหนือ ซึ่งดำเนินการเก็บข้อมูลใน พื้นที่จังหวัดบึงกาฬ และอุดรธานี นอกจากการวัดสมดุลคาร์บอนแล้ว ในพื้นที่ศึกษายังมีการวัดอัตราการ หายใจของดิน และข้อมูลประกอบอื่นๆ ได้แก่ เส้นรอบวงโคนต้นยาง และชีวมวลของยางพาราที่ร่วงหล่นสู่พื้น ของแปลงยางพารา เพื่อเป็นข้อมูลประกอบในการศึกษาสมดุลคาร์บอนในระบบนิเวศยางพารา ข้อมูลสมดุล คาร์บอนในปี 2556-2557 นั้น แสดงให้เห็นว่า ระบบนิเวศยางพารามีสถานะเป็นแหล่งกักเก็บคาร์บอน คาร์บอนฟุตปริ้นต์ของพื้นที่ปลูกยางพารา คำนวณออกมาใน 2 ลักษณะ คือ คาร์บอนฟุตปริ้นต์ต่อพื้นที่ และ คาร์บอนฟุตปริ้นต์ผลผลิตยางพารา ค่าคาร์บอนฟุตปริ้นต์ต่อพื้นที่ของพื้นที่ปลูกยางในป^{ี่} 2556 และ 2557 นั้น พื้นที่ศึกษา Site ที่ 1 มีค่าเท่ากับ -4,485.16 และ -6,496.24 kg CO_2 rai $^{-1}$ ตามลำดับ ขณะที่พื้นที่ศึกษา Site ที่ 2 มีค่าเท่ากับ -1,842.39 และ -4,078.09 kg CO_2 rai 1 ตามลำดับ สำหรับคาร์บอนฟุตปริ้นต์ที่เกิดจากการ เขตกรรม ปุ๋ย ยา สารเคมีที่ใช้ และของเสียของพื้นที่ศึกษาในปี 2556 และ 2557 นั้นมีค่าเท่ากัน คือมีค่า เท่ากับ 28.5 และ 198.5 kg CO_2 rai $^{-1}$ สำหรับ Site ที่ 1 และ 2 ตามลำดับ ส่วนคาร์บอนฟุตปริ้นท์ต่อ ผลิตภัณฑ์น้ำยาง 1 kg นั้น ในส่วนของพื้นที่ปลูกยางพารา คำนวณได้เฉพาะพื้นที่ศึกษา Site ที่ 1 เนื่องจาก ยางพาราในพื้นที่ Site ที่ 2 ยังไม่เปิดกรีด ในปี 2556 และ 2557 คาร์บอนฟุตปริ้นต์ของพื้นที่ปลูกยางมีค่า เท่ากับ -23.31 และ -21.46 kg ${
m CO}_2$. kg $^{-1}$ ผลผลิต ตามลำดับ ขณะที่ค่าคาร์บอนฟุตปริ้นต์ที่เกิดจากการเขต กรรม ปุ๋ย ยา สารเคมีที่ใช้ และของเสียที่เกิดขึ้นของพื้นที่ปลูกยางพารา มีค่าเท่ากับ 0.30 kg ${\sf CO}_2$. kg $^{-1}$ ผลผลิต การศึกษาปัจจัยที่มีอิทธิพบต่อคาร์บอนฟุตปริ้นต์ที่เกิดจากการเขตกรรม ปุ๋ย ยา สารเคมีที่ใช้ และของ เสียของพื้นที่สวนยางพาราในพื้นที่ภาคตะวันออกเฉียงเหนือ พบว่า ปริมาณการใช้ปุ๋ยต่อหน่วย เป็นสาเหตุหลัก ที่ส่งผลกระทบต่อค่าคาร์บอนฟุตปริ้นท์ ปัจจัยรองมา ได้แก่ ปริมาณผลผลิตน้ำยางพาราสดต่อไร่

โครงการที่ 2 การศึกษาสมดุลน้ำของสวนยางพารา เพื่อใช้เป็นข้อมูลประกอบในการคำนวณวอเตอร์ ฟุตปริ้นต์ของพื้นที่ปลูกยางพารา ในส่วนของ Green water จากการทดลอง พบว่า การคายระเหยน้ำของ พื้นที่ปลูกยางพาราที่วัดได้นั้น มีค่าน้อยกว่าค่าปริมาณการใช้น้ำของพืชอ้างอิง (ETo) ซึ่งประเมินตามวิธีของ Penman-Monteith ความแตกต่างดังกล่าวนั้นมากกว่า 50% อีกทั้งค่า Kc ที่วัดได้นั้นยังมีค่าต่ำกว่าค่า Kc ที่ ใช้ในการคำนวณตามวิธีการของ FAO ทำให้ทราบว่าความต้องการใช้น้ำของยางพาราที่วัดได้จริงนั้น น้อยกว่า ความต้องการใช้น้ำที่ประเมินด้วยแบบจำลอง CropWat เป็นอย่างมาก ค่าวอเตอร์ฟุตปริ้นต์ของพื้นที่ปลูกยาง

(Green water) ในปี 2556 และ 2557 พื้นที่ศึกษา Site ที่ 1 ศูนย์วิจัยยางฉะเชิงเทรา จ. ฉะเชิงเทรา มีค่า เท่ากับ 7.76 และ 5.60 m³ H_2O .kg ผลผลิต สำหรับ Site ที่ 2 นั้นเป็นยางอายุน้อยที่ยังไม่เปิดกรีด จึงยังไม่ สามารถคำนวณค่าวอเตอร์ฟุตปริ้นต์ได้ แต่ได้คำนวณค่าประสิทธิภาพการใช้น้ำของพื้นที่ปลูกยาง (WUE, kg $C.m^{-3}$ H_2O) เพื่อเปรียบเทียบระหว่างสองพื้นที่ศึกษา พบว่า พื้นที่ปลูกยางพารา Site ที่ 1 มีค่าประสิทธิภาพ การใช้น้ำของพื้นที่ปลูกยางสูงว่า Site ที่ 2 ส่วนค่าวอเตอร์ฟุตปริ้นต์ที่เกิดจากการเขตกรรม ปุ๋ย ยา สารเคมีที่ ใช้ และของเสียมีค่าสำหรับพื้นที่ Sites ที่ 1 และ นั้น ปรากฏเฉพาะ Gray water ซึ่งมีค่าเท่ากับ 2.23 และ 2.17 m^3 H_2O .kg ผลผลิต ตามลำดับ

การศึกษาอิทธิพลของสภาพแวดล้อมต่อสมดุลคาร์บอน โดยวิเคราะห์หาสหสัมพันธ์ระหว่างอัตราการ แลกเปลี่ยนคาร์บอนสุทธิ (NEE) กับจุลภูมิอากาศของระบบนิเวศยางพารา อันได้แก่ ปริมาณรังสีสุทธิ (Rn) ปริมาณรังสีดวงอาทิตย์ ($R_{\rm s}$) ความเข้มแสง (PAR) อุณหภูมิอากาศ ($T_{\rm air}$) ความชื้นสัมพัทธ์ (RH) และปริมาณไอ น้ำที่อากาศรับเพิ่มได้ (VPD) ผลการวิเคราะห์ของทั้ง 2 Site พบว่า ค่า NEE มีความสัมพันธ์ในทางผกผันกับค่า PAR และ RH โดยมีความสัมพันธ์ในทางผกผันกับค่า PAR มากที่สุด และมีความสัมพันธ์ไปในทิศทางเดียวกับ ค่า $R_{\rm n}$, $R_{\rm s}$, Tair และ VPD ค่า NEE มีความสัมพันธ์ไปในทิศทางเดียวกับกับค่า VPD มากที่สุด

การศึกษาอิทธิพลของสภาพแวดล้อมต่อสมดุลคาร์น้ำ โดยวิเคราะห์หาสหสัมพันธ์ระหว่างการคายระเหย ของน้ำ (ETR) การใช้น้ำของพืช (CWU) และสัมประสิทธิ์การใช้น้ำของพืช (Kc) กับจุลภูมิอากาศของระบบ นิเวศยางพารา ดังกล่าวข้างต้น ผลการวิเคราะห์ของ Site ที่ 1 พบว่า ค่า ETR และ CWU มีความสัมพันธ์ ในทางผกผันกับค่า VPD และ Tair โดยมีความสัมพันธ์ในทางผกผันกับค่า VPD มากที่สุด และมีความสัมพันธ์ไปในทิศทางเดียวกับค่า Rn, Rg, และ PAR ค่า ETR และ CWU มีความสัมพันธ์ไปในทิศทางเดียวกับค่า PAR มากที่สุด และค่า ETR และ CWU ไม่ปรากฏสหสัมพันธ์กับค่า RH ส่วนค่า Kc นั้น พบว่า มีความสัมพันธ์ในทางผกผันกับค่า VPD และ Tair โดยมีความสัมพันธ์ในทางผกผันกับค่า VPD มากที่สุด และมีความสัมพันธ์ในในทิศทางเดียวกับค่า PAR และ RH ค่า Kc มีความสัมพันธ์ใปในทิศทางเดียวกับค่า RH มากที่สุด การวิเคราะห์ สหสัมพันธ์ ของพื้นที่ Site ที่ 2 พบว่า ค่า ETR มีความสัมพันธ์ในทางผกผันกับค่า Rh ยกเว้น ระยะที่ต้นไม่มี ใบ และระยะที่ต้นยางสร้างใบใหม่ และมีความสัมพันธ์ใปในทิศทางเดียวกับค่า Rn, Rg, และ VPD ค่า ETR มีความสัมพันธ์ใปในทิศทางเดียวกับค่า Tair ส่วนค่า CWU มีความสัมพันธ์ใปในทิศทางเดียวกับค่า Rn, Rg, PAR และ RH และสำหรับค่า Kc นั้น พบว่า มีความสัมพันธ์ ในทางผกผันกับค่า Rn, Rg, PAR, Tair และ VPD และมีความสัมพันธ์ใปในทิศทางเดียวกับค่า Rn

คำสำคัญ: ยางพารา, เทคนิค Eddy covariance, สมดุลคาร์บอน, สมดุลน้ำ, คาร์บอนฟุตปริ้นต์ และวอเตอร์ฟุตปริ้นต์

Abstract

Research program, study on carbon and water balance to estimate carbon footprint and water footprint of rubber plantation: 3rd period, was propose to measure carbon and water flux with Eddy Covariance technique. Carbon and water flux data is the basic data that were used to assess carbon and water footprint of rubber ecosystem. In addition, these basic data were used to study effect of environmental factors on carbon and water balance of rubber ecosystem.

Carbon and water balance of rubber ecosystem (RRIM 600) were investigated at 2 rubber plantation sites. (1) Chachoengsao Rubber Research Center, Chachoengsao province. The plantation area was about 50 rais. The rubber trees were 20 years-old (in 2014) and had been tapped over 10 years. (2) Rubber plantation in Bueng Kan province. The plantation area was about 100 rais. Rubber trees were 5 years-old (in 2014) and never been tapped. Both observation sites were a monoclonal stand of rubber trees clone RRIM 600.

The 1st project, study on carbon balance to estimate carbon footprint of rubber plantation, was separated into 2 parts. (1) carbon balance measurement of rubber plantation by using Eddy Covariance technique and (2) carbon footprint from cultural practice and addition by using LCA method in north-east part of Thailand, Bueng Kan and Udon Thani province. Furthermore, soil respiration and other data e.g. girth and above ground biomass were observed and these dates were used to provide information of carbon balance in rubber ecosystem. Carbon balance of in 2013-2014 shown that rubber ecosystem was a carbon sink. Carbon footprint was estimated into 2 type, carbon footprint per area and carbon footprint per yield. Carbon footprint per area in 2013 and 2014, carbon footprint of Site 1 was -4,485.16 and -6,496.24 kg CO₂ rai⁻¹, respectively. While carbon footprint of Site 2 was -1,842.39 and - $4,078.09 \text{ kg CO}_2 \text{ rai}^{-1}$, respectively. For carbon footprint from cultural practice and addition in 2013-2014, in site 1 was 28.5 and site 2 was 198.5 kg CO₂ rai⁻¹. Carbon footprint per yield, only site 1 that was calculated due to young rubber plantation (site 2) has never been tapped. Carbon footprint of rubber plantation in 2013-2014 was -23.31 and -21.46 kg CO₂. Kg⁻¹yield, respectively. The carbon footprint caused by a cultural practice and addition was 0.30 kg CO₂ .Kg⁻¹ yield. Limiting factors on carbon footprint from practice and addition in north-east area of Thailand. The result shown that the consumption of fertilizers per unit was main causes that affect the carbon footprint. the secondary factor was the yield per area.

The 2nd project, study on water balance to estimate water footprint of rubber plantation (green water). The result shown that the evapotranspiration (ETR) was lower than reference evapotranspiration rate (ETo) which was estimated by using Penman-Monteith method. The different between 2 values was greater than 50%. In addition, Kc was lower than the Kc of rubber tree that has been reported by FAO. That mean actually water consumption of rubber plantation was clearly lower than the calculated value by CropWat model. Water

footprint of a rubber plantation (Green water) in 2013 and 2014, only site 1 that was calculated. Water footprint was 7.76 and 5.60 $\rm m^3~H_2O~kg^{-1}$ yield, respectively.

The carbon footprint caused by a cultural practice and addition was 0.30 kg CO₂.Kg⁻¹ yield. Limiting factors on carbon footprint from practice and addition in north-east area of Thailand. The result shown that the consumption of fertilizers per unit was main causes that affect the carbon footprint. the secondary factor was the yield per area. Water used efficiency (WUE) of both rubber plantation was used to compare the two areas. The result showed that WUE of Site 1 was greater than Site 2. Water footprint caused by a cultural practice and addition appeared only gray water, it was 2.23 and 2.17 m₃ H2O.kg⁻¹ yield for site 1 and 2, respectively.

Effect of environmental factors, net radiation (R_n), Global solar radiation (R_g), Photosynthetically active radiation (PAR), Air temperature (T_{air}), Humidity (RH) and Vapor pressure deficit (VPD), on Net ecosystem exchange (NEE) was determined by using correlation analysis. NEE was negative correlated with PAR and RH and positive correlated with R_n , R_g , T_{air} and VPD. NEE was strongest correlated with VPD.

Effect of environmental factors on parameter from water flux study, evapotranspiration (ETR), crop water use (CWU) and crop coefficient (Kc), was determined by using correlation analysis. NEE was significantly negative correlated with PAR and RH and positive correlated with R_n, R_e, T_{air} and VPD. The result between 2 sites was lightly different. In site 1, ETR and CWU was negative correlated with VPD and T_{air} and positive correlated with R_n , R_g and PAR. The both parameter were strongest correlated with VPD for negative correlation and PAR for positive correlation. The correlation between 2 parameters and RH did not appear. Kc was negative correlated with VPD and Tair and positive correlated with PAR and RH. This parameter was strongest correlated with VPD for negative correlation and RH for positive correlation. The correlation between 2 parameters and R_n and R_g did not appear. In site 2, ETR was negative correlated with RH (except no leaf and refoliation stage) and positive correlated with R_n, R_e and VPD. This parameter was strongest correlated with VPD for positive correlation. The correlation between ETR and Tair did not appear. CWU was negative correlated with VPD and T_{air} and positive correlated with R_n , R_g , PAR and RH. This parameter was strongest correlated with T_{air} for negaitive correlation. For Kc, the result shown that Kc was negative correlated with R_n, R_e, PAR, T_{air} and VPD and positive correlated with RH.

<u>Keywords</u>: Rubber, Eddy covariance technique, Carbon balance, Water balance, Carbon footprint and Water footprint