โครงการย่อยที่ 2: การใช้คลื่นเหนือเสียงช่วยสกัดสารต้านอนุมลูอสิระและสารต้านจุลินทรีย์ จากชานอ้อยที่ผ่านการระเบิดด้วยไอน้ำ

บทคัดย่อ

จากปริมาณชานอ้อยจำนวนมากที่เหลือทิ้งจากอุตสาหกรรมการผลิตน้ำตาล การสร้างมูลค่าเพิ่มให้กับ ชานอ้อยจึงเป็นสิ่งที่จำเป็น โครงการวิจัยนี้จึงศึกษาสภาวะที่เหมาะสมของการสกัดสารประกอบฟีนอลจาก ลิกนินในชานอ้อย งานวิจัยเริ่มจากการตรวจสอบผลของการแช่ชานอ้อยด้วยกรดซัลฟุริก 0.85% การระเบิดไอ น้ำที่อุณหภูมิ 190, 200 และ 210 °C เป็นเวลา 5, 10, 15 และ 20 min และชนิดของตัวทำละลาย (ethyl acetate, hydrous ethanol และ hydrous ethanol : water ที่สัดส่วน 70 : 30) ซึ่งพบว่า hydrous ethanol คือ ตัวทำละลายที่เหมาะสม การแช่ด้วยกรดอ่อนส่งผลให้เกิดการสลายโครงสร้างลิกนินได้มากกว่า การไม่แช่กรด และสภาวะของการระเบิดไอน้ำที่ทำให้ได้ปริมาณสารประกอบฟินอลทั้งหมด และกิจกรรมการ ต้านอนุมูลอิสระในรูป half maximum inhibitory concentration (IC50) สูงที่สุด คือ อุณหภูมิ 210 $^{\circ}$ C เป็น เวลา 10 min โดยพบการสลายตัวของสารประกอบฟินอลที่ระยะเวลาของการระเบิดไอน้ำ 15 และ 20 min อย่างไรก็ตามสารสกัดที่ได้จากการสกัดที่สภาวะที่เหมาะสมไม่มีกิจกรรมการต้านจุลินทรีย์ก่อโรค Salmonella Enteritidis S003, Staphylococcus aureus TISTR029 และ Escherichia coli O:157H7 จากนั้นเป็น การศึกษาสภาวะของการสกัดด้วยคลื่นเหนือเสียงโดยใช้ระเบียบวิธีพื้นผิวตอบสนอง (response surface methodology) ซึ่งพบว่า สภาวะที่เหมาะสม คือ แอมพลิจูด 63 micron และเวลา 5 min โดยให้ผลได้ของ สารสกัด ปริมาณสารประกอบฟีนอลทั้งหมด และกิจกรรมการต้านอนุมูลอิสระ (trolox equivalent antioxidant activity, TEAC) เท่ากับ 98 mg/g, 29 mg gallic acid equivalent/g และ 80 mg TEAC/ml ตามลำดับ และมีกิจกรรมการยับยั้งเชื้อก่อโรคทั้งสามชนิด นอกจากนั้นพบว่าโมเดลที่ได้จากการใช้ระเบียบวิธี พื้นผิวตอบสนองมีความแม่นยำในการทำนายค่าผลได้ของสารสกัด ปริมาณสารประกอบฟี-นอลทั้งหมด และ กิจกรรมการต้านอนุมูลอิสระ จากการวิเคราะห์ชนิดของสารประกอบฟีนอลในสารสกัดด้วยเครื่อง*โครมา*โทกรา ฟีของเหลวสมรรถนะสูง พบ syringic acid, p-coumaric acid, ferulic acid และ sinapic acid ในปริมาณ 9.931, 1.496, 1.393 และ 0.879 mg/g ตามลำดับ และเมื่อทดสอบการคงตัวของสารสกัดที่สภาวะของการทำ ให้ปลอดเชื้อ (sterilization) พบว่า ปริมาณสารดังกล่าวมีค่าเป็น 4.981, 1.493, 1.281 และ 0.498 mg/g ตามลำดับ และกิจกรรมการต้านอนุมูลอิสระลดลงเล็กน้อย แต่สารทั้งหมดมีความคงตัวในช่วง pH 2 - 9 ผล จากงานวิจัยนี้ชี้ให้เห็นถึงความเป็นไปได้ในการใช้เทคโนโลยีการระเบิดไอน้ำและการสกัดด้วยตัวทำละลาย ร่วมกับคลื่นเหนือเสียงในการสกัดสารประกอบฟีนอลจากลิกนิน ซึ่งมีความเป็นไปได้ในการประยุกต์ใช้สารสกัด ในอุตสาหกรรมที่เกี่ยวข้องกับสุขภาพต่อไป

Sub-project2: Ultrasonic-assisted extraction of antioxidants and antimicrobials from sugarcane bagasse

Abstract

Due to a substantial amount of sugarcane bagasse, waste from sugar industry, value creation to sugarcane bagasse is necessary. This research aimed to find optimal extraction conditions of phenolic compounds from sugarcane bagasse. The effect of 0.85% sulfuric acid treatment, steam explosion at 190, 200, and 210 °C for 5, 10, 15, and 20 min, solvent type (ethyl acetate, hydrous ethanol, and hydrous ethanol: water (70:30) was studied. The results showed that hydrous ethanol was the suitable solvent. The treatment with dilute acid resulted in more lignin degradation compared to that without dilute acid. The optimal steam explosion condition provided the highest amount of total phenolic compounds and the highest antioxidant activity in terms of half maximum inhibitory concentration (IC₅₀) was temperature of 210 °C and time of 10 min. Moreover, with longer explosion times of 15 and 20 min, the phenolic compounds were degraded. However, the extract obtained from the optimal extraction condition did not show antimicrobial activity against Salmonella Enteritidis S003, Staphylococcus aureus TISTR029, and Escherichia coli O157: H7. Then, optimization of amplitude and time of extraction was conducted using response surface methodology (RSM). With the optimal amplitude of 63 micron and time of 5 min, the yield, total phenolic contents, and trolox equivalent antioxidant activity (TEAC) was 98 mg/g, 29 mg gallic acid equivalent/g, and 80 mg TEAC/ml, respectively. In addition, the extract showed antimicrobial activity against the three types of the bacteria. The RSM models were accurate in predicting yield, total phenolic contents, and antioxidant activity. High-performance liquid chromatography characterization showed that the 1 g extract contained 9.931 mg syringic acid, 1.496 mg pcoumaric acid, 1.393 mg ferulic acid, and 0.879 mg sinapic acid. When the extract subjected to sterilization, the contents of phenolic compounds were decreased to 4.981, 1.493, 1.281, and 0.498 mg/g, respectively with a small reduction of antioxidant activity. However, all the phenolic compounds were stable at pH 2 - 9. The results showed the possibility of applying steam explosion and ultrosnic-assisted solvent extraction to obtain phenolic compounds from lignin and further application of the extract in health-related industry.