บทคัดย่อ

การตรวจสอบผลของเชื้อราอาร์บัสคูลาร์ไมคอร์ไรซา (arbuscular mycorrhizal fungi: AMF) ต่อการเปลี่ยนแปลงลักษณะทางเคมีกายภาพ จุลชีววิทยา สรีรวิทยา ผลต่อการส่งเสริมการ เจริญเติบโต ผลผลิตและคุณภาพความหวานของอ้อยตอ ทำในสภาพแปลงทดลอง โดยดำเนินการใน พื้นที่ 1 ไร่ ซึ่งออกแบบการทดลองแบบ randomize complete block design (RCBD) 6 ตำรับ การทดลอง 4 ซ้ำ ประกอบด้วย 1) ชุดควบคุม (control) 2) ปลูกเชื้อรา AMF เพียงอย่างเดียว (AMF) 3) ปลูกเชื้อรา AMF ร่วมกับปุ๋ยเคมี (46-0-0) อัตรา 12 กก./ไร่ (*AMF+12F*) 4) ใส่ปุ๋ยเคมี (46-0-0) อัตรา 24 กก./ไร่ (*24F*) 5) ปลูกเชื้อรา AMF ร่วมกับปุ๋ยหินฟอสเฟตอัตรา 100 กก./ไร่ (*AMF+RP*) และ 6) ใส่ปุ๋ยหินฟอสเฟต อัตรา 100 กก./ไร่ เพียงอย่างเดียว (RP) โดยการใส่เชื้อรา AMF และปุ๋ย หินฟอสเฟตจะใส่ตั้งแต่ในอ้อยปลูกปีที่ 1 และไม่ใส่เพิ่มในการปลูกอ้อยตอปีที่ 2 รวมทั้งยังตรวจสอบ และติดตามการเข้าอาศัยของกล้าเชื้อรา F. mosseae KKU-BRP-KK6-2 ในรากอ้อยด้วยวิธี PCR-Single strand conformation polymorphism (PCR-SSCP) ตรวจสอบผลการทดลองในด้านต่างๆ ทุกๆ 3 เดือน จนถึงระยะเก็บเกี่ยว (12 เดือน) จากการติดการการเข้าอยู่อาศัยของกล้าเชื้อรา F. mosseae KKU-BRP-KK6-2 พบว่าสามารถตรวจพบเข้าอยู่อาศัยขอเชื้อรานี้ในรากอ้อยตั้งแต่อายุ 3 เดือน ดังนั้นจึงยืนยันได้ว่าผลที่เกิดขึ้นในการผลิตอ้อยตอนั้น มาจากประสิทธิภาพของกล้าเชื้อราชนิด นี้ และผลการทดลองพบว่าการใส่เชื้อรา AMF ช่วยให้ดินมีปริมาณอินทรียวัตถ และธาตอาหารหลัก ได้แก่ ในโตรเจน ฟอสฟอรัสทั้งหมด และฟอสฟอรัสที่เป็นประโยชน์สูงขึ้น โดยเฉพาะอย่างยิ่งตำรับ การทดลองที่ปลูกเชื้อรา AMF ร่วมกับใส่ปุ๋ยหินฟอสเฟต (AMF+RP) ทำให้ฟอสฟอรัสทั้งหมด และ ฟอสฟอรัสที่เป็นประโยชน์สูงที่สุด และส่งผลต่อลักษณะทางสรีรวิทยาของอ้อยตอ โดยพบว่า การ ปลูกเชื้อรา AMF โดยเฉพาะตำรับการทดลอง AMF+12F และ AMF+RP ทำให้ดัชนีพื้นที่ใบ ปริมาณ น้ำสัมพันธ์ในใบ ค่าความเขียวของใบ และประสิทธิภาพการใช้แสงมากกว่าชุดควบคุม อย่างมี ้นัยสำคัญทางสถิติ ซึ่งลักษณะทางสรีรวิทยาเหล่ามีความสัมพันธ์กับการเพิ่มการเจริญเติบโตด้านต่างๆ ชองอ้อย ได้แก่ การแตกกอ ความสูง และเส้นผ่าศูนย์กลางลำของอ้อยด้วย นอกจากนี้การใส่เชื้อรา AMF ยังช่วยให้พืชมีการดูดซับธาตุอาหารหลัก (ในโตรเจน ฟอสฟอรัส และโพแทสเซียม) เพิ่มขึ้น ้อย่างชัดเจน ซึ่งส่งผลให้อ้อยมีมวลชีวภาพเพิ่มขึ้น รวมทั้งเชื้อรา AMF ยังช่วยลดการสร้างโพรลีนที่ ้เกิดขึ้น เนื่องจากสภาวะเครียดจากการขาดน้ำด้วย โดยทุกตำรับการทดลองที่ใส่เชื้อรา AMF (*AMF*, AMF+12F และ AMF+RP) มีมวลชีวภาพมากกว่าชุดควบคุม (control) อย่างมีนัยสำคัญทางสถิติ และที่สำคัญพบว่าทุกตำรับการทดลอง (AMF, AMF+12F และ AMF+RP) ส่งเสริมผลผลิตสุดท้าย รวมทั้งคุณภาพความหวานของอ้อยมากกว่าตำรับการทดลอง ในชุดควบคุม อย่างมีนัยสำคัญทางสถิติ โดยตำรับการทดลอง control, AMF, AMF+12F, 24F, AMF+RP และ RP มีผลผลิต 6.77, 10.60, 12.63, 13.61, 15.32 และ 7.37 ตันต่อไร่ ตามลำดับ ดังนั้นจึงชี้ให้เห็นว่า การใช้เชื้อรา *F. mosseae* KKU-BRP-KK6-2 ร่วมกับป๋ยหินฟอสเฟต หรือใช้ร่วมกับการใช้ป๋ยเคมีครึ่งอัตรา มีประสิทธิภาพในการ เพิ่มผลผลิตและคุณภาพความหวานของอ้อยตอที่ปลูกในสภาพแปลงทดลอง ซึ่งอาจเป็นทางเลือกใน การนำปุ๋ยชีวภาพไปประยุกต์ใช้เพื่อการเพาะปลูกอ้อยในภาคตะวันออกเฉียงเหนือของประเทศไทยใน

คำสำคัญ: อาร์บัสคูลาร์ ไมคอร์ไรซา, อ้อยตอ, สรีรวิทยา, ผลผลิต, ปุ๋ยชีวภาพ

Abstract

The effect of arbuscular mycorrhizal fungi (AMF) on changing of some soil physicochemical, soil microbiological and plant physiological characteristics; affecting to the growth and productivity of ratoon sugarcane in the field trial were investigated within a rai of plot trial. The experimental design was randomize complete block design (RCBD) with 6 treatments and 4 replications including uninoculated plant (control), inoculated with AMF (AMF), inoculated with AMF and applied half dosage of chemical fertilizer (46-0-0) at the rate of 12 kg/rai (AMF+12F), and applied full dosage of fertilizer (46-0-0) at the rate of 24 kg/rai (24F), inoculation with AMF and applied rock phosphate at the rate of 100 kg/rai (AMF+RP), and applied rock phosphate alone at the rate of 100 kg/rai (RP). The AMF inoculum and rock phosphate were applied once from the first year crop of plantation without any AMF inoculums and rock phosphate addition in ration sugarcane plantation. The PCR-single strand conformation polymorphism (PCR-SSCP) technique was used for monitoring the F. mosseae KKU-BRP-KK6-2 colonization in sugarcane roots. The experiment was investigated all those parameters at every 3 months of cultivation until the period of harvest (12 months). The monitoring results of the F. mosseae KKU-BRP-KK6-2 colonization in sugarcane roots using the PCR-SSCP showed that the colonization of this fungal inoculum in the sugarcane roots was observed from 3-months-old after planting. These could be confirmed that the productivity of ration sugarcane might be resulted from the efficiency of this AMF inoculum. The results found that inoculation with AMF increased among of soil organic matters and major plant nutrient in rhizosphere soil including total N, total P and available P, particularly AMF+RP which revealed the highest among of total P and available P. The plant physiological properties were improved cause by increasing of those major plant nutrients. Plant physiological properties including leaf area index, relative water content, SPAD readings and PSII photochemical efficiency could be promoted in the AMF+12F and AMF+RP treatment which were significantly increased higher than those from the control. Those plant physiological properties had also directly correlation with all plant growth parameters observed in this study including tillering ability, height, and stem diameter. Additionally, the nutrient uptake (NPK) in sugarcane plant was distinctly improved by inoculation with AMF, which resulted in the increasing of sugarcane biomass. AMF could decrease proline synthesis in sugarcane leaves which growth under water deficient condition. The plant inoculated with AMF (AMF, AMF+12F and AMF+RP) had biomass significantly higher than non-inoculated control. Importantly, the final