

โครงการ ฤทธิ์ป้องกันเชลล์ประสาทของผลไม้ตระกูลส้ม

Neuroprotective Activity of *Citrus* fruit

บทคัดย่อ

การทดสอบฤทธิ์ทางชีวภาพของพีชตระกูลส้มจำนวน 6 ชนิดที่ปลูกในประเทศไทยได้แก่ ส้มโอ ขาวใหญ่ ส้มโอหับทิมส Yam มะนาว ส้มเขียวหวาน ส้มเชียง และ ส้มซ่า โดยใช้ส่วนของน้ำคั้น ซึ่งนำไปทำให้แห้งโดยวิธีการ Freeze dry และส่วนของสารสกัดเมทานอลจากส่วนกากที่เหลือจากการคั้นน้ำ แล้วนำสารสกัดทั้งสองส่วนไปทดสอบหาปริมาณฟินอลิกและฟลาโวนอยด์ทั้งหมด พบร่วมกันและสารสกัดส่วนกากมีปริมาณฟินอลิกทั้งหมดอยู่ในช่วง 3.71-5.38 mg GAE/g extract และ 4.35 -6.98 mg GAE/g extract ตามลำดับ ส่วนปริมาณฟลาโวนอยด์ทั้งหมดอยู่ในช่วง 0.00 – 1.06 mg QE/g extract และ 1.41 – 2.55 mg QE/g extract ตามลำดับ และเมื่อทดสอบฤทธิ์ต้านออกซิเดชันด้วยวิธี DPPH พบร่วมกันและสารสกัดส่วนกากมีค่า IC_{50} อยู่ในช่วง 2.26–4.54 mg/ml ขณะที่สารสกัดส่วนกากมีค่า IC_{50} อยู่ในช่วง 2.97-4.67 mg/ml โดยค่า IC_{50} ของสารมาตรฐาน คือ Trolox และ Vitamin C มีค่าเท่ากับ 0.0100 ± 0.0005 และ 0.0125 ± 0.0009 mg/ml ตามลำดับ การทดสอบฤทธิ์ต้านเอนไซม์อะเซติลโคลีนเอสเทอเรส โดยการหาค่า %inhibition ที่ความเข้มข้น 0.5 mg/ml ด้วยวิธี Ellman's พบร่วมกันมีฤทธิ์ต้านเอนไซม์อะเซติลโคลีนเอสเทอเรสอยู่ในช่วง 10.98 – 15.24% ในขณะที่สารสกัดส่วนกากมีฤทธิ์ต้านเอนไซม์อะเซติลโคลีนเอสเทอเรส อยู่ในช่วง 8.37 -21.85% โดยสารมาตรฐาน คือ Galantamine มีค่า %inhibition ที่ความเข้มข้น 0.05 mg/ml เท่ากับ 89.18% ผลการศึกษาข้างต้นแสดงให้เห็นว่าสารสกัดทั้งในส่วนของน้ำคั้นและสารสกัดส่วนกากของส้มทั้ง 6 ชนิดมีฤทธิ์ต้านออกซิเดชันและต้านเอนไซม์อะเซติลโคลีนเอสเทอเรสที่ใกล้เคียงกัน แต่ค่อนข้างดีเมื่อเทียบกับสารมาตรฐาน เช่นเดียวกับผลการยับยั้งเอนไซม์เบต้าซีคีเทสซึ่งให้ฤทธิ์ที่ไม่สูงนัก โดยส้มเขียวหวานมีผลการยับยั้งเอนไซม์เบต้าซีคีเทสมากที่สุด รองลงมาคือส้มซ่า ส่วนผลการวิเคราะห์ฤทธิ์การยับยั้งการเกะกะลุ่มกันของเบต้าอะไมโลยด์ของส่วนน้ำคั้นและส่วนกากของพีชตระกูลส้ม พบร่วมกับผลการยับยั้งเอนไซม์เบต้าซีคีเทสและต่ำกว่าสารมาตรฐาน curcumin อย่างไรก็ตาม สารสกัดส้มทุกชนิดทั้งความเข้มข้นที่ 1 ng/mL และ 10 μ g/mL ไม่สามารถทำให้เซลล์ประสาทพี-19 มีอัตราการรอดชีวิตมากกว่ากลุ่มควบคุมได้ และมีแนวโน้มแสดงความเป็นพิษต่อเซลล์ประสาทเพิ่มขึ้นเมื่อความเข้มข้นสูงขึ้น ดังนั้น สารสกัดส้มทั้งหมดจึงไม่ได้นำมาทำการทดสอบฤทธิ์ป้องกันเชลล์ประสาท และฤทธิ์กระตุ้นการออกของเอนไซม์ประสาทต่อ

Abstract

The purpose of this project was to evaluate the biological activities of six citrus fruits from Thailand: *Citrus maxima* Merr., *C. maxima* (Burm.) Merr., *C. aurantifolia*, *C. reticulata* Blanco., *C. sinensis* Osb., *C. aurantium* var. *aurantium*. The juice samples and methanolic extracts from tissues after squeezing and freeze dried were used. Total phenolic and total flavonoid were evaluated. The total phenolic content of the juice samples were between 4.35 - 6.98 mg GAE/g extract while those from the tissue extracts were between 3.71 - 5.38 mg GAE/g extract. The total flavonoid content of the juice samples were between 0.00 – 1.06 mg QE/g extract whereas those from the tissue extracts were 1.41 – 2.55 mg QE/g extract. The antioxidant activity was determined by DPPH assay. The juice samples had IC₅₀ values between 2.26 - 4.54 mg/ml and the tissue extracts had IC₅₀ values between 2.97 – 4.67 mg/ml. The IC₅₀ of Trolox and vitamin C, reference standard, were 0.0100 ± 0.0005 and 0.0125 ± 0.0009 mg/ml, respectively. The anticholinesterase activity represented as % inhibition was determined by Ellman's method at the concentration of 0.5 mg/ml. The inhibitory activity of the juices samples and the tissue extracts were 10.98 - 15.24% and 8.37 - 21.85%, respectively. Galantamine, reference standard, had % inhibition of 89.18% at the concentration of 0.05 mg/ml. The data revealed that both juice samples and tissue extracts from six citrus fruits exhibited low antioxidant and anticholinesterase activity. Similarly, the β -secretase inhibition and anti-amyloid aggregation effect of six citrus fruits showed the low potency. The biological effects on P19-derived neurons of citrus fruit at a serial of dilutions in a microplate were identified and quantified. The result indicated that at low and high dose (1 ng/mL and 10 μ g/mL) not promoted cell viability of cultured neurons and tend to be cytotoxic to the cell. Therefore, further evaluation of neuritogenic and neuroprotective activity did not proceed.