บทคัดย่อ

เก็บรวบรวมตัวอย่างของเชื้อสาเหตุโรครากขาว โดยเก็บตัวอย่างจากดอกเห็ด จำนวน 16 ตัวอย่าง และจากรากยางพารา จำนวน 19 ตัวอย่าง ในพื้นที่ภาคใต้ มาแยกเชื้อให้บริสุทธิ์ ได้เชื้อบริสุทธิ์จำนวน 56 ไอ โซเลท เลือกเชื้อราโรครากขาวจำนวน 24 ไอโซเลทมาทดสอบความสามารถในการทำให้เกิดโรคในยางพารา พันธุ์ RRIM 600 ซึ่งมีรายงานว่าเป็นพันธุ์อ่อนแอ พบว่าทุกไอโซเลทสามารถเข้าทำลายระบบราก และแทงเส้น ใยเข้าไปในเนื้อเยื่อ ทำให้ท่อน้ำท่ออาหารเปลี่ยนสี พบว่าเชื้อไอโซเลท RIG56 มีเปอร์เซ็นต์ความสามารถใน การทำให้เกิดโรคสูงสุด เมื่อทำการตรวจสอบและจำแนกเชื้อราเพื่อยืนยันว่าเชื้อราที่ทำการเก็บรวบรวมมาเป็น เชื้อราโรครากขาวด้วยเทคนิค ITS พบว่าเชื้อสาเหตุโรครากขาว ไอโซเลท RIG56 มีความใกล้ชิดทางพันธุกรรม กับ *Rigidoporus microporus* strain RL (Accession no. KM246744.1) ถึง 99% ทำการคัดเลือกต้นตอ ยางพาราที่มีความทนทานต่อเชื้อราโรครากขาวในต้นกล้าจากยางพารา 9 สายพันธุ์ ได้แก่ RRIM 623, สงขลา 36, PB 5/51, BPM 24, PB 235, JVP 80, GT 1, RRIM 600 และ RRIT 251 วางแผนการทดลองแบบ Completely Randomized Design (CRD) จำนวน 4 ซ้ำ ซ้ำละ 20 ต้น จากการประเมินระดับความทนทาน ต่อโรครากขาวในยางพาราพันธุ์ต่าง ๆ หลังจากปลูกเชื้อแล้ว 6 เดือน พบว่า ต้นยางพาราพันธุ์ PB 5/51 และ PB 235 มีความทนทานต่อโรครากขาวมากที่สุด โดยมีดัชนีการเกิดโรค 44.25% และ 52.75% มีคะแนน ระดับการเกิดโรคที่ 2.21 และ 2.64 ตามลำดับ และมีจำนวนต้นที่รอดตายจากการเข้าทำลายของเชื้อรากขาว 92.50% และ 83.75% ตามลำดับ ส่วนพันธุ์ BPM 24 มีความอ่อนแอต่อโรคมากที่สุด การศึกษาองค์ประกอบ ของ sterol ในรากยางพาราที่ถูกเชื้อราเข้าทำลายโดยการสกัดไขมันและวิเคราะห์องค์ประกอบของสารด้วย เทคนิค GC-MS เพื่อใช้เป็น biomarker พบว่าในยางพาราทุกพันธุ์จะตรวจพบสาร stigmast-5-en-3-ol, (3á,24s) หรือ **β**-sitosterol ในขณะที่ยางพาราพันธุ์ RRIM 600, RRIM 623, สงขลา 36, GT1 และ PB253 ตรวจพบสาร stigmasta-5,22-dien-3-ol, (3á,22E) ซึ่งเป็นสารตัวเดียวกับ Stigmasterol ($C_{29}H_{48}O$) ส่วน ยางพาราพันธุ์ BPM 24, JVP 80 และ RRIT 251 จะไม่พบสาร stigmasta-5,22-dien-3-ol, (3á,22E) จึง เป็นไปได้ว่า ยางพาราเหล่านี้ไม่ทนทานต่อการเข้าทำลายของเชื้อสาเหตุโรครากขาว นอกจากนี้ยางพาราพันธุ์ PB 5/51 และพันธุ์ PB 235 ซึ่งมีความทนทานต่อโรครากขาว พบสาร Stigmast-5-en-3-ol, oleate ใน ยางพารา 2 พันธุ์นี้เท่านั้น โดยจะไม่พบสารดังกล่าวในยางพาราพันธุ์อื่นๆ อย่างไรก็ตามยังไม่มีการศึกษาว่า สารดังกล่าวมีบทบาทอย่างไรต่อการเข้าทำลายของเชื้อสาเหตุโรคพืช

Abstract

Rigidoporus microporus were collected from basidiocarp (16 samples) and infected root (19 samples) at rubber plantations in southern Thailand. A total of 56 R. microporus were isolated and 24 isolates were selected and used in pathogenicity studies in RRIM 600 seedlings as a susceptible clone. Experiments showed that all isolates were able to infect root and stem tissues resulting in vascular discoloration. It was found that the most virulent isolate was RIG56. Subseqently, RIG 56 was comfirmed by ITS technique. The sequences analysis showed that RIG 56 identical to Rigidoporus microporus strain RL (Accession no. KM246744.1) with 99% similarity. The screening of rubber rootstock tolerant to white root disease in 9 rubber clones (RRIM 623, KRS 36, PB 5/51, BPM 24, PB 235, JVP 80, GT 1, RRIM 600 and RRIT 251) was carried out. The experiment was arranged as Completely Randomized Design (CRD) with 4 replications, 20 seedings each per replication. The result in 6 months after inoculation showed that PB 5/51 and PB 235 manifested the highest tolerance with disease index 44.25 and 52.75%, disease score 2.21 and 2.64, respectively with survival percentage 92.50% and 83.75%. whereas BPM 24 was found to be the most susceptible. For determination of sterol composition during R. microporus infection, lipids were extracted and subjected to GC-MS analysis and used as biomarker. Stigmast-5-en-3-ol, (3á,24s) or known as β -sitosterol was found in all rubber clones. However, stigmasta-5,22-dien-3-ol, $(3\dot{a},22E)$ which known as stigmasterol $(C_{29}H_{48}O)$ was predominant sterol in RRIM 600, RRIM 623, KRS 36, GT1 and PB253. While, Stigmasta-5,22-dien-3-ol, (3á,22E) was not detected in BPM24, JVP 80 and RRIT 251 which susceptible to the white root rot disease. Furthurmore, stigmast-5-en-3-ol, oleate was found only in PB 5/51 and PB 235 which tolerant to the white root rot disease. However, this compound has not yet been studied for plant defense mechanism.