บทคัดย่อ

การพัฒนาวิธีการตรวจเชื้อไฟโตพลาสมาสาเหตุโรคใบขาวอ้อยซึ่งเป็นโรคที่สำคัญที่สุดของอ้อยใน ประเทศไทย เพื่อให้สามารถตรวจหาเชื้อได้อย่างง่าย รวดเร็ว และมีราคาถูก สามารถประยุกต์ใช้ในการ ประเมินโรคในแปลงเบื้องต้นและห้องปฏิบัติการขนาดเล็กได้ งานวิจัยนี้ มีวัตถุประสงค์เพื่อพัฒนาการตรวจเชื้อ ด้วยเทคนิค Loop mediated DNA amplification (LAMP) และการพัฒนา Immunodiminant membrane protein (Imp) antibody

จากผลการวิจัยการพัฒนาเทคนิค LAMP ได้ชุดไพรเมอร์จำนวน 2 ชุด คือไพรเมอร์ R16-SCBR (BIP-16S rDNA-SCBR-ST, FIP-16S rDNA-SCBR-ST, B3-16S rDNA-SCBR-ST และ F3-16S rDNA-SCBR-ST) และ ไพรเมอร์ R16-SCLP (BIP-16S rDNA-SCLP-HCh, FIP-16S rDNA-SCLP-HCh, B3-16S rDNA-SCLP-HCh และ F3-16S rDNA-SCLP-HCh) ที่ออกแบบให้จำเพาะกับยืน 16S rRNA ของเชื้อไฟโตพลาสมาสาเหตุ โรคใบขาวอ้อยไอโชเลทบุรีรัมย์ และลำปาง ตามลำดับ และทดสอบได้ องค์ประกอบในการทำปฏิกิริยาและ สภาวะที่มีความเหมาะสมในการตรวจเชื้อไฟโตพลาสมาสาเหตุโรคใบขาวอ้อย ทั้งการตรวจด้วยเครื่อง Thermocycler และ Heat box เพื่อปรับอุณหภูมิคงที่ ที่ 65 องศาเซลเซียส ใช้เวลา 1 ชั่วโมง โดยตรวจสอบ ผลิตภัณฑ์ที่ได้ด้วยการเติมสาร SYBR GreenI และยืนยัน ผลการตรวจพบเชื้อด้วยเทคนิค Nested PCR และการ เปรียบเทียบวิธีการสกัดดีเอ็นเออย่างง่ายเพื่อสะดวกและประหยัดเวลาในการตรวจยิ่งขึ้น พบว่าการสกัดดีเอ็น เออย่างง่ายด้วยวิธี Alkaline lysis และการสกัดด้วยชุด Kit ได้ดีเอ็นเอคุณภาพดีพอสำหรับการตรวจยีน 16S rRNA ของเชื้อไฟโตพลาสมาสาเหตุโรคใบขาวอ้อยด้วยเทคนิค LAMP สำหรับชุดไพรเมอร์ที่ออกแบบ จำเพาะ กับยืน secA ไม่สามารถใช้ตรวจเชื้อไฟโตพลาสมาในอ้อยได้

การสังเคราะห์ Imp protein เพื่อใช้ผลิต Imp antibody โดยการสังเคราะห์ Imp gene จากข้อมูล ยีนของ Candidatus Phytoplasma oryzae strain: RYD ได้โคลนของ Imp gene (RYD-IMP) ที่มีลำดับนิ วคลีโอไทด์จำนวน 501 bp ซึ่งแปลรหัสของกรดอมิโนได้ 164 aa ซื้นยีนสังเคราะห์ RYD-IMP ได้ถูก clone เข้า pJET vector และส่งหาลำดับนิวคลีโอไทด์เพื่อยืนยันความถูกต้อง และโคลนเข้า expression plasmid vector pET200 เพื่อซักนำการผลิต RYD-IMP protein ในแบคทีเรีย Escherichia coli BL21 และทำการ แยกให้บริสุทธิ์เพื่อใช้เป็นแอนติเจนในการผลิตแอนติบอดี ผลการทดสอบคุณสมบัติของแอนติบอดีต่อ RYD-IMP protein ด้วยวิธี enzyme-linked immunosorbent assay (indirect ELISA) พบว่าแอนติซีรัมครั้งที่ 4-8 ให้ค่าไตเตอร์มากกว่า 512000 ค่าความเจือจางที่เหมาะสมของแอนติซีรัมเท่ากับ 1:1,600 และความไวใน การทำปฏิกิริยาของแอนติซีรัมสามารถตรวจสอบ RYD-IMP protein ได้ในระดับ 19.53 ถึง 9.766 นาโนกรัม ต่อมิลลิลิตร การตรวจเชื้อไฟโตพลาสมาในอ้อยด้วยวิธี Indirect ELISA, Western blotting และ Lateral flow โดยใช้แอนติซีรัมครั้งที่ 6 (As6) พบว่าทั้ง 3 วิธีไม่สามารถตรวจเชื้อไฟโตพลาสมาในอ้อยได้

คำสำคัญ: เทคนิคแลมป์, ยีน 16S rRNA, แอนติบอดี Imp, โปรตีน Imp

ABSTRACT

Loop mediated DNA amplification (LAMP) technique and antibody against Immunodiminant membrane protein (Imp) were developed for detection of sugarcane white leaf (SCWL) phytoplasma which is one of the most important diseases of sugarcane in Thailand. These techniques were simplicity, less time-consuming and low cost providing major advantages. They have the potential to be used as a simple assay in small laboratories.

LAMP is a rapid method that can amplify 16S rRNA gene with two sets of primers , R16-SCBR (BIP-16S rDNA-SCBR-ST, FIP-16S rDNA-SCBR-ST, B3-16S rDNA-SCBR-ST and F3-16S rDNA-SCBR-ST) and R16-SCLP (BIP-16S rDNA-SCLP-HCh, FIP-16S rDNA-SCLP-HCh, B3-16S rDNA-SCLP-HCh and F3-16S rDNA-SCLP-HCh), designed from Burirum and Lumpang isolates respectively. The reaction was carried out at a constant temperature at 65°C for 1 h in thermocycler or simple equipment such as a regular dry bath incubator. The amplified product can be visual directly through the SYBR GreenI colorimetric assay and confirmed by agarose gel electrophoresis. Base on this work, the LAMP technique was a good technique of sensitivity and specificity by using the sets of conventional 16S rDNA phytoplasma-specific primers the same as nested PCR technique. To compare the DNA extraction methods, samples of infected sugarcane leaves were tested using the alkaline lysis method and DNA extraction kit. Both methods reliably produced DNA able to support LAMP for SCWL phytoplasma detection. The *sec*A primers for LAMP assays, designed from SCWL phytoplasma, did not detect sugarcane white leaf samples.

Imp protein was developed from the clone containing the Imp gene of *Candidatus* Phytoplasma oryzae strain: RYD (RYD-IMP). The RYD-IMP gene 501 bp was cloned into the pJET vector and sequenced. The entire predicted RYD-IMP gene encoded RYD-IMP protein composed of 164 amino acids . The anti-RYD-IMP rabbit antibody was prepared by using a partially purified RYD-IMP protein that had been expressed in *Escherichia coli* BL21 with pET200 expression vector. The antibody titer, optimal dilution and sensitivity were initially screened against RYD-IMP protein by the indirect enzyme-linked immunosorbent assay (indirect ELISA) with in ≥512000 titers, 1:1,600 dilution and 19.53 - 9.766 ng/ml respectively. The antiserum (As6: titer≥512000) could detect RYD-IMP protein but did not detect the SCWL phytoplasma from infected leaf by indirect ELISA, Western blotting and lateral flow procedure.

Keywords: LAMP assay, 16S rRNA gene, Imp antibody, Imp protein