บทคัดย่อ

ถุงมือยางชนิดตรวจโรคทั่วไปที่ทำจากยางธรรมชาติได้รับการยอมรับว่ามีคุณสมบัติที่ดีในการป้องกัน เชื้อโรคและสารคัดหลั่ง หากแต่เมื่อมีรายงานการแพ้ถุงมือยางธรรมชาติและความรุนแรงของการแพ้ ทำให้มี การหันไปใช้ถุงมือยางสังเคราะห์แทนและตลาดถุงมือยางสังเคราะห์เติบโตขึ้นอย่างรวดเร็ว โครงการวิจัยมี วัตถุประสงค์เพื่อเปรียบเทียบถุงมือยางชนิดตรวจโรคที่ผลิตจากยางธรรมชาติและในไตรล์ใน 3 ด้าน คือ การ แพ้ สมบัติด้านการใช้งานของถุงมือยาง และผลกระทบทางสิ่งแวดล้อม ด้านการแพ้ มีการศึกษาในเรื่องความ ชุก สาเหตุและความรุนแรงของการแพ้ โดยเก็บข้อมูลแบบสอบถามจากบุคลากรทางการแพทย์จาก 4 ภาค ของประเทศ ส่วนสมบัติด้านการใช้งาน ได้เปรียบเทียบสมบัติด้านการใช้งานของถุงมือตรวจโรคที่ผลิตจากยาง ธรรมชาติและยางสังเคราะห์ในไตรล์ โดยวิเคราะห์สมบัติทางโครงสร้างของวัสดุที่ใช้ทำถุงมือยางด้วยเทคนิคฟู เรียร์ทรานฟอร์มอินฟราเรดสเปกโทรสโกปี ทำการทดสอบสมบัติทางกายภาพ ได้แก่ การวัดมิติ การรั่วซึมน้ำ และสมบัติแรงดึงตามมาตรฐาน มอก.1056-2548 ทดสอบการทนต่อเข็มเจาะและตรวจสอบสัณฐานวิทยาด้วย เทคนิคกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดหลังการเจาะด้วยเข็มและการแช่ถุงมือยางในแอลกอฮอล์ ผล การทดลองพบว่าสเปกตราของถุงมือแต่ละชนิดแสดงหมู่ฟังก์ชันที่สอดคล้องกับโครงสร้างของวัสดุถุงมือนั้น มิติ ของถุงมือทุกชนิดมีค่าเป็นไปตามมาตรฐาน อย่างไรก็ตามเมื่อทดสอบเอาเข็มเจาะทิ่ม ขนาดของรอยขาดที่ เกิดขึ้นบนถุงมือยางธรรมชาติเล็กกว่าขนาดของรอยที่พบบนถุงมือยางไนไตรล์ ซึ่งเกิดจากยางธรรมชาติมีความ ยึดหยุ่นและการคืนตัวที่สูงกว่า ดังนั้นด้วยคุณสมบัติที่ดีนี้ร่วมกับความทนทานต่อแอลกอฮอล์ได้อย่างน้อย 30 นาที จึงทำให้กล่าวได้ว่าถุงมือยางธรรมชาติแบบไม่มีแป้งมีความเหมาะสมสำหรับตรวจโรคมากกว่าถุงมือยาง ในไตรล์ และถุงมือยางธรรมชาติแบบมีแป้ง นอกจากนี้ยังได้ทดสอบสมบัติข้างต้นกับถุงมือไวนิลด้วย พบว่าถุง มือชนิดนี้มีคุณสมบัติที่ด้อยที่สุดเมื่อเทียบกับถุงมืออื่นๆ ที่ทดสอบ

ในด้านผลกระทบทางสิ่งแวดล้อม เป็นการเปรียบเทียบผลกระทบต่อสิ่งแวดล้อมของถุงมือที่ผลิตจาก วัตถุดิบ 2 ชนิด คือยางพาราและยางไนไตรล์ โดยประเมินผลกระทบตามหลักการของการประเมินวัฏจักรชีวิต ที่ครอบคลุม 4 ขั้นตอน คือการได้มาของวัตถุดิบ การขนส่งสูโรงงานผลิตถุงมือ การผลิตถุงมือ และการกำจัด ซาก (การเผาไหม้แบบสมบูรณ์) โดยใช้วิธี ReCiPe midpoint (H) (เวอร์ชั่น 1.06) และโปรแกรมสำเร็จรูป SimaPro เวอร์ชั่น 8.0.5 นอกจากนี้ยังได้ศึกษาความอ่อนไหวของข้อมูลต่อปริมาณ Cl ที่มีในถุงมือ ผลกระทบ ต่อสิ่งแวดล้อมของถุงมือยางธรรมชาติและถุงมือยางไนไตรล์เป็นผลจากกระบวนการผลิตเป็นหลัก (ชนิดและ ปริมาณเชื้อเพลิงที่ใช้ และชนิดสารที่ใช้เคลือบถุงมือ) เมื่อพิจารณาเพียงค่าคาร์บอนฟุตพรินท์ น้ำยาง ธรรมชาติเข้มข้นมีค่าดังกล่าวที่สูงกว่าน้ำยางสังเคราะห์ acrylonitrile butadiene ซึ่งเป็นผลจากการใช้ปุ๋ยเคมี เป็นแหล่งไนโตรเจนในการเพาะปลูก เมื่อพิจารณาผลกระทบทางสิ่งแวดล้อมทั้ง 18 ด้านพบว่า ค่าผลกระทบโดยรวมของน้ำยางธรรมชาติเข้มข้นกลับมีค่าต่ำกว่าน้ำยางสังเคราะห์ ปริมาณคลอรีนในถุงมือจะเพิ่มทั้งค่า คาร์บอนฟุตพรินท์และผลกระทบโดยรวม การกำจัดซากถุงมือด้วยการเผาในที่มีออกซิเจนต่ำให้ของเหลวที่มีค่า ความร้อนเชื้อเพลิงที่สูงอยู่ในช่วง 10.10–36.05 MJ/kg ซึ่งการนำของเหลวนี้ไปใช้งานจะช่วยลดผลกระทบ ตลอดวัฏจักรของถุงมือเพิ่มได้อีก สำหรับการเผาถุงมือไวนิลนั้น ให้ปริมาณของเหลวนี้อยมาก

เมื่อพิจารณาด้านการแพ้ถุงมือยางและสมบัติการใช้งานที่กล่าวข้างต้น จะได้ว่า ถุงมือยางธรรมชาติ แบบไม่มีแป้งมีความเหมาะสมมากที่สุดที่จะใช้เป็นถุงมือตรวจโรคทั่วไป อันเนื่องมาจาก 3 เหตุผลคือ (1) มี ความยืดหยุ่นสูง (2) ความทนทานต่อแอลกอฮอล์ได้อย่างน้อย 30 นาที ซึ่งนานกว่าระยะเวลาที่ใช้สวมตรวจ โรคต่อคู่ ดังที่ได้ระบุในแบบสอบถามโดยบุคลากรทางการแพทย์ และ (3) โอกาสเกิดการแพ้ถุงมือยางต่ำ อย่างไรก็ตามในแง่ทางสิ่งแวดล้อมแล้ว ถุงมือยางธรรมชาติแบบไม่มีแป้งส่งผลกระทบต่อสิ่งแวดล้อมที่สูงกว่า ถุงมือยางธรรมชาติแบบมีแป้งและถุงมือยางไนไตรล์ แต่ผลกระทบต่อสิ่งแวดล้อมนี้สามารถลดลงได้ด้วยการ หาวิธีอื่นในการเคลือบผิวด้านในของถุงมือแทนการ chlorination และการปรับปรุงการเพาะปลูกที่ไม่ใช้ ปุ๋ยเคมี ตามลำดับ

Abstract

Medical examination gloves made of natural rubber have been proven to be a satisfactory barrier protection against infectious agents and body fluids, however the serious issue of latex allergies has caused the synthetic glove market to expand rapidly. This project aimed at comparing examination gloves made of natural rubber and synthetic nitrile rubber in three aspects: glove allergies, in-use physical and mechanical properties of glove materials, and environmental impacts. The prevalence of glove allergies among healthcare professionals from four parts of Thailand was collected from 1,071 questionnaires and the data was analyzed. The properties of examination gloves made of natural rubber and synthetic rubber (nitrile and vinyl) was studied and compared. The structural information of natural rubber and synthetic rubber glove materials was characterized by Fourier transform infrared spectroscopy (FTIR). The physical and mechanical properties of rubber gloves were investigated by dimensional measurement, water-tightness test and tensile testing experiments according to TIS1056-2548, and resistance to needle's puncture. Scanning Electron Microscopy (SEM) was used to examine the morphology change of glove materials after immersion in alcohol and the puncture resistance test. The results showed that the dimensions of natural rubber and synthetic rubber gloves conformed to the standards. However, after the puncture test, the puncture holes on the natural rubber gloves were smaller than those on the nitrile gloves. This is due to the fact that the natural rubber gloves possessed higher elastic recovery. The superior puncture resistance property and high resistance to alcohol for at least 30 min indicate that powder-free natural rubber gloves were more suitable for medical examination than nitrile rubber gloves and powdered natural rubber gloves. The aforementioned tests were also applied to vinyl gloves and it was found that the gloves showed the poorest properties in relation to other gloves.

For the aspect of environmental impacts, the comparison of the environmental impacts, caused by medical examination gloves made of two different rubbers (i.e., natural rubber and nitrile rubber) was studied. The impacts were assessed according to the life cycle assessment covering four main stages: material extraction, transportation to the glove factory, glove production, and disposal (assuming to be complete combustion). The ReCiPe Midpoint (H) (Version 1.06) method and SimaPro (version 8.0.5) were utilized for the analysis. The sensitivity analysis was performed on variations of the amount of Cl existing in the gloves. The results revealed that the environmental impacts of natural rubber and nitrile gloves were

mainly caused by the production stage (i.e., the types and amounts of the fuel consumption and the types of coating materials). When only carbon footprint (CF) was considered, the concentrated natural rubber latex had a higher CF value than the synthetic acrylonitrile rubber latex, due to the use of Nitrogen fertilizer in the planting stage. However, when all 18 impact categories were taken into account, the total environmental impact value of the concentrated natural rubber latex was smaller than that of the synthetic acrylonitrile rubber latex. The chlorine amount in the product increased both carbon footprint and total environmental impacts. In addition, the incineration of gloves (natural rubber and nitrile) under low O_2 concentration yielded the liquid product with heating values in the range of 10.10-36.05 MJ/kg, but very small amount of liquid was obtained when vinyl gloves were burnt. Thus, the use of the liquid as a fuel can reduce the total environmental impacts of the gloves by disintegrating gloves into liquid with a high heat value.

From the aspects of glove allergy and in-use properties stated above, the powder-free natural rubber glove has shown to be the most suitable glove for medical examination due to three following facts: (1) higher elasticity, (2) resistance to alcohol for at least 30 min, which is longer than the general time period of wearing per pair as indicated in the questionnaires from medical professionals, and (3) lower chance in development of glove allergy. Nevertheless, from the environmental aspects, the powder-free natural rubber glove has a higher total environmental impact than the powdered natural rubber glove and nitrile rubber glove. But such the environmental impact can be reduced by finding less-environmental-impact methods, alternative to the chlorination process, and improving the rubber-tree plantation stage.