การศึกษาการรับประทานส้มโอต่อระดับฟลาโวนอยด์ในซีรั่มและผลต่อการทำงานของเกล็ดเลือดในอาสาสมัครสุขภาพดี

บทคัดย่อ

เกล็ดเลือดมีความจำเป็นต่อกระบวนการห้ามเลือดและมีความเกี่ยวข้องกับหลอดเลือดแข็งตัวซึ่งเป็นสาเหตุ สำคัญของโรคหัวใจและหลอดเลือด อาหารที่มีฤทธิ์การยับยั้งการทำงานของเกล็ดเลือดของเกล็ดเลือดนี้น่าจะมีผลดีในการ ้ป้องกันการเกาะกลุ่มของเกล็ดเลือดในผู้ป่วยที่มีความเสี่ยงเป็นโรคหลอดเลือดหัวใจ การศึกษานี้จึงมีวัตถุประสงค์หลักเพื่อ วิเคราะห์ความสามารถของส้มโอในการยับยั้งการทำงานของเกล็ดเลือด โดยการทดลองแรกศึกษาผลของน้ำคั้นและส่วน สกัดเมทานอลต่อการเกาะกลุ่มของเกล็ดเลือดเมื่อกระตุ้นด้วย ADP และ thrombin โดยใช้ส้มโอสามสายพันธุ์ได้แก่ ทองดี ขาวใหญ่ และขาวแตงกวา การทดลองที่สองเป็นการศึกษาการเกาะกลุ่มของเกล็ดเลือดในอาสาสมัครสุขภาพดีหลัง รับประทานส้มโอทองดีไปแล้ว 4 ชั่วโมง การวิเคราะห์การเกาะกลุ่มของเกล็ดเลือดใช้ เกล็ดเลือดในน้ำเลือด (platelet rich plasma (PRP)) จากคนปกติ และตรวจวัดโดยหลักการผ่านของแสง (turbidimetric method) ผลการศึกษาพบว่า ทั้งน้ำคั้นและส่วนสกัดเมทานอลสามารถยับยั้งการเกาะกลุ่มของเกล็ดเลือดเมื่อกระตุ้นด้วย ADP โดยจะลดทั้งอัตรา (rate) และปริมาณการเกาะกลุ่มของเกล็ดเลือด (maximum aggregation) แต่สารจากส้มโอไม่สามารถยับยั้งการเกาะกลุ่มของ เกล็ดเลือดเมื่อใช้ thrombin เป็นตัวกระตุ้น เมื่อใช้สารมาตรฐานฟลาโวนอยด์ได้แก่ quercetin, keampferol, luteolin และฟลาโวนอยด์ในรูปน้ำตาล พบว่าฟลาโวนอยด์ต่างๆนี้ไม่สามารถยับยั้งการเกาะกลุ่มของเกล็ดเลือดเมื่อกระตุ้นด้วย ADP ได้ทั้งที่ใช้ความเข้มข้นของฟลาโวนอยด์สูงถึง 200 ไมโคร์โมลาร์ และการศึกษาในอาสาสมัครพบว่าการรับประทาน ส้มโอปริมาณ 200 กรัมนั้นไม่มีผลต่อการเปลี่ยนแปลงการทำงานของเกล็ดเลือดเมื่อใช้ ADP กระตุ้น นอกจากฤทธิ์ต้าน เกล็ดเลือดแล้วการศึกษานี้ยังวิเคราะห์ความสามารถในการต้านอนุมูลอิสระของส้มโอทั้งสามชนิด ซึ่งส้มโอทั้งสามชนิดมี ความสามารถในการจับอนุมูลอิสระและลดปฏิกิริยาออกซิเดชั่นของไขมันในไลโพโซมและในเกล็ดเลือด จึงอาจ ์ ตั้งสมมติฐานได้ว่าฤทธิ์ยังยั้งการเกาะกลุ่มของเกล็ดเลือดส่วนหนึ่งอาจเป็นผลมาจากฤทธิ์ต้านอนุมูลอิสระด้วย

สรุปได้ว่าน้ำคั้นและส่วนสกัดเมทานอลจากส้มโอทั้งสามชนิดสามารถยับยั้งการทำงานของเกล็ดเลือดในหลอด ทดลองเมื่อใช้ ADP เป็นตัวกระตุ้น ฟลาโวนอยด์อาจจะมาใช่สารสำคัญในส้มโอที่ออกฤทธิ์ยับยั้งเกล็ดเลือดดังนั้นน่าจะมี สารสำคัญอื่นๆที่น่าศึกษาต่อไป สำหรับการรับประทานส้มโอทองดีเพียง 1 หน่วยบริโภค (200 กรัม) ไม่มีผลต่อต่อการ ทำงานของเกล็ดเลือดซึ่งอาจกล่าวได้ว่าไม่น่าจะมีปฏิกิริยาต่อกันระหว่างอาหารและยาในผู้ที่ต้องใช้ยาต้านเกล็ดเลือดและ การรับประทานส้มโอ แต่อย่างไรก็ตามเป็นที่น่าสนใจที่จะการศึกษาผลของผลไม้ต่อการทำงานเกล็ดเลือดในกลุ่มประชากร ที่มีความเสี่ยงสูงต่อภาวะโรคหลอดเลือดหัวใจ

Study of serum flavonoids levels after consumption of pomelo and effects on platelet function in healthy volunteers

Abstract

Platelets are necessary for hemostasis as well as, involve in atherothrombosis, which is the major cause of cardiovascular diseases (CVD). Components in food which exhibit antiplatelet activity may promote health beneficial in people who have high risk of CVD. The major objective of this study is to evaluate antiplatelet activity of pomelo following two experiments. The first experiment, antiplatelet activity of juice and methanolic extract of pomelo from three cultivars; Thong Dee, Khao Yai and Khao Thang Kwa, were evaluated using models of ADP- and thrombin- induced platelet aggregation. The second experiment, platelet activity was studied in healthy volunteers before and 4 hours after consumption of pomelo (Thong Dee). Platelet aggregation study was performed with platelet-rich plasma and using turbidimetric method. The results demonstrated that juice and methanolic extract inhibited platelet aggregation by reducing both rate and maximum aggregation when ADP was used as agonist but not with thrombin. Flavonoids including quercetin, keampferol luteolin and their glucosidic derivatives did not showed inhibitory effect on plate aggregation although the high concentration up to 200 μ M was used. Furthermore, consumption of pomelo did not affect platelet activity in healthy volunteers. In addition to antiplatelet activity, antioxidant activity of pomelo was evaluated. All of three cultivars exhibited potent antioxidant activity. Pomelo also inhibited formation of lipid radical formation in liposome and platelet, suggesting that antioxidant may partly contribute to antiplatelet activity.

In conclusion, juice and methanolic extract of pomelo exhibited antiplatelet activity in ADP-induced platelet aggregation. Flavonoids were not active components for antiplatelet activity. Hence, others compounds should be considered. Consumption of 1 serving size of pomelo (200g) showed no effect on platelet function, suggesting that consumption of pomelo may not produce food and drug interaction in the patients under treatment of antiplatelet drugs. However, it is interested to evaluate the effect of long term consumption of pomelo in the people who have high risk of CVD.