

รายงานวิจัยฉบับสมบูรณ์

โครงการ "ฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำเพื่อ การวิจัยด้านเศรษฐศาสตร์และสังคม"

(Household Panel Data for Socio-Economic Research)

เสนอต่อ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.)

โดย นายสมบัติ ศกุนตะเสถียร ศูนย์วิจัยครอบครัวไทย Thai Family Research Project

กรกฎาคม 2560

รายงานวิจัยฉบับสมบูรณ์

โครงการ "ฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำเพื่อ การวิจัยด้านเศรษฐศาสตร์และสังคม"

(Household Panel Data for Socio-Economic Research)

ชุดโครงการ "พัฒนาองค์ความรู้เศรษฐกิจและสังคมของครัวเรือนไทย"

คณะผู้วิจัย

ศูนย์วิจัยครอบครัวไทย Thai Family Research Project (TFRP)

นายสมบัติ ศกุนตะเสถียร ผู้อำนวยการ
 นายภวิศณัฏฐ์ ปฐมเจริญสุขชัย ผู้จัดโครงการวิจัย

3. นางทิพย์ปฐวี ปฐมเจริญสุขชัย หัวหน้าฝ่ายงานด้านข้อมูล4. นางสาวลัดดาวัลย์ คำเกาะ หัวหน้าฝ่ายงานภาคสนาม

5. นางสาวพัณณ์นิดา ธนะพลทวีรัชต์ หัวหน้าฝ่ายงานด้านตรวจสอบข้อมูล

6. นางสาวทิพย์ธัญรดี ปัณชญายศอนันต์ หัวหน้าฝ่ายงานภาคสนาม

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.)

(ความเห็นรายงานนี้ของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

งานวิจัยชิ้นนี้ได้รับเงินทุนสนับสนุนจากสำนักงานสนับสนุนกองทุนการวิจัย (สกว.) และ ธนาคารแห่งประเทศไทย (ธปท.) ภายใต้ชุดโครงการพัฒนาองค์ความรู้เศรษฐกิจและสังคมของ ครัวเรือนไทย คณะผู้วิจัยขอขอบคุณ Professor Robert Townsend ผู้ก่อตั้งโครงการ Townsend Thai Project และจัดตั้งศูนย์วิจัยครอบครัวไทย (Thai Family Research Project, TFRP)

คณะผู้วิจัยขอขอบคุณ รศ.ดร.เสาวณีย์ ไทยรุ่งโรจน์ อธิการบดีมหาวิทยาลัยหอการค้าไทย และ ศ.นพ.สุทธิพันธ์ จิตพิมลมาศ ผู้อำนวยการสำนักงานกองทุนสนับสนุนการวิจัย ที่ปรึกษาชุด โครงการที่ให้ข้อคิดเห็นเพื่อเป็นแนวทางในการดำเนินงานของชุดโครงการๆ ในภาพรวม และ ขอขอบคุณคณะกรรมการกำกับทิศทางการวิจัยของชุดโครงการ ดร.ปัทมาวดี โพชนุกูล รอง ผู้อำนวยการสำนักงานกองทุนสนับสนุนการวิจัย, ดร.ปิติ ดิษยทัต ผู้อำนวยการสถาบันวิจัยเศรษฐกิจ ป่วย อึึงภากรณ์ ธนาคารแห่งประเทศไทย, ดร.อัจนา ไวความดี อดีตรองผู้ว่าการธนาคารแห่งประเทศไทย, ดร.อิศรา ศานติศาสน์ ผู้อำนวยการฝ่ายนโยบายชาติและความสัมพันธ์ข้ามชาติ สำนักงาน กองทุนสนับสนุนการวิจัย, ดร.นิพนธ์ พัวพงศกร นักวิชาการ สถาบันวิจัยเพื่อการพัฒนาประเทศไทย และคุณรัจนา เนตรแสงทิพย์ รองผู้อำนวยการกระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม ที่ให้ ข้อเสนอแนะในการกำหนดแนวทางการบริหารจัดการฐานข้อมูล Townsend Thai Data มาโดย ตลอดระยะเวลาการดำเนินโครงการ

นอกจากนี้ คณะผู้วิจัยขอขอบคุณทีมงานของศูนย์วิจัยครอบครัวไทยทุกท่านตั้งแต่อดีตจนถึง ปัจจุบัน ที่ทุ่มเทและเป็นกำลังหลักในการเก็บและบริหารจัดการข้อมูล Townsend Thai Data มา อย่างต่อเนื่องและยาวนาน ซึ่งเป็นส่วนสำคัญที่ทำให้งานวิจัยสำเร็จลุล่วงไปได้ด้วยดี

คณะนักวิจัย

บทสรุปผู้บริหาร

โครงการวิจัยฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำเพื่อการวิจัยด้านเศรษฐศาสตร์และ สังคม เป็นส่วนหนึ่งของชุดโครงการพัฒนาองค์ความรู้ด้านเศรษฐกิจและสังคมของครัวเรือนไทย นักวิจัยจำเป็นต้องอาศัยข้อมูลระดับครัวเรือน ซึ่งมีวัตถุประสงค์สำคัญเพื่อการศึกษาชีวิตความเป็นอยู่ ของครัวเรือนไทย ด้วยข้อมูลที่ต่อเนื่องและมีคุณภาพ ดังนั้น จึงมีความจำเป็นที่เราจะต้องสนับสนุน ฐานข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายเดือน (monthly micro data) ซึ่งถือได้ว่า เป็นข้อมูลระดับ ครัวเรือนแบบตัวอย่างซ้ำความถี่สูง (high frequency panels) ที่มีการเก็บอย่างต่อเนื่องและ ยาวนานที่สุดในประเทศกำลังพัฒนา

การสำรวจข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายเดือนจัดทำขึ้นใน 4 จังหวัด จังหวัดลพบุรี จังหวัดฉะเชิงเทรา จังหวัดศรีสะเกษ และจังหวัดบุรีรัมย์ โดยเลือก 1 อำเภอที่ปรากฏอยู่ในฐานข้อมูล SES ของสำนักงานสถิติแห่งชาติ ที่มีการสุ่มจัดทำการสำรวจอย่างต่อเนื่องมาทุกปี ทั้งนี้เพื่อให้สามารถ วิเคราะห์เชื่อมโยงข้อมูล SES และข้อมูล Townsend Thai Data ได้ และหลังจากนั้นจึงได้คัดเลือก 1 ตำบลๆ ละ 4 หมู่บ้าน โดยพิจารณาจากปัจจัยทางด้านสภาพแวดล้อมระหว่างหมู่บ้านต่างๆ ให้มี ความใกล้เคียงกันเพื่อจะดูผลจากปัจจัยสถาบัน โดยรวม การสำรวจข้อมูลระดับครัวเรือนตัวอย่างซ้ำ รายเดือน (monthly micro data) ประกอบด้วย 16 หมู่บ้าน โดยมีจำนวนครัวเรือนเปื่องจากจำนวน ครัวเรือนทั้งหมดในหมู่บ้านขณะนั้นมีจำนวนไม่ถึง 45 ครัวเรือน) โดยในปีแรกมีครัวเรือนกลุ่มตัวอย่าง ทั้งหมด 682 ครัวเรือน และในปัจจุบัน (19 ปีผ่านไป) มีครัวเรือนกลุ่มตัวอย่างได้ครบทุกครัวเรือนทุก เดือน

ข้อมูล Townsend Thai Data ได้สร้างองค์ความรู้ใหม่ด้านเศรษฐศาสตร์อย่างต่อเนื่อง และ มีบทบาทต่อการออกแบบนโยบายทางเศรษฐกิจและสังคมทั่วโลก (Townsend, 2011) รายงานฉบับ นี้นำเสนอบทความที่เกี่ยวข้องกับข้อมูล Townsend Thai Data จำนวน 5 บทความ ได้แก่

1. Benjamin Moll, Robert M. Townsend, Victor Zhorin. "Economic Development, Flow of Funds and the Equilibrium Interaction of Financial Frictions.", Proceedings of the National Academy of Sciences of the United States of America, June 13, 2017, Vol.114, No.24, P6176-6184.

- 2. Samphantharak, Krislert and Robert M. Townsend. "Risk and Return in Village Economies." revised 2 0 1 7 . (Forthcoming in American Economic Journal: Microeconomics).
- 3. Samphantharak, Krislert, Scott Schuh and Robert M. Townsend. "Integrated Household Surveys: An Assessment of U.S. Methods and an Innovation" Working Paper, 2017. (Forthcoming in Economic Inquiry)
- 4. บทความเรื่อง "ข้อจำกัดด้านการกู้ยืมและการตัดสินใจเป็นผู้ประกอบการของครัวเรือน ไทย", อาชว์ ปวีณวัฒน์, 2 Jan 2017, aBRIDGEd articles
- 5. บทความเรื่อง "อุปสรรคของการพัฒนาระบบประกันที่สมบูรณ์ในชุมชนชนบทของไทย", นราพงศ์ ศรีวิศาล, 30 Jan 2017, aBRIDGEd articles

Abstract

This project supports the monthly micro survey, which is the main part of the Townsend Thai Data. This survey interviewed the sampled households every month since August 1998. There has been no attrition during the last 12 months. This report presents 5 articles related to the Townsend Thai Data as examples of the applications of the data. We are confident that the Townsend Thai Data will be beneficial for both researchers and policy makers to create academic researches and design effective policies.

บทคัดย่อ

งานวิจัยชิ้นนี้ได้สนับสนุนการสำรวจข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำรายเดือน (monthly micro data) ซึ่งจะเป็นฐานข้อมูลหลักของ Townsend Thai Data ที่สำรวจครัวเรือน เดิมทุกๆ เดือน นับตั้งแต่เดือนสิงหาคม ปี 1998 การสำรวจในช่วง 1 ปีที่ผ่านมาเป็นไปได้ตาม เป้าหมาย โดยไม่มีครัวเรือนที่หายไปจากกลุ่มตัวอย่างเลย รายงานฉบับนี้นำเสนอบทความที่เกี่ยวข้อง กับข้อมูล Townsend Thai Data จำนวน 5 บทความ คณะผู้วิจัยเชื่อว่า ฐานข้อมูลที่ได้จากโครงการ นี้จะเป็นประโยชน์ต่อนักวิจัยและผู้กำหนดนโยบายของประเทศไทย ทั้งในด้านวิชาการและการ ออกแบบนโยบายที่มีประสิทธิภาพ

สารบัญ

เรื่อง		หน้า
กิตติกรรม	เประกาศ	i
บทสรุปผู้	บริหาร	ii
บทคัดย่อ		iv
สารบัญ		vi
สารบัญภา	าพ	ix
สารบัญตา	าราง	X
บทที่ 1	บทนำ	1
	1.1 ความสำคัญของปัญหา	1
	1.2 วัตถุประสงค์การวิจัย	1
	1.3 แผนการดำเนินการ	2
	1.4 กรอบแนวคิดในการวิจัย	2
	1.5 วิธีการดำเนินการวิจัย	2
	1.6 ผลที่คาดว่าจะได้รับเมื่อดำเนินงานเสร็จสิ้นเป็นรูปธรรม	4
บทที่ 2	ประวัติย่อของทีม Thai Family Research Project (TFRP)	5
	2.1 จุดเริ่มต้นของทีมงาน	5
	2.2 การเก็บข้อมูลในระยะเริ่มแรก	6
	2.3 กระบวนการตรวจสอบความถูกต้องของข้อมูล	7

สารบัญ (ต่อ)

เรื่อง		หน้า
	2.4 ปัญหาและอุปสรรคที่เกิดขึ้นระหว่างการดำเนินงาน	8
บทที่ 3	โครงสร้างและบทบาทหน้าที่ของทีม Thai Family Research Project (TFRP)	10
	3.1 แผนผังงานของทีมงาน	10
	3.1.1 ส่วนงานพื้นที่ภาคสนาม	10
	3.1.2 สำนักงานส่วนกลางฝ่ายทั่วไป	11
	3.1.3 สำนักงานส่วนกลางฝ่ายงานตรวจ	12
	3.1.4 สำนักงานส่วนกลางฝ่ายงานจัดการโปรแกรมและฐานข้อมูล	13
	3.2 การดำเนินงานของทีมงาน Thai Family Research Project (TFRP)	14
	3.2.1 การจัดทำแบบสอบถาม	14
	3.2.2 การวางแผนและจัดสรรพนักงานสัมภาษณ์ให้เหมาะสมกับครัวเรือน	14
	3.2.3 การตรวจสอบความถูกต้องของแบบสอบถาม	14
	3.2.4 การพัฒนาระบบฐานข้อมูล	15
	3.2.5 การคีย์ข้อมูลเข้าระบบฐานข้อมูล	16
	3.3 ข้อมูลที่สามารถเผยแพร่ได้	16

สารบัญ (ต่อ)

เรื่อง		หน้า
บทที่ 4	การใช้ประโยชน์จากข้อมูล Townsend Thai Data	18
	4.1 โครงการฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำเพื่อการวิจัยด้านเศรษฐศาสตร์และ สังคม	18
	4.2 โครงการการเปลี่ยนแปลงของความยากจนในชนบทไทย	19
	4.3 โครงการการเปลี่ยนแปลงโครงสร้างการผลิตด้านการเกษตรของครัวเรือนในชนบท: บทเรียนจากข้อมูล Townsend Thai Data"	20
	4.4 โครงการบทบาทของสภาพครัวเรือนต่อการพัฒนาคุณภาพกำลังแรงงานในอนาคต	20
บทที่ 5	การเผยแพร่ประชาสัมพันธ์ Townsend Thai Data	22
	5.1 การเผยแพร่ผลงานวิจัยจากการใช้ Townsend Thai Data	22
	5.2 การพัฒนาฐานข้อมูลและระบบฐานข้อมูลเพื่อการวิจัยและพัฒนาในสำนักประสานงาน	23
	5.3 การจัดอบรมการใช้ Townsend Thai Micro Data	23
	5.4 การจัดสัมมนาวิชาการระดับนานาชาติ หัวข้อ "Finance and Development: Data, Research, and Policy Design" ระหว่างวันที่ 8-9 มิถุนายน 2560	24
	5.5 การศึกษาดูงานโครงการ Townsend Thai Project จากหน่วนงานภายนอก	26
บทที่ 6	บทสรุปและข้อเสนอแนะ	27
เอกสารอ้	างอิง	30
ภาคผนวก	า ก. งานวิจัยและบทความที่ได้จากการประยุกต์ใช้ข้อมูล Townsend Thai Data	31

สารบัญภาพ

รูปภาพ		หน้า
5.1	ภาพกิจกรรมการจัดอบรมการใช้ Townsend Thai Micro Data	24
5.2	ครั้งที่ 1 ณ UC-UTCC Research Center ในวันที่ 6 กุมภาพันธ์ 2560 ภาพกิจกรรมการจัดสัมมนาวิชาการระดับนานาชาติ หัวข้อ "Finance and	26
	Development: Data, Research, and Policy Design" วันที่ 8-9 มิถุนายน 2560 ณ ห้องประชุมภัทรรวมใจ อาคาร 2 ชั้น 2 ธนาคารแห่งประเทศไทย	

สารบัญตาราง

ตาราง		หน้า
1.1	แผนกิจกรรมการดำเนินงานของโครงการ	2
3.1	จำนวนครัวเรือนและจำนวนแบบสอบถาม แบ่งตามจังหวัด	11
3.2	จำนวนครัวเรือนตัวอย่างซ้ำรายเดือนที่ถูกสัมภาษณ์ในรอบ 12 เดือน	17
4.1	โครงการวิจัยภายใต้ชุดโครงการพัฒนาองค์ความรู้เศรษฐกิจและสังคมของครัวเรือนไทย	18
5.1	สถิติการขอใช้ข้อมูลจาก FEDR	23

บทที่ 1 บทนำ

1.1 ความสำคัญของปัญหา

Townsend Thai Data ประกอบไปด้วย ข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำรายปีในเขต ชนบท (rural annual data) ข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายเดือน (monthly micro data) ฐานข้อมูลชุดนี้ถือเป็น ฐานข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายเดือน (monthly micro data) ฐานข้อมูลชุดนี้ถือเป็น ฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำรายเดือน ซึ่งถือเป็นข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำความถี่ สูง (high frequency panels) ที่มีการเก็บอย่างต่อเนื่องและยาวนานที่สุดในประเทศกำลังพัฒนา และกำลังจะครบรอบ 20 ปีในเดือนสิงหาคม 2560 นี้ ข้อมูลชุดนี้ได้สร้างองค์ความรู้ใหม่ด้าน เศรษฐศาสตร์อย่างต่อเนื่อง และมีบทบาทต่อการออกแบบนโยบายทางเศรษฐกิจและสังคมทั่วโลก (Townsend, 2011) และที่สำคัญ ข้อมูลที่มีอยู่ยังสามารถนำมาศึกษาปัญหาด้านเศรษฐกิจและสังคม ได้อีกเป็นจำนวนมาก อาทิเช่น การออกแบบระบบการเงิน (design of financial system) ปัญหา ความเหลื่อมล้ำและความยากจน การบริหารสินทรัพย์และความเสี่ยงของครัวเรือนในชนบท การ ติดตามปัญหาหนี้ครัวเรือนในชนบท (household indebtedness tracking) อุปสรรคและข้อจำกัด ด้านการเงิน (financial constraints) ของครัวเรือนและธุรกิจขนาดเล็ก ปัญหาสังคมผู้สูงวัย (aging society) เป็นต้น

ภายใต้ชุดโครงการพัฒนาองค์ความรู้ด้านเศรษฐกิจและสังคมของครัวเรือนไทย นักวิจัย จำเป็นต้องอาศัยข้อมูลระดับครัวเรือน (แบบตัวอย่างซ้ำ) เพื่อศึกษาและวิเคราะห์การบริหารสินทรัพย์ และความเสี่ยงของครัวเรือนไทยในชนบท (financial and risk management of Thai household) สังคมผู้สูงอายุ (aging) โครงการสร้างอุตสาหกรรมของระบบการเงิน (industrial organization of Thai financial system) อุปสรรคและข้อจำกัดด้านการเงิน (financial constraints) ครัวเรือนและ ธุรกิจขนาดเล็ก ดังนั้นเราจึงจำเป็นต้องให้การสนับสนุนการสำรวจข้อมูลระดับครัวเรือนแบบตัวอย่าง ซ้ำรายเดือน (monthly micro data) ซึ่งจะเป็นฐานข้อมูลหลักในการศึกษาประเด็นต่างๆ ที่เกี่ยวข้อง และยังเป็นประโยชน์ต่อการศึกษาและวิเคราะห์ประเด็นอื่นๆ อีกมากมายในอนาคต

1.2 วัตถุประสงค์การวิจัย

- 1. เพื่อพัฒนาฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำรายเดือน (monthly micro data) ให้มีข้อมูลต่อเนื่องและเป็นประโยชน์ต่อการพัฒนา
 - ้2. เพื่อสนับสนุนให้เกิดงานวิจัยด้านเศรษฐศาสตร์และสังคมที่มีคุณภาพ

1.3 แผนการดำเนินการ

แผนงานของโครงการเป็นไปตามข้อเสนอโครงการซึ่งมีรายละเอียด ดังนี้

ตาราง 1.1: แผนกิจกรรมการดำเนินงานของโครงการ

วัตถุประสงค์	กิจกรรมหลัก	ช่วง	จำนฺวน	ผู้รับผิดชอบ
		ระยะเวลา	วันที่ใช้	
		ดำเนินการ		
เพื่อพัฒนาฐานข้อมูล	1 สัมภาษณ์กลุ่มตัวอย่าง	ทุกเดือน	30	TFRP
ระดับครัวเรือนแบบ				
ตัวอย่างซ้ำรายเดือน				
(monthly micro data)				
ให้มีข้อมูลที่ต่อเนื่อง	2 บันทึกข้อมูล 2 รอบ และ	ทุกเดือน	30	TFRP
	เปรียบเทียบข้อมูลจากทั้งสอง			
	รอบเพื่อให้ได้ข้อมูลที่ถูกต้อง			
	มากที่สุด			
	3 พัฒนาฐานข้อมูลจากที่	ทุกเดือน	30	TFRP
	ดำเนินการมาแล้ว			

1.4 กรอบแนวคิดในการวิจัย

โครงการนี้เป็นการเก็บข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำรายเดือน (monthly micro data) ซึ่งมีประโยชน์ต่อหัวข้อวิจัยในชุดโครงการเป็นอย่างมาก

1.5 วิธีการดำเนินการวิจัย

การเก็บข้อมูลครัวเรือนแบบตัวอย่างซ้ำรายเดือนเกิดขึ้นเมื่อปี พ.ศ. 2541 โดยมีทั้งหมด 16 หมู่บ้าน แบ่งเป็น 4 หมู่บ้านในแต่ละจังหวัด ประกอบไปด้วย 4 จังหวัด ได้แก่ ฉะเชิงเทรา ลพบุรี บุรีรัมย์ และศรีสะเกษ โดยมี 1 ตำบลต่อ 1 จังหวัดจาก 12 หมู่บ้านที่ได้จากข้อมูลระดับครัวเรือน ตัวอย่างซ้ำแบบรายปี ซึ่งเป็นข้อมูลจาก Baseline ปี พ.ศ. 2540 และทำการเปรียบเทียบระหว่าง 4 หมู่บ้านในแต่ละจังหวัด พบว่า แต่ละหมู่บ้านมีความแตกต่างด้านสภาพแวดล้อมค่อยข้างน้อยแต่มี ความแตกต่างด้านสภาพเศรษฐกิจค่อนข้างมาก ปัจจัยดังกล่าวมีความเกี่ยวข้องกับสถาบันการเงินที่ไม่ เป็นทางการ สถาบันการเงินในท้องถิ่น หรือสถาบันการเงินของรัฐ ดังนั้น ข้อมูลจากการสุ่มตัวอย่าง หมู่บ้านอาจสามารถสะท้อนสภาพเศรษฐกิจในแต่ละจังหวัดนั้นๆ ได้ และเป็นประโยชน์อย่างยิ่งต่อ การประเมินบทบาทโครงสร้างครัวเรือน การค้า การให้สินเชื่อและการประกันจากสถาบันการเงินของ รัฐ

การสุ่มเลือกตำบลในแต่ละจังหวัดเกิดพร้อมกับการเก็บข้อมูล Baseline ใน พ.ศ. 2540 โดย มีครัวเรือนที่ถูกสุ่มเลือกมา 15 ครัวเรือนในแต่ละหมู่บ้าน เพื่อทำการเก็บข้อมูลสภาพแวดล้อมของ หมู่บ้านจากตัวอย่างดิน หลังจากนั้นก็ทำการเก็บข้อมูลครัวเรือนเพิ่มอีก 30 ครัวเรือน รวมทั้งสิ้นเป็น 45 ครัวเรือนต่อ 1 หมู่บ้าน (ทั้งหมด 16 หมู่บ้าน) รวมทั้งหมด 720 ครัวเรือน

ก่อนการเก็บข้อมูลรายเดือน ต้องเริ่มต้นจากการเก็บข้อมูลครัวเรือนทุกหลังภายในหมู่บ้าน (census) ซึ่งเป็นข้อมูลพื้นฐานที่ครัวเรือนจะถูกถามว่า บุคคลดังกล่าวมีการอาศัยกินอยู่หลับนอนใน ครัวเรือนหลังนี้หรือไม่ การเก็บข้อมูลดังกล่าว ทำให้เราทราบว่าจะมีจำนวนคนหรือครัวเรือนที่ สามารถให้ข้อมูลคิดเป็นจำนวนทั้งหมดเท่าไหร่ในแต่ละเดือน

การเก็บข้อมูลรายเดือนจริงๆ เกิดขึ้นในปี พ.ศ. 2541 โดยการเก็บข้อมูล Baseline ซึ่งเป็น ข้อมูลเฉพาะของแต่ละครัวเรือน และข้อมูลที่เกี่ยวกับสถาบันที่ไม่เป็นทางการ ส่วนข้อมูล Roster เป็น แบบสรุปข้อมูลทุกหมวดในแต่ละเดือนที่มีการติดตามอย่างต่อเนื่อง เพื่อใช้ในการตรวจสอบข้อมูล ขณะสัมภาษณ์ แต่หากครัวเรือนใดมีข้อมูลหรือกิจกรรมของครัวเรือนที่เกิดขึ้นใหม่ ข้อมูลดังกล่าวจะ ถูกบันทึกในแบบสอบถามที่เรียกว่า Form

ทั้ง 4 หมู่บ้านในแต่ละจังหวัด จะกำหนดให้มีจำนวนพนักงานสัมภาษณ์ 12 คน และมีหัวหน้า ทีม supervisors 1 คน มีหัวหน้าตรวจแบบสอบถาม 1 คน และมีพนักงานเก็บข้อมูลตัวอย่างดิน 1 คน พนักงานสัมภาษณ์ทั้งหมดเป็นคนท้องถิ่นเนื่องจากสามารถเดินทางเข้าไปสัมภาษณ์ในพื้นที่ได้ทุก วัน นอกจากนี้ยังรวมถึงพนักงานจากสำนักงานส่วนกลาง (กรุงเทพฯ) และพนักงานประจำสำนักงาน ในพื้นที่ พนักงานสัมภาษณ์ทั้งหมดจะสัมภาษณ์ครัวเรือนด้วยภาษาท้องถิ่น เช่น ไทย ลาว เขมร หรือสุ่ย ซึ่งหลังจากที่พนักงานสัมภาษณ์เก็บข้อมูลของครัวเรือนมาแล้วนั้น พนักงานก็จะคีย์งานเข้าสู่ ฐานข้อมูลด้วยโปรแกรมเฉพาะที่สำนักงานในพื้นที่ เมื่อข้อมูลถูกบันทึกในฐานข้อมูลจนครบทุก ครัวเรือนแล้ว ข้อมูลและแบบสอบถามจะถูกจัดส่งสู่สำนักงานส่วนกลางต่อไป

พนักงานส่วนกลางจะทำการเข้าข้อมูลจากแบบสอบถามชุดเดิมในโปรแกรมเข้าข้อมูลแบบ เดียวกันในรอบที่ 2 และทำการเปรียบเทียบข้อมูลทั้ง 2 ชุด จากนั้นทีมงาน supervisors จะทำการ ตรวจสอบข้อมูลเชิงลึก ตรวจสอบความต่อเนื่องของข้อมูล และจุดผิดพลาดในภาพรวมทั้ง 4 จังหวัด อีกครั้ง และสุดท้ายพนักงานคลีนข้อมูลจะทำความสะอาดข้อมูลทั้งหมด ซึ่งข้อมูลที่ถูกตรวจสอบทั้ง สองรอบแล้วนั้นจะถูกเก็บไว้ในรูปไฟล์ข้อมูล Access จากนั้นพนักงานแปลภาษาจะทำหน้าที่แปลง ข้อมูลที่เป็นภาษาไทยให้เป็นภาษาอังกฤษเพื่อความสะดวกในการใช้งานของผู้ใช้ทั้งสองภาษา ดังนั้น ข้อมูลที่เผยแพร่และสามารถใช้งานได้จะถูกจัดเก็บแยกเป็นชุดฐานข้อมูลทั้งในรูปแบบภาษาไทยและ ภาษาอังกฤษ

1.6 ผลลัพธ์ที่ได้จากโครงการฯ

นอกจากข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายเดือนที่เพิ่มขึ้นมาอีก 12 เดือนแล้ว รายงาน ฉบับนี้ได้นำเสนอผลลัพธ์ที่ได้จากการประยุกต์ใช้ข้อมูล Townsend Thai Data ประกอบไปด้วย งานวิจัยและบทความทั้งหมด 5 ชิ้น ดังต่อไปนี้

- 1. Benjamin Moll, Robert M. Townsend, Victor Zhorin. "Economic Development, Flow of Funds and the Equilibrium Interaction of Financial Frictions.", Proceedings of the National Academy of Sciences of the United States of America, June 13, 2017, Vol.114, No.24, P6176-6184.
- 2. Samphantharak, Krislert and Robert M. Townsend. "Risk and Return in Village Economies." revised 2017. (Forthcoming in American Economic Journal: Microeconomics).
- 3. Samphantharak, Krislert, Scott Schuh and Robert M. Townsend. "Integrated Household Surveys: An Assessment of U.S. Methods and an Innovation" Working Paper, 2017. (Forthcoming in Economic Inquiry)
- 4. บทความเรื่อง "ข้อจำกัดด้านการกู้ยืมและการตัดสินใจเป็นผู้ประกอบการของครัวเรือน ไทย", อาชว์ ปวีณวัฒน์, 2 Jan 2017, aBRIDGEd articles
- 5. บทความเรื่อง "อุปสรรคของการพัฒนาระบบประกันที่สมบูรณ์ในชุมชนชนบทของไทย", นราพงศ์ ศรีวิศาล, 30 Jan 2017, aBRIDGEd articles

เพื่อความสะดวก นักวิจัยนำเสนอบทความต้นฉบับทั้งหมดไว้ในภาคผนวก ก

บทที่ 2 ประวัติย่อของทีม Thai Family Research Project (TFRP)

2.1 จุดเริ่มต้นของทีมงาน

ทีมงานของโครงการเริ่มแรกมาจากการทำ Big Survey (สำรวจครั้งแรก) โดยคุณสมบัติเป็นผู้ เข้าไปติดต่อประสานงานกับคณะเศรษฐศาสตร์จากมหาวิทยาลัยธรรมศาสตร และจุฬาลงกรณ์ มหาวิทยาลัย เพื่อแนะนำและติดประกาศหาผู้ร่วมงานกับโครงการ มีทั้งนักศึกษาปริญญาตรี และ ปริญญาโท จากมหาวิทยาลัยธรรมศาสตร์และจุฬาลงกรณ์มหาวิทยาลัย เข้ามาร่วมงานในฐานะ นักวิจัย จำนวน 12 คน จากการแนะนำของอาจารย์ที่ได้ไปติดต่อ โดยโครงการมีแผนการสำรวจทั้ง 4 จังหวัดพร้อมกัน และได้ไปติดต่อประสานกับทางคณะสังคมศาสตร์ มหาวิทยาลัยราชภัฎสวนสุนันทา และมหาวิทยาลัยราชภัฎต่างๆ ในพื้นที่สำรวจทั้ง 4 จังหวัด จึงได้ทีมงานสัมภาษณ์เป็นนักศึกษาจาก อาจารย์ผู้ดูแลด้านกิจการนักศึกษามาร่วมงาน ซึ่งใช้เวลาในการสัมภาษณ์ 3 เดือนและตรวจลงข้อมูล อีก 3 เดือน หลังจากนั้นนักวิจัยจึงเริ่มมีการทดสอบแบบสอบถามที่ใช้ร่วมกับทีมอาจารย์จากอเมริกา (US) โดย Professor Townsend และต่อมาเกิดวิกฤตเศรษฐกิจไทยในปี 2540 จึงได้ทำการสำรวจ Re-Survey และกลายมาเป็น Monthly Micro Survey ในเวลาต่อมา

ในช่วงเริ่มต้นการสำรวจ Monthly Micro Survey นักวิจัยส่วนใหญ่ออกจากโครงการ เพราะสามารถหางานประจำที่มั่นคงได้มากกว่า ทำให้เหลือจำนวนทีมงานเพียง 3 คนซึ่งต้องอยู่ ประจำในพื้นที่สัมภาษณ์ และได้รับสมัครพนักงานสัมภาษณ์เพิ่มเติมในพื้นที่อีกจังหวัดละ 9-10 คน และญาติของคุณสมบัติเข้ามาช่วยงานเพิ่ม อีก 4 คนในส่วนกลาง เนื่องจากในช่วงเริ่มต้นของโครงการ ซึ่งมีระยะเวลาการดำเนินงานแน่ชัดเป็นปีต่อปี ทำให้พนักงานส่วนกลางเป็นญาติและผู้ที่ถูกชักชวน จากผู้ร่วมงานคนเดิม เข้ามาทำงานเพิ่มเติม ซึ่งคุณสมบัติของทีมงานต่างจังหวัดจะมีข้อกำหนด เพิ่มเติมคือจะต้องเป็นผู้ที่สำเร็จการศึกษาระดับปริญญาตรี และมีภูมิลำเนาในพื้นที่สำรวจหรือ ใกล้เคียงเท่านั้น

เมื่อได้ทีมงานครบพอที่จะเริ่มงานได้แล้วจึงมีการฝึกอบรมพนักงานเป็นระยะเวลา 2 สัปดาห์ เกี่ยวกับแบบสอบถาม Monthly, Roster และ Census จากทีมอาจารย์ Professor Townsend และ Professor Anna ร่วมกับคุณสมบัติ อาจารย์อนันต์ และทีมนักวิจัยชุดเดิมที่เหลือ อีกทั้งมีการ ทดสอบโดยการลงสัมภาษณ์ครัวเรือนจริงในพื้นที่อบรม ทั้งด้านการทำแผนที่สำรวจ พร้อมทั้งแนะนำ วิธีการเข้าพบครัวเรือน เทคนิคการสัมภาษณ์ การพูดคุยกับครัวเรือน และการลงแบบสอบถาม หลังจากทำการฝึกอบรมข้างต้นแล้ว โดยใช้ระยะเวลาประมาณ 2 เดือนในการทดลองสัมภาษณ์ ครัวเรือนอื่นๆ ในพื้นที่การสำรวจจริงก่อนจะเริ่มสัมภาษณ์ครัวเรือนเป้าหมายได้ และอีกประมาณ 18 เดือนจึงจะสามารถเข้าใจแบบสอบถามทั้งหมด และกำหนดแผนงานพร้อมทั้งเริ่มทำระบบงานอื่นๆ ได้ เช่น ระบบตรวจเช็คงาน ระบบคีย์งาน เป็นต้น

หลังจากที่โครงการมีทีมงานที่สามารถลงสัมภาษณ์ครัวเรือนจริง และมีความเข้าใจใน แบบสอบถามและขั้นตอนต่างๆ ในการดำเนินงานได้แล้วนั้น ทางโครงการจำเป็นอย่างยิ่งที่จะต้องทำ ให้พนักงานเหล่านี้อยู่ร่วมกับโครงการในระยะยาว โดยโครงการได้รับพนักงานที่เป็นคนในพื้นที่เข้า มาร่วมงาน และมีข้อกำหนดจะจ่ายค่าตอบแทนเมื่อมีการส่งงานที่ครบถ้วนสมบูรณ์ และถูกต้อง ภายในระยะเวลาที่กำหนด ซึ่งพนักงานสามารถกำหนดเวลาเข้าทำงานของตนเองได้ในแต่ละวัน ทำให้ พนักงานมีเวลาดูแลครอบครัวแลกกับทางโครงการที่ไม่ได้มีสวัสดิการอื่นๆ พิเศษเพิ่มเติมให้กับ พนักงาน ดังนั้น ค่าตอบแทนที่เหมาะสมจึงมีผลต่อการที่พนักงานจะอยู่ร่วมกับโครงการในระยะยาว

นอกจากนี้ โครงการต้องการพนักงานที่มีความรู้ความสามารถทางด้านการเงินเข้ามาร่วมงาน ซึ่งในพื้นที่ต่างจังหวัดนั้น การหาพนักงานเหล่านี้ค่อนข้างยาก และในส่วนกลางเองคุณสมบัติเหล่านี้ ต้องมีค่าตอบแทนที่ค่อนข้างสูง เกินกว่างบประมาณที่โครงการตั้งไว้ จึงจำเป็นต้องจ้างพนักงานใน สาขาอื่นๆ และมีการฝึกอบรมความรู้ทางด้านการเงินเพิ่มเติมเพื่อทดแทน

2.2 การเก็บข้อมูลในระยะเริ่มแรก

การสำรวจข้อมูลในเดือนแรกจะเริ่มทำพร้อมๆ กันทั้ง 4 จังหวัด โดยหัวหน้าทีมของแต่ละ จังหวัดจะถูกคัดสรรมาจากพนักงานสัมภาษณ์ที่รับเข้ามาทำงานซึ่งได้รับการฝึกอบรมมาก่อนหน้าแล้ว และมีประสบการณ์ในการทำงานสัมภาษณ์ที่เด่นอยู่แล้ว มาฝึกอบรมเทคนิคการตรวจแบบสอบถาม และสร้างเครื่องมือตรวจข้อมูลด้วยคอมพิวเตอร์ (Query) เพิ่มเติมอีกประมาณ 1 เดือน (ต้องเข้ามา อบรมในส่วนกลาง 1 สัปดาห์ และฝึกสร้างเครื่องมือตรวจจากข้อมูลจริงในพื้นที่หลังจากนั้นจะส่งมา ฝึกงานกับส่วนกลางอีก 3 สัปดาห์) ซึ่งภายในระยะเวลา 3 เดือนจะต้องสามารถสร้างเครื่องมือ ตรวจสอบของตนเองให้ครบสมบูรณ์ตามที่กำหนดไว้

ในช่วงแรกก่อนที่จะเริ่มการสำรวจ ทีมงานทั้งหมดต้องนำเอกสารแนะนำจากโครงการที่ชี้แจง วัตถุประสงค์การเก็บข้อมูลของโครงการเข้าพบผู้ใหญ่บ้าน เพื่อช่วยประชาสัมพันธ์ และเข้าไปแนะนำ ตัวเองแก่ครัวเรือนเป้าหมาย ต่อมาหัวหน้าทีมและพนักงานสัมภาษณ์ต้องหมั่นเข้าไปพูดคุยกับ ครัวเรือนบ่อยๆ ในเรื่องอื่นๆ ทั่วไปด้วย เพื่อสร้างความคุ้นเคย และช่วยดูแลครัวเรือน

อุปสรรคของการสำรวจในช่วงแรกๆ เกิดมาจากพื้นที่สำรวจเป็นพื้นที่ชนบท ทำให้ถนน ทางเข้าครัวเรือนยังไม่สามารถเข้าออกได้อย่างสะดวก และไม่ปลอดภัย หรืออาจจะต้องใช้เส้นทาง อ้อมที่มีระยะทางไกลมากขึ้น ดังนั้น จึงกำหนดให้พนักงานเข้าไปสัมภาษณ์ครัวเรือนด้วยกันเป็นกลุ่ม กลุ่มละ 2-3 คน ด้วยรถจักรยานยนต์ โดยโครงการมีการสนับสนุนค่าน้ำมันในการออกพื้นที่ให้ ซึ่ง กำหนดให้สัมภาษณ์ได้อย่างน้อยวันละ 1 ครัวเรือนต่อคน และให้สัมภาษณ์เสร็จให้ได้ 45 ครัวเรือน (จำนวน 1 หมู่บ้าน) ภายในสัปดาห์นั้นๆ ต่อมาเมื่อมีการพัฒนาถนนต่างๆ ทำให้เส้นทางการเข้าออก ครัวเรือนเริ่มดีขึ้น และการขี่รถจักรยานยนต์เริ่มมีความอันตรายจากความเร็วของรถยนต์คันอื่น เพิ่มขึ้น ซึ่งทำให้โครงการเริ่มเปลี่ยนมาสนับสนุนค่าน้ำมันรถยนต์ให้แก่รถยนต์ของหัวหน้าทีมในแต่ละ จังหวัดเพื่อนำส่งพนักงานสัมภาษณ์เข้าสัมภาษณ์งานในพื้นที่ให้แล้วเสร็จตามกำหนดเดิม

นอกจากอุปสรรคของเส้นทางการเข้าไปสัมภาษณ์ครัวเรือนแล้วนั้น ยังมีอุปสรรคอื่นๆ ที่ เกิดขึ้นระหว่างการสำรวจข้อมูล ได้แก่ การที่ครัวเรือนกำลังประกอบอาชีพตลอดทั้งวัน/เป็นช่วงระยะ เวลานาน ทำให้พนักงานสัมภาษณ์ต้องนัดหมายวันเวลาที่ครัวเรือนสะดวก และพร้อมที่จะให้ข้อมูล, ในบางพื้นที่มีปัญหาด้านภาษาที่ใช้ในการสื่อสาร จึงทำให้หัวหน้าทีมต้องจัดสรรพนักงานสัมภาษณ์ที่ สามารถใช้ภาษาถิ่นเข้าไปสัมภาษณ์, บางครัวเรือนไม่มีเวลาว่างนานพอที่จะให้ข้อมูลจนจบการ สัมภาษณ์ ทำให้พนักงานสัมภาษณ์ต้องมีการจัดเตรียมหัวข้อและเนื้อหาที่จะไปพูดคุยเพื่อช่วยกระชับ เวลาในการสัมภาษณ์ รวมทั้งการที่ครัวเรือนปฏิเสธการให้ข้อมูล ทำให้หัวหน้าทีมและพนักงาน สัมภาษณ์ต้องเข้าไปพบครัวเรือนเพื่อสอบถามสาเหตุในการปฏิเสธการให้ข้อมูลพร้อมทั้งต้องยอมรับ/ ยินดีและมีความจริงใจในการแก้ไขปัญหาร่วมกัน

2.3 กระบวนการตรวจสอบความถูกต้องของข้อมูล

การตรวจสอบความถูกต้องของแบบสอบถามเป็นเล่มๆ นั้น จะมีหัวหน้าทีมจากส่วนกลาง (Supervisor) คอยสอนเทคนิคและจุดสังเกตข้อผิดพลาดของการกรอกข้อมูลลงแบบสอบถาม ส่วนข้อมูลในฐานข้อมูลนั้นจะเป็นนักพัฒนาโปรแกรมเป็นผู้สอนวิธีใช้เครื่องมือสร้าง Query เพื่อตรวจ ข้อมูล หลังจากนั้นหัวหน้าทีมทุกคนและผู้ตรวจข้อมูลจะต้องใช้ประสบการณ์ของตนเองเพื่อพัฒนา จำนวน Query เพื่อใช้ตรวจข้อมูลของตนเองให้ได้ครอบคลุมมากที่สุด

การตรวจสอบข้อมูลในภาคสนามจะมีหัวหน้าทีมและผู้ช่วยที่ต้องตรวจแบบสอบถามคู่กับ แบบ Roster เพื่อความถูกต้อง (Roster คือแบบสรุปข้อมูลในแต่ละเดือน สำหรับแบบสอบถามบาง ชุดที่ต้องใช้ข้อมูลบางอย่างติดตามอย่างต่อเนื่อง ซึ่งใช้ตรวจสอบข้อมูลในขณะสัมภาษณ์) เมื่อ ตรวจสอบแล้ว จะดำเนินการเข้าข้อมูลรอบที่ 1 หลังจากนั้นจะมีการตรวจสอบอีกครั้งในฐานข้อมูล และเมื่อเสร็จสิ้นกระบวนการทางภาคสนามแล้ว จึงส่งข้อมูลเข้าสำนักงานส่วนกลาง

สำนักงานส่วนกลางจะรับงานจากพื้นที่ทั้งส่วนของข้อมูลและแบบสอบถามที่สมบูรณ์แล้วเพื่อ นำเข้าข้อมูลรอบที่ 2 หลังจากนั้นจะนำข้อมูลทั้ง 2 รอบมารวมกันเพื่อทำการเปรียบเทียบข้อมูลด้วย โปรแกรมสำเร็จรูป โดยเลือกข้อมูลที่ถูกต้องอ้างอิงตามแบบสอบถาม และเมื่อเสร็จสิ้นขั้นตอนการ เปรียบเทียบข้อมูลแล้ว จะส่งต่อข้อมูลนั้นให้ Supervisor เพื่อทำการตรวจสอบ โดยทาง Supervisor ได้มีการสร้างตัวช่วยในการตรวจสอบข้อมูล และหากมีการตรวจพบข้อผิดพลาดก็จะส่งกลับไปให้ ภาคสนามดำเนินการแก้ไข ซึ่งทาง Supervisor จะจำลองความคิดตนเองเป็นครัวเรือนที่กำลังตรวจ อยู่และพยายามเชื่อมโยงตัวแปรที่เกี่ยวข้องกันและสร้างแผนผังการเชื่อมโยงของแต่ละครัวเรือนไว้ แล้วจึงนำมาสร้าง Query เพื่อตรวจข้อมูลในเดือนอื่นๆ ต่อไปได้ เช่น เมื่อทราบว่าเดือนนี้ครัวเรือน เริ่มทำนาปลูกข้าว จะต้องทราบทันทีว่ามีการเชื่อมโยงเรื่องแปลงที่ดินที่ใช้ปลูกว่าเป็นแปลงไหน และ เป็นเจ้าของแปลงที่ดินเองหรือเช่าปลูก มีค่าเช่าเท่าไร กู้เงินหรือถอนเงินจากบัญชีไหน ปัจจัยการผลิต ใช้เท่าไร เวลาใดบ้าง ซื้อปัจจัยการผลิตด้วยวิธีไหน กู้ยืม สินเชื่อ ที่ไหน เท่าไร อย่างไร เป็นต้น

การตรวจแบบสอบถามโดยละเอียดนั้นจะเป็นการตรวจสอบโดย Supervisor และผู้ช่วยด้วย ตาเปล่าโดยการอ่านอย่างละเอียดทุกหน้าเพื่อให้ข้อมูลในแบบสอบถามมีเนื้อหาสัมพันธ์กัน และการ ตรวจสอบแบบสอบถามรอบที่ 2 นั้นจะทำโดยโปรแกรมคีย์ข้อมูลเข้า ซึ่งจะคอยตรวจขอบเขตของ ข้อมูล ข้อผิดพลาดในการคีย์ข้อมูล ตามคำสั่งที่แจ้งไว้ในแบบสอบถามทุกข้อ นอกจากนี้ หาก

Supervisor พบว่า ข้อมูลไม่ครบ/มีข้อผิดพลาด จะต้องให้หัวหน้าทีมของแต่ละจังหวัดสั่งให้พนักงาน สัมภาษณ์กลับไปสัมภาษณ์อีกครั้งเท่านั้น โดยจะต้องอ้างอิงข้อผิดพลาดที่เราพบว่ามีข้อมูลที่ไม่ สัมพันธ์กันอย่างไร แล้วจึงค่อยสอบถามครัวเรือนว่าทำไมถึงเป็นอย่างนั้น แล้วจึงชี้แจง/แก้ไขกับ Supervisor อีกครั้ง

เพราะฉะนั้น พนักงานสัมภาษณ์จะมีหน้าที่สัมภาษณ์และลงแบบให้ครบถ้วนถูกต้องตาม ข้อมูลที่ได้รับมา ส่วนหัวหน้าทีมในแต่ละจังหวัดและผู้ช่วยจะเป็นผู้ตรวจสอบแบบสอบถามในเบื้องต้น โดยละเอียด แล้วจึงให้ทีมงาน Supervisor ส่วนกลางเป็นผู้ตรวจข้อมูลขั้นสูง ซึ่งเป็นผู้ที่เคยเป็น พนักงานสัมภาษณ์ซึ่งเป็นหัวหน้าทีมและเคยประจำอยู่ในพื้นที่ครบทุกจังหวัดมาแล้ว ดังนั้น การตรวจ แบบสอบถามและข้อมูลในแต่ละขั้นตอนจะเป็นผู้ตรวจที่เป็นคนละคนกันเสมอ และมีประสบการณ์ที่ แตกต่างกันตามลำดับขั้นอีกด้วย

การตรวจสอบทั้งแบบสอบถามและข้อมูลมีหลายขั้นตอนเป็นลำดับขั้นจากหยาบสู่ละเอียด อย่างต่อเนื่องและข้อมูลที่เข้ามาเป็นประจำทุกเดือนมีปริมาณมากจึงต้องใช้ระยะเวลานานในการ ตรวจข้อมูล ดังนั้นอุปกรณ์ในการตรวจที่มีการประมวลผลที่รวดเร็ว และมีความเสถียรสูง จึงเป็นสิ่งที่ จำเป็นมาก และเนื่องจากผู้ตรวจข้อมูลทุกคนต้องเป็นผู้ที่มีประสบการณ์ทั้งการสัมภาษณ์และการใช้ งานฐานข้อมูลขั้นสูงด้วย จึงจำเป็นต้องโน้มน้าวบุคคลเหล่านี้ให้อยู่กับโครงการในระยะยาว ดังนั้น จึง ต้องมีการปรับอัตราค่าจ้างให้เหมาะสม และต้องทำสัญญาการจ้างงานระยะยาวตลอดโครงการ อีกทั้ง ต้องสร้างระบบจัดการและเก็บสำรองจำนวน Query ที่เคยถูกสร้างมาแล้วไว้ทั้งหมด เพื่อสะดวกใน การเรียกใช้และร่นระยะเวลาในการตรวจข้อมูลในอนาคตได้

2.4 ปัญหาและอุปสรรคที่เกิดขึ้นระหว่างการดำเนินงาน

ปัญหาจากข้อซักถามสงสัยและเบื่อหน่ายการให้ข้อมูลของครัวเรือนที่ได้ให้ข้อมูลโครงการมา เป็นเวลานานแต่ยังไม่เห็นว่ามีผลอะไรเกิดขึ้นจากข้อมูลที่ให้สัมภาษณ์ไปเลย ดังนั้น ทางหัวหน้าทีม พยายามขึ้แจงและโน้มน้าวให้ครัวเรือนทราบถึงระยะเวลาที่ต้องใช้ในการวิจัยและรอการพูดคุยกับทาง นักวิจัยทั้งคนไทย และต่างชาติที่ศึกษาข้อมูลมาพูดคุยในแต่ละปีที่ Professor Townsend พามาลง พื้นที่สำรวจ โดยเฉพาะสำหรับครัวเรือน หรือในภาพรวมของหมู่บ้านที่มีทีมวิจัยเข้ามาพูดคุยก็จะได้รับ ความร่วมมือมากขึ้น

ปัญหาการปิดบังการให้ข้อมูลของครัวเรือนในเรื่องการเงิน และทรัพย์สิน อันเนื่องมาจาก ครัวเรือนได้ทราบข่าวของมิจฉาชีพในด้านต่างๆ ได้ง่ายขึ้น จึงเกิดการระแวง สงสัย และพยายาม ปกป้องตนเอง ในการให้ข้อมูล ดังนั้น โครงการจึงทำการอบรมพนักงานทุกคนด้านการเงิน และ พยายามแนะนำหาข่าวสาร และ ข้อควรระวังการดำเนินธุรกรรมต่างๆ ชี้แจงให้ครัวเรือนเห็นถึงวิธี ป้องกันตนเองจากมิจฉาชีพ ประกอบกับให้คำแนะนำการเตรียมเอกสาร ขั้นตอนต่างๆ ก่อนที่ ครัวเรือนจะทำธุรกรรมใดๆ จากแหล่งข้อมูลที่เชื่อถือได้ เช่น เว็บไซต์จากธนาคารแห่งประเทศไทย เป็นต้น

ปัญหาความไว้วางใจแก่พนักงานสัมภาษณ์หน้าใหม่โดยเฉพาะในจังหวัดฉะเชิงเทราซึ่งมีการ แข่งขันด้านแรงงานสูงมากจึงทำให้พนักงานมีการเปลี่ยนเข้าออกบ่อยทำให้ครัวเรือนไม่รู้จักและ คุ้นเคย จึงไม่เชื่อใจและไม่ยอมให้ข้อมูล ดังนั้น หัวหน้าทีมจะต้องพาพนักงานใหม่ไปแนะนำกับ ครัวเรือนในช่วงแรกติดต่อกันหลายเดือน ก่อนจะให้เข้าสัมภาษณ์ครัวเรือนต่อไปและต้องพยายามโน้ม น้าวพนักงานให้อยู่ร่วมงานกับโครงการในระยะยาว เพื่อประหยัดเวลา และค่าใช้จ่ายในการฝึกอบรม และเข้าไปแนะนำตัวแก่ครัวเรือนด้วย

ปัญหาด้านภาษาในการสื่อสารโดยเฉพาะภาษาเขมรบางหมู่บ้านในจังหวัดบุรีรัมย์ ซึ่งปัจจุบัน พนักงานที่สามารถสื่อสารด้วยภาษาเขมรได้คล่องนั้นแทบจะหาไม่ได้เลยจึงเป็นการยากที่จะเข้าไป สัมภาษณ์ครัวเรือนได้ครบตามกำหนดเวลา ดังนั้น ทางหัวหน้าทีมจึงพยายามชักจูงคนในหมู่บ้านนั้น เข้ามาเป็นพนักงานสัมภาษณ์เพิ่มมากขึ้นซึ่งในปัจจุบันมีเพียงหัวหน้าทีมเท่านั้นที่สามารถสื่อสารภาษา เขมรได้

ปัญหาครัวเรือนย้ายออกจากพื้นที่เป้าหมาย อันเนื่องจากสภาวะเศรษฐกิจที่ค่อนข้างแย่ทำให้ ครัวเรือนต้องย้ายไปทำงานที่อื่นๆ หรือบางครั้งก็ย้ายออกจากบ้านเพื่อหนีหนี้ ดังนั้น ทางหัวหน้าทีม จึงพยายามติดต่อด้วยวิธีต่างๆ เพื่อสอบถามช่วงเวลาที่เหมาะสมว่าครัวเรือนจะกลับมาอยู่ที่บ้าน ตามเดิม หรือถ้าไม่สามารถติดต่อได้ก็ต้องแจ้งกับโครงการเพื่อทำการหาครัวเรือนทดแทนต่อไป (ถ้ามี ความจำเป็น)

หากผู้อ่านสนใจรายละเอียดเพิ่มเติมเกี่ยวกับประวัติและที่มาของ Thai Family Research Project (TFRP) สามารถอ่านเพิ่มเติมได้จากหนังสือ *Chronicles from the Field: The Townsend Thai Project, Townsend, Robert M; Sombat Sakunthasathien; and Rob Jordan. MIT Press, April 2013. (ISBN: 9780262019071)*

าเทที่ 3

โครงสร้างและบทบาทหน้าที่ของทีม Thai Family Research Project (TFRP)

โครงการฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำเพื่อการวิจัยด้านเศรษฐศาสตร์และสังคม ใช้บริการการเก็บและบริหารจัดการข้อมูลของทีมงาน Thai Family Research Project (TFRP) ซึ่ง เป็นผู้ดำเนินการเก็บและบริหารจัดการข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำรายเดือน (monthly micro data) ซึ่งได้เก็บอย่างต่อเนื่องเป็นเวลากว่า 20 ปี โดยผู้รับผิดชอบโครงการจะเป็นผู้ ประสานงานและบริหารจัดการโครงการเพื่อให้การดำเนินงานเป็นไปด้วยความเรียบร้อย

3.1 โครงสร้างของทีม Thai Family Research Project (TFRP)

การวางแผนงาน

ผู้อำนวยการโครงการฯ กำหนดเป้าหมาย แล้วผู้จัดการโครงการฯ ผู้จัดการฝ่ายข้อมูล และ ทีม supervisors ร่วมประชุมวางแผนระยะยาว 1 ปี , แผนงานระยะกลาง 6 เดือน และแผนงาน ระยะสั้น 3 เดือน

<u>โครงสร้างการบริหารจัดการ</u> โครงการได้แบ่งการบริหารออกเป็น 2 ส่วน ได้แก่

- สำนักงานส่วนกลาง
- สำนักงานพื้นที่ภาคสนาม

3.1.1 ส่วนงานพื้นที่ภาคสนาม

- 1. แผนกงานแผนงานและจัดการ ประกอบไปด้วย หัวหน้าทีม 1 อัตรา/จังหวัด, ผู้ช่วยหัวหน้า ทีม 1 อัตรา/จังหวัด และ พนักงงานคีย์ข้อมูล 1 อัตรา/จังหวัด ซึ่งมีภาระหน้าที่ ดังนี้
- กำหนดแผนงานและประชุมทีมงาน
- มอบหมายครัวเรือนให้กับพนักงานสัมภาษณ์
- แนะนำพนักงานสัมภาษณ์กับครัวเรือน
- จัดเตรียมแบบสอบถาม
- จัดเตรียมอุปกรณ์วัดค่า ดิน น้ำ
- ตรวจรับคืนแบบสอบถามที่สมบูรณ์
- ตรวจความถูกต้อง/แก้ไขแบบสอบถาม
- ตรวจเซ็คข้อมูล และคีย์ข้อมูลรอบ 1
- จัดส่งแบบสอบถามและฐานข้อมูลกลับสำนักงานส่วนกลาง
- ส่งใบงานและเอกสารกลับสำนักงานส่วนกลาง ทุกวันที่ 25 ของเดือน
- ส่งฐานข้อมูลกลับสำนักงานส่วนกลางไม่เกินสิ้นเดือน
- รอบการสัมภาษณ์ ข้อมูลครัวเรือนรายเดือนกำหนด ไม่เกิน 45 วัน
- 2. พนักงานสัมภาษณ์ จำนวน 7-10 อัตรา/จังหวัด มีภาระหน้าที่ในการเก็บสัมภาษณ์ครัวเรือน ตัวอย่างของแต่ละจังหวัด โดยต้องรับผิดชอบจำนวนครัวเรือนและจำนวนแบบสอบถามราย จังหวัด ดังนี้

71 13 14 3.1. 0 163 6611 6 365 6 0 163 6 6 6 0 0 6 10 0 6 1 6 0 0 0 7 1 16 0 0 0 0 7 1								
จังหวัด	จำนวน	แบบสอบถาม	แบบสอบถาม	แบบสอบถาม	แบบสอบถาม	แบบสอบถาม		
	ครัวเรือน	Roster	Weekly	Monthly	Form	Soil & Water		
ฉะเชิงเทรา	160	160	320	170	170	50		
บุรีรัมย์	171	171	360	190	190	50		
ลพบุรี	177	177	360	190	190	50		
ศรีสะเกษ	161	161	330	170	170	50		

ตาราง 3 1. จำนวนครัวเรื่อนและจำนวนแบบสอบถาน แบ่งตามจังหวัด

3.1.2 สำนักงานส่วนกลางฝ่ายทั่วไป

- 1. แผนกงานแบบสอบถาม ประกอบไปด้วย พนักงานทั่วไป จำนวน 2 อัตรา ซึ่งมีภาระหน้าที่ ดังนี้
- รับใบงาน
- จัดหาแบบสอบถาม
- แบ่งหมวดหมู่แบบสอบถาม
- บรรจุใส่ลังและจัดส่ง
- ติดตามแบบสอบถามกลับพร้อมส่งคืนใบงาน ซึ่งต้องรับผิดชอบจำนวนแบบสอบถามในแต่ละ
 ชุด ดังนี้
 - o แบบสอบถาม Monthly ≈ 730 ชุด/เดือน
 - o แบบสอบถาม Weekly ≈ 1,460 ชุด/เดือน
 - o แบบสอบถาม Form ≈ 670 ชุด/เดือน
 - o แบบสอบถาม Roster ≈ 730 ชุด/3 เดือน
 - o แบบสอบถาม Soil & Water ≈ 30 ชุด/ 3 เดือน
- 2. แผนกงานคีย์ข้อมูลรอบ 2 ประกอบไปด้วย พนักงานทั่วไปจำนวน 3-5 อัตรา โดยมี ภาระหน้าที่ ดังนี้
- รับใบงานและแบบสอบถาม
- คีย์ข้อมูลเข้าด้วยโปรแกรมสำเร็จรูปจากโครงการฯ
- นำส่งคืนใบงาน และแบบสอบถามกลับพร้อมฐานข้อมูล
- แบบสอบถามจำนวน 670 ครัวเรือน
- **3. แผนกงานเปรียบเทียบข้อมูล** ประกอบไปด้วย พนักงานทั่วไปจำนวน 3-5 อัตรา โดยมี ภาระหน้าที่ ดังนี้
- รับใบงานและแบบสอบถาม
- เปรียบเทียบข้อมูลด้วยโปรแกรมสำเร็จรูปจากโครงการฯ
- เลือกและแก้ไขข้อมูลให้ตรงตามแบบสอบถาม
- นำส่งแบบสอบถามกลับพร้อมใบงาน
- แบบสอบถามจำนวน 670 ครัวเรือน

- **4. แผนกงานจัดการเอกสารและข้อมูลทั่วไป** ประกอบไปด้วย พนักงานทั่วไปจำนวน 1-2 อัตรา โดยมีภาระหน้าที่ ดังนี้
- จัดเก็บและรวบรวมเอกสารทั่วไป
- นำเข้าฐานข้อมูลสู่ระบบจัดการฐานข้อมูลด้วยโปรแกรมสำเร็จรูปจากโครงการฯ
- ส่งออกฐานข้อมูลจากระบบจัดการฐานข้อมูลด้วยโปรแกรมสำเร็จรูปจากโครงการฯ
- นำเข้าฐานข้อมูลรอบที่ 1 จากสำนักงานพื้นที่ ทั้ง 4 จังหวัด/เดือน
- นำเข้าฐานข้อมูลรอบที่ 2 จากแผนกงานคีย์
- ส่งออกฐานข้อมูลสำหรับงานแปล
- จัดการระบบพจนานุกรมของโครงการฯ
- ส่งออกฐานข้อมูลชุด Raw Data

3.1.3 สำนักงานส่วนกลางฝ่ายงานตรวจ

- 1. งานจัดการข้อมูล Micro Data ประกอบไปด้วย Supervisor Micro 1 อัตรา ซึ่งมี ภาระหน้าที่ ดังนี้
- กำหนดใบงานสำหรับแผนกงานที่เกี่ยวข้อง
- สร้าง query สำหรับตรวจเช็คข้อมูล Weekly
- สร้าง query สำหรับตรวจเช็คข้อมูล Monthly
- สร้าง query สำหรับตรวจเช็คข้อมูล Form
- สร้าง query สำหรับตรวจเช็คข้อมูล Roster
- ตรวจสอบความสัมพันธ์ของข้อมูลรายครัวเรือน
- ออกพื้นที่คอยซักถามข้อสงสัยกับพนักงานสัมภาษณ์ ในพื้นที่สัมภาษณ์ เพื่อให้ได้ข้อมูลที่ ถูกต้อง ครบถ้วน สลับพื้นที่ ทุกเดือน
- ตรวจสอบความถูกต้องของข้อมูล ตาม query ที่สร้างขึ้นทุกเดือน
- ตรวจความต่อเนื่องและความสัมพันธ์ของข้อมูลทุกๆ 3 รอบข้อมูลการสัมภาษณ์
- กำหนดรอบส่งข้อมูล Raw Data ให้แก่ Prof. Townsend ทุกๆ 12 รอบข้อมูลการสัมภาษณ์
- 2. งานจัดการข้อมูล Soil & Water ประกอบไปด้วย Supervisor Micro 1 อัตรา ซึ่งมี ภาระหน้าที่ ดังนี้
- กำหนดใบงานสำหรับแผนกงานที่เกี่ยวข้อง
- สร้าง query สำหรับตรวจเช็คข้อมูล ดิน-น้ำ
- ตรวจนับอุปกรณ์ และสนับสนุนอุปกรณ์วัดค่า ดิน-น้ำ
- สังเกตุสภาพแวดล้อม ภูมิภาครอบๆ บริเวณจุดฝังเครื่องมือวัดค่า
- ตรวจสอบความสัมพันธ์ของข้อมูลในแต่ละสถานี
- ออกพื้นที่คอยซักถามข้อสงสัยกับพนักงานวัดค่าดิน-น้ำ ทุกสถานี เพื่อให้ได้ข้อมูลที่ถูกต้อง ครบถ้วน สลับพื้นที่ ทุกเดือน
- สุ่มวัดซ้ำ ในสถานีวัดค่า ดิน, ดินพิเศษ, น้ำ, น้ำพิเศษ และปริมาณน้ำฝน
- เปรียบเทียบข้อมูลความสัมพันธ์ของข้อมูล
- กำหนดรอบส่งข้อมูล Raw Data ให้แก่ Prof. Townsend ทุกๆ 12 รอบข้อมูลการสัมภาษณ์

- 3. งานติดต่อประสานงานพื้นที่ ประกอบไปด้วย Supervisor Field 1 อัตรา ซึ่งมี ภาระหน้าที่ ดังนี้
- ฝึกอบรมความรู้ คำแนะนำด้านการใช้แบบสอบถาม ให้พนักงาน
- หมั่นพูด คุย กับครัวเรือนสัมภาษณ์ เพื่อสร้างความคุ้นเคย ความเชื่อถือไว้ใจของครัวเรือน
- โน้มน้ำวครัวเรือนเพื่อให้ได้ข้อมูลเชิงลึกมากยิ่งขึ้น
- หมั่นออกพื้นที่เข้าพบครัวเรือนอย่างสม่ำเสมอทุกเดือน
- บันทึกข้อมูลเชิงพรรณา และ ethnography ในพื้นที่สัมภาษณ์
- สนับสนุนข้อมูลจากการสัมภาษณ์ และคอยประสานงานระหว่างครัวเรือนสัมภาษณ์กับ โครงการฯ

3.1.4 สำนักงานส่วนกลางฝ่ายงานจัดการโปรแกรมและฐานข้อมูล

- 1. แผนกงานดูแลระบบและฐานข้อมูล ประกอบไปด้วย Data Manager 1 อัตรา และ Programmer 1 อัตรา ซึ่งมีภาระหน้าที่ ดังนี้
- กำหนดใบงาน
- ดูแล บำรุงรักษา อุปกรณ์ อิเล็คโทรนิค คอมพิวเตอร์
- ดูแล บำรุงรักษา ระบบการจัดการฐานข้อมูล
- สร้าง บำรุงรักษา โปรแกรมสำเร็จรูปของโครงการฯ
- ติดตั้งโปรแกรม สำรองฐานข้อมูล
- ตรวจเช็คอุปกรณ์คอมพิวเตอร์ ทั้งสำนักงานส่วนกลาง และส่วนพื้นที่ภาคสนาม
- Backup diff ทุกเดือน
- Backup full ทุก 6 เดือน
- Backup ทั่วไป ทุก 1 ปี
- ติดตั้ง และอบรม โปรแกรมสำเร็จรูปของโครงการฯ ให้กับพนักงาน
- **2. แผนกงานทำความสะอาดข้อมูล** ประกอบไปด้วย Data Manager 1 อัตรา, Senior Data Archivist 1 อัตรา และ Junior Data Archivist 1 อัตรา ซึ่งมีภาระหน้าที่ ดังนี้
- กำหนดใบงาน
- แปลงฐานข้อมูล ให้สนับสนุน กับรูปแบบที่นักวิจัยใช้ เช่น STATA
- สร้าง code สำหรับตรวจสอบข้อมูลระหว่าง โมดูล และแสดง Tabulation
- กำหนด missing ให้กับข้อมูล
- จัดทำเอกสารประกอบการใช้ข้อมูลแต่ละชุด
- 1 ชุดข้อมูลที่ทำความสะอาดแล้ว ประกอบด้วย ข้อมูล 24 รอบการสัมภาษณ์ ที่ถูกทำการ แปลจากภาษาไทยไปเป็นภาษาอังกฤษ พร้อมเอกสารประกอบการใช้ข้อมูล
- กำหนดรอบส่งข้อมูล Clean Data ให้แก่ Prof. Townsend ทุกๆ 24 รอบข้อมูลการ สัมภาษณ์
- 3. แผนกงานแปลข้อมูล ประกอบไปด้วย พนักงานแปล 1-2 อัตรา ซึ่งมีภาระหน้าที่ ดังนี้
- รับใบงานและฐานข้อมูลสำหรับงานแปล

- แปลข้อมูลในฐานข้อมูลจากภาษาไทยเป็นภาษาอังกฤษ
- นำส่งคืนใบงานและฐานข้อมูลสำหรับงานแปล
- แปลข้อมูลส่วนที่เป็นรายการอื่นๆ ระบุ และส่วนที่เป็นการบันทึกของผู้สัมภาษณ์
- ชุดฐานข้อมูลสำหรับงานแปล บรรจุ 5,000 คำ/ชุด

3.2 การดำเนินงานของทีมงาน Thai Family Research Project (TFRP)

การดำเนินงานในทุกๆครั้ง ก่อนจะมีการสำรวจและจัดเก็บข้อมูล ซึ่งมีขั้นตอนการปฏิบัติงาน ตามแผนงานต่างๆ ดังต่อไปนี้

3.2.1 การจัดทำแบบสอบถาม

ทีมงานจะต้องจัดเตรียมเอกสารต่างๆ ของแบบสอบถามก่อนนำไปใช้ เพื่อทำการสัมภาษณ์ และเก็บข้อมูลจริงในพื้นที่ โดยแบบสอบถามจะแบ่งออกเป็น 5 ส่วน คือ

- 1. Baseline เป็นข้อมูลพื้นฐานของครัวเรือนทั้งหมด ใช้สัมภาษณ์ในครั้งแรกของการสัมภาษณ์ ครัวเรือน ถ้ามีครัวเรือนทดแทนก็ต้องสัมภาษณ์ Baseline ก่อน
- 2. Monthly เป็นข้อมูลที่ใช้ติดตามการเปลี่ยนแปลงของครัวเรือนเป็นรายเดือน
- 3. Form เป็นแบบที่ใช้บันทึกข้อมูลใหม่ที่มีในครัวเรือน หรือข้อมูลกิจกรรมของครัวเรือน ซึ่งจะใช้คู่ กับแบบ Monthly และแบบ Baseline
- 4. Weekly เป็นการติดตามข้อมูลค่าใช้จ่ายในครัวเรือนเป็นรายสัปดาห์
- 5. Roster เป็นแบบสรุปข้อมูลในแต่ละเดือน สำหรับแบบสอบถามบางชุดที่ต้องใช้ข้อมูลบางอย่าง ติดตามอย่างต่อเนื่อง ซึ่งใช้ตรวจสอบข้อมูลในขณะสัมภาษณ์

3.2.2 การวางแผนและจัดสรรพนักงานสัมภาษณ์ให้เหมาะสมกับครัวเรือน

หลังจากการเตรียมแบบสอบถามต่างๆ แล้วนั้น โครงการๆ จะคัดเลือกครัวเรือนให้แก่ พนักงานสัมภาษณ์ โดยที่พนักงานสัมภาษณ์ต้องไม่เคยรู้จักกับครัวเรือนนั้นมาก่อน ไม่เป็นญาติพี่น้อง หรือเพื่อนบ้านกัน เพื่อสร้างความมั่นใจให้กับครัวเรือนว่าข้อมูลที่ให้กับโครงการจะไม่ถูกเปิดเผย ภายในชุมชนหรือหมู่บ้านนั้นๆ และบางครั้งอาจจะมีการสลับครัวเรือนที่สัมภาษณ์กันเองบ้างเพื่อ ความราบรื่น ความถูกต้องครบถ้วนของข้อมูล เช่น บางครัวเรือนเอ็นดูพนักงานที่มีอายุรุ่นเดียวกับลูก หลาน บางครัวเรือนอาจจะชอบหรือไม่ชอบพนักงานที่มีอายุรุ่นเดียวกัน เป็นต้น จึงต้องมีการปรึกษา กับหัวหน้าทีมเพื่อสลับกันเองภายในทีม

3.2.3 การตรวจสอบความถูกต้องของแบบสอบถาม

1. สำนักงานพื้นที่

ผู้ตรวจและผู้ช่วยจะต้องอ่านแบบสอบถามทุกเล่มประกอบกับแบบ Roster (แบบ สรุปการเปลี่ยนแปลงรายครัวเรือนทุกเดือน) เพื่อตรวจสอบความถูกต้องในการลงข้อมูลและ ความสัมพันธ์ของของมูลที่เป็นไปได้ ซึ่งผู้ตรวจและผู้ช่วยเองก็จะเลือกสัมภาษณ์ครัวเรือน แบบสุ่มในทุกหมู่บ้านเพื่อทำให้ทราบความเปลี่ยนแปลงในภาพรวมของหมู่บ้านนั้นๆ ด้วย เมื่อผู้ตรวจเซ็นรับงานแล้วพนักงานก็จะคีย์งานเข้าสู่ฐานข้อมูลด้วยโปรแกรมเข้าข้อมูล

โดยเฉพาะของโครงการซึ่งจะมีการตรวจเช็คความถูกต้องของข้อมูลทุกตัวแปรจนครบ เมื่อ ข้อมูลถูกบันทึกในฐานข้อมูลจนครบทุกครัวเรือนแล้ว ผู้ตรวจ/ผู้ช่วยก็จะสร้าง query เป็นตัว ช่วยตรวจสอบความสัมพันธ์ระหว่างโมดูล และขอบเขตของข้อมูลและจัดส่งฐานข้อมูลและ แบบสอบถามสู่สำนักงานส่วนกลางต่อไป

2. สำนักงานส่วนกลาง

พนักงานเข้าข้อมูลจากสำนักงานส่วนกลางจะทำการเข้าข้อมูลจากแบบสอบถามชุด เดิมในโปรแกรมเข้าข้อมูลแบบเดียวกันเป็นรอบที่ 2 และทำการเปรียบเทียบข้อมูลทั้ง 2 ชุด จากนั้นทีมงาน supervisors จะทำการตรวจสอบข้อมูลเชิงลึก cross check ความต่อเนื่อง ของข้อมูล และจุดผิดพลาดบ่อยๆ ในภาพรวมทั้ง 4 จังหวัดอีกครั้ง และสุดท้ายพนักงานคลี นข้อมูลจะทำความสะอาดข้อมูลทั้งหมด ในเชิง tabulation จึงถือเป็นการสิ้นสุด กระบวนการตรวจสอบข้อมูล

3. พนักงานตรวจสอบแบบสอบถาม

ในแต่ละจังหวัดจะมีหัวหน้าทีมงานจังหวัดละคนและมีผู้ช่วยอีกจังหวัดละคนเช่นกัน ในส่วนกลางจะมีทีม supervisor จำนวน 3 คน และพนักงานคลีนข้อมูล อีก 2 คน เนื่องจาก แบบสอบถามมีขนาดใหญ่ ตัวแปร จำนวนมาก ข้อมูลที่บันทึกเข้ามามากทุกเดือนไม่ว่าจะ เป็นการตรวจแบบสอบถามเองผู้ตรวจก็ต้องสมมติตนเองเสมือนเป็นหัวหน้าครัวเรือนนั้นๆ เพื่อสังเกตุความเป็นไปได้ของข้อมูล อีกทั้งข้อมูลในฐานข้อมูลก็เพิ่มมากขึ้นทุกเดือน การ จัดการก็ยากขึ้น จากอุปกรณ์ที่ล้าหลังลงทุกๆ วัน ดังนั้นผู้ตรวจและทีมงาน supervisors จะต้องมีความเชี่ยวชาญด้านแบบสอบถามและการใช้โปรแกรมประยุกต์ทางคอมพิวเตอร์ พร้อมๆ กัน

3.2.4 การพัฒนาระบบฐานข้อมูล

1. การสร้างระบบคีย์ข้อมูล

ปัจจุบันเป็นการเข้าข้อมูลแบบออฟไลน์เท่านั้น เนื่องจากการเข้าข้อมูลออนไลน์จะต้องใช้และ เปลี่ยนทรัพยากรจำนวนมาก ซึ่งต้องใช้งบประมาณมากและเวลาในการทดสอบระบบอีกพอสมควร อีกทั้งงบประมาณที่ได้รับยังคงจำกัด ทางโครงการๆ จึงเห็นว่าควรจะใช้งบประมาณส่วนใหญ่ในพื้นที่ มากกว่า ส่วนระบบการทำงานก็ยังสามารถที่จะทำงานได้อีกซักระยะ พร้อมทั้งเริ่มปรับปรุงทาง เทคโนโลยีให้เหมาะสมเช่นกัน

2. การสร้างระบบจัดเก็บข้อมูล

- พัฒนาโปรแกรมเข้าข้อมูลจากโปรแกรมประยุกต์ Visual Basic 6
- ฐานข้อมูลที่ใช้จัดเก็บข้อมูลในพื้นที่ MS-Access 97;2000
- ฐานข้อมูลที่ใช้จัดเก็บข้อมูลในสำนักงานส่วนกลางรวม SQL SERVER 7;2000

3. พนักงานพัฒนาระบบฐานข้อมูล

ในช่วงแรกมีพนักงานพัฒนาโปรแกรมและฐานข้อมูลจำนวน 6 ท่าน หลังจากที่ทำการ ทดสอบระบบสมบูรณ์แล้วจึงเหลือผู้ดูแลระบบ 1 ท่าน และนักพัฒนาโปรแกรมอีก 1 ท่านเท่านั้น

4. การปรับปรุงและแก้ไขระบบฐานข้อมูล

จากข้อมูลข้างต้นจะเห็นว่า ทั้งโปรแกรมที่ใช้พัฒนาและจัดเก็บฐานข้อมูลนั้นเป็นรุ่นเก่ามาก มากกว่า 15 ปี และเลิกสนับสนุนจากผู้สร้างโปรแกรมประยุกต์นั้นๆ แล้ว จึงจำเป็นต้องปรับเปลี่ยน platform ให้ทันสมัยขึ้นเพื่อรองรับเทคโนโลยีใหม่ๆ ในอนาคตอันใกล้นี้ต่อไป

3.2.5 การคีย์ข้อมูลเข้าระบบฐานข้อมูล

1. การจัดหาพนักงานคีย์ข้อมูล

จัดหาจากการประกาศรับสมัครทั่วไปและติดต่อจากหน่วยงานสถานศึกษาเพื่อรับนักเรียน นักศึกษาที่ต้องการรายได้พิเศษหลังเลิกเรียนหรือต้องการฝึกงานกับทางโครงการฯ ด้วย

2. พนักงานคีย์ข้อมูล

- ในพื้นที่เป้าหมายทางทีมงานได้มอบหมายให้พนักงานคีย์ข้อมูลของครัวเรือนที่ตนเอง สัมภาษณ์
- ในสำนักงานส่วนกลางมีพนักงานคีย์ข้อมูล 6 คนและพนักงานเปรียบเทียบข้อมูล 2 คน

3. การคีย์ข้อมูล

การคีย์ข้อมูลทั้ง 2 รอบเป็นการคีย์ข้อมูลจากโปรแกรมและแบบสอบถามชุดเดียวกันแตกต่าง กันตรงที่สถานที่คีย์ข้อมูล โดยรอบแรกจะคีย์จากพื้นที่ๆ สัมภาษณ์ เมื่อพบข้อผิดพลาดก็สามารถแก้ไข ได้ทันที และจึงถูกจัดส่งมายังสำนักงานส่วนกลางเพื่อคีย์ข้อมูลจากพนักงานคนอื่นเข้าอีกรอบ และ เปรียบเทียบข้อมูลต่อไป เพื่อช่วยลดข้อผิดพลาดอันเกิดจากพนักงานคีย์ข้อมูลได้

ปัญหาที่พบในการคีย์ข้อมูลส่วนใหญ่จะเป็นเรื่องการคีย์ข้อมูลผิดพลาด แต่ด้วยระบบการคีย์ ข้อมูล 2 รอบนั้นสามารถช่วยขจัดข้อผิดพลาดจากการคีย์ได้มาก และในบางช่วงที่มีข้อมูลมากๆ เช่น ในฤดูการเริ่มต้นเพาะปลูก เก็บเกี่ยว อาจทำให้เกิดความล่าช้าได้ในบางครั้ง

3.3 ข้อมูลที่สามารถเผยแพร่ได้

1. การส่งต่อฐานข้อมูลไปยังผู้ใช้งาน

โครงการต้องทำการจัดส่งข้อมูลที่ทำการตรวจข้อมูลเสร็จสมบูรณ์พร้อมทั้งการทำความ สะอาดข้อมูลให้แก่ศาสตราจารย์ Robert M. Townsend หรือได้รับคำสั่งจากทางศาสตราจารย์ Robert M. Townsend โดยตรงเท่านั้น

2. ลักษณะของข้อมูลที่สามารถเผยแพร่ได้

ข้อมูลที่เป[ิ]ดเผยต่อสาธารณะจะอยู่ในรูปแบบภาพรวมของจังหวัดนั้น และข้อมูลได้ถูกทำ ความสะอาดและเข้ารหัสแล้วเท่านั้น โดยจะเผยแพร่ผ่านทาง MIT และ UTCC โดยในปัจจุบัน ข้อมูล ที่เปิดเผยและให้บริการต่อสาธารณะแล้วประกอบไปด้วย ข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำรายปี ในเขตชนบท (rural annual data) ข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายปีในเขตเมือง (urban annual data) และข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายเดือน (monthly micro data)

- 1. ข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำรายปีในเขตชนบท (rural annual data) นับตั้งแต่ ปี 1997 ถึง ปี 2015
- 2. ข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายปีในเขตเมือง (urban annual data) นับตั้งแต่ปี 2005 ถึงปี 2015
- 3. ข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายเดือน (monthly micro data) นับตั้งแต่ปี 1997 ถึงปี 2014

โดยผู้ที่สนใจสามารถติดต่อขอข้อมูลได้โดยไม่มีค่าใช้จ่ายที่ http://riped.utcc.ac.th/data-services/fedr/ หรืออีเมล์ data@riped.utcc.ac.th

ตาราง 3.2: จำนวนครัวเรือนตัวอย่างซ้ำรายเดือนที่ถูกสัมภาษณ์ในรอบ 12 เดือน

เดือน	ฉะเชิงเทรา	ลพบุรี	บุรีรัมย์	ศรีสะเกษ	รวม	เป้าหมาย	จำนวนครัวเรือน ที่หายไปจากกลุ่ม ตัวอย่าง	จำนวน ครัวเรือน ทดแทน
สิงหาคม 2559	161	177	171	161	670	638	0	0
กันยายน 2559	161	177	171	161	670	638	0	0
ตุลาคม 2559	161	177	171	161	670	638	0	0
พฤศจิกายน 2559	161	177	171	161	670	638	0	0
ธันวาคม 2559	161	177	171	161	670	638	0	0
มกราคม 2560	161	177	171	161	670	638	0	0
กุมภาพันธ์ 2560	161	177	171	161	670	638	0	0
มีนาคม 2560	161	177	171	161	670	638	0	0
เมษายน 2560	161	177	171	161	670	638	0	0
พฤษภาคม 2560	161	177	171	161	670	638	0	0
มิถุนายน 2560	161	177	171	161	670	638	0	0
กรกฎาคม 2560	161	177	171	161	670	638	0	0

บทที่ 4 การใช้ประโยชน์จากข้อมูล Townsend Thai Data

ข้อมูล Townsend Thai Data ส่งผลให้เกิดโครงการวิจัยภายใต้ชุดโครงการ "พัฒนาองค์ ความรู้เศรษฐกิจและสังคมของครัวเรือนไทย" ซึ่งประกอบไปด้วยโครงการต่างๆ ดังนี้

ตาราง 4.1: โครงการวิจัยภายใต้ชุดโครงการพัฒนาองค์ความรู้เศรษฐกิจและสังคมของครัวเรือนไทย

ชื่อโครงการ/กิจกรรม (หัวหน้าโครงการ)	ระยะเวลา	งบประมาณ (บาท)
1. โครงการฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำ	1 ปี	11.5 ล้านบาท
เพื่อการวิจัยด้านเศรษฐศาสตร์และสังคม	(1 ส.ค. 59 – 31 ก.ค. 60)	(ร่วมทุนกับ ธปท.)
หัวหน้าโครงการ: คุณสมบัติ ศกุนตะเสฐียร		
2. โครงการการเปลี่ยนแปลงของความยากจนใน	1 ปี	556,600 บาท
ชนบทไทย	(15 ส.ค. 59 – 14 ส.ค. 60)	
หัวหน้าโครงการ: ดร.อนันต์ ภาวสุทธิไพศิฐ		
3. โครงการการเปลี่ยนแปลงโครงสร้างการผลิตด้าน	1 ปี	456,500 บาท
การเกษตรของครัวเรือนในชนบท: บทเรียนจาก	(15 ก.ค. 60 – 15 มิ.ย. 61)	
ข้อมูล Townsend Thai Data"		
หัวหน้าโครงการ: ดร.เชาวนา เพชรรัตน์		
4. โครงการ "บทบาทของสภาพครัวเรือนต่อการ	1 ปี	633,600 บาท
พัฒนาคุณภาพกำลังแรงงานในอนาคต"	(1 ส.ค. 60 – 30 มิ.ย. 61)	
หัวหน้าโครงากร: ดร.เนื้อแพร เล็กเฟื่องฟู		

4.1 โครงการวิจัยฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำเพื่อการวิจัยด้านเศรษฐศาสตร์และ สังคม

เป็นโครงการเก็บข้อมูลครัวเรือนใน 4 จังหวัด 2 ภูมิภาค คือ ฉะเชิงเทราและลพบุรีในภาค กลาง และบุรีรัมย์ ศรีสะเกษในภาคตะวันออกเฉียงเหนือ โดยมีจำนวนครัวเรือนตัวอย่างรวมทั้งสิ้น 670 ครัว ณ ปัจจุบัน ข้อมูล Townsend Thai Data เป็นข้อมูลที่ได้รับการยอมรับในระดับนานาชาติ ว่ามีคุณภาพ ยืนยันได้จากงานวิจัยที่นำข้อมูล Townsend Thai Data ไปใช้นั้น ได้รับการตีพิมพ์ใน วารสารระดับโลกอย่างต่อเนื่อง โดยในช่วงเวลา 20 ปีที่ผ่านมา นักวิจัยทั่วโลกได้ใช้ข้อมูล Townsend Thai Data สร้างองค์ความรู้ใหม่ด้านเศรษฐศาสตร์เป็นจำนวนมาก (ดูตัวอย่างเพิ่มเติมได้ในหนังสือ Financial Systems in Developing Economies ของ Robert M. Townsend)

อีกทั้ง ยังมีผลงานวิจัยที่เกิดจากการใช้ข้อมูล Townsend Thai Data ภายในระยะเวลาการ ดำเนินงานของโครงการ ตั้งแต่เดือนสิงหาคม 2558 – กรกฎาคม 2560 ดังต่อไปนี้

- Robert M. Townsend. "Village and Larger Economies: The Theory and Measurement of the Townsend Thai Project.", Journal of Economic Perspectives. Vol. 3, No. 30. Fall 2016. P199-220.
- 2. Benjamin Moll, Robert M. Townsend, Victor Zhorin. "Economic Development, Flow of Funds and the Equilibrium Interaction of Financial Frictions.",

- Proceedings of the National Academy of Sciences of the United States of America, June 13, 2017, Vol.114, No.24, P6176-6184.
- 3. Samphantharak, Krislert and Robert M. Townsend. "Risk and Return in Village Economies." revised 2 0 1 7 . (Forthcoming in American Economic Journal: Microeconomics).
- 4. Samphantharak, Scott Schuh and Robert M. Townsend. "Integrated Household Surveys: An Assessment of U.S. Methods and an Innovation" Krislert Working Paper, 2017. (Forthcoming in Economic Inquiry)

และบทความในรูปแบบฉบับย่อซึ่งได้เผยแพร่ผ่านทางเว็บไซต์ของสถาบันวิจัยเศรษฐกิจป๋วย อึ๊งภากรณ์ (aBridge Article) อีก 4 บทความ ดังนี้

- 1. บทความเรื่อง "ฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำเพื่อการพัฒนาองค์ความรู้ด้าน เศรษฐกิจและสังคม: Townsend Thai Data", กฤษฎ์เลิศ สัมพันธารักษ์ และ วีระชาติ กิเลนทอง, issue 14/2015, 18 Dec 2015, aBRIDGEd articles
- 2. บทความเรื่อง "บทเรียนจากกองทุนหมู่บ้าน", วีระชาติ กิเลนทอง และ กิตติพงษ์ เรือนทิพย์, issue 1/2016, 16 Jan 2016, aBRIDGEd articles
- 3. บทความเรื่อง "ข้อจำกัดด้านการกู้ยืมและการตัดสินใจเป็นผู้ประกอบการของครัวเรือน ไทย", อาชว์ ปวีณวัฒน์, aBRIDGEd articles
- 4. บทความเรื่อง "อุปสรรคของการพัฒนาระบบประกันที่สมบูรณ์ในชุมชนชนบทของไทย", นราพงศ์ ศรีวิศาล. 30 Jan 2017. aBRIDGEd articles

นอกจากนี้ โครงการเก็บข้อมูล Townsend Thai Data ยังก่อให้เกิดการต่อยอด โครงการวิจัยภายใต้ชุดโครงการๆ อีก 3 โครงการ ได้แก่ โครงการการเปลี่ยนแปลงของความยากจน ในชนบทไทย, โครงการการเปลี่ยนแปลงโครงสร้างการผลิตด้านการเกษตรของครัวเรือนในชนบท: บทเรียนจากข้อมูล Townsend Thai Data และโครงการบทบาทของสภาพครัวเรือนและการอพยพ ออกต่อการพัฒนาคุณภาพกำลังแรงงานในอนาคต ซึ่งจะได้กล่าวถึงในหัวข้อถัดไป

4.2 โครงการการเปลี่ยนแปลงของความยากจนในชนบทไทย

โครงการนี้จะนำข้อมูล Townsend Thai Monthly Micro Data ที่ได้จากโครงการเก็บ ข้อมูล ซึ่งเป็นข้อมูลแบบตัวอย่างซ้ำรายเดือนที่ติดตามครัวเรือนในจังหวัดฉะเชิงเทรา ลพบุรี บุรีรัมย์ และศรีสะเกษ ดังนั้น เราสามารถใช้ข้อมูลนี้เพื่อศึกษาถึงการเปลี่ยนแปลงของครัวเรือนที่อยู่ในการ สำรวจได้ หากใช้เส้นแบ่งความยากจนของ สศช. กับข้อมูลนี้เราจะพบว่าสัดส่วนคนจนในช่วงต้นของ การสำรวจมีค่าประมาณ 60% หรือมากกว่าในแต่ละจังหวัด (ยกเว้นที่ฉะเชิงเทราซึ่งมีค่าประมาณ 50%) แต่สัดส่วนคนจนมีแนวโน้มที่ลดลงใน 3 จังหวัด ยกเว้นที่ศรีสะเกษซึ่งไม่ได้เกิดขึ้นอย่างชัดเจน นัก เมื่อคำนวณสัดส่วนของเวลาที่แต่ละครัวเรือนตกอยู่ภายใต้ความยากจนเราจะพบว่า ค่าเฉลี่ย แบบมัธยฐานอยู่ที่ 0.55 หรือครัวเรือนส่วนใหญ่ของการสำรวจได้ใช้เวลามากกว่าครึ่งหนึ่งในช่วงเวลา ของการสำรวจอยู่ภายใต้ความยากจน ดังนั้น จะมีครัวเรือนส่วนหนึ่งที่หลุดออกจากความยากจนได้ และไม่กลับเข้ามาอีกหรือกลับเข้ามาเป็นครั้งคราวในขณะที่อีกส่วนหนึ่งยังตกอยู่ภายใต้ความยากจน

หรือกลับเข้ามาสู่ความยากจนในความถี่ที่สูงกว่า คำอธิบายในความแตกต่างของสองกลุ่มนี้คืออะไร ทำไมคนกลุ่มหนึ่งจึงออกจากความยากจนได้ในขณะที่อีกกลุ่มหนึ่งยังตกอยู่ภายใต้ความยากจน ครัวเรือนแบบไหนที่มีความเสี่ยงที่จะตกหรือกลับเข้าไปสู่ความยากจนอีก เราสามารถใช้ข้อมูล Townsend Thai ศึกษาในประเด็นที่มีความสำคัญเหล่านี้ได้ ดังนั้น โครงการจึงต้องการศึกษา ข้อเท็จจริงและสถานการณ์ของความยากจนรวมถึงการเปลี่ยนแปลงของความยากจนในชนบทใน ช่วงเวลาของการสำรวจโดยใช้ตัวแปรต่างๆ เช่น การบริโภค รายได้ และทรัพย์สิน และหาสาเหตุของ การตกหรือกลับเข้าไปสู่ความยากจนของครัวเรือนในชนบท เพื่อวิเคราะห์ความแตกต่างระหว่างกลุ่ม ที่สามารถออกจากความยากจนได้และกลุ่มที่ยังตกอยู่ภายใต้ความยากจน

4.3 โครงการการเปลี่ยนแปลงโครงสร้างการผลิตด้านการเกษตรของครัวเรือนในชนบท: บทเรียน จากข้อมูล Townsend Thai Data

โครงการนี้ นักวิจัยจะใช้ข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำรายเดือน (monthly panel data) จาก Townsend Thai Data เพื่อศึกษาการเปลี่ยนแปลงโครงสร้างการผลิตสินค้าเกษตรของ ครัวเรือนเกษตรกรใน 4 จังหวัด ได้แก่ จังหวัดลพบุรี ฉะเชิงเทรา บุรีรัมย์ และศรีสะเกษ ด้วยข้อมูลที่ มีความต่อเนื่องยาวนานและมีความละเอียดสูง งานวิจัยชิ้นนี้จะช่วยสะท้อนให้เห็นถึงพัฒนาการและ พลวัตของการตัดสินใจเลือกประเภทสินค้าเกษตรว่า เกือบ 20 ปีที่ผ่านมาครัวเรือนเกษตรไทยได้ พยายามพัฒนาความชำนาญด้านการผลิตด้วยวิธีการเลือกผลิตสินค้าเกษตรแบบเฉพาะอย่าง (specialization) มากขึ้น หรือพยายามที่จะกระจายความเสี่ยงด้วยวิธีการผลิตสินค้าเกษตรแบบ หลากหลาย (diversification) มากขึ้น นอกจากนี้ นักวิจัยยังจะศึกษาบทบาทในความแตกต่างของ ลักษณะครัวเรือน (household heterogeneity) และบทบาทของภาครัฐที่มีผลต่อการเปลี่ยนแปลง โครงสร้างการผลิตสินค้าเกษตร ผลการวิจัยในครั้งนี้จะมีส่วนช่วยให้ผู้กำหนดนโยบายสามารถ ออกแบบนโยบายที่ตอบสนองต่อความต้องการของครัวเรือนเกษตรกรได้อย่างมีประสิทธิภาพใน อนาคต

4.4 โครงการบทบาทของสภาพครัวเรือนต่อการพัฒนาคุณภาพกำลังแรงงานในอนาคต

โครงการนี้เป็นการศึกษาความสัมพันธ์ระหว่างรูปแบบลักษณะของครัวเรือนกับการลงทุนของ ครัวเรือนในเด็กและผลลัพท์ระยะกลาง โดยที่การวิจัยนี้ยังมีความตั้งใจหาข้อเสนอแนะแก่นโยบายรัฐ ในการเตรียมความพร้อมเรื่องคุณภาพของกำลังแรงงาน โดยวิธีการศึกษาจะใช้วิธีทางเศรษฐมิติกับ ฐานข้อมูล Townsend Thai Data เป็นหลักและประกอบกับฐานข้อมูลประชากรจากแหล่งอื่นๆ ที่ เกี่ยวข้อง นอกจากนั้นตัวอย่างข้อมูลจาก Townsend Thai Data ยังชี้ให้ถึงความสัมพันธ์ระหว่าง จำนวนเงินส่งกลับ (remittances) และลักษณะของครัวเรือนไว้ โดย อนันต์ ภาวสุทธิไพศิฐ (2559) พบว่าครัวเรือนแบบแหว่งกลางโดยเฉลี่ยได้รับจำนวนเงินส่งกลับมากที่สุด ทำให้เห็นว่าครัวเรือนใน ตัวอย่างของประเทศไทยมีการ pool resource ในปริมาณหนึ่ง ซึ่งอาจเป็นสื่อกลางของกลไกการ จัดสรรทรัพยากรของครัวเรือนเพื่อใช้ในการลงทุนกับสมาชิกวัยเด็กของครอบครัว

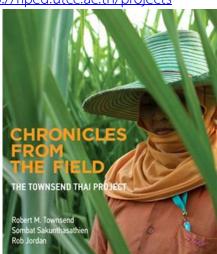
ดังนั้น โครงการนี้จะสร้างโมเดลเชิงเศรษฐศาสตร์ที่แสดงถึงการจัดสรรทรัพยากรภายใน ครัวเรือนในรูปแบบของ overlapping generation resource transfer เพื่อเป็นแนวทางใน การศึกษาทิศทางความสัมพันธ์ระหว่างลักษณะโครงสร้างของครัวเรือนและการลงทุนเชิงทักษะในเด็ก อีกทั้ง จะสรุปข้อมูลสถิติเชิงตัดขวางและเชิงพลวัตรจากข้อมูลครัวเรือนที่ติดตาม เพื่อแสดงภาพ ความสัมพันธ์ระหว่างลักษณะโครงสร้างครัวเรือน การจัดสรรทรัพยากรในครัวเรือน และการลงทุนใน เด็ก ซึ่งรวมถึงผลลัพท์ต่อพัฒนาการของเด็กและทักษะโดยรอบ เช่น ภาวะสุขภาพ การศึกษา เป็นต้น

ทั้งนี้ ทางโครงการพัฒนาองค์ความรู้เศรษฐกิจและสังคมของครัวเรือนไทย ยังมีความมุ่งหวังที่ จะสร้างเครือข่ายนักวิจัยที่มีความเชี่ยวชาญในประเด็นที่เกี่ยวข้องกับการพัฒนาประเทศ และสามารถ ประยุกต์ใช้ฐานข้อมูล Townsend Thai Data ได้อย่างมีประสิทธิภาพ อีกทั้งเชื่อมโยงกับเครือข่าย นักวิจัยในต่างประเทศที่นำข้อมูลชุดนี้ไปใช้อย่างแพร่หลายมาก่อนหน้านี้ อันจะนำไปสู่การสร้างองค์ ความรู้ใหม่ๆ ในด้านเศรษฐกิจและสังคมของครัวเรือนไทยที่มากขึ้น และท้ายที่สุดจะช่วยให้เรา สามารถออกแบบนโยบายโดยอาศัยงานวิจัยเชิงลึกที่มีคุณภาพ จนเกิดประสิทธิภาพสูงสุดต่อประเทศ ได้

บทที่ 5 การเผยแพร่ประชาสัมพันธ์ Townsend Thai Data

5.1 การเผยแพร่ผลงานวิจัยจากการใช้ Townsend Thai Data

• PIER Discussion Paper


• aBridge Article

• เว็บไซต์สำหรับชุดโครงการฯ <u>http://riped.utcc.ac.th/panel/</u>

• หนังสือ http://riped.utcc.ac.th/projects

5.2 การพัฒนาฐานข้อมูลและระบบฐานข้อมูลเพื่อการวิจัยและพัฒนาในสำนักประสานงาน

โดยชุดโครงการ "พัฒนาองค์ความรู้เศรษฐกิจและสังคมของครัวเรือนไทย" ได้จัดทำเว็บไซต์ ของชุดโครงการฯ ซึ่งถือเป็นช่องทางหลักในการเผยแพร่ประชาสัมพันธ์ฐานข้อมูลภายใต้ชุดโครงการฯ ให้แก่นักวิจัยและบุคคลทั่วไปที่สนใจใช้ประโยชน์จากข้อมูล Townsend Thai Data โดยมีสถิติการ ขอใช้ข้อมูล ดังนี้

ตาราง 5.1: สถิติการขอใช้ข้อมูลจาก FEDR: http://riped.utcc.ac.th/fedr

ข้อมูล	٩	ผู้ขอใช้ ข้อมูล ปี 2560	ผู้ขอใช้ ข้อมูล ปี 2559	ผู้ขอใช้ ข้อมูล ปี 2558
Townsend Thai Annual Data (Rural Survey)	1997-2015			
Townsend Thai Annual Data (Urban Survey)	2005-2015	22 คน	11 คน	4 คน
Townsend Thai Monthly Data	เดือนที่ 1-196			
Monthly Survey Household Financial Accounting	เดือนที่ 0-160	22 คน	3 คน	-
Monthly Survey Household Financial Accounting	เดือนที่ 0-172	1 คน	-	-

^{*}ผู้ที่ขอใช้ข้อมูล นับเฉพาะผู้ที่ไม่เกี่ยวข้องกับชุดโครงการฯ

5.3 การจัดอบรมการใช้ Townsend Thai Micro Data

การจัดอบรมการใช้ Townsend Thai Micro Data จัดขึ้น ณ ห้องประชุมศูนย์วิจัย มหาวิทยาลัยชิคาโก-มหาวิทยาลัยหอการค้าไทย (UC-UTCC Research Center) อาคาร 21 ชั้น 7 มหาวิทยาลัยหอการค้าไทย ในวันที่ 6 กุมภาพันธ์ 2560 เพื่อพัฒนาบุคลากรนักวิจัยที่มีศักยภาพให้มี ความรู้ความเข้าใจและสามารถนำข้อมูล Townsend Thai Monthly Micro Data และบัญชี ครัวเรือนที่จัดทำขึ้นจากฐานข้อมูลดังกล่าวภายใต้โครงการฐานข้อมูลบัญชีครัวเรือนเพื่อการวิจัยด้าน เศรษฐกิจและสังคมไปใช้ในงานวิจัยและพัฒนานโยบายได้อย่างถูกต้องมากยิ่งขึ้น ซึ่งมีกลุ่มเป้าหมาย เป็นคณาจารย์มหาวิทยาลัย นักวิจัย โดยมีกำหนดการดังนี้

10:00 am Introduction to Townsend Thai Survey Data (อ.ดร.อนันต์ ภาวสุทธิไพศิฐ)
10:30 am Introduction to the Household Financial Account (อ.ดร.นราพงศ์ ศรีวิศาล)
11:00 am Construction of the Household Financial Account: Assumptions and Key Concepts (อ.ดร.อาชว์ ปวีณวัฒน์, อ.ดร.นราพงศ์ ศรีวิศาล)
1:00 pm Data Training and Case Study Workshop (อ.ดร.อนันต์ ภาวสุทธิไพศิฐ, อ.ดร.อาชว์ ปวีณวัฒน์, อ.ดร.นราพงศ์ ศรีวิศาล, ก้องเกียรติ + วาสิณี)

รูปที่ 5.1: ภาพกิจกรรมการจัดอบรมการใช้ Townsend Thai Micro Data ครั้งที่ 1 ณ UC-UTCC Research Center ในวันที่ 6 กุมภาพันธ์ 2560

5.4 การจัดสัมมนาวิชาการระดับนานาชาติ หัวข้อ "Finance and Development: Data, Research, and Policy Design" ระหว่างวันที่ 8-9 มิถุนายน 2560 ณ ห้องประชุมภัทรรวมใจ อาคาร 2 ชั้น 2 ธนาคารแห่งประเทศไทย

สถาบันวิจัยเศรษฐกิจป๋วย อึึงภากรณ์ ธนาคารแห่งประเทศไทย ร่วมกับ สำนักงานกองทุน สนับสนุนการวิจัย มหาวิทยาลัยหอการค้าไทย และ Massachusetts Institute of Technology ได้ จัดงานสัมมนาวิชาการระดับนานาชาติ ในหัวข้อ "Finance and Development: Data, Research, and Policy Design" ระหว่างวันที่ 8 - 9 มิถุนายน 2560 ณ ห้องประชุมภัทรรวมใจ อาคาร 2 ชั้น 2 ธนาคารแห่งประเทศไทย โดยมีวัตถุประสงค์เพื่อนำเสนอผลงานวิจัยและแนวคิดของนักวิจัยชั้นนำทั้ง ในและต่างประเทศ ในประเด็นที่เกี่ยวข้องกับการพัฒนาเศรษฐกิจและบทบาทของภาคการเงิน โดย เน้นถึงความสำคัญของการเก็บข้อมูลสำหรับงานวิจัยด้านเศรษฐศาสตร์และสังคม ซึ่งจะมีส่วนช่วยให้ผู้ กำหนดนโยบายสามารถออกแบบนโยบายได้อย่างมีประสิทธิภาพ โดยมีกำหนการดังต่อไปนี้

0						
กา	าห	۱۹	ิด	ก	ኅ	ร

- 14	ın	_	Ω	20	۱1 7	7
			O.	\sim \sim	, , ,	

- 8.30-9.00 Registration
- 9.00-9.15 Welcoming Remarks

by Veerathai Santiprabhob, Governor of the Bank of Thailand

9.15-9.25 Opening Remarks

by Patamawadee Pochanukul, Associate Director of Research Strategy of the Thai Research Fund

Session 1: Measuring Household and SME Finance

9.25-9.35 Session Opening Remarks

by Sauwanee Thairungroj, President of University of the Thai Chamber of Commerce

9.35-10.15 Chronicles from the Field: 20th Anniversary of the Thai Family Research Project and Townsend Thai Data

Robert Townsend, Massachusetts Institute of Technology Sombat Sakunthasathien, Thai Family Research Project

10.15-10.30 Coffee Break

10.30-10.55 Application of Townsend Thai Data: Case Studies

Naraphong Srivisal, Chulalongkorn University

10.55-11.20 Measuring Household Finance in Thailand

Suparit Suwanik, Bank of Thailand

11.20-12.00 Payment Diaries: Innovative Measurement of Household Behavior Scott Schuh. Federal Reserve Bank of Boston

12.00-12.30 Panel Discussion Moderator:

Krislert Samphantharak, University of California, San Diego

12.30-13.45 Lunch

Session 2: Harnessing Geographic Data for Finance and Policy

13.45-14.15 Geographic Data Visualization

Xiaowen Yang, Massachusetts Institute of Technology

14.15-14.45 Bank Branch Expansion vs International Capital Flows: Integrating Local Spatial Markets with Macro Aggregates

Yan Ji, Hong Kong University of Science and Technology

14.45-15.00 Coffee Break

15.00-15.30 The Geography of Household Finance in Thailand: Access, Vulnerability

And Policy Responses

Sommarat Chantarat, Bank of Thailand

15.30-16.00 Panel Discussion Moderator:

Yunyong Thaicharoen, Bank of Thailand

June 9, 2017

Session 3: Research-Based Policy Design

9.00-9.40 Child Development: The Role of Parenting Beliefs Flávio Cunha, Rice University

9.40-10.20 From Perry Preschool to RIECE Thailand: A Research-Based Large-Scale Implementation

Weerachart Kilenthong, University of the Thai Chamber of Commerce

10.20-10.35 Coffee Break

10.35-11.15 The Use of Data for Policy and Research at Central Banks: Perspectives from Financial Markets at the New York Fed
Antoine Martin, Federal Reserve Bank of New York

11.15-11.45 Panel Discussion Moderator:

Piti Disyatat, Bank of Thailand

11.45-12.30 Financial System Design: Principles for Policy and Regulation Robert Townsend, Massachusetts Institute of Technology

12.30-13.30 Lunch

รูปที่ 5.2: ภาพกิจกรรมการจัดสัมมนาวิชาการระดับนานาชาติ หัวข้อ "Finance and Development: Data, Research, and Policy Design" วันที่ 8-9 มิถุนายน 2560 ณ ห้องประชุมภัทรรวมใจ อาคาร 2 ชั้น 2 ธนาคารแห่งประเทศไทย

5.5 การศึกษาดูงานโครงการ Townsend Thai Project จากหน่วนงานภายนอก

เดือนกรกฎาคม 2559 อาจารย์จาก Kyoto University, Sophia University, Tokyo City University และ Aichi University ติดต่อและเข้าพื้นที่ในจังหวัดลพบุรี เพื่อพูดคุยกับชาวบ้าน และ ทีมงานสัมภาษณ์ อีกทั้งกับคุณสมบัติและหัวหน้าโครงการ โดยมีวัตถุประสงค์เพื่อศึกษาถึงปัจจัยที่ โครงการสามารถสำรวจข้อมูลได้เป็นระยะยาวนานได้ เพื่อจะนำรูปแบบของโครงการไปใช้ในการสร้าง ทีมงานการสำรวจที่เมือง Okinawa ประเทศญี่ปุ่น

บทที่ 6 บทสรุปและข้อเสนอแนะ

โครงการวิจัยฐานข้อมูลระดับครัวเรือนแบบตัวอย่างซ้ำเพื่อการวิจัยด้านเศรษฐศาสตร์และ สังคม เป็นส่วนหนึ่งของชุดโครงการพัฒนาองค์ความรู้ด้านเศรษฐกิจและสังคมของครัวเรือนไทย นักวิจัยจำเป็นต้องอาศัยข้อมูลระดับครัวเรือน ซึ่งมีวัตถุประสงค์สำคัญเพื่อการศึกษาชีวิตความเป็นอยู่ ของครัวเรือนไทย ด้วยข้อมูลที่ต่อเนื่องและมีคุณภาพ ดังนั้น จึงมีความจะเป็นที่เราจะต้องสนับสนุน ฐานข้อมูลระดับครัวเรือนตัวอย่างซ้ำรายเดือน (monthly micro data) ซึ่งถือได้ว่า เป็นข้อมูลระดับ ครัวเรือนแบบตัวอย่างซ้ำความถี่สูง (high frequency panels) ที่มีการเก็บอย่างต่อเนื่องและ ยาวนานที่สุดในประเทศกำลังพัฒนา

ข้อมูล Townsend Thai Data ได้สร้างองค์ความรู้ใหม่ด้านเศรษฐศาสตร์อย่างต่อเนื่อง และ มีบทบาทต่อการออกแบบนโยบายทางเศรษฐศาสตร์และสังคมทั่วโลก (Townsend, 2011) รายงาน ฉบับนี้นำเสนอบทความที่เกี่ยวข้องกับข้อมูล Townsend Thai Data จำนวน 5 บทความ ได้แก่

- 1. Benjamin Moll, Robert M. Townsend, Victor Zhorin. "Economic Development, Flow of Funds and the Equilibrium Interaction of Financial Frictions.", Proceedings of the National Academy of Sciences of the United States of America, June 13, 2017, Vol.114, No.24, P6176-6184.
- 2. Samphantharak, Krislert and Robert M. Townsend. "Risk and Return in Village Economies." revised 2 0 1 7 . (Forthcoming in American Economic Journal: Microeconomics).
- 3. Samphantharak, Krislert, Scott Schuh and Robert M. Townsend. "Integrated Household Surveys: An Assessment of U.S. Methods and an Innovation" Working Paper, 2017. (Forthcoming in Economic Inquiry)
- 4. บทความเรื่อง "ข้อจำกัดด้านการกู้ยืมและการตัดสินใจเป็นผู้ประกอบการของครัวเรือน ไทย", อาชว์ ปวีณวัฒน์, 2 Jan 2017, aBRIDGEd articles
- 5. บทความเรื่อง "อุปสรรคของการพัฒนาระบบประกันที่สมบูรณ์ในชุมชนชนบทของไทย", นราพงศ์ ศรีวิศาล, 30 Jan 2017, aBRIDGEd articles

นอกจากนี้ คณะผู้วิจัยได้สังเกตเห็นถึงการเปลี่ยนแปลงที่เกิดขึ้นกับครัวเรือนตลอดระยะเวลา ที่ได้ดำเนินการเก็บข้อมูล และเล็งเห็นว่าการเปลี่ยนแปลงในประเด็นต่างๆ ในมุมมองของคณะนักวิจัย เหล่านี้จะช่วยเป็นแนวทางเบื้องต้นให้นักวิจัยท่านอื่นๆ อยากพัฒนาและสร้างองค์ความรู้เกี่ยวกับ ครัวเรือนไทยต่อไป

การเปลี่ยนแปลงเรื่องสภาพเศรษฐกิจครัวเรือน
 จังหวัดลพบุรี รายได้ในภาพรวมของครัวเรือนที่ถูกสัมภาษณ์นั้นมีการเปลี่ยนแปลง
 ไปในทางที่ดี มีสภาพความเป็นอยู่ที่ดีขึ้น ซึ่งสังเกตจากทรัพย์สิน อาคาร บ้านเรือน มีการ

ปรับปรุง ปลูกสร้างใหม่ มีการซื้อที่ดินเพื่อการเกษตรเพิ่มเติม มีการประกอบธุรกิจที่มีขนาด ใหญ่ขึ้น สามารถสร้างรายได้เพิ่มมากขึ้น สามารถชำระหนี้สินได้มากขึ้นอีกด้วย

จังหวัดศรีสะเกษ รายได้ของครัวเรือนที่ถูกสัมภาษณ์ส่วนใหญ่เป็นไปในทางที่ดีขึ้น อันเนื่องมาจากการขยายเทคโนโลยีจากเมืองมาสู่พื้นที่สัมภาษณ์อันรวดเร็ว ทำให้เกิดการจ้าง งาน และแรงงานเพิ่มขึ้น ทำให้ครัวเรือนมีรายได้เสริมเพิ่มขึ้นส่งผลให้ครัวเรือนมี ความสามารถชำระหนี้สินได้เพิ่มขึ้นด้วย

จังหวัดฉะเชิงเทรา รายได้ของครัวเรือนมีการเปลี่ยนแปลงที่ดีขึ้นอันเนื่องมาจากมี การขยายกิจการของครัวเรือนเพิ่มขึ้น เช่น การเพิ่มบ่อปลา บ่อกุ้ง หรือแม้แต่การเพิ่มจำนวน นาข้าว อีกทั้งครัวเรือนก็เริ่มมีทรัพย์สินเพิ่มขึ้นด้วย เช่น รถยนต์ และเครื่องใช้ไฟฟ้า เพื่อ อำนวยความสะดวกในการใช้ชีวิตหลายชิ้นขึ้น แต่ด้านหนี้สินของครัวเรือนค่อนข้างคงที่และ เพิ่มขึ้นเล็กน้อย เนื่องจากครัวเรือนส่วนใหญ่มีการกู้เงินเพื่อการประกอบอาชีพ และสามารถ ชำระหนี้ได้ตามกำหนด แล้วจึงกู้ยืมใหม่ทันทีเพื่อนำเงินมาหมุนเวียนเป็นประจำทุกปี

จังหวัดบุรีรัมย์ รายได้ของครัวเรือนส่วนใหญ่เพิ่มมากขึ้นจากการเพาะปลูก ทำไร่ อ้อย มันสำปะหลัง และยางพารา อีกทั้งลูกๆ ส่งเงินมาให้ หรือแม้แต่กระทั่งได้สามีหรือ ลูกเขยชาวต่างชาติ แต่ในส่วนครัวเรือนที่ประกอบอาชีพรับจ้างจะมีรายได้น้อยลงเนื่องจากมี บริษัทผู้รับเหมารายใหญ่ที่มีคนงานประจำเข้ามาในพื้นที่รับเหมางานเพิ่มมากขึ้น แต่ไม่ได้มี การจ้างแรงงานจากคนในพื้นที่เลย ส่วนด้านหนี้สินส่วนใหญ่จะเพิ่มมากขึ้นอันเนื่องจาก ครัวเรือนกู้เงินมาใช้จ่ายผิดจากวัตถุประสงค์การกู้เงินจึงไม่สามารถสร้างรายได้เพื่อนำมา ชำระหนี้ได้ และบางส่วนที่ลูกหลานส่งเงินมาให้จึงจะสามารถชำระหนี้ได้เพิ่มขึ้น

2. การเปลี่ยนแปลงเรื่องอาชีพของครัวเรือน

จังหวัดลพบุรี เนื่องจากสภาพภูมิศาสตร์ที่เอื้อต่อการทำสวน ทำไร่ ชาวบ้านส่วน ใหญ่ยังคงยึดอาชีพนี้เป็นหลัก แต่มีการเปลี่ยนแปลงชนิดของสวนและไร่ จากเดิมที่เคยทำไร่ ข้าวโพด สวนละมุด ก็เปลี่ยนมาเป็นทำไร่อ้อย เพิ่มขึ้นเป็นจำนวนมาก เนื่องจากราคาขาย อ้อยให้แก่โรงงานนั้นได้ราคาสูงกว่าการทำไร่ ทำสวนเดิม และต้นพันธุ์อ้อยที่ตัดส่งขายแก่ โรงงานแล้วยังสามารถงอกขึ้นมาใหม่ได้อีกหลายรอบโดยไม่ต้องลงทุนต้นพันธุ์ใหม่เลย

จังหวัดศรีสะเกษ ครัวเรือนส่วนใหญ่เปลี่ยนแปลงจากการทำนาข้าว มาเป็นการทำไร่ อ้อยและมันสำปะหลังเพิ่มมากขึ้น เนื่องจากมีราคาขายที่สูงกว่าข้าว และต้นทุนปัจจัยการ ผลิตที่ถูกกว่า อีกทั้งการดูแลก็น้อยกว่า สามารถมีเวลาว่างไปรับจ้างแรงงานเป็นรายได้เสริม เพิ่มมากขึ้นด้วย

จังหวัดฉะเชิงเทรา ครัวเรือนไม่ค่อยมีการเปลี่ยนแปลงในการประกอบอาชีพ ซึ่ง ยังคงการเลี้ยงปลา เลี้ยงกุ้ง และทำนาเป็นหลัก จะมีแค่การเปลี่ยนแปลงสัดส่วนการเลี้ยงปลา กุ้ง ตามความต้องการของตลาดและราคาในช่วงสั้นๆ เท่านั้น

จังหวัดบุรีรัมย์ ครัวเรือนมีการเปลี่ยนแปลงอาชีพมากขึ้นเนื่องจากบางครัวเรือนที่ เคยทำแต่นาข้าวเริ่มมีการแบ่งแปลงมาปลูกอ้อย มันสำปะหลัง หรือยางพารา บางครัวเรือน เคยเป็นแรงงานก่อสร้างก็ผันตัวมาเป็นผู้รับเหมาก่อสร้าง บางครัวเรือนเคยทำงานโรงงานใน ต่างจังหวัด ก็กลับมาประกอบอาชีพค้าขาย อันเนื่องจากความเจริญเข้ามาในพื้นที่เพิ่มมาก ขึ้น

3. การเปลี่ยนแปลงเรื่องการศึกษาของครัวเรือน

จังหวัดลพบุรี สมาชิกในครัวเรือนทุกคนได้รับการศึกษาตามสภาวะทางการเงินของ แต่ละครัวเรือนเพิ่มขึ้นอันเนื่องมาจากครัวเรือนมีรายได้มากขึ้น

จังหวัดศรีสะเกษ ทางด้านการศึกษาของสมาชิกในครัวเรือนมีการเปลี่ยนแปลงไป ในทางที่ดีขึ้นเนื่องจากมีโรงเรียนที่รองรับระดับการศึกษาขั้นสูง (ระดับมัธยม) อยู่ใกล้หมู่บ้าน มากขึ้น ซึ่งเดิมทีครัวเรือนก็พร้อมจะสนับสนุนให้ลูกหลานได้รับการศึกษาในขั้นสูงๆ แต่ต้อง เดินทางเข้าตัวอำเภอเมืองซึ่งมีค่าใช้จ่ายสูง และระยะทางไกล

จังหวัดฉะเชิงเทรา การศึกษาสูงสุดของบุตรหลานภายในครัวเรือนไม่ค่อยมีการ เปลี่ยนแปลงมากนัก ส่วนใหญ่จะสำเร็จการศึกษาระดับมัธยมต้นเท่านั้น

จังหวัดบุรีรัมย์ ด้านการศึกษาสูงสุดของสมาชิกในครัวเรือนเพิ่มสูงขึ้นในบาง ครัวเรือน ซึ่งส่วนน้อยเท่านั้นที่จะเรียนจบในระดับอุดมศึกษา แต่ด้วยกฎหมายบังคับ การศึกษาขั้นพื้นฐานจึงทำให้ครัวเรือนส่งบุตรหลานเรียนจบในระดับมัธยมศึกษาเป็น ส่วนมาก เมื่อเทียบกับรุ่นพ่อแม่ที่ส่วนใหญ่จะจบในระดับประถมศึกษาเท่านั้น

นอกจากนี้ คณะผู้วิจัยจะเร่งดำเนินการตรวจสอบความถูกต้องของข้อมูล (data cleansing) เพื่อให้สามารถเผยแพร่ข้อมูลต่อสาธารณะได้โดยเร็วที่สุด ในท้ายที่สุด คณะผู้วิจัยเชื่อว่า ฐานข้อมูลที่ ได้จากโครงการนี้จะเป็นประโยชน์ต่อนักวิจัยและผู้กำหนดนโยบายของประเทศไทย ทั้งในด้าน วิชาการและการออกแบบนโยบายที่มีประสิทธิภาพ

เอกสารอ้างอิง

Benjamin Moll, Robert M. Townsend, Victor Zhorin. "Economic Development, Flow of Funds and the Equilibrium Interaction of Financial Frictions.", Proceedings of the National Academy of Sciences of the United States of America, June 13, 2017, Vol.114, No.24, P6176-6184.

Samphantharak, Krislert and Robert M. Townsend. "Risk and Return in Village Economies." revised 2017. (Forthcoming in American Economic Journal: Microeconomics).

Samphantharak, Krislert, Scott Schuh and Robert M. Townsend. "Integrated Household Surveys: An Assessment of U.S. Methods and an Innovation." Working Paper, 2017. (Forthcoming in Economic Inquiry)

Townsend, Robert M; Sombat Sakunthasathien; and Rob Jordan. "Chronicles from the Field: The Townsend Thai Project." MIT Press, April 2013.

นราพงศ์ ศรีวิศาล, บทความเรื่อง "อุปสรรคของการพัฒนาระบบประกันที่สมบูรณ์ในชุมชนชนบท ของไทย", aBRIDGEd articles, 30 Jan 2017.

อาชว์ ปวีณวัฒน์, "ข้อจำกัดด้านการกู้ยืมและการตัดสินใจเป็นผู้ประกอบการของครัวเรือนไทย", aBRIDGEd articles, 2 Jan 2017.

ภาคผนวก ก. (งานวิจัยและบทความที่ได้จากการประยุกต์ใช้ข้อมูล Townsend Thai Data)

Economic development, flow of funds, and the equilibrium interaction of financial frictions

Benjamin Moll^{a,1}, Robert M. Townsend^{b,1}, and Victor Zhorin^c

^aDepartment of Economics, Princeton University, Princeton, NJ 08544; ^bDepartment of Economics, Massachusetts Institute of Technology, Cambridge, MA 02139; and ^cBecker-Friedman Institute, The University of Chicago, Chicago, IL 60637

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2012.

Contributed by Robert M. Townsend, May 7, 2017 (sent for review December 29, 2016; reviewed by Harold Cole and Michael Peters)

We use a variety of different datasets from Thailand to study not only the extremes of micro and macro variables but also withincountry flow of funds and labor migration. We develop a general equilibrium model that encompasses regional variation in the type of financial friction and calibrate it to measured variation in regional aggregates. The model predicts substantial capital and labor flows from rural to urban areas even though these differ only in the underlying financial regime. Predictions for micro variables not used directly provide a model validation. Finally, we estimate the impact of a policy of counterfactual, regional isolationism.

regional flow of funds | financial frictions | Thailand | big data | isolationist policies

ifferent regions within a given country interact in capital, labor, and product markets. This is reflected in crossregional flows of these factors and goods. Regions also differ from each other locally in a number of dimensions. One of these is the financial environment, that is, the specific financial obstacles faced by local residents. In this paper we ask whether this regional heterogeneity in financial obstacles is in itself enough to generate the flows of factor inputs across space consistent with the data and the observed uneven geographic concentration in economic activity. We use a structural model with detailed micro data, aggregated but intermediate-level "meso" data, and macro data and find the answer to these questions to be yes: Differences in financial regimes across regions have the potential to explain these observed phenomena. This is a first-order result that has important implications for the debate on populism and contemporary pressures for regional isolation. Urban or industrialized areas might contemplate restrictions on interregional labor migration with the belief this might be helpful to local residents, raising local wages. However, if isolationist policies and the maligning of banks and capital markets also bring restrictions on the interregional flow of capital, then the overall impact can be substantial drops in average income, consumption, and wealth and large increases in local inequality.

Our paper also makes a timely contribution to research methods, in particular to the use of big data to uncover new findings and guide policy. Although big data are frequently thought of as the use of large administrative datasets, they include other types of data and refer to studies in which there is both a complexity and variety of data that need to be linked, connected, and correlated (1). The term "big theory" is used as a counterweight (2). We use a theoretical model here as a way to organize data, and this combination of big theory and big data yields the surprising implications regarding the factor flows just mentioned.*

Ours is one of the few papers in the economics literature that incorporates a micro-founded model of frictional lending with cross-regional heterogeneity and does so in a general equilibrium environment. More specifically, the research we report here uses micro data to document that a moral hazard (MH) regime is found to prevail in urban and industrialized areas and a limited commitment (LC) regime in rural and agrarian areas. This

micro theory/data combination in conjunction with meso theory and data on flows and concentration of economic activity allows us to discover that regional heterogeneity in the financial environment is an important determinant of how different regions within countries interact and how they respond to policy. The same mechanism may potentially be relevant for understanding factor flows across countries.

In the United States there has been a surge of interest in local economies given the now-evident heterogeneity across them in the run-up to the financial crisis as well as in the response patterns thereafter. Unfortunately, though, we do not have in the United States some of the details needed, down to individual actors. In the emerging-market application of this paper, Thailand, we have integrated financial accounts (income statements, balance sheets, and cash flows) at the household and small and medium enterprise level for stratified random samples of some communities (3). From these monthly data, we have communitylevel income and product accounts (National Income and Product Accounts) as well as the flows: balance of payments and flow of funds accounts (4). Provinces were selected for variation in their level of development, two in the relatively poor agrarian northeast and two in the developed and industrialized central region near Bangkok. We have annual data from stratified

Significance

Variation in the type of financial frictions faced by households and firms is an overlooked dimension of regional heterogeneity that has the potential to explain cross-regional factor flows and differences in concentration of economic activity. Our research combines a theoretical model with a complexity and variety of data from Thailand. The theoretical model features variation in financial regimes, moral hazard, and limited commitment, inferred from the data. In a counterfactual experiment we explore the effects of protecting wages in urban areas from incoming migrants and protecting rural areas from capital outflow. Economic life in cities would suffer enormously, as would rural and national productivity, with an increase in overall inequality.

Author contributions: B.M., R.M.T., and V.Z. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.

Reviewers: H.C., University of Pennsylvania; and M.P., Yale University.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

¹To whom correspondence may be addressed. Email: moll@princeton.edu or rtownsen@ mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707055114/-/DCSupplemental.

*Yet a model is not useful if it makes the wrong predictions because an incorrect underlying structure was guessed or imposed, without checking on the data. That is, big theory needs big data, not just the other way around.

[†]The level of geographic disaggregation varies across these US studies, in part depending on data used, from states to commuting zones to metropolitan statistical areas to ZIP codes. random samples of rural villages and urban neighborhoods that are representative within each province.[‡] In sum, we use data on many different variables from a variety of different sources to motivate and discipline our theory—theory motivated by big data.

The theory is a micro-founded and totally integrated micromacro model. Households make decisions about what occupation to enter, namely, whether to earn a wage or to run an enterprise of some size, and face various possible obstacles in the financing of business and in insurance to smooth consumption. Financial service providers compete in offering contracts to clients, pooling risk like mutual funds and intermediating funds from savers to borrowers. There are two difficulties here, which we overcome. The first is to solve a rich contracting problem involving occupational choice and production decisions for heterogeneous households that differ in their wealth while respecting incentive and LC constraints that differ across regions. Our technical innovation is to show how to integrate this contracting problem in general equilibrium by inverting the Pareto frontier between households and intermediaries, thereby replacing promised utility as the relevant state variable by household wealth. The second difficulty is finding a steady state with market-determined prices, equilibrium wages, and interest rates, again in the context of heterogeneity in financial obstacles across communities and, within each type of community, heterogeneity in wealth (endogenously determined by forward-looking agents) and in latent talent (following an exogenous stochastic process).

We impose as in the data that there is an MH problem for households and firms in the central region of Thailand, and in urban areas, and an LC, capital constraint in the northeast region and in rural areas. In our primary calibration, the model predicts that 23% of capital in industrialized areas is imported from rural, agrarian areas, accounting for 40% of the wealth owned by these rural households. At the same time, there are huge flows of labor in the same direction: 75% of labor in the urbanized areas comes from this migration and rural agricultural areas lose 85%. These findings can be summarized to say that the urban/industrialized areas use 79% of the economy's capital and 65% of its labor even though such areas are only 30% of the population.

Calibrating the model is a nontrivial endeavor, given the complexity of both the model and the data. Some of the values for parameters of preferences and technology come from micro studies using the Thai data and are similar to those used in other studies for other countries. A remaining set of parameters is calibrated to try to match key variables in the most accurate data we have, from the financial accounts of select communities, comparing the agrarian northeast to more industrialized central provinces: aggregate income, consumption, capital used in production, and wealth, all of which are higher in the central region than in the northeast, often by several orders of magnitude. As a check on what we do, and to take advantage of the additional data, we use the annual data and stratify by urban versus rural status, within a province and also averaging up across provinces. This shows again the concentration of activity in urban areas. The calibrated model is able to match reasonably well these patterns of concentration. It thus predicts flows of capital and labor from rural villages to towns within provinces, and at the same time from the agrarian provinces to industrialized provinces, depending on the ratio of urban to rural populations.

We take great pains to try to further validate the model, again taking advantage of the data. At the micro level we see that net

In a counterfactual policy experiment we explore the effects of imposing wedges from policies that have the intent of "protecting" regions from cross-regional flows of capital and labor. § As an extreme case we shut down completely these resources flows and move to regional autarky. This is associated with households in rural and less developed areas experiencing increases on average in consumption, income, and wealth and increases in labor and capital used locally. Local inequality also decreases. However, there would be decreases in the wage (and in the interest rates) and drops in local productivity. For urban and industrialized areas it is the reverse: Despite rises in wages (and interest rates), there would be notably sharp drops in income, consumption, and wealth. Local inequality also increases substantially. Finally, an exercise shows that if we had instead imposed financial frictions without looking at the data we would be getting different and misleading answers to our policy question.

The working-paper version (5) discusses in more detail our contribution relative to the existing economics literature. There we also report in more detail on our methods and the evidence we have regarding variation in financial obstacles across regions and interregional flow of funds.

Micro/Meso Data Motivate Key Model Ingredients

Micro Data and Financial Obstacles. Here we briefly describe a series of studies using data from the Townsend Thai project that document that even within a given economy individuals face different types of financial frictions depending on location and urban/rural status. In particular, several studies using a variety of data, variables, and approaches reach the same conclusion, namely that MH problems are more pronounced in the central region and in urban areas whereas LC is the dominant constraint in the northeast region and in rural areas. For want of space we spare the reader a detailed description of the Townsend Thai project and its data, although this is available in *SI Appendix*, section A and in ref. 6.

Several studies make use of these data to infer financial obstacles on the ground. The working-paper version (5) describes these in detail, and we here only provide a brief summary. Paulson et al. (7) estimate the financial/information regime in place in an occupation choice model and find that MH fits best in the more urbanized central region whereas LC or a mixed regime fits best in the more rural northeast region. Karaivanov and Townsend (8) estimate the regime for households running businesses and find that an MH constrained financial regime fits best in urban areas and a more limited savings regime in rural areas. Finally, Ahlin and Townsend (9), with alternative data on joint liability loans, find that information seems to be a problem in the central area, with LC in the northeast.

savings differences across regions are consistent with micro facts in the data; over the relevant range, credit is increasing with assets in the cross-section in the northeast region and constant or decreasing with assets in the central region. There is much more persistence of capital over time in rural areas than in urban areas. These two facts are consistent with the micro data and indeed were some key findings used to motivate the variation in financial obstacles across regions and urban/rural status in the first place. We also emphasize predictions for new moments/facts. We predict that the growth of net worth is more concentrated in the central region, and this is consistent with the data. Predictions for distribution of firm size by capital are also consistent with the data, in that the MH regime has a skewed right tail, as do urban areas relative to rural areas.

[‡] In addition we use a comprehensive archive of secondary data, namely, a Community Development Department village-level Census (CDD), Population Census, Labor Force Survey, and the Socio-Economic Survey income and expenditure data (SES), and much of these data are mounted on a Geographic Information System platform.

[§] Our analysis is concerned with a closed economy, so there are no international capital flows in either the presence or absence of these wedges.

Meso Data and Factor Flows. Direct and indirect evidence suggests large flows of capital and labor.

Capital. We have some measurements within Thailand of the flow of funds across regions, the meso-level variables we referred to earlier. Ref. 4 shows how to use the integrated household financial statements for the monthly data of ref. 3 to construct the production, income allocation, and savings-investment accounts at the village and tambon (county) level. The balance of payment accounts then follow. Sisaket, the most rural area of this sample, has been running a balance of payments surplus, hence with capital outflows. In contrast, Buriram is running consistent deficits, and although they are in a relatively agrarian province the selected sample of former villages has become a newly urban area. Although Chachoengsao in the central region runs a surplus on average, the decline in income due to a shrimp disease was accompanied with an externally financed capital inflow and investment, as households switched to new occupations without dropping consumption. More generally, these flows relative to income across the villages are quite high relative to cross-country data (61% in Buriram, for example). The withinprovince urban/rural data show that credit from commercial banks is higher in urban areas, more so than the increase in capital used in production. Looking at other secondary data, we know from an SES survey that 24 to 34% of the population receive remittances and among these households remittances constitute 25 to 27% of their income (ref. 10, p. 71, based on ref. 11).

Labor. The Thai Community Development Department (CDD) data show that the fraction of households with migrant laborers increased from 22 to 34% from 1986 to 1998. Migration can be from rural to urban areas within a province, for example as it was early on, and the number and fraction of migrants leaving their region have increased over time. By 1985-1990 the largest flows were from northeast to central region and to Bangkok. By one estimate in 1990 the regional population as a percent of total population varied from 11 to 35% or, put the other way around, migrants to total population vary from 65 to 89% (figure 3.6 in ref. 10, based on ref. 12).

Model

We consider an economy populated by a continuum of households of measure one indexed by $i \in [0, 1]$. As we explain in more detail below, a fraction ϑ of households live in urban areas and are subject to MH and the remaining fraction $1 - \vartheta$ live in rural areas and are subject to LC. Time is discrete. In each period t, a household experiences two idiosyncratic shocks: an ability shock, z_{it} , and an additional "residual productivity" shock, ε_{it} . Households also differ in their wealth a_{it} . They receive an income stream y_{it} that potentially depends on all of $(a_{it}, z_{it}, \varepsilon_{it})$. Households have preferences over consumption, c_{it} , and effort, e_{it} :

$$v_{i0} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}, e_{it}).$$

Households can access the capital market of the economy only via a continuum of identical intermediaries. They contract with an intermediary according to an optimal contract specified

Households have some initial wealth a_{i0} and an income stream $\{y_{it}\}_{t=0}^{\infty}$ (determined below). When households contract with an intermediary, they give their entire initial wealth and income stream to that intermediary. The intermediary pools the assets and incomes of all of the households with which it contracts, invests them at a risk-free interest rate r_t , and transfers some consumption to the households. The intermediary keeps track of each household's wealth (for accounting purposes), which evolves as

$$a_{it+1} = y_{it} - c_{it} + (1+r_t)a_{it}.$$
 [1]

The intermediary can ensure households, partially or completely, against the realization of the idiosyncratic residual productivity shock ε_{it} (i.e., some, if not all, of this risk is shared across households). In contrast, we assume that ability z_{it} is not insurable at all (more on this below). In each period, the optimal contract specifies what consumption c_{it} each household gets, which in turn determines the level of assets a_{it+1} the household carries into the next period. These can depend on ε_{it} but not z_{it} . The optimal contract maximizes the intermediary's total equity value, which equals the expected present discounted value of profits from contracting with households. We assume there is free entry into intermediation initially. We do not allow intermediaries to compete ex post in a way that would undercut the households' long-run commitment to the financial contract. That is, intermediaries cannot try to pick off household types that are associated with a currently high equity value for the intermediary. In the steady-state equilibrium this competition makes the total equity value of each intermediary zero. As we show below, this implies that the contract equivalently maximizes each household's expected utility. Depending on the region the household lives in, the optimal contract offered by a representative regional intermediary is subject to one of two frictions, either MH or LC.

When making these decisions the regional intermediaries take as given current and future time profiles of wages w_t and interest rates r_t , respectively, and compete with each other in competitive labor and capital markets. Throughout the paper we assume that the economy is in a stationary equilibrium so that these factor prices are constant over time at fixed values w and r. This assumption is made mainly for simplicity. Our setup can be extended to the case where aggregates vary deterministically over time at the expense of some extra notation.

Household's Problem. Households can either be entrepreneurs or workers. We denote by $x_{it} = 1$ the choice of being an entrepreneur and by $x_{it} = 0$ that of being a worker. First, consider entrepreneurs. An entrepreneur hires labor ℓ_{it} at a wage w_t and rents capital k_{it} at a rental rate $r_t + \delta$, where δ is the depreciation rate, and produces some output. His observed productivity has two components: a component, z_{it} , that is known by the entrepreneur in advance at the time he decides how much capital and labor to hire and a residual component, ε_{it} , that is realized afterward. We will call the first component "entrepreneurial" ability and the second "residual productivity." The evolution of entrepreneurial talent is exogenous and given by some stationary transition process $\mu(z_{it+1}|z_{it})$. Residual productivity instead depends on an entrepreneur's effort, e_{it} , which is potentially unobserved, depending on the financial regime. More precisely, his effort determines the distribution $p(\varepsilon_{it}|e_{it})$ from which residual productivity is drawn, with higher effort making good realizations more likely. We assume that intermediaries can ensure residual productivity ε_{it} . In contrast, even if entrepreneurial ability, z_{it} , is observed, it is not contractible and hence cannot be ensured. An entrepreneur's output is given by

$$z_{it}\varepsilon_{it}f(k_{it},\ell_{it}),$$

where $f(k, \ell)$ is a span-of-control production function.

Next, consider workers. A worker sells efficiency units of labor ε_{it} in the labor market at wage w_t . Efficiency units are observed but are stochastic and depend on the worker's true underlying effort, with distribution $p(\varepsilon_{it}|e_{it})$. The worker's true underlying effort is potentially unobserved, depending on the financial

[¶]The assumption that the distribution of workers' efficiency units $p(\cdot|e_{it})$ is the same as that of entrepreneurs' residual productivity is made solely for simplicity, and we could easily allow workers and entrepreneurs to draw from different distributions at the expense of some extra notation.

regime. A worker's ability is fixed over time and identical across workers, normalized to unity.

Putting everything together, the income stream of a household is

$$y_{it} = x_{it}[z_{it}\varepsilon_{it}f(k_{it},\ell_{it}) - w_t\ell_{it} - (r_t + \delta)k_{it}] + (1 - x_{it})w_t\varepsilon_{it}.$$

As specified above, each household's wealth (deposited with the intermediary) accumulates according to Eq. 1.

The timing is illustrated in Fig. 1 and is as follows. The household comes into the period with previously determined savings a_{it} and a draw of entrepreneurial talent z_{it} . Then, within period t, the contract between household and intermediary assigns occupational choice x_{it} , effort, e_{it} , and—if the chosen occupation is entrepreneurship—capital and labor hired, k_{it} and ℓ_{it} , respectively. All these choices are conditional on talent z_{it} and assets carried over from the last period, a_{it} . Next, residual productivity, ε_{it} , is realized, which depends on effort through the conditional distribution $p(\varepsilon_{it}|e_{it})$. Finally, the contract assigns the household's consumption and savings, that is, functions $c_{it}(\varepsilon_{it})$ and $a_{it+1}(\varepsilon_{it})$. The household's effort choice e_{it} may be unobserved depending on the regime we study. All other actions of the household are observed. For instance, there are no hidden savings.

We now write the problem of a household that contracts with the intermediary in recursive form. The two state variables are wealth, a, and entrepreneurial ability, z. Recall that z evolves according to some exogenous Markov process $\mu(z'|z)$. It will be convenient below to denote the household's expected continuation value by $\mathbb{E}_{z'}v(a',z') = \sum_{z'}v(a',z')\mu(z'|z)$, where the expectation is over z'. A contract between a household of type (a,z) and an intermediary solves

$$v(a, z) = \max_{x, e, k, \ell, c(\varepsilon), a'(\varepsilon)} \sum_{\varepsilon} p(\varepsilon|e) \left\{ u[c(\varepsilon), e] + \beta \mathbb{E}_{z'} v[a'(\varepsilon), z'] \right\}$$
s.t.
$$\sum_{\varepsilon} p(\varepsilon|e) \left\{ c(\varepsilon) + a'(\varepsilon) \right\}$$

$$= \sum_{\varepsilon} p(\varepsilon|e) \left\{ x[z\varepsilon f(k, \ell) - w\ell - (r + \delta)k] + (1 - x)w\varepsilon \right\}$$

$$+ (1 + r)a$$

and also is subject to regime-specific constraints specified below. The contract maximizes a household's expected utility subject to a break-even constraint for the intermediary. Note that the budget constraint in Eq. 2 averages over realizations of ε ; it does not have to hold separately for every realization of ε . This is because the contract between the household and the intermediary has an insurance aspect. Such an insurance arrangement can be "decentralized" in various ways. The intermediary could simply make state-contingent transfers to the household. Alternatively, intermediaries can be interpreted as banks that offer savings accounts with state-contingent interest payments to households.

In contrast to residual productivity ε , talent z is assumed to not be insurable. Before the realization of ε , the contract specifies consumption and savings that are contingent on ε , $c(\varepsilon)$, and $a'(\varepsilon)$. In contrast, consumption and savings cannot be contingent

Fig. 1. Timing.

on next period's talent realization z'.[#] As we explain above, one reason for introducing uninsurable talent shocks (besides realism) is to guarantee the existence of a stationary distribution in the presence of MH.

The contract between intermediaries and households is subject to one of two frictions: private information in the form of MH or LC. Each friction corresponds to a regime-specific constraint that is added to the dynamic program Eq. 2. For sake of simplicity and to isolate the economic mechanisms at work, the only thing that varies across the two regimes is the financial friction. It would be easy to incorporate some differences, say in the stochastic processes for ability z and residual productivity ε at the expense of some extra notation. Most studies in the existing macro development literature work with collateral constraints that are either explicitly or implicitly motivated as arising from an LC problem. In contrast, there are relatively fewer studies that model financial frictions as arising from an asymmetric information problem like in our MH regime. Notable exceptions are refs. 13-15. We specify our two financial regimes in turn.

Urban Areas: MH. In this regime, effort e is unobserved. Because the distribution of residual productivity, $p(\varepsilon|e)$, depends on effort, this gives rise to a standard MH problem: Full insurance against residual productivity shocks would induce the household to shirk, that is, to exert suboptimal effort. The contract takes this into account in terms of an incentive-compatibility constraint:

$$\begin{split} &\sum_{\varepsilon} p(\varepsilon|e) \left\{ u[c(\varepsilon), e] + \beta \mathbb{E}_{z'} v[a'(\varepsilon), z'] \right\} \\ &\geq \sum_{\varepsilon} p(\varepsilon|\hat{e}) \left\{ u[c(\varepsilon), \hat{e}] + \beta \mathbb{E}_{z'} v[a'(\varepsilon), z'] \right\} \ \forall e, \hat{e}. \end{split}$$

This constraint ensures that the value to the household of choosing the effort level assigned by the contract, e, is at least as large as that of any other effort, \hat{e} . The optimal dynamic contract in the presence of MH solves Eq. 2 subject to the additional constraint Eq. 3. As already mentioned, to fix ideas, we would like to think of this regime as representing the prevalent form of financial contracts in urban and industrialized areas.

Relative to existing theories of firm dynamics with MH, our formulation in Eq. 3 is special in that only entrepreneurial effort is unobserved. In contrast, capital stocks can be observed and a change in an entrepreneur's capital stock does not change his incentive to shirk. More precisely, the distribution of relative output obtained from two different effort levels does not depend on the level of capital. This is a result of two assumptions: that output depends on residual productivity ε in a multiplicative fashion and that the distribution of residual productivity $p(\varepsilon|e)$ does not depend on capital (i.e., it is not given by $p(\varepsilon|e,k)$). We focus on this instructive special case because—as we will show below—it illustrates in a transparent fashion that MH does not necessarily result in capital misallocation but that it can nevertheless have negative effects on aggregate productivity, gross domestic product (GDP), and welfare.

The existing literature on optimal contracting subject to MH typically makes use of an alternative formulation for problems like the one used here. In particular, the relevant dynamic programming problem is typically written with "promised utility" as a state variable and features a "promise-keeping" constraint

[#]The above dynamic program could be modified to allow for talent to be insured as follows: Allow agents to trade in assets whose payoff is contingent on the realization of next period's talent z'. On the left-hand side of the budget constraint in Eq. 2, instead of $a'(\varepsilon)$, we would write $a'(\varepsilon,z')$ and sum these over future states z' using the probabilities $\mu(z'|z)$ so that z' does not appear as a state variable next period, because its realization is completely insured and that insurance is embedded in the resource constraint.

(16, 17). We here instead develop an alternative approach: We invert the Pareto frontier between households and intermediaries, thereby replacing promised utility as the relevant state variable by household wealth. This formulation has two advantages. First, the contracting problem in terms of wealth "communicates" more seamlessly with the rest of the model, in particular when we later embed the contracting problem in general equilibrium, which features a market-clearing condition in terms of wealth. Second, our alternative formulation can be mapped to the data more directly: Our ultimate interest is in flow of funds across households and regions, which is more naturally thought of in terms of wealth rather than promised utilities.

SI Appendix, section D lays out our approach and its connection to the more standard formulation in detail. We here briefly summarize it. Consider first a special case with no ability (z)shocks and only residual productivity (ε) shocks. For this case Proposition 1 in SI Appendix, section D shows that the two formulations are equivalent if the Pareto frontier between households and intermediaries is monotone. In this case, one can invert the Pareto frontier and use a change of variables to express the problem in terms of household wealth rather than promised utility. In this sense, the insurance arrangement regarding ε -shocks is optimal (taking all paths of interest rates and wages as fixed). Next, consider the case with both z-shocks and ε -shocks. This case is then simply the problem just described but with uninsurable ability shocks "added on top." That is, in this case it is no longer true that we solve a fully optimal contracting problem. This is because we rule out insurance against z-shocks by assumption, whereas an optimal dynamic contract would allow for such insurance. In contrast, the insurance arrangements regarding ε -shocks are optimal as shown by the equivalence with an optimal dynamic contract in the absence of z-shocks.

Given this equivalence between the two formulations, it is also easy to motivate why we assume that idiosyncratic shocks are partly uninsurable. Dynamic MH economies in which all shocks can be insured against often do not feature a stationary distribution of promised utilities (see e.g., refs. 18 and 19). In our formulation this would correspond to nonexistence of a stationary wealth distribution. Uninsurable shocks aid with ensuring stationarity and, indeed, our numerical results indicate that a stationary wealth distribution always exists. Besides realism, ensuring stationarity is another reason for making the assumption that ability shocks are uninsurable.

When solving the problem Eq. 2 to Eq. 3 numerically, we allow for lotteries in the optimal contract to "convexify" the constraint set as in ref. 19. See SI Appendix, section E for the statement of the problem, Eq. 2 to Eq. 3 with lotteries.

Rural Areas: LC. In this regime, effort e is observed. Therefore, there is no MH problem and the contract consequently provides perfect insurance against residual productivity shocks, ε . Instead we assume that the friction takes the form of a simple collateral constraint:

$$k \le \lambda a, \quad \lambda \ge 1.$$
 [4]

This form of constraint has been frequently used in the literature on financial frictions (see, e.g., refs. 7 and 20–25). It can be motivated as an LC constraint. The exact form of the constraint is chosen for simplicity. Some readers may find it more natural if the constraint were to depend on talent $k \leq \lambda(z)a$ as well. This would be relatively easy to incorporate, but others have shown that this affects results mainly quantitatively but not qualitatively (24, 26). The assumption that talent z is stochastic but cannot be insured makes sure that collateral constraints bind for some individuals at all points in time. If instead talent were fixed over time, for example, individuals would save themselves out of collateral constraints over time (27).

The optimal contract in the presence of LC solves Eq. 2 subject to the additional constraint Eq. 4.

Factor Demands and Supplies. Households, via the intermediaries they contract with, interact in competitive labor and capital markets, taking as given the sequences of wages and interest rates. Denote by $k_i(a, z)$ and $\ell_i(a, z)$ the common optimal capital and labor demands of households with current state (a, z) in regime $j \in \{MH, LC\}$. A worker supplies ε efficiency units of labor to the labor market, so labor supply of a cohort (a, z) is

$$n_j(a,z) \equiv [1 - x_j(a,z)] \sum_{\varepsilon} p(\varepsilon|e_j(a,z)) \varepsilon.$$
 [5]

Note that we multiply by the indicator for being a worker, 1-x, so as to only pick up the efficiency units of labor by the fraction of the cohort who decide to be workers. Finally, individual capital supply is simply a household's wealth, a.

Equilibrium. We use the saving policy functions $a'(\varepsilon)$ and the transition probabilities $\mu(z'|z)$ to construct transition probabilities Pr(a', z'|a, z; j) in the two regimes $j \in \{MH, LC\}$. In the computations we discretize the state space for wealth, a, and talent, z, so this is a simple Markov transition matrix. Given these transition probabilities and initial distributions $g_{j,0}(a,z)$, we then obtain the sequence $\{g_{j,t}(a,z)\}_{t=0}^{\infty}$ from

$$g_{j,t+1}(a',z') = \Pr(a',z'|a,z;j)g_{j,t}(a,z).$$
 [6]

Note that we cannot guarantee that the process for wealth and ability in Eq. 6 has a unique and stable stationary distribution. Whereas the process is stationary in the z-dimension (recall that the process for z, $\mu(z'|z)$, is exogenous and a simple stationary Markov chain), the process may be nonstationary or degenerate in the a-dimension. That is, there is the possibility that the wealth distribution either fans out forever or collapses to a point mass. Similarly, there may be multiple stationary equilibria. In the examples we have computed, these issues do, however, not seem to be a problem and Eq. 6 always converges, and from different initial distributions.

Once we have found a stationary distribution of states from Eq. 6, we check that markets clear and otherwise iterate. Denote the stationary distributions of ability and wealth in regime j by $G_i(a,z)$. Then, the labor and capital market clearing conditions are

$$\begin{split} \vartheta & \int \ell_{MH}(a,z) dG_{MH}(a,z) + (1-\vartheta) \int \ell_{LC}(a,z) dG_{LC}(a,z) \\ & = \vartheta \int n_{MH}(a,z) dG_{MH}(a,z) + (1-\vartheta) \int n_{LC}(a,z) dG_{LC}(a,z), \\ \vartheta & \int k_{MH}(a,z) dG_{MH}(a,z) + (1-\vartheta) \int k_{LC}(a,z) dG_{LC}(a,z) \\ & = \vartheta \int adG_{MH}(a,z) + (1-\vartheta) \int adG_{LC}(a,z). \end{split}$$

The equilibrium factor prices w and r are found using the algorithm outlined in appendix A.1 of ref. 23.

Note that, in equilibrium, the demands and supplies of both capital and labor are equated in a frictionless manner and that this requirement determines the allocation of factors across regions. That is, we assume that there are no frictions to the movement of capital or labor across regions. In a counterfactual policy experiment, described later in this paper, we examine the effect of going from such an integrated equilibrium to the opposite extreme, namely autarky.

Calibration. Due to space constraints, we relegated the discussion of functional form choices and calibration of parameter values to

Table 1. Macro and meso aggregates in the baseline economy

Variable	Aggregate economy	MH/urban	LC/rural
	National and sectoral aggregates		
Income, % of FB	0.78	1.37	0.52
Capital, % of FB	0.82	1.88	0.40
Labor, % of FB	0.92	1.65	0.60
TFP, % of FB	0.88	0.78	1.04
Consumption, % of FB	0.87	1.05	0.79
Wealth, % of FB	0.82	1.45	0.55
	Intersectora	I capital and la	abor flows
Labor inflow, % of workforce		0.75	-0.86
Capital inflow, % of stock		0.23	-0.39

FB, first-best.

SI Appendix, section F. Our calibration targets various regional aggregates, namely income, consumption, capital, wealth, and the rate of entrepreneurship in both rural and urban areas (*SI Appendix*, Table 5).

Flow of Funds and the Equilibrium Interaction of Financial Frictions

Interregional Flow of Funds. At these calibrated parameter values we compute the model's steady state. See SI Appendix, section E for details on the computations. We feature in Table 1 the variables for each of the two regions separately, the overall economywide average, using population weights, and especially the flow of capital and labor across regions. As is evident in Table 1 the (urban) MH area has higher values of income, capital, labor, consumption, and wealth than the (rural) LC area. All variables are expressed as ratios to the corresponding first-best values, each line, one at time. The first-best economy eliminates the LC and MH constraints in rural and urban areas, respectively, so they are identical and thus have the same variable values—region labels lose any meaning in the first-best because one region is just a clone of the other one. In contrast, with the financial obstacles included, we see in Table 1 the additional implication that the urban area consistently has values higher than those of the rural area (i.e., more activity is concentrated there than in the firstbest, and less in the rural area). The top part of the table is thus a tell-tale indicator of the relatively dramatic interregional flows at the bottom of the table. Urban areas are importing 23% of the overall capital used and 75% of the labor. Likewise, rural areas are exporting 39% of their capital and 86% of their labor. This is consistent with the direct and indirect evidence reported above. Equivalently urban areas are 79% of the economy's capital and 65% of its labor even though they account for only 30% of the population.**

There are of course many other factors that distinguish cities from villages and industrialized from agricultural areas, and we listed some of these in the Introduction. Although we consider these other factors to be of great importance for explaining interregional flow of funds, we purposely exclude them from our theory and focus on differences in financial regimes only, in effect conducting an experiment that makes use of the model structure and answers the following question: How large are the capital and labor flows that arise from regional differences in financial regime alone? Our framework generates a number of observed rural—urban patterns by letting only the financial regime differences in the financial regimes, urban and rural areas would be identical with no factor flows occurring between the two regions.

To explain why this is happening we proceed in steps, first looking at the interest rate then the occupation choices and related variables in each region (at the equilibrium interest rate and wage and, of course, at our calibrated parameter values).

Determination of the Equilibrium Interest Rate. The interest rate is depressed relative to the rate of time preference in both regions, but as we shall now see there are pressures for it to be far lower in the LC rural area, if the domestic economy were not open across regions.

Fig. 2 graphically examines the aggregate demand for and supply of capital at various parametric interest rates, as if the regions were open to the rest of the world, and thus illustrates the determination of the equilibrium interest rate (as in ref. 29) for each region separately, where the curves cross, as if it were a closed economy (no regional or international capital flows).

Fig. 2A plots capital demand and supply for the MH regime (solid lines) and contrasts them with demand and supply in the "first-best" economy without MH (dashed lines). For each value of the interest rate, the wage is recalculated so as to clear the labor market. Fig. 2B repeats the same exercise for the LC regime. The first-best demand and supply (the dashed lines) are the same in the two panels and serve as a benchmark to assess the differential effects of the two frictions on the interest rate

Consider first the MH economy in Fig. 24. Relative to the firstbest, MH depresses capital demand for all relevant values of the interest rate. This is because MH results in entrepreneurs and workers exerting suboptimal effort, which depresses the marginal productivity of capital. The effect of MH on capital supply is ambiguous and differs according to the value of the interest rate. It turns out that this ambiguity is the result of a direct effect and a counteracting general equilibrium effect operating through wages. For a given fixed wage, MH always decreases capital supply (i.e., capital supply shifts to the left). This is due to a well-known result: the inverse Euler equation of ref. 30, which states that the optimal contract under MH discourages saving whenever the incentive compatibility constraint Eq. 3 binds and hence results in individuals' being saving-constrained (see also refs. 31 and 32). Lemma 1 in SI Appendix, section B derives the appropriate variant of this result for our framework and discusses the intuition in more detail. However, counteracting this negative effect on capital supply is a positive general equilibrium effect: Labor demand, and hence the wage, falls relative to the first-best, resulting in more entry into entrepreneurship, higher aggregate profits, and higher savings. The overall effect is ambiguous, and in our computations capital supply shifts to the right for some values of the interest rate and to the left for others.

Contrast this with the LC economy in Fig. 2B. Under LC, capital demand shifts to the left whereas capital supply shifts to the right. The drop in capital demand is a direct effect of the

 $[\]parallel$ Table 1 also reports numbers for aggregate and regional total factor productivity (TFP), a commonly reported statistic in the macro-development literature. Aggregate TFP is computed as $TFP=Y/(K^\nu L^{1-\nu})$ where Y is aggregate output, K is the aggregate capital stock, L is aggregate labor, and $\nu=\frac{\alpha}{\alpha+\gamma}$. Regional TFP is computed in an analogous fashion. Somewhat surprisingly, regional TFP in the LC region is 104% of first-best TFP. This is due to a better selection of entrepreneurs in terms of their productivity. This is despite one force that lowers productivity under LC, namely, talented entrepreneurs who are constrained by wealth. However, a force for lower productivity in the MH region is the lower effort due to that MH. Of course, the distribution of firm-level TFP is masked by the aggregation. More detailed results are available upon request.

^{**}Our preferred interpretation of the labor flows from rural to urban areas is as temporary migration, which is a particularly widespread phenomenon in developing countries (see e.g., ref. 28). This interpretation is consistent with our assumption that individuals are subject to the financial regime of their region of origin rather than their workplace [e.g., individuals from the LC (rural) area are subject to LC and perfect risk-sharing of residual productivity even though they work in the MH area (city)]. An interesting extension would be to examine the feedback from temporary migration to participation in risk-sharing arrangements back in the village, as in ref. 28.

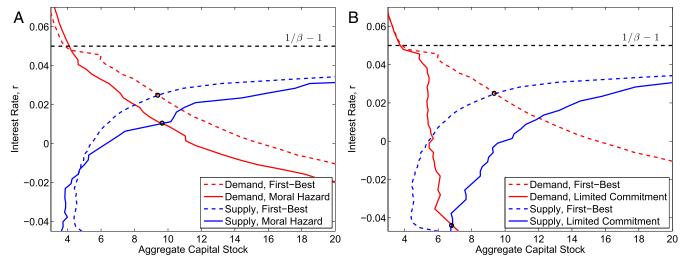


Fig. 2. Determination of equilibrium interest rate: moral hazard (A); limited commitment (B).

constraint Eq. 4, and it is considerably larger than the demand drop under MH. That capital supply shifts to the right is due to increased self-financing of entrepreneurs (refs. 23 and 26, among others). As a result, the interest rate drops considerably relative to the first-best, and more so than under MH. Obviously, the size of this drop depends on the parameter λ , which governs how binding the LC problem is. The value we use in Fig. 2 is the one we calibrate, 1.80, but our findings are qualitatively unchanged for many different values of λ .

The finding that the equilibrium interest rate is lower under LC than under MH is present in all our numerical experiments and under a big variety of alternative parameterizations we have tried.††

This is not surprising, given that Fig. 2 suggests that there are some strong forces pushing in this direction. Foremost among these is that, under MH, individuals are savings-constrained, which, all else equal, pushes up the interest rate; in contrast, LC results in higher savings due to self-financing, which pushes down interest rates. Also going in this direction is that in practice LC results in a greater drop in capital demand than MH.

The bottom line from this analysis of the interest rate is that when the two regions are opened to capital (and labor) movements, capital flows toward what would have been the higher interest rate region, namely the MH urban area. ‡‡ Labor is complementary with capital and so the wage would have been higher in the MH urban area, too, if it were not for labor flows.

Are Different Financial Regimes Necessary? In the working-paper version (5), we also show that if we had followed much of the macro development literature on financial frictions, and just assumed those frictions, rather than imposing what we "see on the ground" (i.e., infer from micro data), then we would not be able to simultaneously match salient features of both the meso and micro data. It is key that the type of financial regime varies, as opposed to urban/industrialized and rural/agrarian areas' being subject to the same financial regime but with differing tightness of the financial constraint. To make this point, we conduct the following experiment. We suppose that, instead of MH, the central area is subject to the same form of LC as the northeast area but with a higher, more liberal maximum leverage ratio. We show that to do as well as our benchmark economy in terms of matching observed factor flows, we have to raise the central leverage ratio to well beyond reasonable levels (close to infinity).

Back to the Micro Data

The model has implications not only for meso variables such as regional variables and interregional resource flows but also for micro-level data. We first check on model-generated output for some of the micro facts that led to our choices of financial regimes, and then to "out-of-sample" predictions, looking at variables we have not heretofore explored.

First, in terms of adopted financial regimes we see in SI Appendix, Fig. 6 that borrowing is increasing in wealth for the LC regimes, at least at lower to midrange values for wealth (before a wealth effect on leisure kicks in, resulting in lower effort, firm productivity, and, indeed, entrepreneurship, as in SI Appendix, Fig. 7). For the MH regime, there is no relation between wealth and borrowing in this range (i.e., the relationship is nonincreasing). Consistent with this, Paulson and Townsend (33) found strictly increasing patterns in the northeast and decreasing patterns in the central regional data.

Another implication of the model, displayed in SI Appendix, Fig. 8, is the high degree of persistence of capital in the LC regime relative to the MH regime. Karaivanov and Townsend (8) found that the high degree of persistence in the rural data (figure 3 in ref. 8) was the main reason the overall financial regime was estimated to be borrowing with constraints if not savings only, whereas the MH regime was the best fit statistically in urban areas.

Next, in terms of out-of-sample predictions for micro data, we see in Fig. 3 that the model-generated firm size distribution in the urban area has more mass in the right tail, as is true in the

 $^{^{\}dagger\dagger}$ In particular, and as discussed in SI Appendix, section F, the value for λ can be mapped to data on external finance to GDP ratios. That the interest rate under LC is lower than that under MH is true for all values of λ that are consistent with external finance to GDP ratios for low- and middle-income countries. In contrast, it is easy to see that for unrealistically large values of λ the LC interest rate will necessarily be higher than that under MH. This is because as $\lambda \to \infty$ the equilibrium under LC approaches the first-best (the intersection of the dashed lines), which features an interest rate that is strictly larger than that under MH.

^{‡‡}Note that we assume throughout that, although there may be cross-regional factor flows, the economy is closed to the rest of the world. Of course, in reality the Thai economy is not a closed economy. An extreme alternative would be to model a small open economy where individuals can borrow and lend at a fixed world interest rate of $r^* = 1/\beta - 1$. Under this alternative assumption, the LC (rural) area would experience massive capital outflows, and in particular ones that are larger than the ones for the MH (urban) area. In reality, the Thai economy is likely somewhere intermediate between these two extremes, so that the insights from the closed economy carry over.

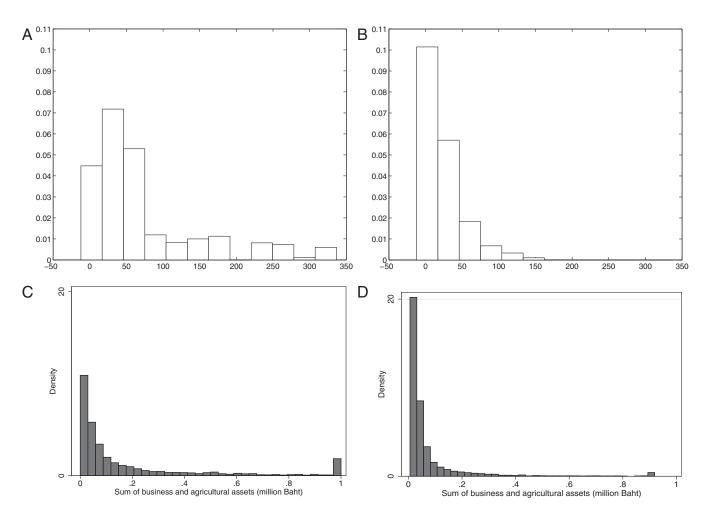


Fig. 3. Firm size (capital) distribution: Model versus data. Model: moral hazard (A); limited commitment (B). Data: urban (C); rural (D).

data, in contrast with the rural area. §§ Finally, we examined the distributions of the growth rates of net worth and found that, as in the data, there is more dispersion in wealth growth rates in rural areas than in urban ones.

Counterfactual: Moving to Autarky

In this section we conduct a counterfactual policy experiment using our structural model. We start with our integrated economy with realistic regions and calibrated parameter values and then introduce wedges, reflecting either frictions or policies, that restrict cross-sectional factor flows. For simplicity we consider the extreme case of putting each region in autarky. We show that there are interesting implications for macro and regional aggregates and inequality. Table 2 plots our main variables of interest at the macro and meso levels for an economy in which each region is in autarky. Comparing these with the corresponding numbers in our integrated baseline economy in Table 1, we can assess the effects of a hypothetical move to autarky.

Shutting down resources flows and moving to regional autarky has interesting implications for regional aggregates, inequality, factor prices, and TFP. In particular, a move to autarky would be associated with households in rural areas experiencing increases on average in consumption, income, and wealth; increases in labor and capital used locally but decreases in the wage (and in the interest rates); and drops in TFP. The reason that rural aggregate TFP decreases is simple: Because rural capital and labor can no longer be used in urban areas, the supply of these factors is roughly 80% higher than in the integrated baseline economy. Although regional income in rural areas increases it

Table 2. Moving to autarky

Variable	Aggregate economy	MH/urban	LC/rural
Income, % of FB	0.78 (0.78)	0.69 (1.37)	0.82 (0.52)
Capital, % of FB	0.74 (0.82)	0.75 (1.88)	0.74 (0.40)
Labor, % of FB	0.95 (0.92)	0.66 (1.65)	1.08 (0.60)
TFP, % of FB	0.91 (0.88)	1.00 (0.78)	0.89 (1.04)
Consumption, % of FB	0.82 (0.87)	0.83 (1.05)	0.82 (0.79)
Wealth, % of FB	0.74 (0.82)	0.75 (1.45)	0.74 (0.55)
Wage, % of FB		1.10 (0.92)	0.76 (0.92)
Interest rate		0.027 (-0.009)	-0.029 (-0.009)

For comparison the numbers in parentheses reproduce the corresponding numbers for the integrated economy from Table 1. FB, first-best.

^{§§} The plots use the 2005–2011 waves of the Townsend Thai Data from four provinces (Lopburi, Chachoengsao, Buriram, and Sisaket), which we described in detail in the data section above. Firm size is defined as the sum of agricultural and business assets, and we drop households who report zero holdings of each category, leaving us with 601 urban and 659 rural households. We chose assets as a measure of a firm's size rather than employment (as is perhaps more standard), because of the prevalence of self-employed individuals (i.e., few paid employees) in the Townsend Thai data. For comparison with the rural data, the urban data are winsorized at 1 million baht.

increases by considerably less than 80% and therefore aggregate TFP falls. Put differently, rural areas absorb the increased factor supplies by allocating them to somewhat less-efficient firms. Local inequality also decreases. For urban areas it is the reverse, although notably the movements in each of these variables is much more extreme. Local inequality increases substantially. At the national level, results are mixed: Although aggregate consumption, wealth, and capital decrease, labor supply, income, and TFP all increase. National inequality increases, particularly at the bottom of the distribution (which drives an increase in the Gini coefficient).

Our counterfactual experiment is interesting from the point of view of recent discussions about urban-rural migration. In particular, urban or industrialized areas might contemplate restrictions on interregional labor migration with the belief that this might be helpful to local residents, raising local wages. However, the results of our counterfactual experiment suggest that this may backfire: If isolationist policies also bring restrictions on the interregional flow of capital, then the overall impact can be substantial drops in average income, consumption, and wealth and large increases in local inequality.

Conclusion

More research is needed that takes seriously the microfinancial underpinnings for macro models that use micro data to help pin down these underpinnings, that looks into the possibility that financial obstacles might vary by geography, and that builds micro-founded macro models accordingly. We have done this for

- 1. Einay L. Levin J (2014) Economics in the age of big data. Science 346:1243089.
- 2. West G (2013) Big data needs a big theory to go with it. Sci Am. Available at https://www.scientificamerican.com/article/big-data-needs-big-theory/.
- Samphantharak K. Townsend RM (2009) Households as Corporate Firms: An Analysis of Household Finance Using Integrated Household Surveys and Corporate Financial Accounting. Econometric Society Monograph Series (Cambridge Univ Press, New York).
- 4. Paweenawat A, Townsend RM (2012) Village economic accounts: Real and financial intertwined. Am Econ Rev 102:441-446.
- Moll B, Townsend RM, Zhorin V (2016) Economic development, flow of funds and the equilibrium interaction of financial frictions. NBER Working Paper 19618 (National Bureau of Economic Research, Cambridge, MA).
- Townsend RM (2016) Village and larger economies: The theory and measurement of the Townsend Thai project. J Econ Perspect 30:199-220.
- 7. Paulson AL, Townsend RM, Karaivanov A (2006) Distinguishing limited liability from moral hazard in a model of entrepreneurship. J Polit Econ 114:100-144.
- Karaivanov A, Townsend RM (2014) Dynamic financial constraints: Distinguishing mechanism design from exogenously incomplete regimes. Econometrica 82:887-959.
- 9. Ahlin C, Townsend RM (2007) Using repayment data to test across models of joint liability lending. Econ J 117:F11-F51.
- 10. Townsend RM (2011) Financial Systems in Developing Economies: Growth, Inequality, and Policy Evaluation in Thailand (Oxford Univ Press, Oxford).
- 11. Yang L (2004) Unequal provinces but equal families? An analysis of inequality and migration in Thailand. PhD dissertation (Univ of Chicago, Chicago).
- 12. Kermel-Torrès D (2004) Atlas of Thailand: Spatial Structures and Development (Silkworm Books, Chiang Mai, Thailand).
- 13. Castro R, Clementi GL, Macdonald G (2009) Legal institutions, sectoral heterogeneity, and economic development. Rev Econ Stud 76:529-561.
- Greenwood J, Sanchez JM, Wang C (2010) Financing development: The role of information costs. Am Econ Rev 100:1875-1891.
- Cole HL, Greenwood J, Sanchez JM (2016) Why doesn't technology flow from rich to poor countries? Econometrica 84:1477-1521.
- Spear SE, Srivastava S (1987) On repeated moral hazard with discounting. Rev Econ

Thailand, an emerging market country, and emphasized quantitatively large flows of capital and migration of labor from rural to urban areas and that differential development of regions can be due to variation in financial obstacles alone. We have joined in a developing country context what have been largely two distinct literatures, macro development and micro development, and combined them into a coherent whole. It is our view that the macro development literature needs to take into account the implicit and explicit contracts we see on the ground and the micro development literature needs to take into account general equilibrium, economy-wide effects of interventions. This is what we have accomplished in this paper, in a particular context, although we believe that the methods developed here will be applicable more generally.

ACKNOWLEDGMENTS. We thank Fernando Aragon, Paco Buera, Hal Cole, Matthias Doepke, Mike Golosov, Cynthia Kinnan, Michael Peters, Tommaso Porzio, Yuliy Sannikov, Martin Schneider, Yongs Shin, Ivan Werning, and seminar participants at various institutions for very useful comments. Hoai-Luu Nguyen, Hong Ru, Suparit Suwanik, and Xiaowen Yang provided outstanding research assistance. For sharing their code, we thank Paco Buera and Yongs Shin. R.M.T. gratefully acknowledges research support from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Grant R01 HD027638, the research initiative Private Enterprise Development in Low-Income Countries, a program funded jointly by the Centre for Economic Policy Research and the Department for International Development under Grant MRG002_1255, the Consortium on Financial Systems and Poverty at the University of Chicago (funded by the Bill & Melinda Gates Foundation), and the Thailand Research Fund and Bank of Thailand. This work was completed in part with resources provided by the University of Chicago Research Computing Center.

- 17. Thomas J. Worrall T (1988) Self-enforcing wage contracts. Rev Econ Stud 55: 541-54.
- 18. Thomas J. Worrall T (1990) Income fluctuation and asymmetric information: An example of a repeated principal-agent problem. J Econ Theor 51:367-390
- 19. Phelan C, Townsend RM (1991) Computing multi-period, information-constrained optima, Rev Econ Stud 58:853-881.
- 20. Evans D, Jovanovic B (1989) An estimated model of entrepreneurial choice under liquidity constraints. J Polit Econ 97:808-827
- 21. Holtz-Eakin D, Joulfaian D, Rosen HS (1994) Sticking it out: Entrepreneurial survival and liquidity constraints. J Polit Econ 102:53-75
- 22. Banerjee AV, Duflo E (2005) Growth theory through the lens of development economics. Handbook of Economic Growth, Handbooks in Economics, eds Aghion P, Durlauf S (Elsevier, New York), Vol 1, Part A, pp 473-552.
- 23. Buera FJ, Shin Y (2013) Financial frictions and the persistence of history: A quantitative exploration. J Polit Econ 121:221-272.
- 24. Moll B (2014) Productivity losses from financial frictions: Can self-financing undo capital misallocation? Am Econ Rev 104:3186-3221.
- 25. Midrigan V, Xu DY (2014) Finance and misallocation: Evidence from plant-level data. Am Econ Rev 104:422-458.
- 26. Buera FJ, Kaboski JP, Shin Y (2011) Finance and development: A tale of two sectors. Am Econ Rev 101:1964-2002.
- 27. Banerjee AV, Moll B (2010) Why does misallocation persist? Am Econ J Macroecon 2:189-206.
- 28. Morten M (2013) Temporary migration and endogenous risk sharing in village India. NBER Working Paper 22159 (National Bureau of Economic Research, Cambridge, MA).
- Aiyagari SR (1994) Uninsured idiosyncratic risk and aggregate saving. Q J Econ 109:659-684.
- 30. Rogerson WP (1985) Repeated moral hazard. Econometrica 53:69-76.
- 31. Ligon E (1998) Risk sharing and information in village economics. Rev Econ Stud 65:847-864
- 32. Golosov M, Kocherlakota N, Tsyvinski A (2003) Optimal indirect and capital taxation. Rev Econ Stud 70:569-587.
- 33. Paulson AL. Townsend R (2004) Entrepreneurship and financial constraints in Thailand. J Corp Finance 10:229-262.

Supporting Information Appendix

A. More Details on Townsend Thai Data

All studies we describe in Section 1 use data from the Townsend Thai project which first started collecting data in 1997. The initial sample in 1997 was a stratified clustered selection of villages, four randomly selected villages in each tambon (a small sub-county), 16 tambons chosen at random with a province, and four provinces deliberately selected based on a pre-existing socio-economic income and expenditure survey, the Thai SES survey, to take advantage of existing government data. Two provinces were selected in the relatively poor agrarian Northeast and two in the developed Central region near Bangkok, to make sure we had cross-sectional variety of stages of development. Within each village, households were selected at random from rosters held by the Headman. In addition to the household survey, with 2,880 households, there are instruments for the headman in each of the 192 villages, 161 village-level institutions, 262 Bank for Agriculture and Agricultural Cooperatives (BAAC) joint liability groups, and 1,920 soil samples. The first collection of data was in April/May of 1997. With the unanticipated Thai financial crisis, and the goal of assessing the impact of this seemingly aggregate shock, we began in 1998 the first of many subsequent rural annual resurveys in 4 tambons (16 villages) in each of the original four provinces, chosen at random. The scale then expanded to more provinces, so as to be more nationally representative: Two provinces in the South in 2003 and two in the North in 2004. An urban baseline and subsequent annual resurveys were added beginning in 2006, in order to be able to compare urban neighborhoods to villages within each of the selected provinces. Finally, an intense monthly rural survey began in August of 1998 in a subsample of the original 1997 baseline, 16 villages and 960 households, half in the Central region and half in the Northeast, to get the details on labor supply, use of cash, crop production, and many other features that are only possible to get accurately with frequent recall, high frequency data. For additional information on the Townsend Thai Data, see (1).

B. More Details on Moral Hazard vs. Limited Commitment

This Appendix summarizes additional implications of moral hazard for individual choices and contrasts them with those of limited commitment. We relegated these to an Appendix because many of these, particularly for limited commitment, are already well understood from the existing literature.

Saving Behavior. We first present some analytic results that characterize differences in individual saving behavior in the two regimes. These are variants of well-known results in the literature.

Lemma 1 Let u(c,e) = U(c) - V(e). Solutions to the optimal contracting problem under moral hazard Eq. (2)-Eq. (3), satisfy

$$U'(c_{it}) = \beta(1 + r_{t+1}) \mathbb{E}_{z,t} \left(\mathbb{E}_{\varepsilon,t} \frac{1}{U'(c_{it+1})} \right)^{-1}$$
 [5]

where $\mathbb{E}_{z,t}$ and $\mathbb{E}_{\varepsilon,t}$ denote the time t expectation over future values of z and ε .

This is a variant of the inverse Euler equation derived in (2), (3) and (4) among others. With a degenerate distribution for ability, z, our equation collapses to the standard inverse Euler equation. The reason our equation differs from the latter is that we have assumed that ability, z, is not insurable in the sense that asset payoffs are not contingent on the realization of z. Our equation is therefore a "hybrid" of an Euler equation in an incomplete markets setting and the inverse Euler equation under moral hazard.

If the incentive compatibility constraint Eq. (3) is binding, marginal utilities are not equalized across realizations of ε . One well known implication of Eq. (5) is that in this case[‡]

$$U'(c_{it}) < \beta(1 + r_{t+1})\mathbb{E}_{z,t}\mathbb{E}_{\varepsilon,t}U'(c_{it+1}).$$
 [6]

The implication of this inequality is that when the incentive constraint binds, individuals are saving constrained. It is important to note that such saving constraints are a feature of the optimal contract. The intuition is that under moral hazard there is an additional marginal cost of saving an extra dollar from period t to period t+1: in period t+1 an individual works less in response to any given compensation schedule. Therefore the optimal contract discourages savings whenever the incentive compatibility constraint Eq. (3) binds.

With limited commitment, the Euler equation is instead

$$U'(c_{it}) = \beta \mathbb{E}_{z,t} \left[U'(c_{it+1})(1 + r_{t+1}) + \nu_{it+1} \lambda \right]$$

where ν_{it+1} is the Lagrange multiplier on the collateral constraint Eq. (4). If this constraint binds, then

$$U'(c_{it}) > \beta(1 + r_{t+1}) \mathbb{E}_{z,t} U'(c_{it+1}).$$
 [7]

Contrasting Eq. (6) for moral hazard and Eq. (7) for limited commitment, we can see that in the moral hazard regime individuals are *savings constrained* and in the limited commitment regime, they are instead *borrowing constrained*. Finally, note that under limited commitment only the savings of entrepreneurs are distorted because only they face the collateral constraint Eq. (4). In contrast, under moral hazard the savings decision of both entrepreneurs and workers is distorted because both face the incentive compatibility constraint Eq. (3). As discussed in the main text, this is reflected in the equilibrium interest rate. Individual savings behavior is one prediction in which the two regimes differ dramatically.

Proof of Lemma 1: The Lagrangean for Eq. (2) to Eq. (3) is

$$\begin{split} \mathcal{L} &= \sum_{\varepsilon} p(\varepsilon|e) \left\{ U(c(\varepsilon)) - V(e) + \beta \mathbb{E}_{z'} v[a'(\varepsilon), z'] \right\} \\ &+ \psi \left[(1+r)a + \sum_{\varepsilon} p(\varepsilon|e) \left\{ x[z\varepsilon f(k,\ell) - w\ell - (r+\delta)k] + (1-x)w\varepsilon \right\} - \sum_{\varepsilon} p(\varepsilon|e) \left\{ c(\varepsilon) + a'(\varepsilon) \right\} \right] \\ &+ \sum_{e,\hat{e},x} \mu(e,\hat{e},x) \left[\sum_{\varepsilon} p(\varepsilon|e) \left\{ U(c(\varepsilon)) - V(e) + \beta \mathbb{E}_{z'} v[a'(\varepsilon),z'] \right\} - \sum_{\varepsilon} p(\varepsilon|\hat{e}) \left\{ U(c(\varepsilon)) - V(\hat{e}) + \beta \mathbb{E}_{z'} v[a'(\varepsilon),z'] \right\} \right] \end{split}$$

The first-order conditions with respect to $c(\varepsilon)$ and $a'(\varepsilon)$ are

$$\psi p(\varepsilon|e) = p(\varepsilon|e)U'(c(\varepsilon)) + \sum_{e,\hat{e},x} \mu(e,\hat{e},x)[p(\varepsilon|e) - p(\varepsilon|\hat{e})]U'(c(\varepsilon))$$

$$\psi p(\varepsilon|e) = p(\varepsilon|e)\beta \mathbb{E}_{z'}v_a(a'(\varepsilon),z') + \sum_{e,\hat{e},x} \mu(e,\hat{e},x)[p(\varepsilon|e) - p(\varepsilon|\hat{e})]\beta \mathbb{E}_{z'}v_a(a'(\varepsilon),z')$$

Rearranging

$$\frac{p(\varepsilon|e)}{U'(c(\varepsilon))} = \frac{1}{\psi} \left[p(\varepsilon|e) + \sum_{e,\hat{e},x} \mu(e,\hat{e},x) [p(\varepsilon|e) - p(\varepsilon|\hat{e})] \right]$$
 [8]

$$\frac{p(\varepsilon|e)}{\beta \mathbb{E}_{z'} v_a(a'(\varepsilon), z')} = \frac{1}{\psi} \left[p(\varepsilon|e) + \sum_{e, \hat{e}, x} \mu(e, \hat{e}, x) [p(\varepsilon|e) - p(\varepsilon|\hat{e})] \right]$$
[9]

Summing Eq. (8) over ε ,

$$\sum_{\varepsilon} \frac{p(\varepsilon|e)}{U'(c(\varepsilon))} = \frac{1}{\psi}$$

The envelope condition is

$$v_a(a,z) = \psi(1+r) = (1+r) \left(\sum_{\varepsilon} \frac{p(\varepsilon|e)}{U'(c(\varepsilon))} \right)^{-1}$$
 [10]

From Eq. (8) and Eq. (9)

$$U'(c(\varepsilon)) = \beta \mathbb{E}_{z'} v_a(a'(\varepsilon), z')$$
[11]

Combining Eq. (10) and Eq. (11) yields Eq. (5). \square

C. Accounting: The Intermediary and Capital Accumulation

The purpose of this section is to spell out in detail how capital accumulation works in our economy. For simplicity we impose from the get-go that the economy is in a stationary equilibrium so that the interest rate is constant at value r. The intermediary has two sources of income: it contracts with households and may obtain some income from that activity; it also owns and accumulates capital and rents that capital to households. The intermediary's total income stream in period t is

$$\int_0^1 (y_{it} - c_{it})di + RK_t - I_t$$
 [12]

where y_{it} is the income stream generated by household i, c_{it} is the consumption assigned to household i under the optimal contract, R is the rental rate of capital, K_t is the capital stock and I_t is investment. Capital accumulates according to

$$K_{t+1} = I_t + (1 - \delta)K_t$$

where δ is the depreciation rate. The intermediary maximizes the PDV of the income stream in Eq. (12):

$$V_0 = \underbrace{\sum_{t=0}^{\infty} \frac{1}{(1+r)^t} \int_0^1 (y_{it} - c_{it}) di}_{:=Q_0} + \sum_{t=0}^{\infty} \frac{1}{(1+r)^t} (RK_t - I_t)$$

Using standard arguments, this value equals $V_0 = Q_0 + (1+r)K_0$ and the rental rate of capital equals $R = r + \delta$ to prevent arbitrage. The same relation also holds at all other times t

$$V_t = Q_t + (1+r)K_t, \quad Q_t := \sum_{s=t}^{\infty} \frac{1}{(1+r)^{s-t}} \int_0^1 (y_{is} - c_{is})di$$

The interpretation is that Q_t is the equity value of contracting with households, $(1+r)K_t$ is the equity value from owning and renting out capital and the total equity value V_t is the sum of the two (the presence of the term rK_t is due to an awkward timing issue in discrete time – in continuous time we would simply have $V_t = Q_t + K_t$). We assume that there is free entry into the intermediary market. Free entry implies that the intermediary's total equity value V_t equals zero at each point in time:

$$0 = Q_t + (1+r)K_t [13]$$

Note that the intermediary's contracting problem can conveniently be broken up into a continuum of sub-problems, namely those of contracting with each individual household i. In particular

$$Q_t = \int_0^1 q_{it} di, \qquad q_{it} := \mathbb{E}_t \sum_{s=t}^\infty \frac{y_{is} - c_{is}}{(1+r)^{s-t}}$$
 [14]

The variable q_{it} has the interpretation of the equity value that the intermediary attaches to contracting with a particular household i. As we show below, it is convenient to formulate the problem as that of maximizing q_{it} . It is also useful to keep track of each household's wealth a_{it} . As explained above, given a_{i0} , it evolves according to Eq. (1). In present value form

$$0 = \sum_{s=t}^{\infty} \frac{y_{is} - c_{is}}{(1+r)^{s-t}} + (1+r)a_{it}.$$

From the definition of q_{it} in Eq. (14) therefore

$$0 = q_{it} + (1+r)a_{it} [15]$$

This says that the sum of the equity value of the intermediary q_{it} and the net worth of the household it contracts with a_{it} has to be zero (the presence of the term ra_{it} is again due to an awkward discrete-time timing issue – in continuous time the analogue of condition Eq. (15) is simply $q_{it} + a_{it} = 0$). That is, whatever is the intermediary's gain is the household's loss. Note that, while aggregate Q_t is fixed in a stationary equilibrium, the individual q_{it} 's move around over time depending on the sequence of idiosyncratic shocks experienced by households. Eq. (15) also implies another useful property. From the zero-profit condition Eq. (13), we have

$$\int_0^1 a_{it} di = K_t$$

i.e. total household wealth in the economy must equal the total capital stock. When solving for the economy's equilibrium in practice, this is the capital market clearing condition we impose.

D. From Promised Utility to Wealth: Inverting the Pareto Frontier

We here show how our formulation of the contracting problem under moral hazard with wealth as the relevant state variable, Eq. (2) to Eq. (3), is related to a more familiar formulation of an optimal dynamic contracting problem under private information with promised utility as the state variable. In particular, we show that there is optimal insurance against residual productivity shocks, ε , (in a sense defined precisely momentarily) but no insurance against ability shocks, z. Our key result is Proposition 1 below which shows that, for the special case in which there are only residual productivity shocks and ability is deterministic,*** our formulation is equivalent to an optimal dynamic contracting problem. That is, there is optimal insurance against residual productivity shocks (subject to incentive compatibility) in this special case. The more general formulation Eq. (2) to Eq. (3) is then simply this special case with uninsurable ability shocks "added on top".

Equivalence for Special Case with only Residual Productivity (ε) but no Ability (z) Shocks.

Standard Formulation with Promised Utility. As we showed in Section C the intermediary's problem can be conveniently broken into a continuum of sub-problem, namely to maximize the equity value q_{it} from contracting with a particular household i. We here consider this problem for one particular household i. For simplicity, we drop the i subscript. The problem is:

$$q_t = \mathbb{E}_t \sum_{s=t}^{\infty} \frac{y_s - c_s}{(1+r)^{s-t}}$$
 [16]

subject to providing promised utility of at least W_t to the household

$$\mathbb{E}_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} u(c_{\tau}, e_{\tau}) \ge W_t$$

and an incentive compatibility constraint for the household. Assume that there are only residual productivity shocks (ε) and that entrepreneurial ability (z) is deterministic and fixed over time. Without loss of generality, set z=1. To simplify notation, define by $Y(\varepsilon,e)$ an household's income given optimal choices for capital, labor and occupation

$$Y(\varepsilon,e) = \max_{x,k,\ell} \left\{ x [\varepsilon f(k,\ell) - w\ell - (r+\delta)k] + (1-x)w\varepsilon \right\}.$$

If $W_t = W$ is promised to the household, the intermediary's value $q_t = Q(W_t)$ satisfies the Bellman equation

$$Q(W) = \max_{e,c(\varepsilon),W'(\varepsilon)} \sum_{\varepsilon} p(\varepsilon|e) \left\{ Y(\varepsilon,e) - c(\varepsilon) + (1+r)^{-1} Q[W'(\varepsilon)] \right\} \quad \text{s.t.}$$

$$\sum_{\varepsilon} p(\varepsilon|e) \left\{ u[c(\varepsilon),e] + \beta W'(\varepsilon) \right\} \ge \sum_{\varepsilon} p(\varepsilon|\hat{e}) \left\{ u[c(\varepsilon),\hat{e}] + \beta W'(\varepsilon) \right\} \quad \forall e,\hat{e}$$

$$\sum_{\varepsilon} p(\varepsilon|e) \left\{ u[c(\varepsilon),e] + \beta W'(\varepsilon) \right\} = W.$$
[P1]

Equivalence: As explained in Section C, the intermediary's equity value q_t and the net worth of the household it contracts with satisfy Eq. (15): whatever is the intermediary's gain is the household's loss. The key idea is to use this relation to establish a useful equivalence result.

Proposition 1 Suppose the Pareto frontier Q(W) is decreasing at all values of promised utility, W, that are used as continuation values at some point in time. Then the following dynamic program is equivalent to Eq. (P1)

$$\begin{split} v(a) &= \max_{e,c(\varepsilon),a'(\varepsilon)} \sum_{\varepsilon} p(\varepsilon|e) \left\{ u[c(\varepsilon),e] + \beta v[a'(\varepsilon)] \right\} \quad s.t. \\ &\sum_{\varepsilon} p(\varepsilon|e) \left\{ u[c(\varepsilon),e] + \beta v[a'(\varepsilon)] \right\} \geq \sum_{\varepsilon} p(\varepsilon|\hat{e}) \left\{ u[c(\varepsilon),\hat{e}] + \beta v[a'(\varepsilon)] \right\} \quad \forall e,\hat{e} \\ &\sum_{\varepsilon} p(\varepsilon|e) \left\{ c(\varepsilon) + a'(\varepsilon) \right\} = \sum_{\varepsilon} p(\varepsilon|e) Y(\varepsilon,e) + (1+r)a \end{split}$$

Proof: The proof has two steps.

Step 1: write down dual to Eq. (P1). Because the Pareto frontier Q(W) is decreasing at the W under consideration, we can write the last constraint of Eq. (P1) (promise-keeping) with a (weak) inequality rather than an inequality. This does not change the allocation chosen under the optimal contract. †† The dual to Eq. (P1) is then to maximize

$$\begin{split} V(q) &= \max_{e,c(\varepsilon),q'(\varepsilon)} \ \sum_{\varepsilon} p(\varepsilon|e) \left\{ u[c(\varepsilon),e] + \beta V[q'(\varepsilon)] \right\} \quad \text{s.t.} \\ &\sum_{\varepsilon} p(\varepsilon|e) \left\{ u[c(\varepsilon),e] + \beta V[q'(\varepsilon)] \right\} \geq \sum_{\varepsilon} p(\varepsilon|\hat{e}) \left\{ u[c(\varepsilon),\hat{e}] + \beta V[q'(\varepsilon)] \right\} \ \forall e,\hat{e} \\ &\sum_{\varepsilon} p(\varepsilon|e) \left\{ Y(\varepsilon,e) - c(\varepsilon) + (1+r)^{-1} q'(\varepsilon) \right\} \geq q. \end{split}$$

where q = Q(W). Because Q(W) is decreasing, its inverse V(q) is also decreasing. We can therefore replace the inequality in the last constraint of Eq. (P1') with an equality.

Step 2: express dual in terms of asset position rather than profits. The second step is a simple change of variables. In particular, we use the present-value budget constraint Eq. (15) to express the problem in terms of assets rather than the PDV of intermediary profits. To this end, let

$$q = -a(1+r), \quad q'(\varepsilon) = -a'(\varepsilon)(1+r). \tag{17}$$

Substituting Eq. (17) into Eq. (P1') and defining v(a) = V[-(1+r)a], yields Eq. (P2) and proves the desired result.

General Case: Comparison of Our Formulation with Optimal Contract. Optimal Contracting Problem. Consider the following problem: maximize intermediary profits

$$Q_t = \mathbb{E}_t \sum_{\tau=t}^{\infty} \frac{y_{\tau} - c_{\tau}}{\prod_{s=t}^{\tau} (1 + r_s)}$$

subject to providing promised utility of at least W_t to the household

$$\mathbb{E}_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} u(c_{\tau}, e_{\tau}) \ge W_t$$

and an incentive compatibility constraint for the household. If $W_t = W$ is promised to the household and its current ability shock is $z_t = z$, the intermediary's value $q_t = Q(W_t, z_t)$ satisfies the Bellman equation

$$Q(W,z) = \max_{e,c(\varepsilon),W'(\varepsilon)} \sum_{\varepsilon} p(\varepsilon|e) \left\{ Y(\varepsilon,z,e) - c(\varepsilon) + (1+r)^{-1} \mathbb{E}_{z'} Q[W'(\varepsilon),z'] \right\} \quad \text{s.t.}$$

$$\sum_{\varepsilon} p(\varepsilon|e) \left\{ u[c(\varepsilon),e] + \beta W'(\varepsilon) \right\} \geq \sum_{\varepsilon} p(\varepsilon|\hat{e}) \left\{ u[c(\varepsilon),\hat{e}] + \beta W'(\varepsilon) \right\} \quad \forall e,\hat{e}$$

$$[P3]$$
 4 | www.pnas.org/cgi/doi/12_10 Psiphas \$\frac{1}{2} \frac{1}{2} \fr

where

$$Y(\varepsilon, z, e) = \max_{x, k, \ell} \left\{ x[z\varepsilon f(k, \ell) - w\ell - (r + \delta)k] + (1 - x)w\varepsilon \right\}$$

Compare this formulation to the one used in the main text, Eq. (2) –Eq. (3). Note that under the optimal contract Eq. (P3), utility $W(\varepsilon)$ cannot depend on z'. That is, the principal absorbs all the gains or losses from z shocks. In contrast, in the formulation in the main text, Eq. (2)–Eq. (3), it is the reverse: the agent's utility varies with z' and its wealth does not. Since agent wealth is a negative scalar multiple of the principal's utility (profits) this means that the principal's welfare is made independent of z'. Exactly the reverse as in Eq. (P3). To see this even more clearly, shut down residual productivity shocks, $\varepsilon = 1$ with probability one. Then the formulation in the main text, Eq. (2)–Eq. (3) is an income fluctuations problem, like (5), (6) or other Bewley models. But Eq. (P3) is just perfect insurance, with a risk neutral principal.

E. Numerical Solution: Optimal Contract with Lotteries

When solving the optimal contract under moral hazard Eq. (2)–Eq. (3) numerically, we allow for lotteries as in (7). This section formulates the associated dynamic program.

Simplification Capital, labor and occupational choice only enter the problem in Eq. (2) through the budget constraint in Eq. (2). We can make use of this fact to reduce the number of choice variables in Eq. (2) from six $(e, x, k, \ell, c(\varepsilon), a'(\varepsilon))$ to three $(e, c(\varepsilon), a'(\varepsilon))$.

Entrepreneurs solve the following profit maximization problem.

$$\bar{\Pi}(z,e;w,r) = \max_{k,\ell} \ \bar{\varepsilon}(e)zf(k,\ell) - (r+\delta)k - w\ell, \quad \bar{\varepsilon}(e) \equiv \sum_{\varepsilon} p(\varepsilon|e)\varepsilon.$$

Note in particular that capital k and labor ℓ are chosen before residual productivity ε is realized (see the timeline in Figure 1). With the functional form assumption in Eq. (27), the first-order conditions are

$$\alpha z \bar{\varepsilon}(e) k^{\alpha - 1} \ell^{\gamma} = r + \delta, \quad \gamma z \bar{\varepsilon}(e) k^{\alpha} \ell^{\gamma - 1} = w$$

These can be solved for the optimal factor demands given effort, e, talent, z and factor prices w and r.

$$k^*(e,z;w,r) = (\bar{\varepsilon}(e)z)^{\frac{1}{1-\alpha-\gamma}} \left(\frac{\alpha}{r+\delta}\right)^{\frac{1-\gamma}{1-\alpha-\gamma}} \left(\frac{\gamma}{w}\right)^{\frac{\gamma}{1-\alpha-\gamma}}$$

$$\ell^*(e,z;w,r) = (\bar{\varepsilon}(e)z)^{\frac{1}{1-\alpha-\gamma}} \left(\frac{\alpha}{r+\delta}\right)^{\frac{\alpha}{1-\alpha-\gamma}} \left(\frac{\gamma}{w}\right)^{\frac{1-\alpha}{1-\alpha-\gamma}}$$

Realized (as opposed to expected) profits are

$$\Pi(\varepsilon, z, e; w, r) = z\varepsilon k(e, z; w, r)^{\alpha} \ell(e, z; w, r)^{\gamma} - w\ell(e, z; w, r) - (r + \delta)k(e, z; w, r)$$

Substituting back in from the factor demands, realized profits are

$$\Pi(\varepsilon, z, e; w, r) = \left(\frac{\varepsilon}{\bar{\varepsilon}(e)} - \alpha - \gamma\right) (z\bar{\varepsilon}(e))^{\frac{1}{1 - \alpha - \gamma}} \left(\frac{\alpha}{r + \delta}\right)^{\frac{\alpha}{1 - \alpha - \gamma}} \left(\frac{\gamma}{w}\right)^{\frac{\gamma}{1 - \alpha - \gamma}}$$
[18]

and expected profits are

$$\bar{\Pi}(z, e; w, r) = (1 - \alpha - \gamma) \left(z\bar{\varepsilon}(e) \right)^{\frac{1}{1 - \alpha - \gamma}} \left(\frac{\alpha}{r + \delta} \right)^{\frac{\alpha}{1 - \alpha - \gamma}} \left(\frac{\gamma}{w} \right)^{\frac{\gamma}{1 - \alpha - \gamma}}$$
[19]

The optimal occupational choice satisfies (note that agents choose an occupation before ε is realized):

$$x(z,e;w,r) = \arg\max_{x} \left\{ x \bar{\Pi}(z,e;w,r) + (1-x) w \bar{\varepsilon}(e) \right\}$$

Given a realization of ε , those who choose to be entrepreneurs realize profits of Eq. (18) and those who choose to be workers realize a labor income of $w\varepsilon$. Therefore, realized (as opposed to expected) surplus is

$$S(\varepsilon, z, e; w, r) = x(z, e; w, r)\Pi(\varepsilon, z, e; w, r) + (1 - x(e, z; w, r))w\varepsilon.$$

Using these simplifications, the budget constraint in Eq. (2) can then be written as

$$\sum_{\varepsilon} p(\varepsilon|e) \left\{ c(\varepsilon) + a'(\varepsilon) \right\} = \sum_{\varepsilon} p(\varepsilon|e) S(\varepsilon, z, e; w, r) + (1+r)a.$$
 [20]

As already noted, the advantage of this formulation is that it features three rather than six choice variables.

Linear Programming Representation A contract between the intermediary and a household specifies a probability distribution over the vector

$$(c, \varepsilon, e, a')$$

given (a, z). Denote this probability distribution by $\pi(c, \varepsilon, e, a'|a, z)$. The associated dynamic program then is a linear programming problem where the choice variables are the probabilities $\pi(c, \varepsilon, e, a'|a, z)$:

$$v(a,z) = \max_{\pi(c,\varepsilon,e,a'|a,z)} \sum_{c,\varepsilon,e,a'} \pi(c,\varepsilon,e,a'|a,z) \left\{ u(c,e) + \beta \mathbb{E}v(a',z') \right\} \quad \text{s.t.}$$
 [21]

$$\sum_{c,\varepsilon,e,a'} \pi(c,\varepsilon,e,a'|a,z) \left\{ a'+c \right\} = \sum_{c,\varepsilon,e,a'} \pi(c,\varepsilon,e,a'|a,z) S(\varepsilon,e,z;w,r) + (1+r)a.$$
 [22]

$$\sum_{c,\varepsilon,a'} \pi(c,\varepsilon,e,a'|a,z) \left\{ u(c,e) + \beta \mathbb{E} v(a',z') \right\} \geq \sum_{c,\varepsilon,a'} \pi(c,\varepsilon,e,a'|a,z) \frac{p(\varepsilon|\hat{e})}{p(\varepsilon|e)} \left\{ u(c,\hat{e}) + \beta \mathbb{E} v(a',z') \right\} \ \forall e,\hat{e} \in \mathbb{E} v(a',z')$$

$$\sum_{c,a'} \pi(c,\varepsilon,e,a'|a,z) = p(\varepsilon|e) \sum_{c,\varepsilon,a'} \pi(c,\varepsilon,e,a'|a,z), \quad \forall \varepsilon,e$$
 [23]

Eq. (22) is the analogue of Eq. (20). The set of constraints Eq. (23) are the Bayes consistency constraints. ‡‡

Bounds on Consumption Grid To solve the optimal contracting problem, we follow (8) and (7) and constrain all variables to lie on discrete grids. In order for the discretized dynamic programming problem to be a good approximation to our original problem, it turns out to be important to work with relatively fine grids, particularly for consumption. To achieve this with a limited number of grid points, we choose as tight an upper bound on the consumption grid as possible and adjust it when prices change. In particular, given (w, r), the upper bound is chosen as

$$\bar{c}(w,r) = r\bar{a} + \max\{\Pi(\varepsilon^H, \bar{z}, \bar{e}; w, r), w\varepsilon^H\},\$$

for any given (w,r), where $\underline{a}, \overline{a}$ and so on are the lower and upper bounds on the grids for wealth and other variables, and where the profit function Π is defined in Eq. (18). These are the minimum and maximum levels of consumption that can be sustained if the agent were to choose $a'(\varepsilon) = a$ in Eq. (2). Note that this bound is tighter than what is typically chosen in the literature. After solving the dynamic programming problem, we verify that consumption never hits the upper bound. Table 1 lists our choices of grids.

Table 1. Variable Grids

Variable	grid size	grid range
Wealth, a	30	[0, 200]
Ability, z	15	$[\underline{z}, \overline{z}]$
Consumption, c	30	$[0.00001, \bar{c}(w,r)]$
Efficiency, ε	2	$[\varepsilon^L, \varepsilon^H]$
Effort, e	2	[0.1, 1]

F. Calibration

This Appendix discusses the functional forms and our calibration.

 $\begin{tabular}{ll} \textbf{Functional forms} & We assume that utility is separable and isoelastic \\ \end{tabular}$

$$u(c,e) = U(c) - V(e), \quad U(c) = \frac{c^{1-\sigma}}{1-\sigma}, \quad V(e) = \chi \frac{e^{1+1/\varphi}}{1+1/\varphi},$$
[26]

and that effort, e, can take values in some bounded interval $[\underline{e}, \overline{e}]$. The parameter σ is the inverse of the intertemporal elasticity of substitution and also the coefficient of relative risk aversion. The parameter φ is the Frisch elasticity of labor

supply. §§ The production function is Cobb-Douglas

$$\varepsilon z f(k, \ell) = \varepsilon z k^{\alpha} \ell^{\gamma}. \tag{27}$$

We assume that $\alpha + \gamma < 1$ so that entrepreneurs have a limited span of control and positive profits. We assume the following transition process $\mu(z'|z)$ for entrepreneurial ability following (10) and (11): with probability ρ a household keeps its current ability z; with probability $1 - \rho$ it draws a new entrepreneurial ability from a discretized version of a truncated Pareto distribution whose CDF is

$$\Psi(z) = \frac{1 - (z/\underline{z})^{-\zeta}}{1 - (\overline{z}/\underline{z})^{-\zeta}},$$

where \underline{z} and \bar{z} are the lower and upper bounds on ability. We further assume that residual productivity takes two possible values $\varepsilon \in \{\varepsilon^L, \varepsilon^H\}$ and that the probability of the good draw

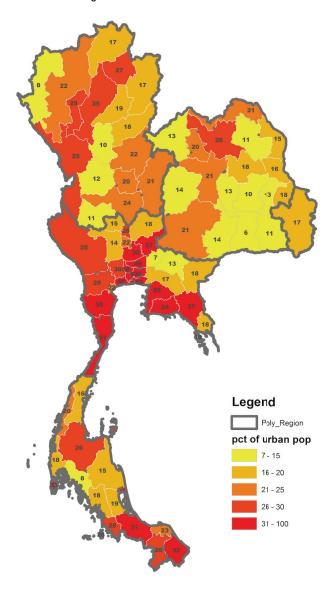
^{§§}Our numerical results were computed using the separable utility function in Eq. (26). It is well-known that in moral hazard problems, the functional form of the utility function can be important, in particular whether it is separable. To explore this, we have also computed results for the case where the utility function takes the non-separable form proposed by (9), i.e. there is no wealth effect. This matters for some results but not for others. For example, the occupational choice patterns in the MH regime are now different because there is no longer a wealth effect making rich individuals less likely to exert effort and hence less likely to be entrepreneurs. It should also be relatively easy to compute results for alternative (say CES) production functions, and talent and residual productivity distributions, but we do not have any strong reasons to believe that these would yield different results.

[¶] The probability distribution of z' conditional on z is therefore $\mu(z'|z) = \rho\delta(z'-z) + (1-\rho)\psi(z')$ where $\delta(\cdot-z)$ is the Dirac delta function centered at z and $\psi(z) = \Psi'(z)$ is the PDF corresponding to Ψ .

depends on effort as follows:

$$p(\varepsilon^H|e) = (1-\theta)\frac{1}{2} + \theta \frac{e-\underline{e}}{\overline{e}-\underline{e}}.$$

The parameter $\theta \in (0,1)$ controls the sensitivity of the residual productivity distribution with respect to effort (and recall that \underline{e} and \overline{e} are the lower and upper bounds on effort). Note that under full insurance against ε , what matters for the incentive of a household as agent to exert effort is only θ relative to the disutility parameter χ . That is, since χ scales the marginal cost of effort, and θ scales the marginal benefit, what matters is the ratio χ/θ .


Calibrated Parameter Values Table 2 summarizes the parameter values we use in our numerical experiments. We split the parameter values into two groups, corresponding to panels A and B in the table. Those in the first group (panel A) are taken from other studies. Those in the second group (panel B) are internally calibrated with a mean squared error metric against regional aggregates, as we describe below. This division has in part to do with the confidence we can place in earlier estimates in the literature and our desire to calibrate ourselves key parameters that have to do with the damage caused by the various financial frictions. We also wanted to limit the number of free parameters to no more than the moments in the data we try to fit.***

Consider first the parameters in panel A. The preference parameters β, φ are set to standard values in the literature.^{†††} The coefficients on capital and labor are 0.3 and 0.4, coming from those in (14) and (17). This implies returns to scale equal to $\alpha + \gamma = 0.7$ which is close to values considered in the literature.^{‡‡‡} The one-year depreciation rate is set at $\delta = 0.08$.

Two other parameters that are given here, \underline{z} and ε^H , are normalizations that take on meaning when their counterpart is calibrated below. Specifically the lower bound on entrepreneurial talent is set to $\underline{z}=1$ and the upper bound on talent is calibrated below; likewise we set the value of the high residual productivity draw to $\varepsilon^H=2$, and the lower productivity draw is calibrated below. Finally we set the population fraction in urban areas to $\vartheta=.3$. This number comes from the Housing and Population Census of Thailand for the year 2000 which reports an urban population share of .31 and we rounded this number consistent with grids on the fraction ϑ we have been using.

This aggregate number naturally masks a fair amount of heterogeneity in urban population shares across geographic areas. Figure 2 plots the percent of the population living in urban areas for different Thai provinces. Urbanization rates are lowest in provinces in the country's Northeast. But note that even in provinces with very low urbanization rates, some percentage of individuals live in urban areas, i.e. there is no province in which zero percent of the population live in urban areas. Conversely, there is only one province (Bangkok) which is 100 percent urban. For context see Figure 3 of the Townsend Thai surveys denoting in detail for the province of Lopburi both urban and rural areas selected.

Fig. 2. Urbanization Across Thai Provinces

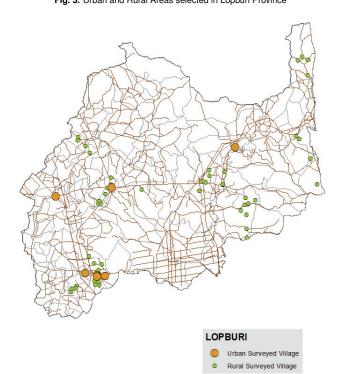
^{***} Note that our model is highly nonlinear so counting parameters and equations is not the correct metric (as it would be for a set of linear equations). We were nevertheless worried about overfitting.

 $^{^{\}dagger\dagger\dagger}$ Perhaps the most challenging among these is the Frisch elasticity φ . For instance (19) argues that a range of 1/2 to 4 covers most values that either micro- and macroeconomists would consider reasonable ($\varphi=4$ corresponds to the value in (20)). (18) find even lower values in direct use of the monthly labor data.

^{‡‡‡}For example, (10) and (11) set returns to scale equal to 0.79.

Table 2. Parameter Values in Benchmark Economy

A. Parameters based on estimates from Thailand (and other studies)


Parameter	Value	Description	Source
β	1.09^{-1}	discount factor	set to deliver Thai \boldsymbol{r}
arphi	1	Frisch elasticity of effort supply	KT, PTK, BCTY
α	0.3	exponent on capital in production function	PT1, PT2, BBT
γ	0.4	exponent on labor in production function	PT1, PT2
δ	0.08	depreciation rate	ST
ϑ	0.3	fraction of population in urban areas	Thai Population Census

B. Parameters Calibrated to Meso Data

		B. Farameters Camprated to Meso Data
Parameter	Value	Description
σ	2.30	inverse of intertemporal elasticity of substitution
χ	0.89	disutility of labor
θ	0.44	sensitivity of residual productivity to effort
ε^L	0.19	value of low residual productivity draw
ρ	0.82	persistence of entrepreneurial talent
ζ	1.17	tail param. of talent distribution
$ar{z}$	4.71	upper bound on entrepreneurial talent
λ	1.80	tightness of collateral constraints

Notes: The table uses the following abbreviations for sources. PTK: (12), KT: (13), PT1: (14), PT2: (15), ST: (16), BBT: (17), BCTY: (18).

Fig. 3. Urban and Rural Areas selected in Lopburi Province

Table 3. Moments Targeted in Calibration

Moment	Data	Model
Aggregate rural income	0.254	0.382
Aggregate urban consumption	0.747	0.599
Aggregate rural consumption	0.430	0.451
Aggregate urban capital used in production	2.644	3.711
Aggregate rural capital used in production	1.323	0.787
Aggregate rural wealth rel to urban wealth	0.291	0.382
Urban entrepreneurship rate	0.58	0.507
Rural entrepreneurship rate	0.69	0.519

Notes: The first five moments are expressed as ratios to annual income in urban areas. The moments in the data are computed from the monthly data of the Townsend Thai project.

For our own calibration here we use a method of moments type estimation, that is find parameter values which minimize a weighted normalized difference between certain key regional aggregates in the model and the data. These are summarized in Table 3. We here provide a brief overview. More detail, including the objective function our procedure minimizes can be found at the end of this Appendix. The data for income, (nondurable) consumption, capital and wealth come from the monthly data of the Townsend Thai project, where we have complete financial accounts, as described earlier. The difference between capital and wealth (net worth) is that the former is machinery and equipment used in agricultural and business, excluding land whereas the latter covers all assets and all liabilities. We distinguish the central developed region from the less developed Northeast. Roughly, the variables in the data are anywhere from 75% to 4 times larger in the Central region (reported more precisely below). The means we analyze are time and household averages. Of course there are outliers which influence the means so we have winsorized all variables at the 95% level, except for capital, which has more extreme values, so we winsorized at the 90% level. As already discussed in the context of Figure 2, urbanization is higher in the Central region than in the Northeast. In the calibration

below we therefore use the Central region as a stand-in for urban areas and the Northeast as a stand-in for rural areas.

Of course neither the Central and Northeast regions are purely urban or rural and each province instead contains both urban and rural areas (see Figure 2). We have therefore also checked the numbers in the annual data of Townsend Thai data where we can split the sample according to whether households live in urban or rural areas (and not just according to province). The overall patterns are similar, though the urban-to-rural ratios are less amplified, with income, capital and wealth being between 34% and 68% higher in urban areas. These types of differentials also appear for income and consumption in the Socio-Economic Survey (SES).

The numbers for income, capital, and consumption in Table 3 are in nominal Thai baht and we convert to model units by normalizing by income in the Central (moral hazard) region, as we do in the model simulation. We also try to match only relative wealth, the ratio of Northeast (rural) to Central (urban) since we remain worried about the levels which as noted include land, something the model does not have. The percentage of entrepreneurs is from the annual urban vs rural resurveys (21) and requires no normalization. The percentages are high, and surprisingly higher in rural areas relative to urban (though rural includes farms). To summarize this discussion and calibration, and to report precise values, the eight moments we attempt to match are in Table 3.

A quick summary of the fitted values against the targets should include the fact that the ratio of rural to urban income is about 1/4 in the data and 1/3 in the model. §§§ Consumption in rural areas is close when comparing the model to the data, in urban areas less so. The capital to income ratio in the model is high relative to the data in the Central region and lower in the Northeast. Yet we do reasonably well with the relative wealth ratio, despite putting lower weight on this moment. We are somewhat underpredicting the level of enterprise, especially in rural areas (as anticipated). With the exception capital used in production, the model generated moments tend to understate the differentials in the monthly data, specifically for income, consumption, and wealth, but these same model model generated models are of a similar order of magnitude to the differentials in income and consumption in the urban/rural annual data (where wealth is unfortunately not well measured).

The best fitting parameter values are those in panel B of Table 2. The value for risk aversion $\sigma=2.3$ is in a reasonable range, in particular it is within the range estimated by (22) for Thailand. As noted earlier, under full insurance against ε only the ratio of labor disutility to the productivity of effort matters, namely $\tilde{\chi}=\chi/\theta$ matters and our calibrated value of 0.89/0.44=2.02 lies in the range usually considered in the literature.

Next consider the parameters governing the ability and residual productivity processes. The persistence of entrepreneurial talent is calibrated at $\rho=0.82$. This is consistent with empirical estimates (Gourio, 2008; Collard-Wexler, Asker and DeLoecker, 2011), and similar to the parameter value used by Midrigan and Xu (2014) (0.74, see their Table 2). We calibrate the tail parameter of the talent distribution to

 $\zeta=1.17$ which is only slightly higher than what would correspond to Zipf's law if the Pareto distribution were unbounded. The upper bound of talent \bar{z} is 4.7 times the lower bound \underline{z} . This talent range is in line with that typically considered in the literature (for example see 10, 11, although their Pareto distributions feature thinner tails).

Finally, for our benchmark numerical results, we calibrated the key parameter λ governing the tightness of the collateral constraints, equation Eq. (4), to $\lambda=1.80$. In our limited commitment economy, this results in an external finance to GDP ratio of 2.057 which is close to the values of the 2011 external finance to GDP ratios of Thailand (1.963) and China (2.033).¹⁷

Objective Function for Calibration. We here describe in more detail the procedure we use to arrive at the parameter values summarized in panel B of Table 2. We denote by $\Theta = (\sigma, \chi, \theta, \varepsilon^L, \rho, \zeta, \bar{z}, \lambda)$ the 8×1 vector or parameter values, by m the vector of moments in the data and by $d(\Theta)$ the vector of corresponding model-generated moments. We choose

$$\hat{\Theta} = \arg\min_{\Theta} F(\Theta)' \mathbf{\Omega} F(\Theta) \text{ where } F(\Theta) = \frac{d(\Theta) - m}{m}$$
[28]

where Ω is a 8×8 positive definite weighting matrix. The reason for rescaling $d(\Theta) - m$ by m is so as to make sure that different units across moments do not affect things too much. ¹⁸ For the weighting matrix Ω , we choose a diagonal matrix with diagonal elements $(\omega_1, ..., \omega_8)$ so that Eq. (28) becomes

$$\hat{\Theta} = \arg\min_{\Theta} \sum_{i=1}^{8} \omega_i F_i(\Theta)^2 = \sum_{i=1}^{8} \omega_i \left(\frac{d_i(\Theta)}{m_i} - 1 \right)^2$$

Our eight target moments are ordered as in Table 3. As discussed in the main text, we use the following weights

$$\omega_{1} = \omega \left(\frac{GDP^{LC}}{GDP^{MH}} \right) = 0.5$$

$$\omega_{2} = \omega \left(\frac{C^{MH}}{GDP^{MH}} \right) = 1$$

$$\omega_{3} = \omega \left(\frac{C^{LC}}{GDP^{MH}} \right) = 1$$

$$\omega_{4} = \omega \left(\frac{K^{MH}}{GDP^{MH}} \right) = 1$$

$$\omega_{5} = \omega \left(\frac{K^{LC}}{GDP^{MH}} \right) = 1$$

$$\omega_{6} = \omega \left(\frac{W^{LC}}{W^{MH}} \right) = 0.5$$

$$\omega_{7} = \omega \left(\%Entr.^{MH} \right) = 1$$

$$\omega_{8} = \omega \left(\%Entr.^{LC} \right) = 1$$

The minimized objective $F(\hat{\Theta})'\Omega F(\hat{\Theta})$ equals 0.3107 and the resulting moments $d(\hat{\Theta})$ and their counterparts in the data m are reported in Table 3.

^{\$\$\$\}text{The model has a hard time getting close and we backed off setting the weight on this to one in our calibration as it was driving other results.

The macroeconomics literature typically assumes that $\theta=1$ so that effort translates one for one into efficiency units of labor. In this case $\tilde{\chi}=\chi$ and only this utility shifter has to be calibrated. See for example (20) and (19) who use a similar value for $\tilde{\chi}$ as we do.

¹⁷These numbers are from (23). External finance is defined to be the sum of private credit, private bond market capitalization, and stock market capitalization. This definition follows (10). See also their footnote 9.

 $^{^{18}}$ We have also experimented with $F(\Theta)=\frac{d(\Theta)-m}{\sqrt{|d(\Theta)m|}}$ with very similar results.

We have chosen a standard macro calibration as is typical in the literature. We could potentially have done GMM estimation on one of our samples only. Though this would have allowed bootstrap standard errors of moments in the data, it would have masked the variation across alternative data sets we have featured. As one of our recurrent themes is big data, a more narrow focus seems inappropriate. Studies using multiple data sets typically put zero covariances in cross sample block-off-diagonal variables. The other part of GMM, derivatives of model generated moments with respect to parameter variation is reported in part in (24) though at a different set of benchmark parameter values. The important bottom line is that patterns in model-generated data are robust.

G. Supplementary Figures

Fig. 4. Borrowing and Lending

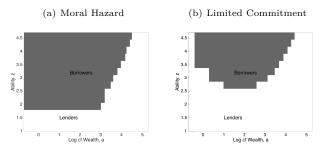
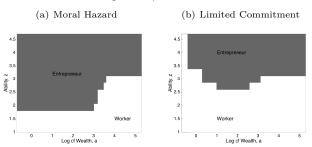
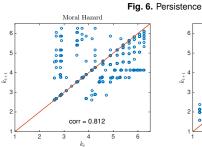
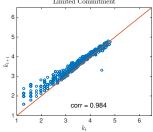





Fig. 5. Occupational Choice

- Townsend RM (2016) Village and Larger Economies: The Theory and Measurement of the Townsend Thai Project, Journal of Economic Perspectives 30(4):199-220.
- Rogerson WP (1985) Repeated moral hazard. Econometrica 53(1):69-76.
- 3. Ligon E (1998) Risk sharing and information in village economics. Review of Economic Studies 65(4):847-64.
- Golosov M, Kocherlakota N, Tsyvinski A (2003) Optimal indirect and capital taxation. Review of Economic Studies 70(3):569-587.
- Schechtman J, Escudero VLS (1977) Some results on 'an income fluctuation problem'. Journal of Economic Theory 16(2):151-166.
- Aiyagari SR (1994) Uninsured Idiosyncratic Risk and Aggregate Saving. The Quarterly Journal of Economics 109(3):659-684.
- Phelan C, Townsend RM (1991) Computing multi-period, information-constrained optima. Review of Economic Studies 58(5):853-81.
- Prescott EC, Townsend RM (1984) Pareto optima and competitive equilibria with adverse selection and moral hazard. Econometrica 52(1):21-45.
- Greenwood J, Hercowitz Z, Huffman GW (1988) Investment, capacity utilization, and the real business cycle. American Economic Review 78(3):402-17.
- Buera FJ, Kaboski JP, Shin Y (2011) Finance and development: A tale of two sectors. American ican Economic Review 101(5):1964-2002.
- 11. Buera FJ, Shin Y (2013) Financial frictions and the persistence of history: A quantitative exploration. Journal of Political Economy 121(2):221 - 272.
- Paulson AL, Townsend RM, Karaivanov A (2006) Distinguishing limited liability from moral hazard in a model of entrepreneurship. Journal of Political Economy 114(1):100-144.
- Karaivanov A, Townsend RM (2014) Dynamic financial constraints: Distinguishing mechanism design from exogenously incomplete regimes. Econometrica 82(3):887-959.
- Paweenawat A, Townsend RM (2012) Village economic accounts: Real and financial intertwined. The American Economic Review 102(3):441-446
- Pawasutipaisit A, Townsend RM (2011) Wealth accumulation and factors accounting for success. Journal of Econometrics 161(1):56-81.
- Samphantharak K, Townsend RM (2010) Households as corporate firms: an analysis of household finance using integrated household surveys and corporate financial accounting. (Cambridge University Press) No. 46.
- Banerjee A, Breza E, Townsend RM (2016) Productive Households, Access to Credit, and Business Growth: Evidence from Thai Villages, Work in progress.
- Bonhomme S, Chiappori PA, Townsend RM, Yamada H (2012) Sharing Wage Risk, (MIT),
- Shimer R (2010) Labor Markets and Business Cycles. (Princeton University Press).
- 20. Prescott EC (2004) Why do americans work so much more than europeans? Review (Jul):2-13
- de la Huerta A (2011) Microfinance in Rural and Urban Thailand: Policies, Social Ties and Successful Performance, (University of Chicago), Working paper.
- Chiappori PA, Samphantharak K, Schulhofer-Wohl S, Townsend RM (2014) Heterogeneity and risk sharing in village economies. Quantitative Economics 5:1-27.
- Beck T, Demirguc-Kunt A, Levine R (2000) A New Database on the Structure and Development of the Financial Sector. World Bank Economic Review 14(3):597-605.
- Moll B, Townsend RM, Zhorin V (2015) Economic Development and the Equilibrium Interaction of Financial Frictions, (Cowles Foundation), Conference paper "new perspectives in macroeconomics, development and international trade".

Risk and Return in Village Economies

Krislert Samphantharak and Robert M. Townsend* January 2017

Abstract This paper provides a theory-based empirical framework for understanding the risk and return on productive capital assets and their allocation across activities in an economy characterized by idiosyncratic and aggregate risk and thin formal markets for real and financial assets. We apply our framework to households running business enterprises in Thai villages with extensive networks, taking advantage of panel data: income, assets, consumption, gifts, and loans. We decompose risk and estimate the risk premia faced by households, distinguishing aggregate risk from idiosyncratic, potentially diversifiable risk. This distinction matters for estimating measures of underlying productivity and has important policy implications.

Keywords: Rate of Return, Aggregate Risk, Idiosyncratic Risk, Household Enterprise, Risk Sharing, Kinship Networks, Village Economy, Asset Pricing, CAPM, Risk Premium, Risk-Adjusted Return, Productivity

JEL Classification: D12, D13, G11, L23, L26, O12, O16, O17

^{*} Samphantharak: School of Global Policy and Strategy, University of California, San Diego, 9500 Gilman Drive #0519, La Jolla, CA 92093. Email krislert@ucsd.edu. Townsend: Department of Economics, Massachusetts Institute of Technology, 50 Ames Street, E17-230 Cambridge, Massachusetts 02142. Email: rtownsen@mit.edu. We would like to thank Giacomo De Giorgi, Lars Hansen, John Heaton, Ethan Ligon, Juhani Linnainmaa, Albert Park, Michael Peters, Scott Rozelle, Yasuyuki Sawada, Christopher Udry, seminar participants at various conferences and workshops, and anonymous reviewers. Research support from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) (grant number R01 HD027638), the research initiative 'Private Enterprise Development in Low-Income Countries' [(PEDL), a programme funded jointly by the Centre for Economic Policy Research (CEPR) and the Department for International Development (DFID), contract reference MRG002_1255], the John Templeton Foundation (grant number 12470), the Consortium on Financial Systems and Poverty at the University of Chicago (funded by Bill & Melinda Gates Foundation under grant number 51935), the Thailand Research Fund (TRF), and the Bank of Thailand are gratefully acknowledged. The views expressed are not necessarily those of CEPR or DFID.

1. Introduction

This paper provides a theoretical framework for understanding the allocation, risk, and return on productive real capital assets across activities and sectors in an economy characterized by idiosyncratic and aggregate risk and thin formal markets for real and financial assets. We apply our framework to households running farm and non-farm business enterprises in rural and semi-urban Thai villages with extensive family networks, taking advantage of unusual panel data, a monthly household survey over 156 months that measures income, assets, consumption, gifts, and loans.

Our framework allows us to quantify and decompose the risk faced by households running these business enterprises into two components: (1) aggregate, non-diversifiable risk, and (2) idiosyncratic, potentially diversifiable, risk. In particular, we are able to estimate the risk premia for the aggregate and the idiosyncratic risk components separately. We find that these two risk premia are quite different from each other, specifically, much higher for the aggregate risk than for the idiosyncratic risk. The distinction thus matters for backing out accurate measures of underlying productivity, risk-adjusted net returns, i.e., what remains after subtracting risk premia from expected, average returns.

Many households in our data face relatively more idiosyncratic risk but this risk carries a low risk premium. For these households, although the quantity of idiosyncratic risk can be high, not much of it is borne by the household as it is diversified away to a considerable degree. Thus these households have low risk premia and, with not much to subtract, net returns are relatively close to unadjusted returns. In contrast, other households in the data bear considerably more aggregate risk than idiosyncratic risk. As this aggregate risk cannot be diversified away, it bears a high risk premium. Thus unadjusted returns for such households can seem quite high, but the net returns after subtracting the risk premia, i.e., the measures of their latent productivity, are low.

This in turn has important policy implications. To the extent that a community faces aggregate risk, there is little more that could be done within the community itself to alleviate that risk. Aggregate risk is not entirely exogenous, however. Under our framework, aggregate risk is chosen optimally as sectors and activities within and across households, but beyond that there is little the community can do ex post. On the other hand, idiosyncratic risk is in principle diversifiable, hence one can think about potential policy improvements, e.g., improved ex ante insurance products within the community or ex post government transfers. Therefore, the distinction between aggregate and idiosyncratic risk is important for policies that are geared toward risk sharing.

Other policies addressing credit constraints, financial access, and occupation choice also hang on the distinction between aggregate and idiosyncratic risk. The relatively poor households in the village economies of our sample are engaged in production activities with high expected returns. Thus they might appear to be credit constrained in the usual, stereotypical sense. But these poor households face high aggregate risk, and also idiosyncratic risk. Adjusting for each of these risks appropriately, with differential risk premia, we find that poor households in the more developed region of the country have net returns which are actually lower than the relatively wealthy in that region. So poor households in the developed region seem constrained after all but in a different sense: they are not constrained within their chosen sectors and activities but rather are constrained away from the activities with the highest returns net of risk premia that are available for richer households. Further, the returns of the relatively poor in the less developed, agrarian region are not different from those of the relatively wealthy in that region, after adjusting for risk premia. Thus poor households are not credit constrained in the usual sense, either.

Our framework and the results are made clear by a comparison of two extreme benchmarks. A full risk-sharing benchmark, not with ex ante asset trades but with ex post transfers of consumption goods contingent on output, delivers the prediction that only aggregate covariate risk contributes to the risk premium. In contrast, an autarky benchmark would predict that aggregate and idiosyncratic risks should enter the risk premium with the same weight because total risk faced by the household business is simply the sum of the risk from each component. In the data, the risk sharing benchmark picks up a large part, though not all, of the variation in risk premia. There is a residual, smaller part due to idiosyncratic risk, but otherwise it is substantially diversified away. More specifically, a financial autarky model that would simply adjust for total risk, that is, with equal weight on aggregate and idiosyncratic risk factors, is rejected in the data. Intermediate models which allow substantial though less than perfect risk sharing fit the data best.

This finding, derived entirely from production and rate of return data, is highly reminiscent of findings in the literature on risk sharing using consumption and income data (Townsend 1994). The full risk sharing benchmark is typically rejected, and so are the borrowing-lending or buffer stock financial regimes. The best fitting models typically lie between these extremes, sometimes closer the former than the latter. Here we take a direct look at this issue: we use the consumption as well as gifts and lending data from the same sample of households and establish a consistent picture of what we are seeing on production and consumption sides. Idiosyncratic shocks to rates of return are positively correlated with gifts-out and lending as the full insurance benchmark would suggest. Still, in consumption risk sharing regressions, these same idiosyncratic shocks do nevertheless move consumption, with positive but quantitatively small coefficients. So indeed households do bear some of the idiosyncratic risk and that is why there remains risk premium for idiosyncratic risk. Yet, the idiosyncratic risk premium is small relative to risk premium associated with aggregate shocks which in the data move both production and consumption. To the best of our knowledge, little previous work has analyzed risk sharing of the same households in the same sample using data from both consumption and production sides.

What we study in this paper is related to recent, important literatures in development, macroeconomics, and finance that focus on rates of return. In development economics, there is relatively sparse cross-referencing between risk and return concepts. Although there is literature on risk and the vulnerability of poor households as well as studies on returns on household enterprises as a source of household income, many of them do not explicitly consider risk premium as a part of the return. For example, there is existing literature showing that the impact on revenue of additional investments can be high, particularly with respect to small investments (for example, De Mel, McKenzie, and Woodruff 2008; Evenson and Gollin 2003; McKenzie and Woodruff 2008; and Udry and Anagol 2006). In a recent paper, Beaman, Karlan, Thuysbaert, and Udry (2015) demonstrate that the return to agricultural investment varies across farmers, farmers are aware of this heterogeneity, and farmers with particularly high returns self-select into borrowing. Related, the evidence from traditional microcredit, targeting micro enterprises, is mixed: some studies with randomized control trials find an increase in investment in self-employment activity while others do not. In this paper, we add to this list an important consideration that measured rates of return may reflect a risk premium. We find that poor households, usually a natural target for policy intervention as they have high return and low investment, seem to engage in riskier production activities. Therefore, targeting without information on risk may blunt, if not seemingly eliminate real gains, in taking an average over individuals who vary in true underlying productivity (some are constrained and productive while others are not). Put differently, to the extent we can identify subgroups and their exposure to different kinds of risk, we would be better able to target the ones with genuinely high returns. In this respect, our study is among few exiting studies that explicitly connects risk and return together. Rosenzweig and Binswanger (1993) test for the existence of a positive association between the average returns to individual production assets and their sensitivity to weather variability.

¹ For a summary of recent randomized interventions on microcredit, see Banerjee, Karlan, and Zinman (2015).

Morduch (1995) finds that poor households in villages in India have limited ability to smooth consumption ex post and tend to choose production activities with lower yields to give them smoother ex ante income; our study in contrast finds that Thai households with lower initial wealth are more involved with risky activities, both aggregate and idiosyncratic, and for that reason have higher average returns. More recently, Karlan, Osei, Osei-Akoto, and Udry (2013), argue that risk is a constraint to agricultural investment in Ghana.

Likewise, in macroeconomics, Hsieh and Klenow (2009), Restuccia and Rogerson (2008), and Bartelsman, Haltiwanger, and Scarpetta (2013) study misallocation of resources. The essential idea is that an optimal allocation of capital (and other factor inputs) requires the equalization of marginal products. Deviations from this outcome represent a misallocation of resources and translate into sub-optimal aggregate outcomes. Typically, however, the literature does not examine the underlying causes. An important recent exception is David, Hopenhayn, and Venkateswaran (2014) in which firm's informational frictions drive capital decisions. Similarly, Midrigan and Xu (2013), Moll (2014), Buera and Shin (2013), and Asker, Collard-Wexler, and De Loecker (2012) study the role of financial frictions and capital adjustment costs, respectively. However, studies often take risk and return on the production side of the economy as exogenous. We add to these studies the role of risk aversion, the various types of risk faced by firms, and evidence that people can and do choose among potential projects based on a risk-return trade-off. For us, the market is crucial, but in our case informal markets are the mechanism allowing mitigation of much of the idiosyncratic risk. In turn, adjustments of the measured rates of return to get at underlying productivity require different risk premium, varying with idiosyncratic versus aggregate risk.

Our study also contributes to the standard empirical consumption-based asset pricing in macroeconomics and finance literature that typically relies on countrywide aggregate consumption to explain asset risk and return of financial assets. Our study is applied locally to collections of closely connected villages in which almost everyone is in a family network, allowing us to link asset returns of the households with panel data of relevant market participants, including household specific data on consumption, gifts, and loans.² In addition, households in our sampled villages infrequently trade their fixed business assets (machinery, livestock, and land).³ However, they have extensive family networks and engage actively in gifts and loans. This makes the economic mechanism in these village economies with informal markets and institutions close to complete market mechanism in the standard capital asset pricing model, resulting in identical predicted outcome despite different institutional settings. Finally, there are studies of risk and return to private enterprises in the finance literature, but these are mainly in developed country contexts. For example, Moskowitz and Vissing-Jorgensen (2002) and Kartashova (2014) analyze private equity premium by comparing the rates of return on private equity in the US with the returns to public equity, arguing that private firms are seemingly more poorly diversified. Heaton and Lucas (2000) show that entrepreneurial risk is important for portfolio choice. In our village economies, at least, the limits to diversification at the household level are mitigated by risk sharing through informal networks of family in the community. Though it may be a stretch to imagine this is happening in advanced economies, the point remains that in any given setting informal networks could potentially rationalize apparent risk return anomalies.

The paper proceeds as follows. Section 2 presents the two benchmark, the endpoints, as it were that we use to study risk and return in village economies. The more realistic intermediate case lies between these two extremes. Section 3 describes the data from the Townsend Thai Monthly Survey that we use in our empirical work. Section 4

² Campbell (2003) provides a review of the development of the consumption-based model. Cochrane (2001) discusses how the traditional capital asset pricing model (CAPM) and the consumption-based model are interrelated. For the literature on limited market participation in the developed economy context, see Mankiw and Zeldes (1991), Vissing-Jorgensen (2002), and Vissing-Jorgensen and Attanasio (2003).

³ The returns to the relatively illiquid real productive assets are mainly from the output they produce. There are a few financial assets (such as deposits at financial institutions). The returns to these tradable liquid financial assets are from interest, dividends, or capital gains (and losses), but these assets and their returns are small in the data and are not driving the conclusion.

presents the first set of our main empirical results on the relationship between expected return and aggregate risk. As robustness checks, we extend our analysis to incorporate human capital, time-varying risks, and time-varying stochastic discounts. We find that expected returns are positively associated with aggregate risks in our village economies. Section 5 quantifies idiosyncratic risk and analyzes its effect on risk premium and expected returns, as well. The main point is the contributions of the aggregate and the idiosyncratic risk premia to the total risk premia as distinct from the contribution of aggregate risk and idiosyncratic risk to total risk. This is the second set of empirical results. Section 6 presents our third set of empirical results by demonstrating that the empirical findings from the production and asset return data in this paper are consistent with those from the consumption and income data, as in earlier literature, by directly analyzing our panel data where both production and consumption are measured. Section 7 distinguishes the risk premium from the productivity of household enterprises, computing the household's rate of return net of the risk premium. Section 8 presents our fourth and final set of empirical findings that there is heterogeneity across households in their exposure to aggregate and idiosyncratic risks. Section 9 concludes and discuss policy implications.

2. Theoretical Framework

We start with an economy consisting of J households, indexed by j=1, 2,..., J. There are I production activities, indexed by i=1, 2,..., I, that utilize capital as the only input. Each production technology delivers the same consumption good. Let $k_{i,j}$ be the assets assigned to production activity i and operated by household j as of the end of the previous period. This is one of the key choices, whether chosen as if by the community as a whole, as in the first model below, or done at the household level, as in the second model. The technologies are fixed but the assignment of capital is endogenous. Let $f_{i,j}(k_{i,j})$ be the output, net of depreciation, realized at the beginning of the current period.

The fluctuation and the pairwise comovement of the marginal returns, under a particular capital allocation $k_{i,j}$, is denoted $\frac{df_{i,j}(k_{i,j})}{dk_{i,j}} = f'_{i,j}(k_{i,j})$. Because the returns are random, a

variance-covariance matrix represents these marginal returns. We feature endogenous determination of the various portfolios that can be formed by assigning assets to various households and to various activities. Varying the weights of the assets in a portfolio creates a feasible set of all possible returns that could be achieved by available current assets. Note that some of the elements in this set could have zero weight for some of the assets, i.e., it is not necessary to have all of the assets included in a particular portfolio. Also note that this feasibility set is derived from the production technology alone, without any assumptions on preferences or optimization.

We present two polar benchmarks in this section. For expositional clarity, we begin with the first benchmark economy where full risk-sharing delivers Pareto optimal allocations of risk for the community as a whole. We show how technologies introduced in the underlying environment above are linked together when risks are pooled efficiently over all households and production technologies. Then, we discuss the second, opposite benchmark that considers an economy where each household absorbs risk in isolation. The household is still making choices, however, on the composition of its portfolio. Note that the underlying technologies are the same in both benchmarks.⁴

2.1 A Full Risk-Sharing Benchmark: A Pareto Optimal Allocation of Risk

First we consider a benchmark case in which all households in the economy are able to completely pool and share risk from their production. Let k_M be the total assets of the aggregate economy, M, and F_M be the total output produced from all assets in the

⁴ In the language of the Lucas tree model, households are not endowed with Lucas trees. Instead, the social planner or each household selects a portfolio of activities that maximizes its utility, choosing which type and how many of each type of tree (activity-specific asset) to own, and receives the fruit (return) from that tree.

aggregate economy. $F_M = F(\mathbf{k}) = \sum_{j=1}^{J} \sum_{i=1}^{I} f_{i,j}(k_{i,j})$ where \mathbf{k} is a vector of capital allocation in the economy, $k_{i,j}$, for all activities i and all households j.

To determine an efficient, Pareto optimal allocation of assets across households and activities, and consumption to the households, we consider a social planning problem that maximizes a Pareto-weighted sum of expected utilities subject to resource constraints. At the beginning of each period, each household j starts with initial resources that consist of two components. The first component is the assets held from the previous period, summing over all production activities, $k_j = \sum_{i=1}^{J} k_{i,j}$. The second component is the

sum of the associated outputs (net of depreciation), $\sum_{i=1}^{I} f_{i,j}(k_{i,j})$. The household j may

give out or receive gifts and transfers with other households, as in a risk-sharing syndicate.⁵ The household then invests a part of this interim wealth in the form of assets carried to the next period. For this social planning problem, the planner retains full control over the projects, assigns them to households, chooses the net current gifts and transfers to each household j, and chooses the assets to be allocated to each activity run by each household in the following period, $k'_{i,j}$. Effectively, the planner determines the

current period consumption for each household
$$j$$
, $c_j = \sum_{i=1}^{I} \left(f_{i,j}(k_{i,j}) + k_{i,j} \right) - \sum_{i=1}^{I} k'_{i,j} + \tau_j$.

The value function of the social planning problem is

$$V(W; \Lambda) = \max_{k_{i,j}', \tau_j} \left(\sum_{j=1}^{J} \lambda_j u_j \left(\sum_{i=1}^{I} \left(f_{i,j}(k_{i,j}) + k_{i,j} \right) - \sum_{i=1}^{I} k'_{i,j} + \tau_j \right) + \phi E[V(W'; \Lambda)] \right)$$

⁵ Generally, households could make state-contingent lending and borrowing contracts, which could be incorporated into the gift term in this setup. For an example of this arrangement, see Udry (1994).

subject to the aggregate resource constraint, i.e., aggregate consumption plus aggregate savings, in the form of next-period capital, equals wealth, $\sum_{j=1}^J c_j + \sum_{j=1}^J k_j' = W$, and the non-

negativity constraint of capital, $k_{i,j}' \ge 0$, that is no project capital can go negative, i.e., households cannot short assets. Current state W denotes the aggregate wealth of the whole economy at the beginning of the current period, that is, $W = \sum_{j=1}^J \sum_{i=1}^I \left(f_{i,j}(k_{i,j}) + k_{i,j} \right)$.

Here the parameter ϕ is a common preference discount factor; the parameter Λ is a timeand state-invariant vector of the Pareto weights for the households, λ_j where j=1,2,...J; and the function $u_j(\cdot)$ is the within-period utility function of a risk-averse household j, which is strictly concave, continuously differentiable, increasing without satiation, and with infinite derivative at zero. Note that we are allowing in this general set up differential risk aversion. The solutions to this planning problem for fixed Pareto weights correspond to a particular Pareto optimal allocation, and all of the optima can be traced out as the Pareto weights are varied.

For a given Λ , the first-order conditions are that

$$[\tau_i]: \lambda_i u_{ic}(c_i) = \mu$$
 for all j

 $[k'_{i,j}]:-\lambda_j u_{jc}(c_j)+\phi Eig[V_W(W')(1+f'_{i,j}(k'_{i,j}))ig] \le 0$ for all i and j, with equality for $k'_{i,j}>0$, where μ is the shadow price of consumption in the current period. Note that the first equation, i.e., equalized weighted marginal utilities, is the key equation in the study of consumption risk sharing, and it is an integral part of our framework here. The second equation is a standard Euler equation for investment. Finally, for each $k'_{i,j}>0$, the technologies actually chosen, the first-order conditions imply

$$1 = \frac{\phi E \left[V_W(W')(1 + f'_{i,j}(k'_{i,j})) \right]}{\lambda_i u_{ic}(c_i)} = E \left[\frac{\phi V_W(W')}{\mu} (1 + f'_{i,j}(k'_{i,j})) \right] = E \left[m' R'_{i,j} \right], \tag{1}$$

where
$$m' = \frac{\phi V_W(W')}{\mu}$$
 and $R'_{i,j} = 1 + f'_{i,j}(k'_{i,j})$.

We focus in part on equation (1) but the other equations are also a key part of the system. Equation (1) has some important properties. First, m', the stochastic discount factor or the intertemporal marginal rate of substitution, is common across households and across assets. The model also implies that equation (1) holds for each of the assets actively allocated to production activity i and run by household j, for any i and any j. This equation is equivalent to the pricing equation derived in the Consumption-based Capital Asset Pricing Model (CCAPM) in the finance literature.⁶ However, it is important to reiterate that although our empirical counterpart will be similar to what is derived in the capital asset pricing literature, the mechanism that delivers the predicted allocation outcome is different. In the asset pricing literature, households (investors) trade their assets ex ante. Optimally allocated assets deliver the returns that the households in turn use to finance their consumption, or reinvest, ultimately maximizing their utility. Although asset reallocations across households are possible in our model environment, households do not typically trade their assets ex ante in some markets. The rate of return on an asset is simply the real yield from holding it. Given asset holdings and given returns, transfers among households in the economy then give an optimal consumption allocation, i.e., the consumption allocation under the full risk-sharing regime where the marginal rates of intertemporal substitution are equalized across households. These inter-

⁶ For the derivation of this equation from consumer-investor's maximization problem, see Lucas (1978) and Cochrane (2001), for example.

household transfers could be through formal securities or through informal financial markets, namely, gifts and transfers within social networks.⁷

Finally, as in the standard asset pricing literature, we decompose expected return into a risk-free rate and a risk premium. Since $E[m'R'_{i,j}] = E[m']E[R'_{i,j}] + cov(m', R'_{i,j})$,

equation (1) can be rewritten as
$$E[R'_{i,j}] = \gamma' + \beta_{m',ij} \psi_{m'}$$
, where $\beta_{m',ij} = -\frac{\text{cov}(m', R'_{i,j})}{\text{var}(m')}$,

$$\psi_{m'} = \frac{\text{var}(m')}{E[m']}$$
, and $\gamma' = \frac{1}{E[m']}$. Note that $\beta_{m',ij}$ could be interpreted as the *quantity* of the

risk of the assets used in activity i by household j that cannot be diversified, i.e., the risk implied by the comovement of the asset return and the aggregate return. Note that the sign is negative since high returns mean low marginal utility. Since this risk cannot be diversified away, even in the full risk-sharing environment, it must be compensated by a risk premium, which is a product of the quantity of risk and the price of the risk. The *price* of the risk is in turn equal to the normalized volatility of the aggregate economy, $\psi_{m'}$. Finally, γ' is the risk-free rate, R_f , since by definition the covariance of the risk-free rate and the aggregate economy return is zero.

The intuition behind this optimal allocation is straightforward. An optimal allocation of assets is a portfolio that delivers an aggregate consumption for the economy that maximizes the Pareto-weighted expected utility of the households. This optimal consumption allocation is stochastic, and its distribution is derived from the distribution of underlying assets in the optimal allocation. Since households are risk averse, the

 $^{^7}$ The Pareto weights, λ_j , $j=1,2,\ldots$, J, are implicit parameters in equation (1) as they are arguments in the value function. Intuitively, the marginal rates of substitution are common across households in any particular optimum but can vary across the many optima, as if moving along a (potentially nonlinear) contract curve. Our general analysis only requires that the risk sharing community be at one fixed social optimum, not at any particular optimal allocation per se. However, when preferences aggregate in a Gorman sense, then the Pareto weights can be dropped from the analysis, and it is as if a social planner were a "stand-in representative consumer" allocating assets among its various "selves".

optimal aggregate consumption represents a tradeoff between expected return and risk. In the full risk-sharing environment, idiosyncratic risks are diversified away, and this optimal aggregate consumption consists of only the aggregate nondiversifiable component. Note that some of the optimal asset holdings could be zero if they are not needed for the construction of the portfolio that delivers this optimal aggregate consumption. However, for all of the assets that are positively allocated, an optimal allocation implies that the stochastic intertemporal rates of substitution are equalized, i.e., the marginal utility from the expected returns, net of disutility from risk, from the next period are equal across these assets. This equalized intertemporal rate of substitution condition across assets implies that the assets with lower expected return are held in this optimal portfolio because they are less risky than other assets. Since the only remaining risk in the full risk-sharing economy is the covariate risk, an optimal allocation implies the positive relationship between the expected return of the asset and its covariate, nondiversifiable risk, as represented by the asset's beta.⁸

2.2 A Financial Autarky Benchmark

The second, opposite benchmark case is an economy where households are in financial autarky and so by definition there is no risk sharing across households. The underlying environment, in terms of preferences, technologies, and initial conditions, is of course the same as in the full risk sharing benchmark. In particular, production technologies deliver returns that are still correlated across households and production activities. However, households absorb the risk in isolation from the rest of the

⁸ Our prediction from the full-risk sharing benchmark should be viewed as a necessary condition for the full risk sharing, but not a sufficient one. For example, if a household is endowed with a production technology that has returns comoving with the aggregate returns, there will be a positive relationship between expected return and household beta, even when this household is in autarky. However, we have a second necessary condition for optimality: not only is the risk premium determined by comovement with the aggregate, but it is not determined by the idiosyncratic risk as well. This is closely parallel to the consumption risk sharing literature: not only does consumption move with the aggregate but it also does not move with the idiosyncratic income risk.

community so that net incoming (or outgoing) transfers, τ_j , are zero for all j. In this benchmark, the value function of each household j is

$$V_{j}(W_{j}) = \max_{k'_{i,j}} \left(u_{j} \left(\sum_{i=1}^{I} \left(f_{i,j}(k_{i,j}) + k_{i,j} \right) - \sum_{i=1}^{I} k'_{i,j} \right) + \phi E[V_{j}(W'_{j})] \right)$$

subject to the resource constraint of the household, $W_j = \sum_{i=1}^{I} (f_{i,j}(k_{i,j}) + k_{i,j})$, and the nonnegativity constraint of asset holding, $k'_{i,j} \ge 0$.

Operationally, the Euler equation for asset allocation is of the same form as previous equation (1) for all activities i in which household j chooses to hold and operate. However, in this environment, the stochastic discount factor would be m_j , specific to household j and not equalized to m, common across all households in the economy as in the full risk sharing benchmark. Since risk cannot be shared across households, the total fluctuation of the rate of return on asset for each household consists of both the household's idiosyncratic component and the comovement with the economy-wide return, the latter just another source of risk. Alternatively speaking, since there is no risk sharing, each household cannot and does not need to differentiate its idiosyncratic and aggregate risk, as both components of fluctuation in the rate of return are viewed and treated identically by the household. In financial autarky, their contribution to the household risk premium would be the same.

2.3 Intermediate Cases

Between the full risk sharing benchmark and financial autarky benchmarks lie various possible intermediate models. These make clear the ways in risk idiosyncratic income could impact consumption and thus how idiosyncratic risk can end up in the risk premium. We do not disown either of the previous two benchmarks above: the full risk

sharing benchmarks makes clear the standard ideal while the financial autarky benchmark makes clear that even if a household were acting in isolation there would remain risk premia, and with correlated returns, and both idiosyncratic and aggregate risk would typically enter into these premia. We view our paper as quantifying how close the villages in our sample are to these extremes, as with the early, seminal work on consumption risk sharing, and we anticipate subsequent efforts to fit structural models.⁹

2.4 Empirical Implementation

For our empirical implementation, we impose two additional assumptions onto the production technology and preferences that deliver a linear relationship between expected return and risk.¹⁰ The first assumption is a linear production technology: $f_{i,j}(k_{i,j}) = r_{i,j}k_{i,j}$, which implies that $f'_{i,j}(k_{i,j}) = r_{i,j}$ and $R_{i,j} = 1 + r_{i,j}$. This assumption can be derived from a more general constant return to scale production function where optimal inputs are chosen sequentially. Following Angeletos (2007) and Moll (2014), capital is predetermined at the beginning of the period. Technologies are then subject to productivity realizations and prices of input and output are determined. Finally households make input (such as labor) decisions and get output. This yields a linear technology mapping predetermined capital into output, an $A_{i,j}k_{i,j}$ model where productivity shocks and prices are embedded in the technology parameter $A_{i,j}$. It is as if

_

⁹ Among these one would include iceberg-like transactions costs on transfer, as in Schulholfer-Wohl (2011), where the divergence between the pre-transfer income and the ideal target necessitates a transfer, and the constrained optimal allocation reflects both that difference and the transfer costs. Another model would be moral hazard, in which the household puts in unobserved effort in production directly or effort in diverting output for private hidden use, and thus the constrained optimal solution would dictate the household retain some "skin in the game". The magnitude of this exposure to idiosyncratic risk is a function of the cost of effort and the variance of the idiosyncratic component. It can be difficult to derive closed form solutions in these models.

¹⁰ Note that we can also arrive at a linear relationship between expected return and risk with other sets of assumptions, including those with (1) two-period quadratic utility; (2) two periods, exponential utility and normal returns; (3) infinite horizon, quadratic utility and i.i.d. returns; or (4) log utility. It is also a linear approximation of the models with continuous time limit and normal distributions. See chapter 9 of Cochrane (2001) for detail.

there were a single input, capital, and we focus on this technology henceforth, that is, a single factor production function in capital with random returns. The second assumption is that the value function of the social planning problem can be well approximated as quadratic in the total assets of the economy, $V(W) = -\frac{\eta}{2}(W - W^*)^2$. The derivation in

Appendix A shows that under these additional assumptions, our model implies

$$E[R'_{j}] - R'_{f} = \beta_{j} \left(E[R'_{M}] - R'_{f} \right), \tag{2}$$

where R'_j is the return to household j's portfolio; $R'_M = \frac{\sum_{j=1}^J \sum_{i=1}^I R'_{i,j} k'_{i,j}}{k'_M}$, $k'_M = \sum_{j=1}^J \sum_{i=1}^I k'_{i,j}$; and

 β_j is the beta for the return on household j's assets with respect to the aggregate market return,

$$\beta_j = \frac{\operatorname{cov}(R_M', R_j')}{\operatorname{var}(R_M')} \,. \tag{3}$$

3. Data and the Village Environment

The data used in this study are from the Townsend Thai Monthly Survey, an ongoing intensive monthly survey initiated in 1998 in four provinces of Thailand. Chachoengsao and Lopburi provinces are semi-urban provinces in a more developed central region near the capital city, Bangkok. Buriram and Srisaket provinces on the other hand are rural and located in the less developed northeastern region by the border of Cambodia. In each of the four provinces, the survey is conducted in four villages, chosen at random within a given township.¹¹

17

¹¹ Given that all four villages in the same province in our data are located in the same township, we use the term province and township interchangeably in this paper. For details on the Townsend Thai Monthly Survey, see Samphantharak and Townsend (2010).

The analysis presented in this paper is based on 156 months from January 1999 to December 2011, which coincides with 13 calendar years. During this time, there were salient aggregate shocks and a plethora of repeated idiosyncratic shocks in these village economies. For example, seasonal variation in the amount and timing of rainfall and temperature can be crucial in rice cultivation. Shrimp ponds were hit with both diseases as well as restrictions on exports to the EU. At the micro level, milk cows varied in their productivity, i.e., the flow was quite irregular over time for a given animal and over the heard.

We include in this study only the households that were present in the survey throughout the 156 months. Since we compute our returns on assets from net income generated from cultivation, livestock, fish and shrimp farming, and non-agricultural business, we also include in this study only the households that generated income from farm and non-farm business activities for at least 10 months during the 156-month period (on average about one month per year). In other words, we drop the households whose income was mainly exclusively from wage earnings. In the end, there are 541 households in the sample: 129 from (the sampled township in) Chachoengsao and 140 from Lopburi provinces in the central region, and 131 from Buriram and 141 from Srisaket provinces in the northeast. Table A.1 in the appendix presents descriptive statistics of household characteristics. Table A.2 shows the revenue (gross of cost of production) of the occupations in the sample.

We use a township as the aggregate market for empirical analysis in this paper for two reasons. First, the four villages from the same province in our sample are from the same township and therefore located close to each other. There are likely economic transactions across these villages. Second, one of the salient features of the households in the Townsend Thai Monthly Survey is the pervasive kinship network with extended families. Table A.3 in the appendix shows that almost all households in our sample have at least one relative living in the same township.

We use a household as our unit of analysis and consider the return on the household's total assets instead of the return on specific assets. As noted earlier, we consider the total assets as a portfolio that is composed of multiple individual asset classes (including both financial and fixed assets), and apply the predictions from our framework to study the risk and return of this portfolio. It is difficult and arbitrary to assign the percentage use of each asset in each distinct activity. Imposing additional assumptions on the data to disaggregate assets into subcategories would likely induce measurement errors that could bias our empirical analysis.¹² The rate of return on assets (ROA) is calculated as household's accrued net income divided by household's total asset (net of liabilities) over the period from which that the income was generated, i.e., one month in this paper. This is a conventional financial accounting measure of performance of productive assets. We use the real accrued net income and the real value of household's total assets in the ROA calculation. The real variables were computed using the monthly Consumer Price Index (CPI) at the regional level from the Bank of Thailand. The rate is then annualized (multiplied by twelve). We assume that the real risk-free rate is zero for all of the periods and for all of the townships.¹³ Table A.4 in the appendix presents descriptive statistics of the ROA. The median of the annualized average ROA was 0.38% for Chachoengsao and 1.46% for Lopburi in the central region, and 0.28% for Buriram, and 1.99% for Srisaket in the northeast. Excluding land and building structure from total

¹² For example, a household that grows rice and also owns a retail shop could use a pick-up truck for both production activities. Similarly, we do not distinguish well the use of assets for production activity versus consumption activity. This could lead to a downward bias of our estimates on return to assets, as some of the assets that we include in the calculation were not used in production. Samphantharak and Townsend (2012) provide an exercise that classifies total assets into subcategories based on additional assumptions on production and consumption of the households, and analyze the sensitivity of the rate of return. The ROA measure we use here is shown there to be robust.

¹³ The rationale for the zero risk-free rate is based on the assumption that households have access to storage technology. If the nominal return on stored inventory is the same as inflation rate (which is likely in the case for food crop storage), then the real rate of return is zero. We also perform a robustness check with different risk-free rates. The overall conclusion does not change, which is what we expect because the shift in both excess asset return and excess market return does not affect the covariance between these two variables. Note that in the earlier versions of this paper, we also used alternative calculations of ROA in the analysis, namely, ROA computed only from fixed assets (i.e., excluding financial assets) and nominal ROA (i.e., not adjusted for inflation). Again, the main conclusions did not change. We also used ROA computed from total assets without subtracting liabilities; the overall conclusions were robust (which is sensible, given that liability to asset ratios for most households are relatively small).

assets, the median ROA is 1.27 for Chachoengsao and 4.55 for Lopburi in the Central region, and 1.11 for Buriram and 4.23 for Srisaket in the Northeast. Appendix C describes detailed definition and construction of income, assets, and rate of return, and provides a discussion on measurement error of the variables.

4. Aggregate Risk and Return on Assets

Baseline Specification

In the first stage of our empirical analysis, we compute the asset beta of each household's portfolio of assets to get household beta, β_j , for all household j. We define a township as the aggregate economy and use township average real returns on assets as aggregate return, \overline{R}_M , computed as the total net income in the township divided by the township's total assets. To avoid the effect of each household's return on the township return, for each household we do not include the household's own net income and assets in the calculation of its corresponding township return, i.e., we compute and use instead a leave-out mean. As shown in equation (3), an asset beta of household j is defined as $\beta_j = \frac{\text{cov}(R'_M, R'_j)}{\text{var}(R'_M)}$, which is the key ratio of moments we need. Operationally, it is

identical and conveniently computed as a regression coefficient from a simple regression of $R'_{j,i}$ on $R'_{M,i}$. Specifically, in the first stage, for each household j we estimate β_j from a time-series regression

$$R'_{j,t} = \alpha_j + \beta_j R'_{M,t} + \varepsilon_{j,t}. \tag{4}$$

In the second stage, we study the expected return and beta relationship derived earlier in equation (2). With the assumption that the real return on risk-free asset is zero, we compute the expected rate of return on assets of household j, $E[R'_j]$. Empirically, the expected return is computed as a simple time-series average of monthly rates of return,

$$\overline{R}'_{j} = \frac{\sum_{t=1}^{T} R'_{j,t}}{T}$$
, where *T* is the number of months (156 months in the baseline specification).

We run a cross-sectional regression of household's average asset returns on the betas estimated earlier in equation (4) across all households in each township, one township at a time.

$$\bar{R}'_i = \alpha + \psi \hat{\beta}_i + \eta_i \,. \tag{5}$$

With the assumption that the real risk-free rate is zero, the null hypotheses from equation (5) are that $\psi = E[R'_M]$ and that the constant term α is zero. Note that we report the regression coefficient with the standard error corrected for generated regressor and heteroskedasticity, following Shanken (1992) and Cochrane (2001).

The results in Panel A of Table 1 show that the regression coefficient on households' beta is positive for all of the regressions except for the township in Buriram. We then look at a stronger null hypothesis that $\psi = E[R'_M]$ comparing the magnitude of the estimated regression coefficient $\hat{\psi}$ with the township expected return, estimated by

the time-series average
$$\overline{R}'_{M} = \frac{\sum_{t=1}^{T} R'_{M,t}}{T}$$
. The table also provides each township's aggregate

expected return. For the two townships in the central region (Chachoengsao and Lopburi), the regression coefficients are not statistically different from the township average return (at 10% level of significance), consistent with the prediction from our model. However, the coefficients are different from the township average return for the township in Srisaket. The zero constant implication is also satisfied.

To illustrate our results graphically, Figure 1 plots the beta of household j on the horizontal axis against the expected return on household j's assets on the vertical axis for each of the four townships. In general, the figures show a positive relationship between households' beta and expected returns. Thus a major implication of the model is capturing a substantial part of the data. In particular, higher risk, as measured by the comovement of household ROA and township ROA, is associated with higher average return. The positive ψ implication from the model is pervasive in the data at various levels of aggregation. The more stringent test of $\psi = \overline{R}'_M$ is more difficult to satisfy. ¹⁴ Note that this baseline specification is subject to some critiques. We now perform robustness checks that address these issues below.

[Figure 1]

Time-Varying Risk

Similar to the traditional CAPM in the finance literature, our empirical strategy assumes that household betas are time-invariant. This assumption allows us to estimate household betas from time-series regressions. In reality, household betas could be time-varying. Our sample consists of households engaged in multiple occupations over the period of 13 years. It is likely that the composition of household occupations (and hence assets and their associated risks) of some of our sampled households had changed during this period. Similarly, the expected aggregate returns $E[R'_M]$ could change over time as well, not least from changes in conditioning factors.

-

¹⁴ One may argue that kinship networks are local and operate better at the village or network levels than at the township level. We present a similar analysis at the village and network levels in Appendix D, with the results shown in Tables A.5 and A.6. Overall conclusions remain for most, but not all, of the villages and networks, suggesting that networks may extend beyond the boundary of villages.

We explore this issue by conducting our empirical analysis on the subsamples of 60 months (5 years) at a time. Specifically, we first estimate household's β_j and expected return using the time-series data from month 5 to month 64 (years 1-5) for all households. We then perform a similar exercise using the time-series data from month 17 to month 76 (years 2-6), and so on until the five-year window ends in month 160 (years 9-13). With all of the estimated $\hat{\beta}_{j,s}$ and expected return from all of the nine subperiods for all households j, we finally estimate equation (2) using the pooled household-subperiod data. Panel B of Table 1 presents the second-stage regression results. The table shows that the main prediction of our model still holds, i.e., higher beta is associated with higher expected (average) return. Note that allowing for time-varying risk (beta), the prediction from the model is also satisfied for Buriram. However, the null hypothesis that the constant term is equal to risk-free rate (assumed to be zero in this paper) is rejected in all of the four provinces.

Aggregate Human Capital

The model presented earlier in this paper implies that a household's beta captures all of the aggregate, non-diversifiable risk faced by the household. It is possible that there is omitted variable bias in the estimation of beta if the average return on township total assets is not the only determinant of the aggregate risk. Aggregate wealth, W, in the economy-wide resource constraint likely comes from other assets in addition to tangible capital held by the households in the economy. As shown in Table A.2, labor income contributes a large share of household income in our sample. Omitting human capital from the resource constraint implies that the economy-wide average return on physical assets (both financial and non-financial) might not capture the aggregate non-diversifiable risk of the economy. We address this issue by performing a robustness

-

¹⁵ This empirical strategy is similar to the empirical CAPM literature by Black, Jensen, and Scholes (1972). The difference is that instead of moving the window month by month, we move the window 12 months (1 year) at a time.

check. Specifically we compute an additional household beta with respect to return to aggregate human capital, proxied by the change in aggregate labor income of all households in the economy.¹⁶ In particular, the first-stage time-series regression becomes

$$R_{i,t} = \alpha_i + \beta_i^a R_{M,t}^{\prime a} + \beta_i^y R_{M,t}^{\prime y} + \varepsilon_{i,t}$$

where $R'^a_{M,t}$ represents the return to aggregate physical (non-human) asset and $R'^y_{M,t}$ is the return to aggregate human capital. The second-stage cross-sectional regression is

$$\overline{R}'_{j} = \alpha + \psi^{a} \hat{\beta}_{j}^{a} + \psi^{y} \hat{\beta}_{j}^{y} + \eta_{j}.$$

[Table 2]

We then extend our previous empirical analysis to include human capital. The first four columns of Table 2 show that the regression coefficient of beta with respect to human capital is not statistically significant in our sample. However, after controlling for the township return to human capital, the regression coefficients of beta with respect to total tangible capital (financial, inventory, and fixed assets) remain positive and significant in all of the four townships.¹⁷

Time-Varying Stochastic Discount Factor

Similar to the traditional CAPM in the finance literature, parameters that determine stochastic discount factors are assumed to be time-invariant when we take the full risk-sharing benchmark to the empirical analysis. In theory, however, they are

¹⁶ This approximation strategy is used in the finance literature by Jagannathan and Wang (1996). Their strategy is based on a simplified *ad hoc* assumption that labor income, L, follows an autoregressive process $L_t = (1+g)L_{t-1} + \varepsilon_t$. Therefore, human capital, H, defined as the discounted present value of the labor income stream, is approximated by $H_t = \frac{L_t}{r-g}$ where r is the discount rate on human capital, and both r

and g are taken as constants. In this case, the realized capital-gain part of the rate of return on human capital (not corrected for additional investment in human capital made during the period) will be the growth of the stock of human capital, which is also the realized growth rate in per capita labor income.

¹⁷ However, the coefficients on human capital are not significant. This could be due to human capital being measured imprecisely.

determined by the shadow price of consumption goods, which likely moves over time as the aggregate consumption of the economy changes. In order to capture this time-varying stochastic discount factor, we provide a further robustness check following a strategy introduced by Lettau and Ludvigson (2001a and 2001b) who show that these time-varying parameters are functions of aggregate consumption-wealth ratio. The log consumption-wealth ratio, cay, in turn depends on three observable variables, namely log consumption, c; log physical (non-human) wealth, a; and log labor earnings, y. For each household, we compute five betas with respect to: (1) the aggregate return on tangible capital, R'^a_{MJ} ; (2) the aggregate return on human capital (as computed in the previous analysis), R'^y_{MJ} ; (3) the predicted value of \widehat{cay}_t ; (4) the interaction between R'^a_{MJ} and \widehat{cay}_t ; and (5) the interaction between R'^y_{MJ} and \widehat{cay}_t .

$$R'_{j,t} = \alpha_j + \beta_j^a R'_{M,t}^a + \beta_j^y R'_{M,t}^y + \beta_j^{cay} \widehat{cay}_t + \beta_j^{cay \cdot a} \left(\widehat{cay}_t \cdot R'_{M,t}^a \right) + \beta_j^{cay \cdot y} \left(\widehat{cay}_t \cdot R'_{M,t}^y \right) + \varepsilon_{j,t}$$
(6)

In the final stage we run a cross-sectional regression of households' average return on the five betas estimated in equation (6). Namely,

$$\overline{R}'_{i} = \alpha + \psi^{a} \hat{\beta}_{i}^{a} + \psi^{y} \hat{\beta}_{i}^{y} + \psi^{cay} \hat{\beta}_{i}^{cay} + \psi^{cay \cdot a} \hat{\beta}_{i}^{cay \cdot a} + \psi^{cay \cdot y} \hat{\beta}_{i}^{cay \cdot y} + \eta_{i}$$

$$(7)$$

The results are shown in the last four columns of Table 2. Overall, with the additional factors in this robustness check, the regression coefficient of market non-human, physical assets, the main variable from our model, remains positive and significant for all of the four townships.

5. Idiosyncratic Risk and Return on Assets

The empirical work thus far has abstracted from the presence of idiosyncratic risk and focused on the implications from the full risk-sharing benchmark. However, there are

¹⁸ Appendix E provides more information on the estimation procedure of log consumption-wealth ratio.

reasons why idiosyncratic risk may matter. With any of the departure from complete risk sharing, the expected return on assets may contain a risk premium that compensates for residual exposure to idiosyncratic risk.¹⁹ We wish to know if this is true for the households in our sample, and if so, how large that residual exposure is, quantitatively. In addition, as mentioned earlier, households may be endowed with production technology that generates the positive relationship between expected return and beta, even in autarky without risk sharing. We seek to disentangle this by first estimating idiosyncratic risk in equations (4) and (6) presented earlier and then quantify the contribution of idiosyncratic risk to the total return in equations (9) to (11) below.

We follow Fama and Macbeth (1973) and compute idiosyncratic risk from the variance of the residuals from each of the household's time-series regressions in the first step, i.e., the residuals from equation (4).²⁰ This strategy is consistent with the decomposition of total risk, as measured by the variance of the return on assets, into aggregate (non-diversifiable) and idiosyncratic (diversifiable) components. Since equations (4) could be rewritten in a matrix form as $R'_{j,l} = \mathbf{X}'_{M,l}\beta_j + \varepsilon_{j,l}$, we have

$$var(R'_{i}) = E[\beta'_{i}\Omega_{M}\beta_{i}] + var(\varepsilon_{i})$$
(8)

where Ω_M is the variance-covariance matrix of the aggregate variables and β_j is a vector of the regression coefficients from equation (4). The first term of the right hand side of equation (8) is therefore the aggregate risk while the second term is the variance of the residual. We denote this variance of the residual, σ_j^2 , henceforth simply referred as household sigma, as our measure of household specific idiosyncratic risk because it summarizes the volatility of the returns that are not captured by aggregate factor

¹⁹ In finance literature, Merton (1987) shows that under-diversified investors demand a return compensation for bearing idiosyncratic risk. Using the exponential GARCH models to estimate expected idiosyncratic volatilities, Fu (2009) finds a significant and positive relation between the estimated conditional idiosyncratic volatilities and expected returns.

²⁰ In addition to Fama and MacBeth (1973), a recent study by Calvet, Campbell, and Sodini (2007) also uses the same risk decomposition strategy as the one in this paper.

(aggregate return on assets). We emphasize that this is a household-by-household calculation.

[Table 3]

Table 3 presents the decomposition of the total risk faced by the median household in each of the provinces in our sample, based on equation (8). Panel A of the table presents the contribution of idiosyncratic risk to the total risk and the total risk premium, using the beta estimated earlier from the simple specification in equation (4). Similarly, Panel B uses the betas from the robustness specification in equation (6). The results shows that a large part of the volatility of the return to enterprise assets comes from the idiosyncratic component, in all four townships. The orders of magnitude are large, with the idiosyncratic component capturing at least 80-90% of the risk decomposition of the median households in three out of four provinces (the exception being Srisaket). Likewise, the aggregate component can be as low as 2% to 20% in these three provinces. Of course this finding per se is not inconsistent with the model, which allows for idiosyncratic risk in the technologies. Indeed it is good in the sense that it allows us to study the impact of aggregate risk, which one might presume from these numbers to be small, and of idiosyncratic risk, which one might presume to be large. Note that we can quantify the magnitude of idiosyncratic risk that was diversified from our estimates of risk and risk premium decomposition. Table 3 also shows that median households in all provinces except for Srisaket diversified over 90% of their idiosyncratic risk while in Srisaket, the median household was still able to share almost 80% of their idiosyncratic risk. These decompositions are for each and every household and we thus report as well the interquartile range in each line.²¹

²¹ There are some households that appear to be overcompensated for either idiosyncratic or aggregate risk and have a contribution of either risk above 100% of the total risk premia.

We take the first step and add household sigma computed from regressions (4) and (6), $\widehat{\sigma}_{i}^{2}$, as an additional explanatory variable to equations (5) and (7), respectively.

$$\overline{R}'_{j} = \alpha + \psi^{a} \widehat{\beta}_{j}^{a} + \psi^{\sigma} \widehat{\sigma}_{j}^{2} + \eta_{j}, \qquad (9a)$$

$$\overline{R}'_{j} = \alpha + \psi^{a} \widehat{\beta}_{j}^{a} + \psi^{y} \widehat{\beta}_{j}^{y} + \psi^{cay} \widehat{\beta}_{j}^{cay} + \psi^{cay a} \widehat{\beta}_{j}^{cay a} + \psi^{cay y} \widehat{\beta}_{j}^{cay y} + \psi^{\sigma} \widehat{\sigma}_{j}^{2} + \eta_{j}$$
 (9b)

The results in Table 4 show that, in both baseline and robustness specifications, higher idiosyncratic risks as measured by household sigma are associated with higher average returns in all of the four townships.²² Note, however, that the coefficients for the beta with respect to the market return on physical assets still remain positive and significant in three of the townships, with Buriram as the only exception.

[Table 4]

Indeed, though both aggregate and idiosyncratic risk are positively correlated with higher expected return, the "prices" of these risks, i.e., their contribution to risk premia, is now shown to be different. We compute aggregate and idiosyncratic risk premia from equations (9a) and (9b) as empirically estimated in Table 4. Specifically, for the simple specification, we have:

Aggregate Risk Premium =
$$\widehat{\psi}^{a} \widehat{\beta}_{i}^{a}$$
 (10a)

Idiosyncratic Risk Premium =
$$\widehat{\psi}^{\sigma} \widehat{\sigma}_{j}^{2}$$
, (11a)

and for the robustness specification, we have:

Aggregate Risk Premium=
$$\widehat{\psi}^{a} \widehat{\beta}_{j}^{a} + \widehat{\psi}^{y} \widehat{\beta}_{j}^{y} + \widehat{\psi}^{cay} \widehat{\beta}_{j}^{cay} + \widehat{\psi}^{caya} \widehat{\beta}_{j}^{caya} + \widehat{\psi}^{caya} \widehat{\beta}_{j}^{cayy}$$
 (10b)

Idiosyncratic Risk Premium =
$$\widehat{\psi}^{\sigma} \widehat{\sigma}_{j}^{2}$$
 (11b)

²² Though this violates the exclusion restriction of the full risk sharing benchmark, we are now in a position to compute risk premium for each type of risk and compare.

In the financial autarky benchmark, households would not differentiate the idiosyncratic component and the aggregate component of the total fluctuation of the rate of return. In this case, the risk premia from both components should be proportional to the contribution of each component's contribution to the total fluctuation. Panels A.2 and B.2 of Table 3 present the results from the decomposition of total risk premium of each household (the sum of the aggregate risk premium and idiosyncratic risk premium) for the simple and the robustness specifications, respectively. The results show that, with the exception of Buriram, the contribution of the idiosyncratic risk premia to the total risk premia is lower than the contribution of idiosyncratic risk to the total risk (as discussed earlier in Panels A.1 and B.1 of the same table). Specifically, for the robustness specification, although idiosyncratic risk accounts for 86.5% and 89.1% of the total risk of the median households in Chachoengsao and Lopburi, it contributes to only 23.6% and 52.9% of the total risk premium. Likewise, for the median household in Srisaket, idiosyncratic risk accounts for 57.2% of the total risk while its premium contributes for only 16.7% of the total risk premium. We also perform a nonparametric statistical test for the difference in medians and find that the median percentage contribution of idiosyncratic risk to the total risk is statistically different from the median percentage contribution of idiosyncratic risk premium to the total risk premium at 1% level of significance in all provinces except for Buriram.²³ The pattern for lower and upper quartiles is also similar to the median. Finally, it is important to note that omitted variables could lead to a positive relationship between expected return and sigma if a component of aggregate risk were mistakenly in sigma. However, this would work against us. Our empirical results suggest the impact of sigma is largely diversified, anyway.

In sum, we cannot treat aggregate and idiosyncratic risks identically when we analyze the risk and return of household enterprises in developing economies. A

One possible explanation for Buriram is that it is the place with the most transition of occupations (toward higher return) and we have shorter period to use our method. See Pawasuttipaisit and Townsend (2010).

household with high total risk (high variance) may have lower risk premium than another household if the higher risk is idiosyncratic and diversifiable. Likewise, a household with low total risk (low variance) could require a higher risk premium if most of the risk is covariate and non diversifiable.²⁴

6. Risk Sharing: Connecting the Production Approach to the Consumption Approach

Reassuringly, our main findings on the production side are largely consistent with earlier studies on the consumption side that idiosyncratic risk is considerably shared across households in these villages. Using consumption data from the same sample as in this paper, Chiappori, Samphantharak, Schulhofer-Wohl, and Townsend (2013 and 2014) use variation in aggregate shocks to estimate the degree of heterogeneity in risk tolerance among the households and find evidence for full risk sharing. Likewise, Karaivanov and Townsend (2014) find that the consumption and income data of those in family networks is consistent with full risk sharing, though tied with moral hazard as best fitting models. Kinnan and Townsend (2012) show that households linked to one another by gifts and loans, and hence indirectly if not directly connected to outside financial institutions, achieve full risk sharing; in contrast, isolated households, especially the poor, are vulnerable to idiosyncratic income risk. Our larger point is that idiosyncratic risk in most of these studies is partially, though not necessarily completely, insured and this is consistent with what we are finding in this paper with the data on risk premia from the production side.

²⁴ To illustrate this point, let us consider two households, A and B, from Lopburi province in our sample. During the period of this study, A's main occupation was livestock farming while B grew beans and sunflowers. However, 99% of the variance of the rate of return on A's assets was from the idiosyncratic component while in contrast idiosyncratic risk contributed to only 63% for B. Consequently, we find that the risk premium for A, facing mostly diversified risk was only 0.008 (annualized) percentage point while for B with more aggregate risk it was 1.394, despite B's less volatile return. This example, though deliberately dramatic, is not an outlier. Below we return to an analysis of risk premia and associated characteristics of enterprises that deliver statistically significant variation.

Regarding the actual mechanisms used for smoothing, i.e., financing a deficit or saving a surplus, households may buy and sell their assets (though this is rare) or use crop storage inventory (more common). They can also borrow or lend money formally through financial institutions or informally through village moneylenders, friends, or relatives. Samphantharak and Townsend (2010) provide quantification for these various smoothing mechanisms using the same Thai data and document the role of gifts among social networks.²⁵ Our conceptual framework in this paper both combines the production and consumption sides, as the first-order conditions have made clear, and features the role of gifts as the primary smoothing mechanism.

[Table 5]

We perform further analyses that directly connect production and smoothing mechanism. For each household, we compute the residual from equation (8) as month by month idiosyncratic shocks. Then, as reported in Table 5, we regress household's net gifts (i.e., gift outflows minus gift inflows) on these idiosyncratic shocks, controlling for common township-time dummies (capturing aggregate shocks) and household fixed effects (capturing diverse Pareto weights). Since gifts could also be disguised in the form of state-contingent loans (as in Udry 1994), we also regress household's net lending (i.e, lending minus borrowing), as well as household's net gifts plus net lending, on the same set of explanatory variables. The coefficients are all statistically significant at the 1% level. Finally, we also run the standard risk-sharing regressions with the consumption data (Townsend 1994). Controlling for aggregate shocks and household fixed effects, we regress monthly consumption on the same idiosyncratic shocks and find a low but significant coefficient, significant at 5% level.

²⁵ The risk sharing implications of networks have been studied in other economies as well. For example, using data from the randomized evaluation of *PROGRESA* program in Mexico, Angelucci, De Giorgi, and Rasul (2011) find that members of an extended family share risk with each other but not with households without relatives in the village. They also find that connected households achieve almost perfect insurance against idiosyncratic risk. Recently, Attanasio, Meghir, and Mommaerts (2015) study group risk sharing in extended family networks in the US. They find that majority of shocks to household income are potentially insurable within family networks but they find, in contrast, little evidence that the extended family provides insurance for such idiosyncratic shocks.

To summarize, the results in Table 5 show that once we control for province-month fixed effects, which capture the provincial aggregate shocks, household consumption is positively correlated with household-specific, idiosyncratic shocks. Thus risk sharing is imperfect and households do bear some of their idiosyncratic risk. This is consistent with the fact that idiosyncratic risk is showing up in the idiosyncratic risk premium on the production side. On the other hand, the coefficient is small, and small in comparison with coefficients on the other regressions. Most of the movement in idiosyncratic shocks is absorbed by net gifts and lending across the households. Table 5 can be interpreted to show, via a kind of normalized covariance decomposition, that on average 40.66/45.52 = 89% of idiosyncratic shocks to rates of return are covered by gifts and net lending, with the residual onto consumption. Thus the results are quite consistent with the earlier Table 3.

Finally, we note that the consumption, gift, and lending-borrowing data used in the analysis in this section are from different modules of the questionnaire than what we use in the calculation of ROA. Consistency in the empirical findings reassures us that the main conclusions in this paper are unlikely driven by measurement error in the data. Of course there remains the possibility of measurement error inflating the variance of the idiosyncratic shocks, but attenuation bias would hit all of the regressions. Thus the relative comparison of coefficients across regressions remains of interest, confirming the role of social networks as a key institution in these villages.

7. Returns Net of Risk Premia

In the development and macroeconomics literatures mentioned earlier in the introduction, rates of return on assets are usually used as a measure of performance, the productivity of a firm or a household enterprise. These returns to assets however typically do not take into account that different household enterprises are involved in different

risks and so that higher average returns could result from compensation for higher risk and not productivity.²⁶

The framework in this paper gives us a practical way to compute the risk premia that contribute to the return on assets and hence the residual return, after adjusting for the premium, as in the example just given. In the conventional CAPM context, Jensen (1967) argues that intercepts α_j in equations (6) can be interpreted as the abnormal return of an asset, and financial analysts use Jensen's *alpha* as a measure of performance of an asset or a fund manager. We follow this tradition, thinking of α_j as how well household j manages its assets in generating income in excess of risk-free rate adjusting for measured risk premia.

[Figure 2]

Figure 2 shows the histograms comparing the return on assets that is not adjusted for risks with the return adjusted for both aggregate and idiosyncratic (based on the robustness specification). Though risk adjusted returns are naturally shifted to the left, other aspects of the distribution also change. The modes receive high mass consistently in the risk-adjusted returns. Further in two provinces the adjusted returns have more mass in the left tail, and in the other two provinces, in the right tail. The overall point is that the distributions of the rate of return do change when we adjust for risks, as evident from the differences in the skewness and the kurtosis of the returns. Table A.7 in the appendix presents selected descriptive statistics of household alpha.

²⁶A comparison of two farming households in Srisaket province, C and D, from our sample illustrates this argument. Their main crops were rice and cassava, respectively. During the period of our study, the average annualized monthly real rate of return on assets for C was 9.06% while it was only at 3.93% for D. However, C's higher return was largely due to the higher risk and the types of risk it faced. First, C was engaged in production activity whose return fluctuated more than D: the variance of the rate of return for C was 2.26 times higher than that of D. Second, while 70% of the total risk faced by C was idiosyncratic and could be (partially) diversified away, the diversifiable risk component accounted for 89% for D. As a result, the risk premium of C was 8.25 percentage points while it was only 1.11 percentage points for D. In the end, C actually had a lower return net of risk, i.e., after subtracting risk premia, a net of 0.81%, in comparison to D at 2.82%.

8. Household Characteristics Associated with Risk Exposure and Return on Assets

Figure 3 presents a scatter plot displaying for each household its aggregate risk premium and idiosyncratic risk premium. The figure shows that some households in our sample were exposed to both high aggregate and idiosyncratic risks (those in the upper-right corner) while many faced little of both risks (those in the lower-left corner). Still, there are a large number of households that were mainly exposed to one type of risk, but not the other (those in the upper-left and in the lower-right corners).²⁷

[Figure 3]

Table 6 presents correlations in the data, with different measures of return and risk of assets as the dependent variable and household's initial wealth and other demographic characteristics on the right hand side. Specifically, Panel A presents regression results when we us the simple measured rate of return on assets (not adjusted for risk) as the dependent variable. In three out of four provinces, we find that poor households (as measured by initial wealth) tend to have higher average return on assets. This result might prompt us to conclude that households in these provinces are financially constrained. However, the results in Panel B reveal a different story. Once adjusted for risk, poorer households in the central region tend to have a lower return on assets while there is no relationship between wealth and return on assets for the two provinces in the northeast.

The explanation for these findings is shown in Panels C and D where we examine the relationship between household characteristics and household beta (aggregate risk with respect to the market return on physical assets) and household sigma (idiosyncratic

²⁷ Figure 3 also presents two salient findings from our sample. First, there is a positive correlation between aggregate risk premium and idiosyncratic risk premium (the correlation coefficient is 0.49 and statistically significant at 1%). Second, there is a large portion of our sampled households with low risk (those near the origin in Figure 3). In particular, there is variation in aggregate risk premium while the idiosyncratic part is near zero. This produces a cluster of points on the horizon axis.

risk). The results highlight the heterogeneity in the risk exposure of households in our sample. Controlling for household demography, poorer households tend to be more involved with risky activities, both aggregate (in 3 out of 4 provinces) and idiosyncratic (in all 4 provinces). We also find that households with younger, less educated, and male head tend to have more exposure to both aggregate and idiosyncratic risks (although specific results vary across provinces).

[Table 6]

One might well ask, what is the mechanism that households choose to make their income smooth or risky? We further explore the sources of this household risk exposure (results not shown here). Using the data on the shares of household total revenue from each production activity as well as the data on each household's main occupation (cultivation, livestock, fish and shrimp farming, and non-farm business), we find that cultivation is associated with the highest aggregate and idiosyncratic risk (these are statistically significant at 1%). Cultivation is common in our sample (hence aggregate risk), but at the same time there is heterogeneity in the variability of returns within cultivation (hence idiosyncratic risk). Finally, we find that poorer households are more likely to participate in cultivation (again, statistically significant at 1%). Note also that this finding is unlikely driven by the difference in risk preferences between rich and poor households as Chiappori, Samphantharak, Schulhofer-Wohl, and Townsend (2013 and 2014), using data from the same household survey as this paper, find that risk aversion was not correlated with household wealth. This is related to the underlying force of the full risk sharing benchmark, under which production and consumption activities are separated.

The result shows how easily one could misinterpret data, if one did not adjust for risk. One might have impression that relatively poor households have high returns on assets (as shown in Panel A for all of the provinces except for Lopburi) and thus suffer

from financial constraints. The results here show that the reason why these poor households have a higher simple rate of return to their business enterprises is from the fact that they take more risk in their production activities and get compensated accordingly. Controlling for risks, household enterprises of the poor in the northeast are not productively different those of the rich, while the poor in the central region tend to have lower return on assets that the rich. Thus some poor households in our sample, those of the central region, do seem constrained, but not in the usual, stereotypical sense. Poor households seem limited in their choices of production activities, as if constrained away from the activities that have high return net of risk premia and are available largely for richer households. Our findings suggest that there exist obstacles for the poor to leave their current occupation rather than funding the current one. Our finding is similar to Rampini and Viswanathan (2016) who find that household risk management is incomplete and increasing in household net worth and income.²⁸ The limitation of poor households to diversify idiosyncratic income risk is in contrast to Morduch (1995), who finds that poor households in villages in India that have limited ability to smooth consumption ex post and tend to choose production activities that give them smoother income ex ante.

9. Conclusion and Policy Implications

We study the risk and return of farm and non-farm business enterprises in village economies. Using data from the Townsend Thai Monthly Survey, we find that although idiosyncratic risk is the dominant factor in the total risk, it is diversified away to a large extent, and so bears a low risk premium. In contract, aggregate risk cannot be diversified

-

²⁸ Our findings do not necessarily contradict existing literature that analyzes the gross rate of return, unadjusted for risk premia, and financial constraints. If all households are in the same occupation or a sector that has identical aggregate risk, and if idiosyncratic risk is fully diversified, then actual net returns, adjusted for risk, are simply a downward shifted version of the unadjusted returns. Some on the right tail of this distribution may have high net returns and thus may be constrained. More generally, however, with different occupations and differential exposure to risk, high returns on the right tail of the distribution may be simply the compensation for high risk. Likewise, high rates of growth of net worth for poor households with high rates of return does not necessarily indicate the presence of financial constraints, as those with high expected returns, however risky, will on average as a group, experience high growth.

away and likewise it captures a much larger share of the total risk premia. Our results, using data on the rates of return from production side, are parallel to those in the consumption risk sharing literature that uses income and consumption as key variables. We also provide an analysis that jointly makes use of production and consumption panel data, at the level of individual households over time. Our study has important policy implications: when comparing business across sectors or production across different activities, the adjustments for aggregate and idiosyncratic risks can vary and there is potentially little association between high returns and underlying productivity.

References

- Angeletos, George-Marios. "Uninsured idiosyncratic investment risk and aggregate saving," *Review of Economic Dynamics* 10(1), 2007.
- Angelucci, Manuela; Giacomo de Giorgi; and Imran Rasul. "Insurance and Investment within Family Networks," Working Paper, 2011.
- Asker, John; Allan Collard-Wexler; and Jan De Loecker. "Dynamic Inputs and (Mis)Allocation." *Journal of Political Economy* 122(5): 1013-1063, 2014.
- Attanasio, Orazio; Costas Meghir; and Corina Mommaerts. "Insurance in Extended Family Networks," NBER Working Paper No. 21059, April 2015.
- Banerjee, Abhijit, Dean Karlan and Jonathan Zinman. "Six Randomized Evaluations of Microcredit: Introduction and Further Steps." *American Economic Journal: Applied Economics*, 7(1): 1-21, 2015.
- Bartelsman, Eric; John Haltiwanger; and Stefano Scarpetta. "Cross-Country Differences in Productivity: The Role of Allocation and Selection." *American Economic Review* 103(1): 305-334, 2013.
- Beaman, Lori; Dean Karlan; Bram Thuysbaert; and Christopher Udry. "Selection into Credit Markets: Evidence from Agriculture in Mali," Working Paper, February 2015.
- Black F., M.C. Jensen, and M. Scholes. "The Capital Asset Pricing Model: Some Empirical Tests" in Jensen, M.C., ed., *Studies in the Theory of Capital Markets*, Praeger, 1972.
- Buera, Francisco J. and Yongseok Shin. "Financial Frictions and the Persistence of History: A Quantitative Exploration," *Journal of Political Economy* 121(2), 2013.
- Calvet, Laurent; John Y. Campbell; and Paulo Sodini. "Down or Out," *Journal of Political Economy* 115, 2007.
- Campbell, John Y. "Consumption-Based Asset Pricing," Chapter 13 in *Handbook of the Economics of Finance*, edited by George Constantinides, Milton Harris, and Rene Stulz, Elsvier, 2003.

- Chiappori, Pierre-Andre; Krislert Samphantharak; Sam Schulhofer-Wohl; and Robert Townsend. "Portfolio Choices and Risk Sharing in Village Economies," Federal Reserve Bank of Minneapolis Research Department Working Paper 706, May 2013.
- Chiappori, Pierre-Andre; Krislert Samphantharak; Sam Schulhofer-Wohl; and Robert Townsend. "Heterogeneity and Risk Sharing in Village Economies," *Quantitative Economics* 5(1), 2014.
- Cochrane, John. Asset Pricing. Princeton University Press, 2001.
- David, Joel; Hugo Hopenhayn; and Venky Venkateswaran. "Information, Misallocation and Aggregate Productivity", Working Paper, 2014.
- De Mel, Suresh; David J. McKenzie; and Christopher Woodruff. "Returns to Capital in Microenterprises: Evidence from a Field Experiment," *Quarterly Journal of Economics*, November 2008.
- Evenson, Robert E., and Douglas Gollin. 2003. "Assessing the Impact of the Green Revolution, 1960 to 2000." *Science* 300(5620): 758–62, 2003.
- Fama, Eugene and James D. MacBeth. "Risk, Return, and Equilibrium: Empirical Tests," *Journal of Political Economy* 81(3), 1973.
- Fu, Fangjian. "Idiosyncratic Risk and the Cross-Section of Expected Stock Returns," *Journal of Financial Economics* 91, 2009.
- Heaton, John and Deborah Lucas. "Portfolio Choice and Asset Prices: The Importance of Entrepreneurial Risk," *Journal of Finance* 55(3), 2000.
- Hseih, and Peter Klenow. "Misallocation and Manufacturing TFP in China and India." *Quarterly Journal of Economics* CXXIV, November 2009.
- Jagannathan, Ravi and Wang, Zhenyu. "The Conditional CAPM and the Cross-Section of Expected Returns," *Journal of Finance* 51, 1996.
- Jensen, Michael C. "The Performance of Mutual Funds in the Period 1945-1964." *Journal of Finance* 23(2): 389-416, 1967.
- Karaivanov, Alexander, and Robert M. Townsend. "Dynamic Financial Constraints: Distinguishing Mechanism Design from Exogenously Incomplete Regimes," *Econometrica*, 2014.
- Karlan, Dean; Robert Osei; Isaac Osei-Akoto; and Christopher Udry. "Agricultural Decisions after Relaxing Credit and Risk Constraints," Working Paper, Yale University, 2013.
- Kartashova, Katya. "Private Equity Premium Puzzle Revisited." *American Economic Review* 104(10): 3297-3334, 2014.
- Kinnan, Cynthia and Robert M. Townsend. "Kinship and Financial Networks, Formal Financial Access and Risk Reduction," *American Economic Review Papers and Proceedings* 102, 2012.
- Lettau, Martin and Sydney Ludvigson. "Consumption, Aggregate Wealth, and Expected Stock Returns" *Journal of Finance*, 2001a.
- Lettau, Martin and Sydney Ludvigson. "Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia Are Time-Varying" *Journal of Political Economy* 109, 2001b.
- Lucas, Robert E., Jr. "Asset Prices in an Exchange Economy," Econometrica 46, 1978.

- Mankiw, N. Gregory and Stephen P. Zeldes. "The Consumption of Stockholders and Nonstockholders," *Journal of Financial Economics* 29, 1991.
- McKenzie, David and Christopher Woodruff. "Experimental Evidence on Returns to Capital and Access to Finance in Mexico" *World Bank Economic Review* 22(3), 2008.
- Midrigan, Virgiliu and Daniel Xu. "Finance and Misallocation: Evidence from Plant-Level Data," *American Economic Review* 104 (2): 422-458, 2014.
- Moll, Benjamin. "Productivity Losses from Financial Frictions: Can Self-Financing Undo Capital Misallocation?" *American Economic Review*, 2014.
- Morduch, Jonathan. "Income Smoothing and Consumption Smoothing," *Journal of Economic Perspectives* 9(3), 1995.
- Moskowitz, Tobias J. and Annette Vissing-Jorgensen. "The Returns to Entrepreneurial Investment: A Private Equity Premium Puzzle?" *American Economic Review* 92(4), 2002.
- Pawasutipaisit, Anan and Robert M. Townsend. "Wealth Accumulation and Factors Accounting for Success," *Journal of Econometrics*, 2010.
- Rampini, Adriano A. and S. Viswanathan. "Household Risk Management," NBER Working Paper No. 22293, May 2016.
- Restuccia, Diego and Richard Rogerson. "Policy Distortions and Aggregate Productivity with Heterogeneous Plants," *Review of Economic Dynamics*, Elsevier for the Society for Economic Dynamics 11(4): 707-720, October 2008.
- Rosenzweig, Mark R. and Hans P. Binswanger. "Wealth, Weather Risk and the Composition and Profitability of Agricultural Investments," *Economic Journal* 103(146), 1993.
- Samphantharak, Krislert and Robert M. *Townsend. Households as Corporate Firms: An Analysis of Household Finance Using Integrated Household Surveys and Corporate Financial Accounting.* Cambridge University Press, 2010.
- Samphantharak, Krislert and Robert M. Townsend. "Measuring Return on Household Enterprises: What Matters Most for Whom?" *Journal of Development Economics* 2012.
- Schulholfer-Wohl, Sam. "Heterogeneity and Tests of Risk Sharing." *Journal of Political Economy* 119 (5): 925-958, 2011.
- Shanken, J. "On the estimation of beta-pricing models." *Review of Financial Studies* 5: 1-33, 1992.
- Townsend, Robert M. "Risk and Insurance in Village India," Econometrica, 62(3), 1994.
- Udry, Christopher. "Risk and Insurance in a Rural Credit Market: An Empirical Investigation in Northern Nigeria," *Review of Economic Studies* 61, 1994.
- Udry, Christopher and Santosh Anagol. "The Return to Capital in Ghana," *American Economic Review* 96(2): 388-393, 2006.
- Vissing-Jorgensen, Annette. "Asset Market Participation and the Elasticity of Intertemporal Substitution." *Journal of Political Economy*, August 2002.
- Vissing-Jorgensen, Annette and Orazio Attanasio. "Stock Market Participation, Intertemporal Substitution, and Risk Aversion," *American Economic Review* 36, 2003.

Appendix

Appendix A: Derivation of Empirical Specification

Due to the first assumption on linear production technology, equation (1) also holds for any of the portfolios constructed by any combinations of the assets $k'_{i,j}$ for all i and all j. If we consider a household as our unit of observation, equation (1) implies that $1 = E[m'R'_j]$, where

$$R'_{j} = \frac{\sum_{i=1}^{I} \theta'_{i,j} R'_{i,j}}{\sum_{i=1}^{I} \theta'_{i,j}}$$
. In other words, R'_{j} is the weighted average return to the portfolio of the assets

operated by household j, where the weights are the shares of each asset in household j's portfolio. This insight allows us to study the risk and return of a household's portfolio of assets instead of the risk and return of each individual asset. This implication is especially important in the empirical study where the classification of asset types and the income stream from each asset is problematic, as one asset may be used in various production activities or various types of assets are used jointly in a certain production activity.

The second assumption that the value function of the social planning problem can be well approximated as quadratic in the total assets of the economy implies that at W',

$$V_{W}(W') = -\eta(W' - W^{*}) = -\eta \left(\sum_{j=1}^{J} \sum_{i=1}^{I} R'_{i,j} k'_{i,j} - W^{*} \right) = -\eta \left(R'_{M} k'_{M} - W^{*} \right), \tag{A1}$$

where
$$R'_{M} = \frac{\sum_{j=1}^{J} \sum_{i=1}^{I} R'_{i,j} k'_{i,j}}{k'_{M}}$$
 and $k'_{M} = \sum_{j=1}^{J} \sum_{i=1}^{I} k'_{i,j}$. The first-order conditions from the value

function (A1) imply

$$m' = -\frac{\phi \eta \left(R'_{M} k'_{M} - W^{*} \right)}{\mu} = \frac{\phi \eta W^{*}}{\mu} - \frac{\phi \eta k'_{M}}{\mu} R'_{M},$$

$$m' = a - b R'_{M},$$
(A2)

where a and b are implicitly defined. Next, combining equation (A2) with the Euler equation derived earlier,

$$E[R'_{i,j}] = \gamma' - \frac{\text{cov}(a - bR'_{M}, R'_{i,j})}{\text{var}(a - bR'_{M})} \cdot \frac{\text{var}(a - bR'_{M})}{E[a - bR'_{M}]}$$

$$E[R'_{i,j}] = \gamma' + \frac{\text{cov}(R'_{M}, R'_{i,j})}{\text{var}(R'_{M})} \cdot \frac{b \text{var}(R'_{M})}{a - bE[R'_{M}]}$$

$$E[R'_{i,j}] = \gamma' + \beta_{ij} \psi, \qquad (A3)$$

which is a linear relationship between the expected return of an asset, $E[R'_{i,j}]$, its nondiversifiable risk as measured by the comovement with the aggregate return, β_{ij} , and the price of the nondiversifiable risk, ψ . Note again that equation (A3) holds for any assets or portfolios of

assets, including the market portfolio, M, and the risk-free asset, f. Since $\beta_M = 1$ and $\beta_f = 0$, equation (A3) also implies that $\gamma' = R_f'$ and $\psi = E[R_M'] - R_f'$. In other words, the price of the aggregate, nondiversifiable risk is equal to the expected return on the market portfolio in excess of the risk-free rate. This condition, presented in equation (A3), is equivalent to the relationship between risk and expected return derived in the traditional Capital Asset Pricing Model (CAPM) in asset pricing literature. Finally, as discussed earlier, equation (A3) also holds for any of the portfolios constructed by any combinations of the assets for any i and any j because the production technologies are assumed to be linear in capital. In other words, for each household j, we can derive equation (2) as

$$E[R'_{j}] - R'_{f} = \beta_{j} \left(E[R'_{M}] - R'_{f} \right), \tag{2}$$

where R'_j is the return to household j's portfolio and β_j is the beta for the return on household j's assets with respect to the aggregate market return,

$$\beta_j = \frac{\operatorname{cov}(R_M', R_j')}{\operatorname{var}(R_M')} \,. \tag{3}$$

Also, note that common quadratic utility functions do Gorman aggregate and we can drop the reference to Pareto weights. Also, the quadratic utility function is not the only setting that delivers this result.

Appendix B: Descriptive Statistics

[Tables A.1-A.4]

Appendix C: Construction of Income, Assets, and Rate of Return

Net Income: Income is accrued household enterprise income, which is the difference between the enterprise total revenue and the associated cost of inputs used in generating that revenue. Revenue is realized at the time of sale or disposal. Associated cost could be incurred earlier, in the periods before the sale or disposal of outputs. Total revenue includes the value of all outputs the household produces for sale (in cash, in kind, or on credit), own consumption (imputed value), or given away. Revenue also includes rental income from fixed assets. Revenue does not include wages earned outside the household or gifts and transfers received by the household. Cost includes the value of inputs used in the production of the outputs, regardless of the method of their acquisition, i.e., purchase (in cash, in kind, or on credit) or gifts from others or transfers from government. Costs includes the wage paid to labor provided by non-household members as well as imputed compensation to the labor provided by household members. Ocst includes all utility expenses of the household regardless of the purposes of their uses and also includes depreciation of fixed assets.

Total Assets: Assets include all assets, i.e., fixed assets, inventories, and financial assets. Fixed assets are surveyed in the Agricultural Assets, Business Assets, Livestock, Household Assets, and Land Modules of the survey. In the Agricultural Assets Module, fixed assets include walking tractor, large four-wheel tractor, small four-wheel tractor, aerator, machine to put in seeds and pesticides, machine to mix fertilizer and soil, sprinkler, threshing machine, rice mill, water pump, rice storage building, other crop storage building, large chicken coop, other buildings for

²⁹ For the detailed procedure how we impute the compensation to household's own labor, See Samphantharak and Townsend (2010).

livestock, and other buildings. In the Household Assets Module, assets include car, pick-up truck, long-tail boat with motor, large fishing boat, bicycle, air conditioner, regular telephone, cellular telephone, refrigerator, sewing machine, washing machine, electric iron, gas stove, electric cooking pot, sofa, television, stereo, and VCR.³⁰ Due to the variety in non-agricultural businesses, in the Business Module, we do not list the specific name of the assets, but instead ask the household to report the fixed assets they use in their business enterprises. In the Land Module, assets include land and building at acquisition value, the value of land and building improvement, and the appreciation of land when major events occurred (such as an addition of new public roads). In all of the modules, assets that are not explicitly listed but have value more than 2,000 baht are also asked and included. We also adjust the value of fixed assets with monthly depreciation. Inventories include raw material, work in progress, finished goods for cultivation, fish and shrimp farming, livestock activities (such as milk and eggs), and manufacturing nonfarm businesses. For merchandizing non-farm businesses, inventories are mainly goods for resale. Animals from the Livestock Inventory Module, which include young meat cow, mature meat cow, young daily cow, mature dairy cow, young buffalo, mature buffalo, young pig, mature pig, chicken, and duck, are accounted as either inventories or fixed assets, based on their nature. Financial assets include cash, deposits at financial institutions, other lending, and net ROSCA position. These line items are computed from the Savings Module, the Lending Module, and the ROSCA Module. The stock of cash is not asked directly but can be imputed from questions about each and every transaction that each households had since the last interview. Finally, the total asset used in the calculation of rate of return is net of liabilities. We use the information from the Borrowing Module to calculate the household's stock of total liabilities.

Rate of Return: The rate of return on assets (ROA) is defined as household's accrued net income divided by household's average total assets (net of total liabilities) over the period from which that the income was generated, i.e., one month in this paper. The average total asset is the sum of total assets at the beginning of the month and total assets at the end of the month, divided by two.

Discussion on Measurement Errors

For the aggregate risk, the positive relationship between beta and expected (or mean) return could be driven by measurement errors if the measurement errors of household ROAs are positively correlated with the measurement errors of the aggregate ROA. However, for most production activities, we use direct answers on revenue from those production activities from each household to compute that household's ROA. Constructing price indices from these data reveals that prices in a given month can vary considerably over households. This may be due in part to the fact that we did not try to distinguish within village versus farm gate prices, i.e., we have revenue and price at the point of sale, wherever that might be. Actual and imputed wages also vary enormously over households at a point in time. There are also likely measurement errors in idiosyncratic returns but detailed studies of rice production show that yields can be explained beyond rainfall by measured differences in soil moisture, soil type, elevation, and timing of rain, which are all household specific, and hence much of the heterogeneity across households is real and not necessary measurement error (Tazhibayeva and Townsend 2012). Of course some measurement errors are intrinsic to any survey. However, as we will discuss later in this paper, our findings from the analyses that use the data from the production modules of the survey are largely consistent with the findings from the consumption, gifts, and loan modules of the same survey. This independence across modules reassure us that the main conclusions in this paper are unlikely driven by measurement error in the data.

-

³⁰ Note that we decide to include all household assets in our calculation. This is mainly because some of these assets were used by the households in their production activities as well and it would be arbitrary to include certain household assets while excluding others. However, the value of these assets was relatively small compared to the value of total assets (which was largely determined by land and other fixed assets). See Samphantharak and Townsend (2012) for the sensitivity analysis of ROA on household assets.

Appendix D: Alternative Definitions of the Aggregate Economy

One may argue that kinship networks are local and operate better at the village or network levels than at the township level. Table A.5 reports the second-stage regression results when we use villages as aggregates. Despite the smaller number of observations, the results show that the regression coefficient of household beta is significantly positive at 10% (or lower) level of significance for 9 of the 16 villages in our sample, with the only exception of all four villages in Buriram province, two villages in Lopburi, and one village in Chachoengsao. The result also shows that we cannot reject the null hypothesis that $\psi = \overline{R}_M$ at 10% level of significance for 5 out of those 9 villages in the sample (Village 7 in Chachoengsao; Village 4 in Lopburi; and Villages 6, 9, and 10 in Srisaket).

[Tables A.5]

We also perform a similar analysis at the network level. In order to analyze the risk and return at the network level, we construct kinship network maps for the households in the Townsend Thai Monthly Survey. Specifically, for each of the relatives of the household head and the spouse (parents and siblings of the head, parents and siblings of the spouse, and their children) who was still alive and lived within the village, the survey recorded which building structure as recorded in the initial census he or she lived. With this information, we constructed a kinship network map for each village by drawing a link between two households that were family-related related. We present in Table A.6 the regressions using network as our definition of aggregate economy. We present only the results for the networks with more than 15 households. There are nine of them. All are from different villages (four from Lopburi in the central region; two from Buriram and three from Srisaket in the northeast). Table A.6 shows that the regression coefficient of household beta is significantly positive for 5 of the 9 networks. For 2 of the 9 networks, we however cannot reject the null hypothesis that the regression coefficient is equal to the network's average return (Networks 602 and 902 in Srisaket).

[Tables A.6]

Appendix E: Time-Varying Stochastic Discount Factor

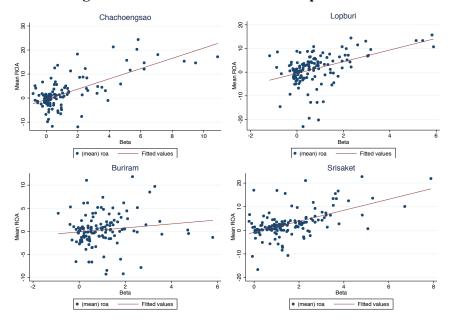
To show that the consumption-wealth ratio summarizes the expectation of future returns, Lettau and Ludvigson (2001a) start from the resource constraint in period t analogous to what presented in Section 2 of this paper, $W_{t+1} = (1+r_{M,t+1})(W_t-C_t)$, where W_t , C_t , and $r_{M,t+1}$ are wealth, consumption, and market rate of return in period t. Following Campbell and Mankiw (1989), the log-linear approximation of this constraint yields $c_t - w_t \approx E_t \left[\sum_{s=1}^{\infty} \rho_w^s (r_{M,t+s} - \Delta c_{t+s}) \right]$, where $\rho_w = \frac{W-C}{W}$ or the steady-state investment to wealth ratio. Define $cay_t = c_t - w_t = c_t - \omega a_t - (1-\omega)y_t$, where a is the share of physical wealth in total wealth. Since we do not observe the share of non-human wealth, ω , we cannot directly compute the log consumption to wealth ratio, cay_t . Instead, we follow Lettau and Ludvigson (2001a) and obtain the value of cay_t from $cay_t = c_t^* - \widehat{\omega} a_t^* - \widehat{\theta} y_t^* - \widehat{\delta}$, where the starred variables are the observed

quantities from our data and the hatted values are the estimated coefficients from the township time-series regression $c_t^* = \delta + \omega a_t^* + \theta y_t^* + \varepsilon_t$.

Appendix F: Risk-Adjust Return

[Table A.7]

References

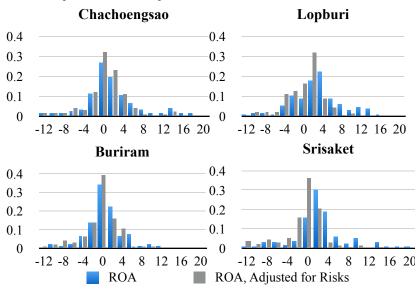

Lettau, Martin and Sydney Ludvigson. "Consumption, Aggregate Wealth, and Expected Stock Returns" *Journal of Finance*, 2001a.

Samphantharak, Krislert and Robert M. *Townsend. Households as Corporate Firms: An Analysis of Household Finance Using Integrated Household Surveys and Corporate Financial Accounting.* Cambridge University Press, 2010.

Samphantharak, Krislert and Robert M. Townsend. "Measuring Return on Household Enterprises: What Matters Most for Whom?" *Journal of Development Economics*, 2012.

Tazhibayeva, Kamilya and Robert M. Townsend. "The Impact of Climate Change on Rice Production: Heterogeneity and Uncertainty." MIT Working Paper, 2012.

Figure 1 Risk and Return: Township as Market



Remarks Unit of observation is household. There are 129 households in Chachoengsao, 140 in Lopburi, 131 in Buriram, and 141 in Srisaket. The fitted lines correspond to regression results presented in Columns (1)-(4) in Table 1.

Figure 3 Scatter Plots Aggregate Risk Premium and Idiosyncratic Risk Premium

Remarks Unit of observation is household. The observations are from all of the four townships. Aggregate risk premium is computed from equation (14b) while idiosyncratic risk premium is computed from equation (15b), both using estimates from Table 8. The premia are presented in annualized monthly percentage return.

Figure 2 Histograms of Rate of Return on Assets, Unadjusted and Adjusted for Risk

Remarks Unit of observation is household. ROA is the annualized monthly rate of return on asset in percentage. ROA adjusted for risk is the rate of return adjusted for both aggregate and idiosyncratic components of the total risk faced by the households.

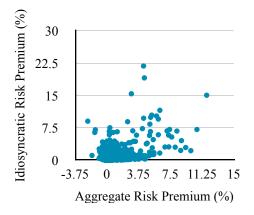


Table 1 Risk and Return Regressions: Township as Market

Dependent Variable:

Household's Mean Return on Assets

Region: Township (Province):	Panel A: Constant Beta				Panel B: Time-Varying Beta			
	Central		Northeast		Central		Northeast	
	Chachoengsao	Lopburi	Buriram	Srisaket	Chachoengsao	Lopburi	Buriram	Srisaket
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Beta	2.135***	2.465***	0.432	2.335***	1.250***	2.307***	0.530**	1.888***
	(0.386)	(0.518)	(0.455)	(0.663)	(0.169)	(0.326)	(0.265)	(0.48)
Constant	-0.535	-0.503	-0.122	-0.847	-0.325*	-0.631***	-0.782***	-1.114***
	(0.412)	(0.561)	(0.364)	(0.668)	(0.176)	(0.235)	(0.162)	(0.304)
Observations	129	140	131	141	1,161	1,260	1,179	1,269
R-squared	0.467	0.210	0.017	0.297	0.330	0.204	0.019	0.260
Township Returns:								
Monthly Average	1.68	2.49	0.15	0.80	1.19	2.40	-0.07	1.04
Standard Deviation	0.07	0.10	0.10	0.10	0.75	1.47	0.54	0.75

Remarks For columns (1)-(4), unit of observations is household. Beta is computed from a simple time-series regression of household's adjusted ROA on township's ROA over the 156 months from January 1999 to December 2011. Household's mean adjusted ROA is the time-series average of household adjusted ROA over the same 156 months. For columns (5)-(8), unit of observation is household-time window. Each time window consists of 60 months. The window shifts 12 months (1 year) at a time. There are 9 moving windows in total for each household. Beta is computed from a simple time-series regression of household's adjusted ROA on township's ROA in each corresponding time window. Household's mean adjusted ROA is the time-series average of household adjusted ROA over the corresponding time window. Robust standard errors corrected for generated regressors (Shanken 1992) are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 2 Risk and Return Regressions with Human Capital and Time-Varying Stochastic Discount Factor: Township as Market

Dependent Variable: Household's Mean Return on Assets Region: Central Northeast Central Northeast Township (Province): Chachoengsao Lopburi Buriram Srisaket Chachoengsao Lopburi Buriram Srisaket (8) (1) (2) (3) (4) (5) (6) (7) 2.005*** 1.242*** 2.233*** 0.564*** 1.813*** 1.094*** 1.893*** Beta with respect to 0.392 return on market physical capital (ra) (0.329)(0.271)(0.334)(0.242)(0.163)(0.49)(0.148)(0.45)Beta with respect to 0.00177 0.0217 -0.05240.149 -0.005420.0375 -0.03100.179 return on market human capital (rh) (0.056)(0.187)(0.181)(0.363)(0.061)(0.185)(0.171)(0.354)0.0789 Beta with respect to -0.00441 0.00246 0.0333 residual log consumption (cay) (0.055)(0.17)(0.149)(0.324)Beta with respect to -0.00533 -0.0304-0.131-0.101the interaction cay*ra (0.065)(0.216)(0.168)(0.351)0.00134 0.0109 Beta with respect to -0.000574-0.0130the interaction cay*rh (0.035)(0.162)(0.142)(0.315)-0.757*** -1.080*** -0.464** -0.589*** -1.164*** Constant -0.307* -0.584** -0.156(0.176)(0.232)(0.164)(0.310)(0.178)(0.223)(0.162)(0.268)1,260 Observations 1,161 1,179 1,269 1,161 1,260 1.179 1,269 0.329 0.021 R-squared 0.203 0.270 0.315 0.203 0.049 0.306

Remarks Unit of observation is household-time window. For Columns (1)-(4), beta's are computed from a multivariate time-series regression of household's monthly adjusted ROA on township's monthly return on market physical capital (ra) and township's return on human capital (ry), which is proxied by the monthly growth rate of township's total labor income. Regressions are performed on moving windows of 60 months. The window then shifts 12 months (1 year) at a time and there are 9 moving windows in total for each household. Household's mean adjusted ROA is the time-series average of household adjusted ROA over the corresponding time window. For Columns (5)-(8), similar analysis is performed, with additional explanatory variables. Residual log consumption is the residual computed from time-series regression of township's monthly log food consumption on township's total physical asset at the beginning of the month and township's total labor income during that month. Interaction terms are then defined accordingly. Robust standard errors corrected for generated regressors (Shanken 1992) are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 3 Contribution of Idiosyncratic Risk to Total Risk and Total Risk Premium

Region:			Cen	tral			Northeast					
Township (Province):	C	hachoeng	sao		Lopburi			Buriram		Srisaket		
	p25	p50	p75	p25	p50	p75	p25	p50	p75	p25	p50	p75
					Pana	el A: Basel	line Specif	ication				
Contribution to Total Risk (Variance)	93.9%	98.1%	99.7%	92.3%	97.6%	99.5%	84.0%	94.0%	98.2%	43.8%	65.9%	88.9%
Contribution to Total Risk Premium	4.7%	21.6%	45.4%	41.7%	61.5%	88.7%	105.6%	118.7%	152.8%	13.3%	28.8%	53.9%
Percentage of Diversified Idiosyncratic Risk	98.6%	99.6%	100.0%	92.4%	96.3%	99.9%	111.2%	135.2%	172.2%	67.4%	82.0%	90.0%
					Panel 1	B: Robusti	ness Specif	ication				
Contribution to Total Risk (Variance)	77.4%	84.9%	89.0%	80.2%	88.0%	91.6%	73.4%	79.7%	87.1%	40.9%	55.0%	68.9%
Contribution to Total Risk Premium	6.3%	32.6%	56.6%	21.2%	54.9%	102.2%	35.4%	88.4%	147.0%	9.1%	19.5%	33.3%
Percentage of Diversified Idiosyncratic Risk	79.4%	93.4%	100.3%	69.6%	94.9%	110.2%	75.5%	112.7%	153.6%	63.4%	79.9%	89.4%
Number of Observations	129	129	129	140	140	140	131	131	131	141	141	141

Remarks Unit of observation is household. Panel A presents the results from a baseline specification, as shown in equation (4), using the empirical results from Columns (1)-(4) of Table 1. Panel B presents the results from a full robustness specification, as shown in equation (6), using the empirical results from Columns (5)-(8) of Table 2. The numbers for each household are the average across estimates from nine different time-shifting windows.

Table 4 Aggregate Risk, Idiosyncratic Risk, and Rate of Return: Township as Market

Dependent Variable:

Panel A: Baseline Specification Household's Mean ROA Panel B: Robustness Specification Household's Mean ROA

Dependent variable.	1	iousenoiu s	meun KOA		Household's Mean KOA					
Region:	Centr	al	Nort	heast	Cent	ral	No	ortheast		
Township (Province):	Chachoengsao	Lopburi	Buriram	Srisaket	Chachoengsao	Lopburi	Buriram	Srisaket		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Beta with respect to	0.903***	1.518***	-0.181	1.334***	0.487***	1.105***	0.0137	1.331***		
return on market physical capital (ra)	(0.311)	(0.305)	(0.349)	(0.354)	(0.194)	(0.341)	(0.248)	(0.442)		
Beta with respect to					0.00598	0.06	-0.0411	0.0799		
return on market human capital (rh)					(0.054)	(0.18)	(0.168)	(0.335)		
Beta with respect to					-0.0117	-0.00401	0.0106	0.0376		
residual log consumption (cay)					(0.049)	(0.168)	(0.145)	(0.321)		
Beta with respect to					-0.0117	0.0245	-0.0686	-0.0560		
the interaction cay*ra					(0.056)	(0.214)	(0.162)	(0.344)		
Beta with respect to					-0.00166	-0.000644	0.00392	-0.0127		
the interaction cay*rh					(0.034)	(0.162)	(0.141)	(0.314)		
Sigma	0.216***	0.184***	0.131***	0.205***	0.00428***	0.00467***	0.00389***	0.00367***		
	(0.0499)	(0.0362)	(0.0432)	(0.0361)	(0.000689)	(0.000400)	(0.000435)	(0.000296)		
Constant	-1.999***	-3.132***	-1.576***	-2.745***	-0.489***	-1.535***	-1.356***	-1.491***		
	(0.433)	(0.695)	(0.509)	(0.589)	(0.171)	(0.214)	(0.151)	(0.237)		
Observations	129	140	131	141	1,161	1,260	1,179	1,269		
R-squared	0.558	0.280	0.114	0.459	0.433	0.330	0.196	0.446		
R-squared	0.558	0.280	0.114	0.459	0.433	0.330	0.196			

Remarks Unit of observation is household-time window. Beta's are computed from a multivariate time-series regression of household's monthly adjusted ROA on township's monthly return on market physical capital (ra) and township's return on human capital (rh), and township's residual log consumption (cay). Township's return on human capital (ry) is proxied by the monthly growth rate of township's total labor income. Township's residual log consumption is the residual computed from time-series regression of township's monthly log food consumption on township's total physical asset at the beginning of the month and township's total labor income during that month. Interaction terms are then defined accordingly. Sigma is the variance of error terms from regressions used to estimate beta's for each household-time window. Robust standard errors corrected for generated regressors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 5 Idiosyncratic Income, Consumption, Gift, and Lending

Dependent Variable:	Net Gift Outflow	Net Lending	Net Gift Outflow Plus Net Lending	Consumption
Idiosyncratic Income	13.02***	27.67***	40.66***	4.857**
	(4.795)	(7.507)	(9.000)	(2.081)
Province-Month Fixed Effects	Yes	Yes	Yes	Yes
Household Fixed Effects	Yes	Yes	Yes	Yes
Observations	81,664	81,712	81,664	81,712
R-squared	0.011	0.009	0.009	0.014
Number of Households	541	541	541	541

Remarks: Unit of observation is household-month. Net gift outflow is defined as gift outflow minus gift inflow. Net lending is defined as lending minus borrowing. Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 6 Determinants of Rate of Returns and Risks

Region	Cent	ral	Nort	heast	Central		Nort	heast	
Province	Chachoengsao	Lopburi	Buriram	Srisaket	Chachoengsao	Lopburi	Buriram	Srisaket	
	I	Panel A: Simple	Rate of Return	ı	Par	nel B: Risk-Adju	sted Rate of Retu	rn	
Total Initial Wealth	-0.0140**	0.534***	-0.594**	-2.149***	0.0287***	0.711***	-0.323	-0.109	
	(0.00694)	(0.0791)	(0.255)	(0.323)	(0.00806)	(0.0691)	(0.262)	(0.192)	
Household Size	-0.0868	-0.729***	-0.0651	-0.144	0.182	-0.872***	-0.239	-0.577***	
	(0.177)	(0.249)	(0.169)	(0.228)	(0.123)	(0.205)	(0.146)	(0.166)	
Age of Household Head	-0.0417**	0.00155	0.00627	0.00231	0.0217	0.0338*	0.0257**	0.0550***	
	(0.0201)	(0.0211)	(0.0142)	(0.0209)	(0.0133)	(0.0174)	(0.0125)	(0.0148)	
Education of Household Head	-0.115	-0.469***	0.128	-0.492***	0.209*	-0.368***	0.0896	-0.252**	
	(0.136)	(0.120)	(0.0823)	(0.133)	(0.108)	(0.106)	(0.0746)	(0.108)	
Household Head Gender (Male=1)	0.590	-0.597	-0.997**	1.710***	-1.580***	-0.291	-0.685*	-0.0355	
	(0.444)	(0.510)	(0.415)	(0.510)	(0.345)	(0.369)	(0.386)	(0.401)	
Constant	4.434**	4.472**	0.101	4.636***	-2.320*	-0.815	-1.911**	-2.299*	
	(1.815)	(1.766)	(1.103)	(1.791)	(1.204)	(1.494)	(0.964)	(1.233)	
R-squared	0.014	0.078	0.022	0.084	0.026	0.128	0.027	0.080	
		Panel C: Ag			Panel D: Idiosyncratic Risk				
Total Initial Wealth	-0.0261***	-0.00532	-0.178***	-0.831***	-6.902***	-34.73***	-68.39***	-239.2***	
	(0.00397)	(0.0148)	(0.0572)	(0.0935)	(1.087)	(7.917)	(17.98)	(35.16)	
Household Size	-0.141**	0.0543	0.0622	0.224***	-51.43***	23.16	43.24**	27.56	
	(0.0695)	(0.0491)	(0.0444)	(0.0526)	(19.67)	(17.68)	(18.51)	(26.59)	
Age of Household Head	-0.0482***	-0.0152***	-0.00635	-0.0115**	-9.930***	-1.943	-4.848***	-9.827***	
	(0.0108)	(0.00479)	(0.00432)	(0.00540)	(2.391)	(1.529)	(1.549)	(2.270)	
Education of Household Head	-0.266***	-0.0172	0.000534	-0.111***	-49.46***	-8.927	9.993	-21.49*	
	(0.0529)	(0.0158)	(0.0187)	(0.0225)	(10.47)	(5.995)	(6.210)	(11.86)	
Household Head Gender (Male=1)	1.766***	0.0687	0.304***	0.789***	319.9***	-109.6	-63.05	153.8***	
	(0.212)	(0.122)	(0.0936)	(0.117)	(48.73)	(77.08)	(46.39)	(58.81)	
Constant	4.888***	1.574***	0.847***	2.326***	1,081***	648.4***	505.1***	1,038***	
	(0.918)	(0.366)	(0.313)	(0.429)	(216.8)	(141.2)	(105.9)	(190.6)	
R-squared	0.080	0.164	0.043	0.169	0.072	0.050	0.041	0.109	
Observations	1,082	1,195	1,100	1,172	1,082	1,195	1,100	1,172	

Remarks Unit of observation is household-round (shifting time window). For each household, beta and sigma are estimated from the regression in equation (6). Beta is the regression coefficient with respect to aggregate return on physical assets. Sigma is the variance of the error terms from the regression. Household size is the number of household members aged 15-64. Age of household head was as of the end of December 1998. Initial wealth is in million baht. All regressions include village fixed effects. Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table A.1 Descriptive Statistics of Household Characteristics

	Number of		Percentiles		Number of		Percentiles	
	Observations	25th	50th	75th	Observations	25th	50th	75th
Region				(Central			
Township (Province)		Chacho	engsao			Lop	buri	
As of December 1998:								
Household size	129	3.0	4.0	6.0	140	3.0	4.0	5.0
Male	129	1.0	2.0	3.0	140	1.0	2.0	3.0
Female	129	1.0	2.0	3.0	140	1.0	2.0	3.0
Male, age 15-64	129	1.0	1.0	2.0	140	1.0	1.0	2.0
Female, age 15-64	129	1.0	1.0	2.0	140	1.0	1.0	2.0
Average age	129	29.3	36.3	44.5	140	25.6	32.3	42.0
Maximum years of education	129	6.0	9.0	12.0	140	4.2	6.0	9.0
Total Assets (Baht)	129	380,465	1,109,228	3,636,334	140	336,056	1,074,082	2,387,329
156-Month Average (January 1999-De	ecember 2011):		, ,	, ,		Ź	, ,	, ,
Monthly Income (Baht)	129	7,561	13,696	23,637	140	5,836	10,486	20,765
Total Assets (Baht)	129	857,892	1,745,109	4,275,229	140	653,339	1,645,757	3,052,390
Fixed Assets (% of Total Assets)	129	37%	61%	80%	140	40%	59%	71%
Total Liability (Baht)	129	8,470	31,455	105,216	140	34,595	121,412	285,300
Liability to Asset Ratio	129	0%	2%	6%	140	4%	8%	16%
Region					ortheast			
Township (Province)		Buri	ram			Sris	saket	
As of December 1998:								
Household size	131	3.0	4.0	5.0	141	4.0	5.0	6.0
Male	131	1.0	2.0	3.0	141	2.0	2.0	3.0
Female	131	1.0	2.0	3.0	141	2.0	2.0	3.0
Male, age 15-64	131	1.0	1.0	2.0	141	1.0	1.0	2.0
Female, age 15-64	131	1.0	1.0	2.0	141	1.0	1.0	2.0
Average age	131	20.9	27.6	39.3	141	25.2	32.0	36.3
Maximum years of education	131	4.0	6.0	8.3	141	5.3	7.0	10.3
Total Assets (Baht)	131	356,201	572,491	947,314	141	156,313	387,634	881,455
156-Month Average (January 1999-De	ecember 2011):	,	,	,		,	,	,
Monthly Income (Baht)	131	2,073	3,677	5,584	141	2,160	3,672	5,276
Total Assets (Baht)	131	503,434	741,882	1,114,981	141	317,444	577,064	1,048,213
Fixed Assets (% of Total Assets)	131	39%	57%	69%	141	35%	63%	75%
Total Liability (Baht)	131	24,316	56,805	109,264	141	23,471	42,932	75,531
Liability to Asset Ratio	131	3%	8%	17%	141	4%	9%	17%

Remarks The unit of observations is household. Average age and maximum years of education across household members within a given household. Assets, liabilities, and income are in nominal value. Fixed assets include equipment, machinery, building, and land.

Table A.2 Revenue from Production Activities (% by Township)

Region:	Centr	Northeast		
Township (Province):	Chachoengsao	Lopburi	Buriram	Srisaket
Production Activities				
Cultivation	13.2%	39.4%	13.5%	33.7%
Livestock	21.0%	22.8%	1.0%	1.1%
Fish and Shrimp	17.6%	0.0%	0.3%	1.6%
Non-farm Business	28.8%	19.7%	59.2%	28.6%
Wage Earning	18.4%	15.2%	22.6%	27.9%
Number of Sampled Households	129	140	131	141

Remarks The unit of observations is township. The percentage of revenue is the revenue of each production activity from all households in our sample divided by the total revenue from all activities in the township. The revenues are computed from all of the 156 months (January 1999 to December 2011).

Table A.3 Descriptive Statistics of Networks in Village and Township

Region	Centr	al	Northeast		
Township (Province)	Chachoengsao	Lopburi	Buriram	Srisaket	
Number of Observations % of Households with relatives living in the same	129	140	131	141	
Village	50.4%	76.4%	80.9%	87.9%	
Township	87.8%	88.4%	97.1%	94.0%	

Remarks The unit of observation is household. Relatives are defined as parents of household head, parents of household head's spouse, siblings of household head or of household head's spouse, or children of household head. Network variables are computed as of August 1998 (the initial baseline survey, i.e. Month 0).

Table A.4 Descriptive Statistics of Return on Assets: Quartiles by Township

	Number of	Percentiles	tiles Number of			Percentiles		
	Observations	25th	50th	75th	Observations	25th	50th	75th
Region:				c	entral			
Province (Township):		Chacho	engsao			Lopi	buri	
Mean	129	-1.72	0.38	3.99	140	-1.67	1.46	4.53
Standard Deviation	129	4.38	7.56	16.61	140	10.16	16.51	24.77
Coefficient of Variation	129	2.02	3.14	5.46	140	3.27	4.65	8.85
Region:				No	rtheast			
Province (Township):		Buri	ram			Srise	aket	
Mean	131	-1.32	0.28	1.56	141	0.21	1.99	4.29
Standard Deviation	131	8.38	13.92	22.59	141	10.16	16.78	26.87
Coefficient of Variation	131	4.03	8.70	17.48	141	4.03	5.92	11.52

Remarks Unit of observations is households. ROA is rate of return on household's total asset, computed by household's net income (net of compensation to household labor) divided by household's average total assets over the month. ROA is real return, adjusted by regional Consumer Price Index from the Bank of Thailand, and reported in annualized percentage. Mean, standard deviation, and coefficient of variation of ROA are computed from monthly ROA for each household over 156 months (January 1999 to December 2011). The percentiles are across households in each township.

Table A.5 Risk and Return Regressions: Village as Market

Dependent Variable:				's Mean ROA				
Province:		Chache	pengsao			Lop	buri	
Village:	02	04	07	08	01	03	04	06
Beta	2.473***	3.232***	6.741***	0.720	2.163	3.185	4.399***	4.884***
	(0)	(1)	(2)	(1)	(4)	(3)	(1)	(1)
Constant	-1.105	-0.333	-0.739	1.162	-0.827	0.312	0.257	-1.629
	(0.899)	(0.756)	(0.821)	(0.984)	(1.434)	(0.873)	(0.572)	(1.503)
Observations	35	36	27	31	34	29	37	40
R-squared	0.449	0.702	0.446	0.036	0.012	0.126	0.472	0.337
Village Returns:								
Monthly Average	1.09	1.48	4.13	0.73	2.03	2.49	2.48	2.85
Standard Deviation	0.14	0.08	0.50	0.12	0.17	0.34	0.14	0.33
Province:		Bur	iram			Sris	aket	
Village:	02	10	13	14	01	06	09	10
Beta	0.827	0.547	0.217	0.697	2.759***	3.680***	1.557**	1.902*
	(1)	(2)	(1)	(1)	(1)	(2)	(1)	(1)
Constant	-0.628	0.346	0.684	-0.541	-2.407**	-0.558	0.735	-1.748
	(0.417)	(1.197)	(0.831)	(0.688)	(1.172)	(1.661)	(1.001)	(1.907)
Observations	34	28	34	35	38	42	39	22
R-squared	0.022	0.010	0.003	0.014	0.510	0.387	0.114	0.149
Village Returns:								
Monthly Average	-0.14	1.56	0.36	-0.52	-0.57	1.88	0.87	0.95
Standard Deviation	0.11	0.14	0.23	0.17	0.16	0.12	0.13	0.15

Remarks Unit of observations is household. Beta is computed from a simple time-series regression of household adjusted ROA on village ROA over the 156 months from January 1999 to December 2011. Household's mean adjusted ROA is the time-series average of household adjusted ROA over the same 156 months. Standard errors corrected for generated regressors (Shanken 1992) are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table A.6 Risk and Return Regressions: Network as Market

Dependent Variable:	Household's Mean ROA									
Region:	Central									
Province:		Lopbur	i							
Village:	01	03	04	06						
Network:	03	03	06	01						
Beta	-3.088	3.265	7.366***	5.189***						
	(4.302)	(4.033)	(2.383)	(0.881)						
Constant	0.433	1.523	0.123	-1.655						
	(1.448)	(1.244)	(0.865)	(1.799)						
Observations	16	18	20	33						
R-squared	0.012	0.041	0.464	0.345						
Network Returns:										
Monthly Average	2.03	2.46	2.52	2.85						
Standard Deviation	0.20	0.41	0.13	0.35						

Region:	Northeast								
Province:	Burir	ram	Srisaket						
Village:	13	14	01	06	09				
Network:	03	03	03	02	02				
Beta	1.373	0.728	2.842***	3.832**	1.540**				
	(0.988)	(1.046)	(0.722)	(1.484)	(0.618)				
Constant	-0.249	-0.460	-2.205*	-0.452	0.554				
	(0.694)	(0.794)	(1.226)	(1.845)	(1.025)				
Observations	23	27	23	37	36				
R-squared	0.184	0.015	0.365	0.374	0.134				
Network Returns:									
Monthly Average	0.38	-0.52	-0.58	1.88	0.87				
Standard Deviation	0.20	0.16	0.14	0.13	0.13				

Remarks Unit of observations is household. Beta is computed from a simple time-series regression of household's adjusted ROA on network's ROA over the 156 months from January 1999 to December 2011. Household's mean adjusted ROA is the time-series average of household adjusted ROA over the same 156 months. Standard errors corrected for generated regressors (Shanken 1992) are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table A.7 Descriptive Statistics of Household Alpha: Township as Market

Province	Number of	Maar Standa		CI	IZ4 *-	Percentiles		
	Observations	Mean	Deviation	Skewness	Kurtosis -	25th	50th	75th
		Pa	nel A: Return	on Assets, No	t Adjusted fo	r Risks		
Central					,			
Chachoengsao	129	1.90	6.51	1.14	4.64	-1.72	0.38	3.99
Lopburi	140	1.37	6.31	-0.93	5.46	-1.67	1.46	3.16
Northeast								
Buriram	131	0.30	3.49	0.24	4.79	-1.32	0.28	1.39
Srisaket	141	2.83	5.87	0.75	5.53	0.21	1.99	4.29
		Panel	B: Return on 2	Assets, Adjusi	ted for Aggre	gate Risks		
Central				v		_		
Chachoengsao	129	0.68	5.52	0.44	5.17	-1.75	-0.15	2.59
Lopburi	140	0.28	5.81	-1.47	7.05	-1.98	1.00	3.16
Northeast								
Buriram	131	-0.28	3.60	-0.02	4.54	-1.94	-0.27	1.39
Srisaket	141	-0.11	4.84	0.24	5.76	-1.43	-0.08	1.18
	Pan	nel C: Retur	rn on Assets, Ad	djusted for Ag	ggregate and	Idiosyncra	tic Risks	
Central								
Chachoengsao	129	-0.49	4.52	-0.305	6.09	-2.21	-0.42	1.469
Lopburi	140	-1.54	5.27	-1.87	8.12	-3.49	-0.12	1.493
Northeast								
Buriram	131	-1.36	3.52	-0.73	4.38	-2.75	-0.75	0.54
Srisaket	141	-1.49	4.16	-0.677	5.70	-2.55	-0.72	0.313

Remarks Unit of observations is households. Panel A reports descriptive statistics of rate of return without adjusting for any risk (but adjusted for household's own labor). Panel B report rate of return adjusted for aggregate risks, where risk premium is computed from market's mean ROA (ra), market return on human capital (ry), residual consumption (cay), and their interactions cay*ra and cay*rh, as defined in equation (7) in the text. Panel C report rate of return adjusted for aggregate risks, where risk premium is computed from market's mean ROA (ra), market return on human capital (ry), residual consumption (cay), and their interactions cay*ra and cay*rh, as well as idiosyncratic risk from sigma, as defined by equation (9b) in the text. For each household, the return in Panels B and C is averaged across 9 shifting time windows. *** p<0.01.

Integrated Household Surveys: An Assessment of U.S. Methods and an Innovation

Krislert Samphantharak, Scott Schuh, and Robert M. Townsend*

June, 2017

Forthcoming in Economic Inquiry

Abstract: We present a vision for improving household financial surveys by integrating responses from questionnaires more completely with financial statements and combining them with payments data from diaries. Integrated household financial accounts—balance sheet, income statement, and statement of cash flows—are used to assess the degree of integration in leading U.S. household surveys, focusing on inconsistencies in measures of the change in cash. Diaries of consumer payment choice can improve dynamic integration. Using payments data, we construct a statement of liquidity flows: a detailed analysis of currency, checking accounts, prepaid cards, credit cards, and other payment instruments, consistent with conventional cash-flows measures and the other financial accounts.

JEL Classifications: D12, D14, E41, E42

Keywords: Surveys, diaries, payments, financial statements, cash flows

* Krislert Samphantharak is an associate professor of economics at the School of Global Policy & Strategy, University of California at San Diego. Scott Schuh is the Director of the Consumer Payments Research Center in the Research Department at the Federal Reserve Bank of Boston and a senior economist and policy advisor. Robert M. Townsend is the Elizabeth & James Killian Professor of Economics at MIT and a visiting scholar in the Center. Their email addresses are ksamphan@ucsd.edu, scott.schuh@bos.frb.org, and <a href="mailto:nailto:mailto:mailto:mailto:mailto:mailto:mailto:nailto:m

1. Introduction

During recent decades, interest in the study of household finance has grown rapidly. Campbell (2006) first advanced the case for treating household finance as a distinct field of study in economics. The global Financial Crisis of 2008–09 strengthened that case due to the subprime housing debacle in many industrial economies and its persistent impact on household balance sheets. In particular, the extent and nature of increased leverage and risk in household mortgages and their effects on the real (housing industry) and financial (shadow banking) sectors of the economy were not well known or understood prior to the crisis. Consequently, there is now a focus on household decisionmaking, how households got into this trouble, what transpired in the crisis, and the difficulties encountered thereafter.¹

A hindrance to research and understanding of household economic behavior (real and financial) has been the lack of sufficient data. Relative to other countries, the United States has a large amount of high-quality data on household economic behavior; these data will be examined closely in this paper. Even the U.S. data, however, were inadequate to inform economic agents and policymakers sufficiently to avoid the Financial Crisis. Many efforts are underway to acquire and develop additional needed data; these efforts include the Eurosystem's Household Finance and Consumption Survey (HFCS), which was inspired partly by the U.S. Survey of Consumer Finances.² Other efforts, such as the National Academy of Science's call for a substantially revised Consumer Expenditure Survey, aim to reform existing datasets (Dillman and House 2013).

¹ For example, Mian and Sufi (2011) study the aggregate impact of the home-equity-based borrowing channel and find that a large portion of total new defaults between 2006 and 2008 were from homeowners who had borrowed aggressively against the rising value of their houses. In a panel analysis of 30 countries, Mian, Sufi, and Verner (2017) find that an increase in the household debt-to-GDP ratio predicts lower GDP growth and high unemployment. Outside the United States, a study by Agarwal and Qian (2014) shows a negative consumption response by Singaporean households to a decrease in access to home equity, with the result concentrated in credit card spending and stronger among individuals with limited access to credit markets or with a high precautionary saving motive.

² For more information on the HFCS, see https://www.ecb.europa.eu/pub/economic-research/research-networks/html/researcher.html.

U.S. household survey data exhibit several characteristics that limit their effectiveness. The U.S. statistical system (public and private) is decentralized, with each data source specializing in a part of household activity. Although there are often good reasons for specialization, the result is a general lack of comprehensive measurement of household activity. Many datasets are cross-sectional, which limits their ability to track the behavior of specific households over time, and are gathered infrequently. When data sources are combined in an effort to provide a more comprehensive view of household behavior, the combination of the specialized data sources can create imperfect, if not misleading, views of household economic conditions, due to differences in sampling, measurement, and linkages between microeconomic and aggregate data.³ These imperfections make it difficult to ascertain from the data the extent and nature of important developments, such as adjustments affecting household balance sheets in the wake of Financial Crisis, increases in income inequality, and intergenerational dynamics of household net worth.

Data on household behavior in other countries also exhibit limitations, but there are signs of improvement in response to major economic developments. Most notably, the Financial Crisis reaffirmed the view that household finance is at the center of development economics because financial access is thought to be one of the key factors that could help poor and vulnerable households become more productive and resilient in the face of economic shocks. In addition, there have been payment innovations such as M-Pesa in Kenya, an electronic money issued by a cell phone company, Safaricom, that in many respects is now on par with currency there as a medium of exchange (Jack, Suri, and Townsend 2010). The often-expressed hope in developing economies is that a deeper, more developed financial system can be built on top of such an improved payments system, with some progress evident in countries such as Pakistan.⁴ These

³ Carroll, Crossley, and Sabelhaus (2015) contains numerous studies showing the various practical and theoretical tradeoffs inherent in attempting to use survey data to build economic aggregates, tradeoffs that can make comparing results from different surveys extremely challenging. For instance, Crossley and Winter (2015) note the difficulties survey designers can have even in defining the term "household," which can significantly affect the comparability of survey results. Similarly, surveys with a short reference period may underestimate infrequent purchases, while surveys with a long reference period may suffer from recall issues. Two surveys with different reference periods may have comparability issues.

⁴ See Ahmed et al. (2015) for more information on the rise of branchless banking in Pakistan.

developments bring us back to the need for better data on payments, household behavior, and a micro-founded view of the macro economy in developing countries. Fortunately, more countries are producing data from household surveys that are doing a better job of measuring these developments.

We believe an important step forward in understanding household behavior is the development of more reliable and effective measures of household economic activity, both real and financial. Therefore, an overarching goal of this paper is to describe a comprehensive vision for practical implementation of household surveys that are integrated with financial statements and payments data, leaving no gaps in measurement and strengthening the theoretical and applied linkages among measures. The main contributions of this paper are: 1) to assess how well integrated U.S. household surveys are with elements of financial statements for households; and 2) to demonstrate how a diary of U.S. consumer payment choices can be used to construct a new statement of liquidity flows that advances the current state of the art in measuring stockflow dynamics and thus takes a step closer to realizing the overarching vision of the paper.

Samphantharak and Townsend (2010, henceforth ST) describes the baseline conceptual framework for the design of an integrated survey that has been implemented in the field for almost 20 years and that allows construction of a complete set of household financial statements that is comprehensive and fully integrated. Essentially, ST creates a set of financial accounts akin to those of corporate firms: this set comprises a balance sheet, income statement, and statement of cash flows. The concept is of a household with projects, that is, a collection of assets that earn income from farm and non-farm production activities. This idea of assets earning income also extends to households engaged in wage or salaried labor, meaning those that essentially generate income from their human capital. A key element of this analysis is that all aspects of household situations and behaviors are measured: income, in order to measure the productivity of physical and human capital; assets and liabilities, to measure wealth; and cash flow, to distinguish liquidity from income and profitability. A key to this measurement is that

the accounts are required, by construction, to be consistent with one another, thereby eliminating the possibility of gaps. Few surveys feature this dynamic integration.

To illustrate how this works, and as a first step in the paper, we use the ST framework to assess the degree of integration in leading U.S. household surveys. For each survey considered, we tabulate and juxtapose the data of each in the form of corporate financial statements applied to the representative U.S. household. We first construct for each survey a harmonized balance sheet, income statement, and statement of cash flows for a recent time period that matches the survey dates-around 2012-as closely as possible. To ensure maximum accuracy, we have invited assistance from representatives associated with each survey; and to encourage further refinement of this effort, we make our programs available to interested researchers. Then, we use the estimated U.S. household financial statements to characterize the degree of integration by two distinct measures. Integration by coverage reflects the extent to which a survey contains estimates of each line item in the financial statements. All the surveys cover roughly half the income statement items, although most specialize in income or expenditures. However, the coverage of the balance-sheet items varies widely across surveys. Integration by dynamics reflects the extent to which the statement of cash flows accurately measures the law of motion between stocks (shown in the balance sheet) and flows (shown in the income statement). None of the surveys can provide truly direct statements of cash flows, and all of them make large errors relative to indirect estimates of changes in assets and liabilities.

Our assessment of integration in U.S. household surveys is merely a factual statement of results and is not intended to be a criticism of the surveys or a call for reforming them. We recognize and accept the specialty nature of U.S. surveys, which has the benefit of allowing gains from specialization and achievement of each survey's original goals. For example, the Panel Study on Income Dynamics (PSID) was originally designed to measure poverty and to contribute to its reduction in conjunction with President Johnson's Great Society programs; the Consumer Expenditure Survey (CE) was designed to gather data for developing accurate price indices; and the Survey of Consumer Finances (SCF) to measure wealth. Although some of these surveys

have evolved over the years, particularly the PSID, others retain their original mandate. Yet the specialization and persistence of the U.S. surveys does leave gaps in measurement that can only be overcome by comprehensive integration of the surveys with financial statements. Ironically, because the PSID and SCF are so highly regarded, they are adopted as the gold standard elsewhere in the world, for example, in China and Europe, thus propagating essentially the same gaps in these other surveys as in their U.S. counterparts.

A second step of this paper is to use the Federal Reserve Bank of Boston's 2012 Diary of Consumer Payment Choice (DCPC) to demonstrate how consumer payment diary surveys can improve the dynamic integration of surveys. The DCPC directly measures several, but not all, components of the law of motion governing the stock-flow relationship between assets and liabilities (balance-sheet items) and income and expenditures (income-statement items). Because the 2012 DCPC is focused on consumer payments authorized by payment instruments (cash, check, debit or credit card, online banking, and such), it focuses on liquid assets used as payment instruments, including the currency held and used by U.S. consumers. In this respect, the DCPC is similar to the Townsend Thai Monthly Survey (TTMS), which underlies the ST methodology, where currency is the main household asset and payment instrument in rural Thailand. To provide a bridge to our key next step, we compare and contrast the household financial statements constructed with TTMS with those constructed with the DCPC.

The central innovation of this paper is the construction of a new, more detailed analysis of cash flows at the level of liquid asset accounts, where currency, checking accounts, and other liquid assets are distinguished and treated separately. By tracking consumer expenditures that are authorized by payment instruments tied to specific types of liquid asset accounts, the DCPC matches expenditures to the sources of money and credit that fund them. This matching cannot be done feasibly by surveys that track consumer expenditures at the level of individual

⁵ Separately, Schuh (2017) reports that the DCPC produces estimates of U.S. consumer expenditures that greatly exceed those from the Consumer Expenditure Survey (and diary) and that approximately match National Income and Product Account estimates of comparably defined measures of consumption and disposable income.

products (the Consumer Expenditure Survey) or at the level of aggregated expenditure categories ("food away from home").

Linking all the liquidity accounts to one another and to the expenditures (or investments) they fund makes it possible to better assess the changing landscape of payments taking place in the United States and industrialized countries as well as in emerging-market and low-income countries. This then links back to the need for data to better inform public policy and to provide consumers with the information they need to improve household decisionmaking and economic behavior. More informative financial accounts come from considering payments, and vice versa: better payments data come from integrated financial accounts. Development of household economic data from dynamically integrated household surveys that include payment diaries might be particularly beneficial for developing countries, where household economic data are scarce, there are few pre-established surveys with prior missions, and payment systems and financial industries are changing rapidly. Of course, payments systems are also changing in the United States. The 2015 DCPC took a small step toward integrating payments and employing the ST framework, as described below. We provide a framework and guidance for policymakers to implement this longer-run vision.

The remainder of the paper proceeds as follows. Section 2 provides an overview of the main U.S. household surveys. Section 3 reviews the ST methodology and explains how it will be used in our analyses. Section 4 assesses the degrees of integration in U.S. household surveys, by coverage and dynamics. Section 5 compares and contrasts the TTMS and DCPC survey data. Section 6 describes the innovation made possible by the interaction of ST's methods with the DCPC. Section 7 concludes.

⁶ For information about Federal Reserve efforts to stimulate innovations in the U.S. payment system, see https://fedpaymentsimprovement.org/.

2. Overview of U.S. Household Surveys

This section describes the main surveys included in this study, which are used to collect data on U.S. household economic conditions (henceforth, "household surveys"), plus the TTMS. Summary descriptions of these surveys appear in Table 1 in order of chronology based on continuous fielding. Five sponsors produce these U.S. surveys:

- University of Michigan, Institute for Social Research (ISIR) The Michigan ISIR sponsors two surveys. First, the biennial Panel Study on Income Dynamics (PSID), which is "the longest running longitudinal household survey in the world" and that includes data on wealth and expenditures as well as other socio-economic and health factors. Fecond, the biennial (even-numbered years) Health and Retirement Survey (HRS), which "has been a leading source for information on the health and well-being of adults over age 50 in the United States" for more than 20 years; the HRS includes the biennial Consumption and Activities Mail Survey (CAMS) for tracking household expenditures in "off" years (odd-numbered).8
- U.S. Bureau of Labor Statistics (BLS) The BLS sponsors the <u>Consumer Expenditure Survey</u> (CE), comprising "two surveys—the quarterly <u>Interview Survey</u> and the <u>Diary Survey</u>—that provide information on the buying habits of American consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics." "As in the past, the regular revision of the Consumer Price Index (CPI) remains a primary reason for undertaking the Bureau's extensive Consumer Expenditure Survey. Results of the CE are used to select new 'market baskets' of goods and services for the index, to determine the relative importance of components, and to derive cost weights for the market baskets."

⁷ For more information about the PSID, see https://psidonline.isr.umich.edu/.

⁸ For more information about the HRS, see http://hrsonline.isr.umich.edu/.

⁹ For more information about the CE, see http://www.bls.gov/cex/csxovr.htm. The CE dates back to the 1800s but was not implemented annually until 1980; for details, see https://www.bls.gov/cex/ceturnsthirty.htm.

- **Federal Reserve Board** The Board sponsors the <u>Survey of Consumer Finances</u> (SCF), "normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics. Information is also included from related surveys of pension providers and the earlier such surveys conducted by the Federal Reserve Board." The SCF collects some consumer expenditures directly. ¹⁰
- U.S. Census Bureau The Census Bureau sponsors the <u>Survey of Income and Program Participation</u> (SIPP), "the premier source of information for income and program participation. SIPP collects data and measures change for many topics including: economic well-being, family dynamics, education, assets, health insurance, childcare, and food security."¹¹
- Federal Reserve Bank of Boston The Boston Fed's Consumer Payments Research Center (CPRC) sponsors the annual <u>Survey of Consumer Payment Choice</u> (SCPC) and the occasional <u>Diary of Consumer Payment Choice</u> (DCPC), both of which measure consumer adoption of payment instruments and deposit accounts and the use of instruments. Originally, the SCPC and DCPC were not integrated like the CE but were developed independently; they are now being integrated. The SCPC collects only the number of payments, while the DCPC also tracks the dollar values. Both provide data on cash and (in later years) checking accounts plus revolving credit. The SCPC contains very limited information about household balance sheets.

These surveys were selected because of their quality and breadth of coverage of U.S. household financial conditions, including relatively large numbers of detailed questions pertaining to the line items of household financial statements (assets, liabilities, income, or expenditures). None of the surveys contains all relevant financial conditions because none was designed to do so. Thus, no single survey is fully integrated with financial accounting statements and no single survey alone can provide complete estimates of household financial conditions. When

¹⁰ For more information about the SCF, see http://www.federalreserve.gov/econresdata/scf/scfindex.htm.

¹¹ For more information about the SIPP, see http://www.census.gov/sipp/.

combined, however, these U.S. household estimates come closer than any single dataset available today to providing a comprehensive assessment of U.S. household financial conditions. These surveys were also chosen because, except for the HRS, they are representative of U.S. consumers. ¹² However, the surveys are implemented with different samples of households (or consumers) and, in some instances, substantively different survey questions, so their estimates are not necessarily comparable.

We reiterate that each survey has its own particular purposes or goals and that none is intended to provide a comprehensive, integrated set of household financial conditions as described in ST. The CE, for example, is primarily intended to produce data on a wide range of consumption expenditures that aid in the construction of the CPI. In contrast, the SCF primarily tracks details of assets and liabilities plus income from all sources but does not track all consumer expenditures. The PSID aims to estimate most income and expenditures but also focuses on collecting data on social factors and health, a practice that might be beneficial for every survey and data source. In any case, the PSID's breadth limits the amount of detail it can obtain on income and expenditures, so it does not obtain a comprehensive estimate of balance-sheet items. For all of these reasons, the analysis in the next section does not expect or presume to find an individual integrated financial survey, nor does it recommend that any of these surveys change what it is currently doing.

Table 1 summarizes the key characteristics of the selected U.S. household surveys in terms of their basic features, survey methodologies, and sampling methodologies. Surveys are listed in columns in chronological order (left-to-right) based on their initial years of continuous

¹² The HRS includes consumers ages 50 years and older and thus includes households with relatively high income and assets, making it more representative of all U.S. consumers than other surveys that focus on subsets of the population, such as low-income consumers. Two non-representative surveys merit analogous analysis but are not included here because they focus on selected low- and moderate-income (LMI) U.S. consumers. One is the U.S. Financial Diaries (USFD), produced jointly by the Center for Financial Services Innovation (CFSI) and the NYU Wagner Financial Access Initiative. For more information, see http://www.usfinancialdiaries.org/. Another is the National Asset Scorecard for Communities of Color (NASCC), which is very similar to the PSID. For more information, see https://socialequity.duke.edu/research/wealth, Darity et al. (2015), and Chang et al. (2015).

production. The oldest is the PSID, which dates back to the 1960s, while the newest, the SCPC and DCPC, are less than a decade old. Most of the surveys are conducted relatively infrequently, ranging from quarterly (the CE and SIPP) to triennially (the SCF). Although implemented daily for one or two months, the official DCPC has been implemented only three times in five years. The date of statistical calculations refers to the period used to estimate the elements of the household financial statements, as discussed later in the paper. The rows of the table are grouped into sections related to the survey methodology and the sampling methodology. For further comparison, the table also shows corresponding information about the TTMS.

Survey methodologies vary widely across the surveys along several dimensions. One obvious distinction is the mode: survey (PSID, CE-S, SCF, HRS, SIPP, and SCPC) versus diary (CE-D, DCPC) or "diary survey." This distinction is complicated by the fact that modes also vary for each type of survey or diary, including paper surveys, paper diaries (or memory aids), online surveys—with or without assistance—and interviews; some surveys use mixed-mode strategies. A key differentiating factor among surveys is whether they collect data based on respondents' recall, where the recall period can vary in length from a period of one week to one year, or based on respondents' recording the data, where the recording period is typically one day. Recall-based surveys are more susceptible to memory errors and aggregation errors (over time and variable types). Some sponsors field their own survey (Michigan ISIR), while others outsource to vendors (for example, the SCF uses NORC, formerly called the National Opinion Research Center).

The sampling methodologies are relatively similar across surveys. All surveys aim to provide estimates that are representative of some U.S. population measure, except the HRS, which is limited to older households. The main reporting unit varies across surveys from individual consumers to entire households, with some surveys obtaining information about the household from just one member—an important choice that can significantly affect the results of the survey. The surveys also differ in whether the samples are drawn as independent cross-sections

or as longitudinal panels. The precision of survey estimates varies widely because sample sizes range from 2,000 to 52,000 reporting units.

Estimates of economic and financial activity for consumers and households are influenced heavily by at least two major types of factors: 1) heterogeneity in the survey specifications, sampling methodologies, and data collection methodologies; and 2) variation across surveys in the content, scope, and nature of questions about real and financial economic activity. Therefore, the reader should not expect estimates of income, expenditures, or wealth from the surveys to coincide. Instead, there might be large discrepancies in estimates of these economic and financial activities even if the conceptual measures are similar. Differences in target populations can naturally produce large differences in economic and financial measures. But even more subtle survey design differences, such as recall versus recording, can produce large differences in the estimated measures. With regard to survey content and questions, even minor differences in wording can elicit differences in measured concepts between surveys. Similarly, the level of aggregation—collecting data on just the total or on the sum of the parts of the total (and then adding them up)—can have dramatic effects on estimates of the total values across surveys.

3. The Samphantharak-Townsend Framework

This section provides a brief overview of the Samphantharak and Townsend (2010), or ST, framework for defining and measuring the integration of household surveys with corporate financial statements.

3.1 Conceptual Framework

There are three main financial statements in the ST "household as corporate finance" framework.¹³ The first statement is the balance sheet or the statement of financial position,

¹³ This conception of households as analogous to corporate firms raises some interesting issues. First, one may think of firms as registered corporate entities. But the financial accounts also apply to firms that are proprietorships, so formality or legality is not the issue, per se. More substantive complications remain. The first is how to treat

which reports all assets and liabilities at a point in time. The difference between assets and liabilities is net worth. In the terminology of corporate financial accounts, net worth is the household's equity in the household enterprise. The second financial statement is the income statement, which measures flows of revenues and expenses as well as the disposition of net profit into consumption and savings over a period of time. Finally, the statement of cash flows measures money, cash, or other liquid assets flowing into and out of the household as part of the payments system. In practice, cash flows are simply the outflows of cash for the acquisition of inputs of production, as well as for investment and consumption expenditures, and the inflows from sales of product, liquidation of assets, and financing.

The balance sheet is a stock report, while the income statement and the statement of cash flows are flow reports. There is a close connection between the balance sheet and the income statement through the connection between stocks and flows, as summarized in Figure 1. Specifically, profits from production or from salary and other income can be saved or consumed. Consumption is analogous to paying out a dividend to the owner. Positive savings show up as an increase in (real or financial) assets and wealth, reflected in the balance sheet at the end of the period. Likewise, negative savings show up as a decrease in assets and wealth. Indeed, the change in wealth in the balance sheet between two points in time is essentially net savings.¹⁴

m

membership in a household, not only with respect to changes due to births and deaths of family members but also with respect to changes due to marriages, divorces, and migration. For that matter, even within the family there may be individual ownership of assets and liabilities, traceable in principle when the distinction is clear to the family members, but often it is not. Or, in the other direction, seemingly separate families may in fact be closely related, not just by blood or marriage but also by financial transactions and behavior. This is the case for family and extended networks, as typically occurs in developing economies, but also in some advanced economies, such as Spain.

¹⁴ There are two further qualifications. First, there is an adjustment for net incoming unilateral transfers (for example, gifts and remittances), which are not thought to be part of the return on investment projects per se but rather a financing device or even good will. These are not uncommon for households. Second, the balance sheet can change with asset appreciation or depreciation if these capital gains or losses are recognized in the income statement. Thus, it is easy to measure savings poorly if appreciation and depreciation change the balance sheet and income statements if one does not consider active flows of funds. Appreciation and depreciation can contribute substantially to increases and decreases in income, especially for those with substantial financial portfolios, as is the case for some older households.

[FIGURE 1 ABOUT HERE]

Income in corporate financial statements is typically accrued income, based on the idea that expenses of production are not subtracted until revenues from sales resulting from that production are recognized. The essential idea behind this notion of accrued income is that one wants to measure the ultimate return on a project in order to compare that return to alternatives; that is, one wants to measure the opportunity cost in order to see whether the project is warranted, in order to answer the obvious question: do the economic activities the household has adopted "make sense"? Essentially, accrued income is supposed to measure productivity. However, since the accrual basis of accounting does not necessarily recognize revenues or expenses when cash flows in or out of the enterprise, it cannot give analysts a full understanding of the enterprise's liquidity. For example, a project may be productive with a reasonably high rate of return, but it may become illiquid due to cash-flows fluctuations and the household may even go bankrupt. This example illustrates one of the reasons why the statement of cash flows is needed to obtain a comprehensive understanding.

To summarize, the reconciled financial statements must exhibit the following accounting identities: (1) in the balance sheet, the household's total assets must be identical to its total liabilities plus total wealth or net worth, (2) the increase in household wealth in the balance sheet over the period must be identical to the household's savings (adjusted for unilateral transfers); that is, it must be identical to a household's net income from the income statement

-

¹⁵ Accrual-basis accounting, where revenues (income) are reported when they are earned and expenses (expenditures) are reported when revenues are reported, may be a more accurate representation of a company's net profits or financial condition (and a household's financial condition) than cash-basis accounting. Accrual-basis estimates would involve a substantial change. ST does this for the TTMS data, and the contrast of cash basis with accrual basis has been quite useful in research, as noted earlier. Note that the differences between cash basis and accrual basis become less relevant with annual data (in comparison to monthly or quarterly) since cash received and revenues recognized are likely reported in the same period (although some differences persist in the Thai data). Likewise, in such cases, cash outflows and expenses likely take place in the same period. These two accounting approaches are also less relevant for non-business households, whose incomes are less likely to involve inventories and trade credits. Another reason a small difference likely exists between cash and accrued income in the U.S. data is that a large portion of income earned by households in the United States is from wages, whose receipt mostly corresponds to the period when labor services are provided (the main caveat is the complication on how pensions are treated, as mentioned above).

minus consumption, and (3) the increase in the household's cash holdings in the balance sheet must be identical to the household's net cash inflow in the statement of cash flows, summing over all sources. Both sides of every accounting identity are measured.

One benefit of imposing accounting identities is that we avoid the common problem that a variable generated from one set of questionnaire responses yields a different value when computed from an alternative set of responses. For example, Kochar (2000) finds that household savings in the Living Standard and Measurement Study (LSMS) surveys computed as "household income minus consumption" is different from household savings computed from "change in household assets." This discrepancy could come from various problems in questionnaire design. For example, some of the assets might be omitted from total assets, some assets might be financed by liabilities rather than savings, or income and savings might be defined inconsistently. Indeed, as mentioned above, one can use these two different measures of savings, which may differ as indicated, as a consistency check within a survey or diary fielding, with follow-up questions in the case of discrepancies.

ST applied this vision of integrated surveys to the Townsend-Thai Monthly Survey (TTMS). Transactions in the monthly data are like journal entries for an accountant, allowing the analyst to create complete financial accounts. As details of the transaction partners are also recorded, one can map networks within the village and also geographic patterns. Figure 2 illustrates the procedure for creating a household's balance sheet, income statement, and statement of cash flows from a panel household survey. More information about the TTMS appears in Section 5.

[FIGURE 2 ABOUT HERE]

3.2 Details of the Statement of Cash Flows

Because the dynamic accounting of linkages between stocks and flows is central to this paper, we provide a more detailed discussion of this topic. The statement of cash flows (CF) provides an accounting of cash received and cash paid during a particular period of time, thereby

providing an assessment of the operating, financing, and investing activities of the firm (or household).

The first step in constructing a cash-flows statement is to define the term "cash." Despite the label, it is important to remember from the outset that currency is typically only part of this. For advanced industrial economies such as the United States, standard corporate financial statements tend to focus cash flow on the concept of "cash and cash equivalents" (CCE):

- Cash Currency (coins, notes, and bills) ¹⁶ and liquid deposits at banks and other financial institutions, including demand deposits, other checkable deposits, and savings accounts. This measure is similar to the broad measure of money known as M2.¹⁷
- Cash Equivalents Short-term investments with a maturity of three months or less that can be converted into cash quickly, easily, and inexpensively (high liquidity, low risk). None of the surveys identify cash equivalents separately from similar investments of longer maturity. Examples include 3-month Treasury bills versus 1-year Treasury bonds and 3-month versus 6-month certificates of deposit). 18

The assessment of U.S. surveys will focus on CCE for the statement of cash flows. For the TTMS and DCPC, however, the statement of cash flows will focus only on currency because Thai households transact primarily in currency (Thai baht) and the 2012 DCPC is a payment diary that does not track the entire balance sheet and has only one liquid asset (currency in U.S.

¹⁶ Currency could also refer to foreign currency, such as Euros, or even private virtual currency, such as bitcoin, but we abstract from these because the holdings of these currencies by U.S. households are small and their liquidity is less than that of sovereign currency.

¹⁷ Recent innovations in the U.S. payment system include nonbank financial companies that take deposits and make payments, such as PayPal and general purpose reloadable (GPR) prepaid cards, such as Green Dot, NetSpend, and Blue Bird. In some cases, these nonbank and/or nonfinancial companies act as an agent between banks and households and deposit the money they receive into bank accounts. However, tracking the actual location of these assets is difficult and is attempted only in the CPC due to its focus on payments. For most households, bank deposits are the main type of cash, but nonbank deposits are becoming more common for some households, especially unbanked and lower-income households.

¹⁸ Some cash-flows statements focus on "current assets," which is CCE plus other assets that can reasonably be expected to be converted into cash (or cash equivalents) within about a year. Some current assets are primarily attributable to business activity, which is not in the scope of U.S. financial surveys or covered well by them and is therefore excluded. These assets include accounts receivable, inventories, marketable securities, prepaid expenses, and other liquid assets. In theory, these items apply to household finance, but it would require significant changes in the scope and methodology of the U.S. surveys to include them.

dollars, which is a payment instrument). ¹⁹ Most U.S. surveys do not collect data on currency, which is a relatively small portion of liquidity for most U.S. households, and only the SCPC and DCPC do so comprehensively.

Once cash is defined, cash flows for that defined concept (CCE) can be calculated to account for the operating, investing, and financing activities of the firm (or household).²⁰ In particular, the statement of CF includes three main parts:

- **CF from production (or operating activities)** These are net cash flows from operating activities of the firm (or household). The direct method shows cash inflows from operations and cash payments for expenses, by major classes of revenue and expense. Equivalently, the indirect method converts net income from an accrual basis to a cash basis, using changes in balance-sheet items.
- CF from investing activities (consumption and investment) These are net cash flows from investing activities of the firm (or household). Cash outflows are primarily for investment in capital and for the purchase of securities that are not CCE. Cash inflows are the converse, including sales of capital and non-CCE securities. Individual items are listed in gross amounts (inflows minus outflows), by activity. As applied to the household, these are consumption expenditures (on nondurable goods and services) and capital expenditures (on durable goods).
- **CF from financing** These are net cash flows from transactions considered to be the financing activity of the firm (or household). Cash inflows occur when resources are obtained from owners or investors, such as by issuance of equity or debt securities. Cash outflows are the converse, in the form of payment to owners and investors or to creditors. As with CF from investing, individual items are listed in gross amounts.

¹⁹ ST also included deposits at financial institutions and rotating savings and credit association (ROSCA) positions in their balance sheets. However, these assets are not used much as a medium of exchange and they change very little over time, and they were excluded from the definition of "cash." Nevertheless, the ST statements of cash flows include adjustments for changes in these other liquid assets.

²⁰ The material in this section draws heavily from Imdieke and Smith (1987).

Another type of transaction sometimes associated with the statement of CF is direct exchange, which occurs when non-cash (not CCE) assets or liabilities are traded without implications for cash. Often these exchanges are difficult to classify as either investing or financing activity because they may have elements of both. For that reason, accountants do not agree on whether to include direct exchanges in the statement of CF or to report them in a separate statement. For this paper, we do not include them in statement of CF.

In theory, the statement of CF provides an exact linkage between flows in the income statement and changes in stocks on the balance sheet. To verify this, the statement of CF compares measured cash flows with the measured changes in assets and liabilities from the balance sheet. Total CF is simply the sum of component flows,

$$CF_{t} = CF_{t}^{p} + CF_{t}^{v} + CF_{t}^{f},$$

where superscript p denotes production (operating activity), v denotes investing activity, and f denotes financing activity. If all financial-statement items are measured accurately and constructed comprehensively, this estimate from the statement of CF should exactly match the change in the stock of cash from the balance sheet,

$$CF_t = \Delta A_t^C = A_t^C - A_{t-1}^C,$$

where A_t^C denotes the asset value (end-of-period t) of cash and cash equivalents (superscript C). If these CF identities were to hold exactly using data from a survey, then that survey would be fully dynamically integrated with financial statements. In practice, however, measurement of financial-statement items is neither exact (due to measurement error) nor comprehensive in actual surveys (due to failure to include all items), so we expect to observe errors in the CF identities above (that is, we expect to see less-than-full dynamic integration). One logical measure of the degree to which survey estimates are integrated across time (dynamically) is

CF error =
$$100 \times \left[\frac{CF_t - \Delta A_t^C}{A_{t-1}^C} \right]$$
,

which is expressed as a percentage of lagged cash. Smaller CF errors (in absolute value) are interpreted as indicating better dynamic integration of a survey.²¹

This analytical linkage between cash flows (also on the income statement if the cash basis rather than the accrual basis is used) and the stock of cash (balance-sheet items) can be disaggregated into the linkages between individual liquid assets (stocks) in CCE and the gross flows among them. Henceforth, our language assumes the cash basis is used, but our analysis remains valid for the accrual basis, since the real difference between the cash and accrual bases is only the labeling of the transaction; for example, goods sold create an account receivable that is not necessarily cash and does not appear on the statement of cash flows if the latter does not recognize accounts receivable as CCE. Nevertheless, the sale would be recognized as creating an increase in an asset (an accounts receivable item).

To see the point about disaggregation, let A_{kt}^C denote the end-of-period dollar value of a liquid asset in CCE from the balance sheet, where subscript k denotes the account/type of liquid asset (currency, demand deposits, and such) and subscript t denotes the discrete time period (such as month, quarter, or year). Liabilities, L_{kt} , are defined analogously and primarily represent various types of loans; in principle, liabilities can be viewed as negative-valued assets.²²

Let D_{kdt} denote the dollar value of deposits into account k on day d (nearly continuous), and W_{kdt} the analogous withdrawals.²³ Gross cash flows in period t are the sums across all daily flows into and out of an asset type:

²¹ This interpretation of the error is likely to be valid for a point in time, as in our analysis later in the paper. However, the error could be small in absolute value at any point in time by chance, so a better measure over time might be the average absolute error.

 $^{^{22}}$ Assets and liabilities are owned by individual consumers, denoted by subscript i, who are members of a household, denoted by subscript h. Agent identifiers are suppressed for simplicity because the following discussion assumes aggregation occurs across all agents eventually.

²³ The day-specific flows are net of intra-day deposits and withdrawals, so this accounting could occur even more frequently (hourly or even by the minute) to obtain further insight into cash flows.

$$D_{kt} = \sum_{d=1}^{N_t^d} D_{kdt}$$
 and $W_{kt} = \sum_{d=1}^{N_t^d} W_{kdt}$.

Asset deposits include primarily income of all types (including any capital gains and losses from holding CCE), transfers of another type of asset (or liability) into the account, or unilateral gifts received. Asset withdrawals include primarily payments for goods and services (consumption expenditures or capital goods investment), transfers to another type of asset, or unilateral gifts given. Again, liability flows are defined analogously.

Individual assets are governed by the following law of motion between periods t-1 and t:

$$A_{kt}^C = A_{k,t-1}^C + D_{kt} - W_{kt}$$
$$\Delta A_{kt}^C = D_{kt} - W_{kt}.$$

Individual liabilities are governed by an analogous law of motion where the liability "return" is primarily interest paid.

Finally, the disaggregated cash flows for each CCE type of asset include some that net to zero when aggregated across all account k accounts. For example, if a consumer withdraws \$100 in currency (k=1) from a checking account (k=2), then $D_{1dt} = W_{2dt}$. For this reason, it is informative to track the flows among types of asset (and liability) accounts when analyzing the cash-flows behavior of households. For some types of asset accounts, such as a checking account, withdrawals can be made with multiple payment instruments, such as checks, debit cards, and various electronic bank account payments. Thus, the gross flows between accounts can be further disaggregated by the type of payment instrument used to authorize the flow.²⁴

4. Assessment of Integration in U.S. Household Surveys

This section evaluates the content and structure of the main U.S. household surveys, excluding the SCPC and DCPC, which are not designed to be general surveys of household finance, in

²⁴ This discussion and conceptualization applies even if a survey does not have disaggregated data. Some notion of cash is implicitly being used. That said, one can imagine how errors could arise, in particular, discrepancies between the income statement and balance sheet.

relation to corporate financial statements. As noted earlier, no U.S. survey is fully integrated with financial statements in a manner consistent with the ST framework. However, all of the U.S. surveys contain questions that provide estimates of many of the relevant stocks and flows in financial statements. Therefore, the ST framework can be used to organize the survey data into estimates of a representative (average) U.S. household's financial statements: a balance sheet, income statement, and statement of cash flows. The remainder of this section presents those estimates for each survey and analyzes the results.

The tables in this section report estimates of U.S. financial statements from the surveys. Each statement contains nominal dollar-value estimates for the line-item elements from each survey, aggregated to the U.S. average per household, with the sampling weights provided by the survey programs.²⁵ Selected aggregate measures are supplemented with medians. The line items (rows) of each financial statement reflect our best effort to combine survey concepts into reasonably homogeneous measures.²⁶ Where necessary and feasible, some survey concepts fall into the "other" categories; tables are footnoted extensively to clarify these details. To the extent possible, all economic concepts from each survey are included in the statements. However, the question wording and concept definitions can vary significantly across surveys, so detailed estimates fall short of perfect harmonization. To ensure proper handling, we have provided our preliminary results and software programs to managers or principal investigators of each survey and offered them the opportunity to evaluate and correct our analysis.²⁷

_

²⁵ This conversion is necessary because of differences in the sampling units. For surveys that do not use households as the reporting unit, we sum across all reporting units to get the U.S. total and then divide by a common estimate of the number of households from the March Current Population Survey (CPS).

²⁶ This classification naturally involves some discretion as to the grouping and especially the level of aggregation. The latter affects the quantitative measure of integration later, but can be made higher or lower for alternative analyses.

²⁷ We again thank the staff members of each survey program who did so. This comparison is painstaking and difficult for one survey, much less several, and it is a challenge even for the survey managers. Thus, we view our results in this section as preliminary and welcome further development and improvement of the analysis. To this end, we are making underlying data and software programs available to the public, and we invite other researchers to refine and expand our analysis.

Juxtaposing estimates of the financial statements for each survey provides two benefits. First, and independently of the ST methodology, the financial statements provide valuable information about the relative magnitudes of real and financial economic conditions estimated by each survey. Differences between survey estimates can be large in absolute and relative terms because of the absence of perfect harmonization, as noted above. The aggregate estimates may also diverge due to significant differences in survey or sampling methodologies, described in Section 2, or due to differences in the coverage of statement line items, described below. In any case, the comparison of estimates reveals the relative strengths and weaknesses of each survey in measuring household economic conditions.

Second, juxtaposing the estimates facilitates an easy and quantitative assessment of how well each survey's questions integrate with the elements of the household financial statements. The degree of integration can be evaluated by at least two standards: 1) the coverage of items in the statements; and 2) the dynamic interaction between stock and flow concepts. With regard to coverage, we can further quantify two types of coverage: 1) the percentage of detailed line items estimated by the survey; and 2) the aggregate dollar values of the estimates. As an example of the first of these coverage measures, suppose that a balance-sheet concept had 10 detailed items and one survey estimated eight of them while another estimated only two of them. Then, the first survey has broader coverage (80 percent versus 20 percent). However, line-item coverage is not necessarily an accurate indicator of value coverage. If a survey had two estimates of the 10 balance-sheet items, and if each one were an estimate of the aggregate of five of the detailed items (for example, short-term assets and long-term assets), then the survey might produce a very high percentage of the total value of assets even though it didn't include an estimate of each of the 10 items. Still, estimating the aggregate value of five items without estimating each individual item is prone to producing biased estimates due to the adverse effects of recall and reporting errors. The juxtaposed estimates reveal the extent to which this kind of aggregation effect appears in the survey estimates.

4.1 Balance Sheets and Income Statements

Balance sheets constructed from the U.S. surveys appear in Tables 2-a (assets) and 2-b (liabilities). The asset and liability estimates are reported as current market values to the best of our ability, although it is not always possible to be certain of the type of valuation reported by respondents. Assets are divided into financial and nonfinancial categories, with financial assets further divided into highly liquid current assets (short-term) and assets with other terms and liquidity (long-term). For financial assets, surveys usually obtain market values explicitly or by assumption; where they distinguish between face value and market value (for example, for a U.S. government saving bond) the latter is reported. For nonfinancial assets, the valuation issue is almost the same, except the potential distinction is between market value and book value.28 For housing assets, the surveys generally ask for the current (market) value of homes, but we cannot be sure they do not report the purchase price, which is a book value. For business assets, all surveys ask for a current (market) value, although the form of the question varies and may use analogous terms (for example, "sale price"). Liabilities are the current outstanding balances for debt, not the original loan amounts. Liabilities are divided into categories of revolving debt, characterized by an indefinite option to roll over the liability, and non-revolving debt. Because the maturity of debt is generally not known from the surveys and the term varies by debt contract within a category, the nonhousing debt categories are listed in rough order of liquidity from most to least liquid.

All the surveys report an estimate of total assets in Table 2-a. U.S. households own average assets worth as much as \$632,246, according to the SCF, less half that amount, \$226,314, in the CE survey. The HRS estimate of \$556,295 is close to the SCF estimate, despite being limited to older consumers. The breakdown of asset types is similar for all the surveys. Financial assets generally account for less than half of asset values, 29 to 41 percent, despite variation in the number and type of detailed asset categories. Tangible (physical) assets represent the majority

_

²⁸ There are some tradeoffs between using book value and market value. For illiquid assets (of any type) that are rarely traded, market value is not readily available. Subjective assessments of value are prone to have measurement errors. In such cases, conservative accounting practices value the assets at historical cost. In contrast, mark-to-market requirements may be more appropriate when markets are thick and volatility is not excessive.

of asset values. Within financial assets, cash accounts for roughly \$30,000 for all but the SIPP, where it accounts for roughly \$12,000, and most is held in bank accounts. Only the SCF contains an estimate of currency, but even that is not a direct estimate of actual currency holdings of the household. ²⁹ Overall, estimates of balance-sheet assets are relatively comprehensive for all surveys, as shown by their similar aggregate values and by the breadth of coverage across detailed asset categories. The SCF is the most comprehensive, with asset estimates in every category except short-term assets other than bank accounts (checking and saving); the PSID, HRS, and SIPP are almost as comprehensive as the SCF. The CE is much less comprehensive and has considerably lower asset values.

All the surveys also report an estimate of total liabilities. U.S. households have average liabilities ranging across the surveys between \$61,979 and \$112,306, much lower than the value of total assets and exhibiting less variation than across surveys. Housing debt is by far the largest portion of liabilities, ranging from \$58,143 to \$87,228 in all surveys where it is reported. The HRS asks specifically only about housing-related debt, with a catch-all question for other loans. The SIPP does not permit an exact estimate for housing-related debt, but the "other loans" category most likely includes some housing-related debt. While estimates of balance-sheet liabilities are somewhat comprehensive for most surveys, they are not as comprehensive as the estimates of assets. The aggregate values vary less and there is less line-item coverage across detailed categories of liabilities. Once again, the SCF is the most comprehensive, with liability estimates in nearly every category. The PSID is almost as comprehensive as the SCF. The other surveys are less comprehensive, although in different ways. Given the estimates of total assets and total liabilities, household net worth ranges from \$152,646 in the CE to \$519,940 in the SCF.

²⁹ Respondents to the SCF report actual currency holdings only if they choose to do so in an optional response about other assets, and this category also includes "cash" that is not currency, like prepaid cards. The SCF estimate is very small relative to the amount reported in Greene, Schuh, and Stavins (2016) from the SCPC, which indicates average total cash holdings per consumer of \$207 (excluding large holdings, which represent the top 2 percent but are not estimated precisely).

Income statements constructed from the U.S. surveys appear in Table 3. Income is divided into two main categories: compensation of employees (the most common source of U.S. household income) and other income. The latter includes income from all types of businesses owned and operated by households. Expenditures also are divided into two main categories: production costs and taxes. As explained above, the production costs of households are expenditures associated with businesses operated directly by a U.S. household; these businesses include sole proprietorships, partnerships, and certain Limited Liability Corporations (LLC).30 Unlike in Thailand, where most households operate a business (typically agricultural), only a minority of U.S. households have a business.³¹ For the minority of U.S. households with a business, it would be natural to apply corporate financial accounting to income (revenues) and expenses, as in ST. However, none of the surveys provides sufficient information about household business activity, so we use the simpler approximation of revenues as "income" to accommodate the majority of U.S. households without a business. Furthermore, all income-statement estimates are reported on a cash basis of accounting, so revenues and expenses are reported for the period when the cash is received (income) or paid out (expenditures), because this method is the primary way data are collected in the U.S. surveys.

All of the surveys report an estimate of total income (revenues). U.S. households received average total income of \$61,431 to \$83,863 per year. Estimates of labor income are even more similar across surveys, ranging only between \$42,377 and \$53,623, essentially all of which is wages and salaries. Estimates of other income types vary more, ranging between \$9,816 and \$37,402, but account for less than one-quarter of total income, except for the HRS estimates, which represent 45 percent of total income. Overall, income estimates are the most comprehensive and consistent portion of the household financial statements across surveys, most likely because employment compensation is widespread among U.S. households and the

³⁰ For more information about these business structures and their tax implications, see https://www.irs.gov/businesses/small-businesses-self-employed/business-structures.

³¹ The number of sole proprietorships and partnerships was equal to about 24 percent of U.S. households in 2012, and about 6 percent of U.S. employment is self-employment as of 2016. The actual share of households with one of these businesses depends on the type of business and the composition of households, but we lack sufficient data to make exact calculations.

data are relatively easy to collect. Estimates of income other than employment compensation are less uniform across the surveys due to the unavailability of some detailed line-item categories.

Although three surveys (the PSID, CES, and SCF) have estimates of business income, none of them provides much information about household business expenditures. They ask few, if any, questions about household business activity (aside from the mere existence of a home business). No survey has an estimate of production costs for household businesses. Only three surveys with business income have estimates of taxes (these estimates average less than \$5,000 per household), and only the CE reports employment taxes. Tax expenditures are those paid directly by households and do not include taxes deducted by employers or paid by third parties on behalf of households.

Given their estimates of total income and total expenditures, all of the surveys provide estimates of net income (income less expenditures), which range from \$60,971 (CE) to \$81,856 (SCF), as shown at the bottom of in Table 3. The HRS does not collect expenses, so its net income equals total income. Net income is similar to income in the other surveys because expenditures are relatively small (taxes only). Household net income is treated as retained earnings that are distributed to household members for consumption and investment expenditures, which are recorded in the statement of cash flows (described below).

4.2 Quantifying Integration by Coverage

We wish to characterize the degree to which surveys are integrated with household financial statements in terms of coverage. We propose to develop the criteria for measuring this kind of integration by quantifying the extent to which a particular household financial survey covers (includes) the breadth of the line items in standard balance sheets and income statements. There are at least two dimensions along which integration by item coverage could be measured using the estimates from the preceding subsection. One is the fraction of detailed line items for which a survey provides estimates ("line-item coverage"). Another is the fraction of the total dollar value of all line items estimated by a survey ("value coverage"). The two measures are independent and not necessarily highly correlated. A survey could cover most items in the

financial statements but underestimate them significantly; likewise, a survey might cover only a small number of items but obtain very high-value estimates if the items covered include mainly the highest-valued items. The latter situation may occur when a survey only collects data on two aggregate subcategories (such as short-term and long-term assets) but collects none on the detailed line items within each subcategory.

We construct the measure of line-item coverage as follows. We define the range of each financial statement as the number of the most detailed line items (rows) from the tables earlier in this section. Then, we count the number of line items (rows) for which each survey provides a dollar-value estimate. The coverage estimate of integration is the proportion of line items estimated relative to the total number of line items. We call this the "item-coverage ratio," and we construct two separate ratios, one for the balance sheet and one for the income statement. This measure reflects only the extensive margin of coverage because it does not account for the magnitude of the dollar values in each line item; thus, it may not give a complete reflection of coverage for total assets, liabilities, income, or expenditures.

We construct the measure of value coverage analogously, as follows. We use the nominal dollar values for each individual line item in the statements to construct the aggregate total values (sum of all individual items) for each statement and divide the aggregate value by the best available per-household estimate of the relevant metric for the U.S. population. For the balance sheet, we use total assets and total liabilities from the Flow of Funds accounts as the denominator. For the income statement, we use personal income from the National Income and Product Accounts (NIPA). The "value-coverage ratio" represents survey coverage of the intensive margin of coverage. The difference between the two types of ratios reflects the extent to which a survey's coverage of financial statements is more integrated in its intensive or extensive coverage of financial statements. To the extent that one wishes to construct accurate estimates of aggregate U.S. household financial conditions, the dollar-value ratio may be more important.

Figure 3 provides scatter plots of the item-coverage ratio (blue diamonds) and value-coverage ratio (red squares) for the balance sheet and income statement. The feasible range of both ratios is [0, 1], with the upper end indicating that a survey has estimates of every single item in the corresponding financial statement. Recall that the ratios are independent and may not be highly correlated. Thus, the item-coverage ratio does not necessarily reflect how well a survey produces aggregate estimates of the data, and the value-coverage ratio does not necessarily reflect how well a survey covers the number of line items in the financial statements. Also, we make one important adjustment to the income statement ratios to adjust for the application to households. As shown in the next subsection, household consumption and durable goods investment are listed in the statement of cash flows rather than the income statement. However, for the purpose of quantifying the overall coverage of household income and total household expenditures, both business-related expenditures and household consumption or investment expenditures, we include all types of expenditures in constructing the coverage ratios for the income statements.

None of the U.S. surveys is completely integrated (ratio of 1.0) with aggregate financial conditions for either statement, as can be seen from Figure 3. In fact, no survey has either type of coverage ratio that is greater than 0.6 for both financial statements. However, four of the five balance-sheet ratios are greater than 0.5 (except CE) and four of the five income-statement ratios are about 0.5 (except SIPP). The key differences across surveys occur in both types of coverage ratios for the balance sheets. The SCF has nearly complete value coverage of the balance sheet (above 0.9 by value) and the HRS has a value ratio about 0.8 (by value). Most surveys have item-coverage ratios of about half of the balance-sheet line items except the SCF, which covers the vast majority of line items. Variation across surveys is less in the item-coverage ratios for income statements.

4.3 Quantifying Integration by Dynamics

We also wish to characterize the degree to which surveys are integrated with household financial statements in terms of dynamics. Our proposed criterion for measuring this kind of integration is a quantification of the extent to which the estimated stock-flow identity holds in the survey estimates of household financial statements. The statement of cash flows is well suited to quantifying this measure of integration because it provides the linkage between the income statement (flows of income and expenditures) and *changes* in the balance sheet (stocks of assets and liabilities), assuming all stocks and flows are measured exactly and comprehensively. As explained in Section 3, however, the cash-flows error that arises in practice quantifies how well the balance sheet and income statement are integrated over time. Cash-flows errors represent consequences of incomplete item coverage of financial statements, as well as various forms of mismeasurement of the items in the financial statements.

Table 4 reports estimates of the statements of cash flows for each survey. Starting with net income (from the income statement), the estimated change in cash flows is the sum of three types of cash flows: from production, from consumption and investment, and from financing. To construct these statements, we have to estimate the elements of the cash flows from financing using estimated changes in the relevant assets and liabilities from the prior-period balance sheet. This methodology produces a cash-flows estimate that is a residual difference between net income and net cash flows, rather than a direct measure of the gross cash flows in and out of the balance sheet, because the latter are not available from the U.S. surveys. For comparison, we estimate the change in cash holdings directly from the current and prior-period balance sheets.³²

The degree of dynamic integration is defined as the difference (error) between the estimated cash flows variables and the change in cash holdings estimated from the current and prior period balance sheets, expressed in dollar terms and as a percentage of the lagged stock of cash. We call this the "internal" cash-flows error because it is calculated using only the survey's estimates of stocks and flows. However, cash holdings from any particular survey may differ from the actual aggregate U.S. estimate of cash holdings (from the Flow of Funds), so these errors may not accurately represent the true degree of integration. Therefore, we also include

³² The duration of the preceding period varies according to the frequency of the surveys, from one quarter (CE) to three years (SCF).

the change in household cash holdings from the Flow of Funds (same for each survey) and construct errors in the survey cash-flows estimates relative to the actual Flow of Funds cash to give a better measure of dynamic integration. We call this the "external" cash-flows error.

As measured by their ability to track stock-flow identities in the statements of cash flows, the U.S. surveys exhibit relatively weak dynamic integration, and the degree of integration varies widely across surveys. The absolute value of the internal cash-flows error ranges from \$6,290 (CE) to \$47,404 (SCF). Note that these errors are just one estimate in a time-series of errors that could be estimated, and other errors might be smaller in absolute value during other periods. However, the sheer magnitude of these internal errors suggests significant gaps in tracking household financial conditions over time, even within the self-contained estimates of a particular survey.³³ The cash-flows errors are reported in percentage terms relative to the two benchmarks: 1) the lagged cash stock from the survey's balance sheet (internal error); and 2) the lagged cash stock from the Flow of Funds aggregate benchmark data (external error). The internal errors are relatively large, ranging from about 13 percent to 37 percent of lagged cash (CE and SCF, respectively). The survey estimates of cash flows are generally less than the external benchmark: all but one of the external cash-flows errors are even larger in absolute value, ranging from about 11 percent to 61 percent of lagged cash.

5. The TTMS and DCPC

Moving beyond the U.S. household surveys, we now focus on two other surveys that offer improved integration with financial statements and reflect better measurement of certain aspects of household economic conditions. The TTMS and DCPC are quite different in most regards. The TTMS is a comprehensive survey of household economic conditions, including home businesses; it is administered to Thai households, which are relatively low-income, less-

_

³³ In principle, it would be interesting to compare the coverage ratios with the cash-flows errors to quantify the relationship between them. However, with only one point-in-time estimate of coverage and dynamic integration for a handful of surveys, such an analysis would be premature. With more data on cash-flows errors over time, it might be feasible to conduct such an analysis.

developed, and located in rural geographic regions. In contrast, the DCPC is a relatively narrow consumer survey that is administered to U.S. consumers and is focused on payment choices. Nevertheless, the TTMS and DCPC both embody certain elements of improved integration with financial statements. The TTMS is heavily focused on the most basic and liquid M1 portions of "cash" (or current assets). The DCPC includes currency and is unique in this respect among the U.S. surveys that we analyze here. The DCPC also features other means of payment, for example, payments that use deposit accounts, although it does not track the level of these deposits.

This section compares and contrasts the TTMS and DCPC surveys. First, we present estimated balance sheets and income statements for each survey and discuss their degrees of integration by item coverage. Next, for each survey, we describe the methodology for measuring cash flows. Finally, we assess its degree of integration by dynamics, emphasizing its relatively high integration compared with the U.S. surveys. For this section, we combine survey responses from the DCPC with responses from the SCPC because both surveys are needed to estimate the financial statements as thoroughly as possible. For simplicity, we refer to the combined DCPC and SCPC estimates "CPC."

5.1 Balance Sheets and Income Statements

Balance sheets and income statements constructed from the TTMS and CPC surveys appear in Table 5 and Table 6, respectively. These statements are designed and organized similarly to the analogous statements from the U.S. surveys, with a few exceptions. In these tables, the TTMS and CPC data represent exactly the same time period (October 2012), and the TTMS estimates have been converted to U.S. dollars using the Thai baht exchange rate for October 2012. Unlike the U.S. survey entries, the entries are not annualized because both the TTMS and the DCPC are designed to be monthly surveys.

In general, the TTMS and CPC financial statements are not really comparable due to the relative magnitudes of their respective economies. The average asset value (Table 5) for TTMS

households includes several types of business assets, and is \$89,082, and the average asset value for CPC households is \$301,425; this measure does not include any business assets. This difference is magnified by the fact that the CPC estimate is well below the highest estimate in the U.S. surveys (Table 2a) because it does not include any current assets beyond currency and approximates tangible assets only roughly. The average liability value is only \$5,317 for TTMS households but, at \$120,689, is more than 20 times larger for the CPC because there are relatively few borrowing options for Thai households. The disparity between the Thai and U.S. economies is even more evident from the income statements, shown in Table 6, where the average CPC household income is roughly three and one-half time larger than the average TTMS household income (\$5,921 versus \$1,643), and nearly five times larger net of expenditures (\$4,081 versus \$830).

One similarity between the TTMS and CPC financial statements is the predominance of currency among current asset holdings. The average TTMS household is estimated to have \$30,874 in currency and less than \$5,000 in other current assets (mostly bank accounts). The average CPC household has \$836 in currency, which is the only type of current asset data collected. Although currency holdings are much lower in U.S. households than in Thai households, the other U.S. surveys (except the SIPP) estimate bank account holdings of about the same magnitude as Thai cash holdings, which are roughly \$30,000, as shown in Table 2a. The improved 2015–2016 CPC also contains bank account balances (see below). The accuracy of the data on currency holding in Thai households could be improved, and we come back to this later.

In addition to differences in their respective economies, the TTMS and CPC survey instruments are sufficiently different to inhibit meaningful comparisons. The TTMS aims to collect data on all aspects of Thai household economic behavior, an aim that produces extensive estimates of the line items in the financial statements despite lower economic development. In contrast, the CPC strives to measure payments activity comprehensively and does not aim to cover financial-

statement line items widely. For these reasons, comparisons of line-item coverage ratios between these surveys are not meaningful, nor are comparisons with the U.S. surveys.

5.2 Measuring Cash (Currency) Flows

5.2.1 TTMS Survey Instruments

ST apply this household financial accounting framework to households in the Townsend Thai Monthly Surveys (TTMS) and create the accounts from a baseline 1998 comprehensive survey and then month-by-month interviews, currently up to month 205 and counting: that is, they have 17 years of monthly data. There was an initial enumeration of all structures and all households living in a village (or in an urban neighborhood), a census including who is eating and sleeping in what structure, and a description of family relationships across the individuals in these structures. The initial survey was an extensive baseline, measuring not only initial assets and liabilities, but also contracts and relationships, for example, borrowing and labor arrangements. There are month-by-month follow-up interviews with separate modules for assets and liabilities and for revenues and expenses of various production activities. Every transaction is measured in principle, subject to recall, for example, recall of purchases, sales, gifts, and labor supply. A key to implementing this large survey is the creation of rosters, lists of individuals in the household, debts not yet repaid, plots of land under cultivation, and so on, so that enumerators know which questions to ask.

The TTMS asks households for every transaction, such as a purchase, whether it was done in cash (currency), in kind, or as a gift. Again, the period of recall in the survey is the previous month (more exactly, the time since the last interview, which is roughly 30 days). Interviewers do not observe or ask about initial levels of cash holding, but they do try to measure these flows by assuming that the initial cash holding at the beginning of the survey was high enough so that households never run out of cash; that is, cash levels can go to zero but are never negative. Cash holding does hit the zero bound when households purchase a durable or investment good with cash, which is reassuring.

In contrast with this finding, ST infer that on average households hold relatively large cash positions. This leads to two related concerns. First, consumption expenditures in cash may be underestimated. In this case, double-entry bookkeeping hits with a vengeance in the sense that there could be two errors: an underestimate of cash consumption and an overestimate of cash on the balance sheet. Second, households may choose to underreport deposits into and withdrawals from savings accounts, although they typically do confirm many transactions, large and small. In this case, two items on the balance sheet, although offsetting, may be mismeasured.

In addition, because currency is not only a means of payment but also a store of value, it constitutes a relatively large portion of a household's wealth, on average. Therefore, households are understandably reluctant to report to enumerators how much currency they are holding. A second problem is the frequency of interviews, hence 30-day periods of recall. One potential remedy would have been to have households keep diaries of daily transactions for the entire month, or to use intensive diaries for shorter time intervals per respondent (as the DCPC does) to obtain a measure of aggregate activity. Initial attempts to implement a diary in real time at the request of the households themselves show great promise in dealing with this second problem. We may not know the initial balance (still hidden), but the changes in balances due to better-measured monthly transactions are more accurate. This is a step toward the degree of accuracy of the CPC surveys described below.

At the time of the conception and initiation of the TTMS in 1997, the use of payment devices other than cash was rare in these rural areas. Over time, there has been an increase in card dissemination and small levels of use. The TTMS was modified to incorporate cards into the survey, but measurement has been difficult due to many complex issues, including question design, accounting methods, tracking card payments, reconciling end-of-month statements, separating interest from principal, rolling over debt, and so on. The remainder of the paper describes the Boston Fed's DCPC, an approach that might have improved the TTMS, and then

shows how the integrated financial accounts can be extended with the DCPC data to include multiple means of payment.

5.2.2 CPC Survey Instruments

The 2012 SCPC and 2012 DCPC are related but independent instruments that were implemented around October 2012 with a common sample of respondents from the RAND Corporation's American Life Panel (ALP). The SCPC is an approximately 30-minute online questionnaire that collects data on consumer adoption and use of bank accounts and payment instruments. The DCPC is a three-day mixed-mode survey with daily recording of payments in a paper memory aid (or other form) plus three daily online questionnaires to input memory-aid data plus answer additional questions based on recall within the day. In 2012, most respondents took the SCPC before their randomly assigned three-day period during October, but some respondents completed the SCPC after the DCPC. The order did not affect survey responses because the instruments are independent.

Cash holdings (stock) data are collected by the SCPC and DCPC, which are related but distinctly different types of survey instruments, as described in Section 2. The SCPC obtains estimates of cash held by respondents on their person ("pocket, purse, or wallet") or on their property (home, car, or elsewhere).³⁴ The 2012 DCPC obtained estimates of currency (no coins) held by respondents on their person on each of the four nights of the diary, asking the respondent to report amounts by denomination of the bills (\$1, \$2, \$5, \$10, \$20, \$50, and \$100) and in total (summed for them in the online questionnaire).³⁵ In October 2012, U.S. holdings of currency on person were on average \$56 per person with a median value of \$22.

³⁴ Measuring cash in "pocket, purse, or wallet" is an approximate method of identifying actual "transactions balances" of cash. Although it does not ask the respondent for these balances directly, it is a relatively objective and easy method of collecting these data. An alternative approach is to ask for "transactions balances" directly, as in the Survey of Household Income and Wealth in Italy

^{(&}lt;a href="http://www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/SHIW.aspx">http://www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/SHIW.aspx). The SCPC also estimates U.S. consumer holdings of cash balances "on their property" (house, car, etc.), and some of this cash may be intended (eventually) for use in transactions as well. However, it is unclear whether respondents have an appropriate understanding of transactions balances or provide accurate estimates of them.

³⁵ See Fulford, Greene, and Murdock (2015) for an analysis of \$1 bills and Greene and Schuh (2014) for an analysis of \$100 bills.

Cash flows—deposits and withdrawals (payments)—are collected by the SCPC and DCPC as well. With regard to cash withdrawals made for expenditures (payments), the SCPC obtains estimates of the number of cash payments "in a typical period [week, month, year]," whereas the DCPC more precisely obtains estimates of the number and value of each cash payment (expenditure) made during a three-day period. Both the SCPC and the DCPC collect data on the number and value of cash withdrawals from bank accounts and other sources. However, because cash withdrawals are relatively rare for most consumers, the DCPC does not obtain estimates that are as comprehensive for individual consumers as does the SCPC, which asks for "typical" currency withdrawals during a longer time period than three days. Only the DCPC tracks currency deposits to bank accounts and other sources plus other unusual currency activity (conversion of currency to/from other assets, exchanging coins for bills, and such).

Two additional differences between the SCPC and DCPC have important implications for their cash data. First, while both surveys ask respondents to record their cash holdings at the time of the survey, the SCPC allows respondents to estimate their holdings, while the DCPC requires respondents to count their cash on person (bills only, no coins) by reporting the number of bills of each denomination, and the online DCPC questionnaire assists respondents in summing the value of their cash holdings. As a result, the SCPC cash holdings data exhibit more rounding (to the nearest \$5, \$10, or \$20) and approximation than the DCPC data. Second, the SCPC collects data on cash payments based on respondents' recall of their typical behavior, while the DCPC collects data that respondents record in essentially real time at the point of payment. Recall-based estimates of payments are likely to be inferior to recorded estimates due to potential errors from memory loss and time aggregation. For more information about the DCPC and its advantages in measuring consumer expenditures, see Schuh (2017).

5.2.3 Measurement by Recall versus Recording

By way of summarizing the material in this paper so far, we describe the main advantage of TTMS over the U.S. surveys and the innovation in the DCPC relative to the TTMS. The main advantage of TTMS is that it aims to achieve complete integration with household financial

statements by line-item coverage and by stock-flow dynamics. To see this point, consider the following illustrative system of equations that reflects the subset of TTMS financial statement estimates for the cash-flows dynamics of M1 liquid assets:

$$\begin{split} \widetilde{\Delta A_{1t}} &= \widehat{D_{1t}} - \widehat{W_{1t}} + \eta_{1t} \\ \widetilde{\Delta A_{2t}} &= \widehat{D_{2t}} - \widehat{W_{2t}} + \eta_{2t} \\ \widetilde{A_{1}} &= \widetilde{A_{1t}} + \widetilde{A_{1t}}, \end{split}$$

where the two assets, $k = \{1, 2\}$, are currency (1) and demand deposits (2) and η denotes a composite measurement error. An overhead circumflex ("hat") denotes a variable that is estimated directly by the survey (TTMS). The exception is that the TTMS does not directly collect cash holdings *every* period, unlike the DCPC. Instead, the TTMS makes an estimate of the initial stocks, $(\widehat{A_{1,0}}, \widehat{A_{2,0}})$, and then uses these stock-flow identities to impute the estimates of cash stocks in subsequent periods, denoted by an overhead tilde (~). In the imputation procedure, the TTMS enforces the constraints imposed by the principles of integration, such as $\widehat{A_{kt}} \geq 0$, and makes judgmental adjustments where necessary.

Conceptually, the TTMS is fully integrated. It achieves complete integration by line-item coverage because it estimates all items of the balance sheet (A_{1t}, A_{2t}) and cash-flows statement $(D_{1t}, D_{2t}, W_{1t}, W_{2t})$. As a result, the TTMS would also achieve complete integration by dynamics, provided it covered 100 percent of the dollar values of the items; in this case, the stock-flow dynamics would hold without error. However, it is essentially impossible for a survey to reach complete value coverage, due to sampling errors, among other challenges. For this reason, the TTMS imputes the periodic stock of currency using a judgmental estimate of the starting value of currency holdings for each household and adjusts it periodically if the stock-flow law of motion produces an invalid level estimate. Of course, the TTMS cannot claim to achieve full integration by dynamics or by item coverage in terms of dollar value, as TTMS estimates likely have measurement errors, as all surveys do. Nevertheless, the TTMS is generally much more integrated than the U.S. surveys analyzed earlier, which have much less than full integration by

coverage (item or value) and relatively large errors in cash-flows dynamics. The links between the income statement and the balance sheet were not incorporated into these U.S. surveys.

In particular, one type of measurement error likely occurring in the TTMS cash-flows estimates arises from recall-based low-frequency (monthly) estimates of cash flows. As noted, recall errors may occur from memory loss due to time aggregation over the days of the month or over the number of cash deposits and withdrawals (payments). To see this, note that monthly currency withdrawals,

$$W_{1t} = \sum_{d=1}^{D_t} \sum_{k=1}^{K_t} W_{1kdt},$$

are the sum over all opportunities and days, where $28 \le D_t \le 31$ and $K_t \ge 0$. Like most U.S. surveys, the TTMS obtains an aggregate recall-based estimate of monthly cash withdrawals, \widehat{W}_{1t} , from deposits to currency, without measuring each individual cash withdrawal, W_{1kdt} . The same measurement issue holds for currency deposits, which are less frequent and thus may be measured with less error.

By comparison, daily payment diaries like the DCPC represent an innovation in the measurement of stock-flow dynamics by recording high-frequency (daily) cash flows. For example, the DCPC obtains an estimate of each individual cash withdrawal, $\widehat{W_{1kdt}}$, by type, so the DCPC estimate of aggregate monthly cash withdrawals is the sum of individual withdrawals estimates,

$$\overline{W_{1t}} = \sum_{d=1}^{D_t} \sum_{k=1}^{K_t} \widehat{W_{1kdt}}$$
,

denoted by an overhead line. Therefore, if high-frequency (daily) recorded estimates of cash flows are more accurate than low-frequency (monthly) recall-based estimates, then we expect that

$$\left|\overline{W_{1t}}-W_{1t}^*\right|<\left|\widehat{W_{1t}}-W_{1t}^*\right|,$$

at least on average, if not period-by-period as well. Consequently, the DCPC estimates of the stock-flow law of motion for currency,

$$\Delta A_{1t} = \overline{D_{1t}} - \overline{W_{1t}} + \mu_{1t},$$

are likely to be a better measure than those from the TTMS for the reasons enumerated above:

1) DCPC estimates of monthly currency flows are sums of individual opportunity-day flows. 2)

DCPC estimates of currency holdings are obtained each period, not derived from an initial condition (estimate) using the estimated flows. In this sense, the DCPC estimates improve the integration of surveys with financial statements and offer the opportunity for enhanced analysis of household behavior, as demonstrated below.

5.3 Statements of Cash Flows

The statements of cash flows constructed from the TTMS and CPC surveys appear in Table 7. In most respects, these cash-flows statements are designed analogously to the statements of cash flows from the U.S. surveys (Table 4), and the elements are defined similarly to those in the balance sheets and income statements for TTMS and SCPC/DCPC (Tables 5–6). One exception is that the TTMS and DCPC represent cash flows and balance-sheet changes for one exact month (October 2012) rather than annual (or lower-frequency) flows. Also, bear in mind that the TTMS cash flows from financing equal the actual changes in the balance-sheet stocks. Therefore, the estimated change in currency from the cash-flows statement equals the change from the balance sheet by definition; hence, the cash-flows error is exactly zero because the stock-flow principle of motion is an identity, a significant step forward. Thus, the TTMS appears fully integrated by dynamics, but this integration is "artificially" high because it is derived rather than estimated directly.

Cash flows in Thai and U.S. households differ in both magnitude and type. Net income is naturally much larger, \$5,767 versus \$729, in U.S. households. Adjustments to net income for accrual-based income in the statements of cash flows are modest for Thai households that have business income (a total increase of \$130), and not measured for U.S. households (\$0), so the difference in cash flows from production are still large, \$5,767 versus \$859. However, cash flows for consumption and investment by U.S. households are very large, estimated at \$6,767, relative

to net income but much smaller relative to income, estimated at \$327, for Thai households. Similarly, U.S. cash flows from financing are larger, \$259 versus \$13, and more diverse, notably with respect to credit cards (which were not included in the 2012 TTMS). The estimated changes in currency from cash flows are roughly similar, \$-741 versus \$544, despite larger differences in net income and other flows. Finally, the cash-flows error analysis is not relevant or comparable. The TTMS error is zero (\$0) by definition because the balance-sheet changes are restricted to equal the cash flows. In contrast, the DCPC error is a legitimate derivation from estimates of all components of the stock-flow relationship. However, the error, \$905, is relatively large, 135 percent of lagged currency, because the DCPC was not designed or implemented in a way that would ensure full dynamic integration. Instead, the DCPC calculations illustrate the potential advantage of a payment diary in tracking the gross flows of currency and the stock-flow dynamics in financial statements.

6. An Innovation toward Better Integration

This section introduces an innovation to cash-flow accounting that demonstrates a second advantage of the DCPC for moving another step toward complete ST integration of surveys and financial statements. The previous section explained how payment diaries like the DCPC produce better estimates of cash flows and stocks than monthly surveys do. In addition, payment diaries can produce estimates of cash flows that directly link individual asset and liability accounts to cash flows via the payment instrument, rather than just linking aggregate categories of assets and liabilities to aggregate categories of cash flows. The remainder of this section describes the linkage between the balance sheet and payment instruments and then presents a new analysis of cash flows by account, before concluding with a preview of further innovations in the 2015 DCPC.

6.1 Payment Instruments and Balance-Sheet Accounts

Table 8 depicts the linkage between payment instruments and their associated balance-sheet accounts: assets and liabilities. Payments are funded (settled) by one of two broad types of accounts: money (asset) and credit (liability). Money includes transactions balances, or M1

(currency plus checking accounts), plus certain non-transaction balances, which are part of M2. The latter are savings, but in some cases can support a limited number of payments directly from or to the account (account-to-account, or A2A, transfers). Payments funded by money are usually settled instantly (with cash) or with delays of at most a couple days. Alternatively, credit accounts fund payments that are settled much later; non-revolving credit accounts (charge cards) require consumers to repay their debt during a certain period (typically a month), while revolving credit accounts (credit cards) offer consumers the option of rolling over some of the debt (up to a credit limit) to the future indefinitely in exchange for incurring interest charges. Monetary assets and unused credit limits are the liquidity that fund payments that are tracked by instrument in the DCPC.³⁶

[TABLE 8 ABOUT HERE]

The linkage between payment instruments and balance-sheet accounts merits additional discussion before moving ahead. Table 8 reveals that in U.S. household balance sheets the linkage is not one-to-one, due to the proliferation of accounts and payment instruments in the U.S. monetary and payment system. This linkage complexity is most evident in the variety of instruments that can access various types of deposit accounts (including saving accounts in M2). In particular, debit cards, various types of checks, and electronic banking methods (OBBP and BANP) all can be used to authorize payment or transfer from different types of accounts. In addition, the linkages depicted in Table 8 reflect aggregation of individual accounts within a type of account that the overall pattern does not reveal. For example, the 2012 SCPC indicates that 38 percent of U.S. consumers have more than one demand deposit (checking) account (DDA), and 57 percent of consumers with multiple DDAs have multiple debit cards, typically one (per account holder) for each DDA. Consequently, the linkages between accounts and instruments can be disaggregated further to match specific accounts and instruments within the

³⁶ Note that deposits into an asset account are similar to reductions in loan accounts, although one is an asset and the other a liability. Likewise, withdrawals from an asset account are similar to increases in loan accounts. But there is a substantive difference in that asset accounts require deposits before being used, whereas liability accounts can be unfunded initially and repaid later.

categories of Table 8. For example, a consumer (or household) may own two DDAs with a debit card for each; thus, it would be necessary to link DDA #1 to debit card #1, and similarly for the other account and card. The 2012 DCPC accurately measures the linkages between types of accounts and types of instruments (such as DDAs and debit cards), but it does not measure the linkages between specific individual accounts and specific individual instruments.

6.2 Cash Flows by Account

Given the linkage between accounts and instruments, the DCPC can also link balance-sheet accounts (or types of cash stocks) to household expenditures on consumer nondurable goods and services (or types of withdrawal flows).³⁷ Theoretically, a payment diary could link balance-sheet accounts for household capital goods to payments for investment in durable goods, but the 2012 DCPC did not track these concepts. In any case, the payment instrument plays the pivotal role because, for each payment, it directly links the balance sheet—that is, the asset or liability funding the payment—to consumer expenditures broadly defined (more broadly than narrow consumption) for *each* payment transaction.

Our major innovation of this paper is the "Statement of Account Flows," which is constructed using the DCPC and appears in Table 9. The rows in this new type of financial statement are generally formatted as in a statement of cash flows, but separately for each payment account. For example, the first column is the statement of currency flows, which records the inflows and outflows of currency for each type of transaction, starting with currency inflow from production activities (monthly basis) in Row A and followed by currency outflow from consumption and investment activities in Row B (separating consumption expenditure in Row B1 from capital expenditure in Row B2). Next, Row C and its subsidiary rows report the net currency flows from financing activities and its components: deposits (inflows; the C1 rows) of currency from each other account (DDA, nonfinancial deposit accounts (NFDA), foreign currency, long-term financial assets (LTFA), revolving debt, and other debt) and withdrawals (outflows; the C2

³⁷ If designed properly, a payments diary also could link balance-sheet accounts to the expenditures of household businesses, but we omit these from the discussion because the DCPC instructed respondents to exclude household business payments.

rows) of currency to each of those accounts. The remaining rows compare the changes in currency balances from the statement of currency flows above (Row D) with those estimated from the balance sheet (Row E), plus an estimate of the error (in value and percentage of priorperiod balance, Rows F and G, respectively).

Similarly to the statement of currency flows in the first column, the remaining columns of the table represent information for the flows of DDA, NFDA, foreign currency, LTFA, revolving debt, and other debt, with the final column reporting the row sum. This provides the link from aggregate cash to each of the payments mechanisms. Importantly, note that the total net flows concept in Row C appears in the last column ("All") as exactly zero by construction, since what goes into one payment account comes from another.

[TABLE 9 ABOUT HERE]

Total average account balances of U.S. consumers declined \$1,004 in October 2012, according to the DCPC, as average consumption, at \$6,771, exceeded total account flows from production activities, which were \$5,767. This change in account balances tabulated from account flows resulted from much larger gross inflows and outflows, as withdrawals, at \$8,524, exceeded deposits, which were \$7,520. However, the decline in account balances estimated from the statement of account flows was considerably smaller in absolute value than the corresponding change estimated from balance-sheet stocks, which was \$8,816. Therefore, the statement of account balances suggests that the DCPC is likely incomplete and may have considerable measurement errors, despite its conceptual promise for better integration by dynamics. One obvious area of incompleteness in the statement of account flows is that deposits of income to DDAs are not measured directly, but rather assumed to equal the difference between net income and currency deposits to income.³⁸

³⁸ Furthermore, the income of individual consumers (2012 DCPC respondents) is not estimated directly. We use the 2012 SCPC estimate of household income for the respondent (reported in categorical form rather than in exact dollar

The statement of account flows exhibits at least two interesting results with economic implications that may be useful for future research to link real (consumption) and nominal (financial) household choices. First, 99 percent of consumption, at \$6,771, is funded by payments from DDAs (65.3 percent), from credit cards (18.4 percent), and from currency (15.3 percent). This result reflects heterogeneity in consumer payment choices, which may have implications for payment systems and for household budgeting and management of liquidity. Second, the gross-flow magnitudes are not small relative to income and consumption, which raises questions about the efficiency of the monetary system and relates to the classic literature on money demand: Why are U.S. households holding relatively large amounts of their liquid assets in payment accounts (just as Thai households hold so much in currency)? Also, it is still not entirely clear why consumers make such large transfers between currency and DDA, two assets that have the same monetary nature (M1) and are essentially equivalent for the settling of exchange. Evidence from the Survey of Consumer Payment Choice indicates that many U.S. consumers still rate the characteristics of currency (cost, speed, convenience, recordkeeping, and such) high relative to other payment instruments, and merchant acceptance of instruments is still not universal. Nevertheless, these large transfers between currency and DDA likely involve costs that may be reduced by the use of electronic money. All together, the account flows provide new data with advantages that potentially offer greater insight than existing data and research do into household financial decisionmaking and the optimal design of the payments system more generally.

6.3 Improvements to the 2015 DCPC

While the 2012 DCPC introduced an innovation to the measurement of currency flows that has enhanced the degree of integration for one type of asset (currency), its coverage of financial statements has been relatively low, due to its limited mission and purpose. However, expanding the DCPC to measure the stocks of other assets from which consumers make

amounts) and other data in the SCPC, DCPC, and SCF to impute income for the DCPC respondents. This shortcoming was partially addressed in the 2015 DCPC (see Section 6.3 below).

payments not only increases coverage and integration but also provides important information for studying payment choices. For example, the analysis of the demand for currency and payment cards (debit and credit) by Briglevics and Schuh (2014) was limited by the lack of data on checking account balances. Also, the results in Schuh (2017) demonstrating the close correspondence between payments and personal income were produced without the benefit of direct measurement of the receipt of income by DCPC respondents.

Consequently, in 2015 the Boston Fed undertook to make major improvements to the SCPC and DCPC that substantially improved their integration with household integrated financial statements and the ST methodology. Improvements to the coverage of balance sheets included adding:

- Additional short-term liquid assets other than currency, including balances held in checking (DDA) and nonbank deposit accounts, such as prepaid cards, PayPal, etc. [SCPC and DCPC]
- Collection of outstanding debt balances from credit card bill payments. [DCPC only]

Improvements to coverage of income and cash-flows statements included adding:

- More intentional and detailed classification of expenditures based on official National Income and Product Account (NIPA) definitions of consumption, which increases the precision of the distinction between consumption and non-consumption expenditures.
 [DCPC only]
- Collection of the actual dollar values, types, and frequencies of personal income receipts, which will permit direct comparison of aggregate DCPC income with NIPA income.³⁹
 [DCPC only]
- Increased precision and information about the timing and nature of bill payments,
 which will improve the classification of expenditures and expand the capability to link

45

³⁹ The 2012 DCPC only asked for the days on which income was received by the respondent, not the dollar amount of income of individual respondents. The 2012 and 2015 SCPC asked for total household income in dollar ranges.

payments to assets, and especially to liabilities (such as outstanding debt other than credit card debt).

Data from the 2015 and 2016 DCPC are in the process of being analyzed and prepared for publication in the near future.

6.4 Lessons for Survey Design

For all of the household financial surveys covered in this paper, and for any other similar survey, there is a relatively clear and straightforward path to developing complete integration with household financial statements. At least two main steps would need to be taken:

- 1. *Obtain complete item coverage*. All of the surveys are missing some line items from the balance sheet, income statement, or statement of cash flows. Adding survey questions to obtain estimates for each of these line items would provide complete item coverage. Of course, the coverage of a line item is not sufficient for full integration because errors may arise from sampling, question design, and other factors. Also, further disaggregation of the line items of the financial statements reported earlier may be required to achieve accurate aggregate estimates. Nevertheless, conditional on accurate estimation, comprehensive coverage of line items is a necessary step toward full integration. The surveys should also take into consideration innovations in financial instrument and payment methods, as they provide alternatives or replacements.
- 2. Ensure exact stock-flow identities. All surveys could improve the accuracy of their estimation of the dynamic identities inherent in the statement of cash flows. The use of high-frequency payment diaries appears to be one promising method for achieving this improvement. Provided the estimation of stocks (assets and liabilities) is relatively accurate, it is the estimation of aggregate flows (income and expenditures) over relatively long periods of time (minimum one month, but up to one year or more) that is the key survey methodology issue. Survey methods other than high-frequency payment diaries may yield improved estimates of aggregate flows, but it is not apparent which are the most successful. Further research is needed on this matter.

These two items are necessary for improving the integration of household financial surveys with household financial statements; they may also have interaction effects: for example, the omission of an asset from the balance sheet prevents improvements in the statement of cash flows. However, there may be other development issues to address as well, such as further improvements in the survey sampling frames.

7. Extensions and Conclusions

While the development issues necessary for integration are reasonably clear and straightforward, countervailing factors may inhibit comprehensive integration. One factor may be the lack of motivation, mandate, scope, or directive by the survey sponsors. Relatedly, the expansion of one survey may begin to overlap the coverage of another, which might be problematic for sponsors. For example, the SCF and CE each have relative strengths that, when combined, might move the collective dataset much closer to full integration of the accounts, but expansion of one or both of these surveys would create significant and costly duplication and would likely trigger a call for streamlining. Finally, an obvious inhibiting factor is the lack of sufficient budgetary resources to expand the survey and diary program, although budgetary resources are jointly determined with the previously mentioned factors.

The preceding discussion is equally relevant for the CPC survey and diary. Like all surveys, the 2012 SCPC and DCPC have advantages and disadvantages relative to the other surveys. However, one promising feature of the CPC survey and diary is that they have considerable room for quality improvements to the questionnaires that do not require additional budgetary resources, alternative sampling methods, or broader scope of operation and directive. The Boston Fed implemented the following improvements in the SCPC and DCPC during the fall of 2015, and the results will be forthcoming in future research.

 Separately identifying the payer (consumer) and payee rather than defining merchant categories that combine payee and type of expenditure, a separation that enables a far richer understanding of the purposes and reasons for the expenditure (including

- whether or not the expenditure was expected and the source of funding for unexpected expenses).
- Improvements to the statement of cash flows include additional information on how households finance their expenditures, and also provide additional real-time errorchecking of online questionnaire responses, using stock-flow identities among assets, income, and expenditures.

These improvements highlight the fact that payment diaries link individual expenditure entries of the income statement with their associated assets and liabilities in the balance sheet and the detailed statement of cash flows in ways that have not been realized in other studies, including ST. However, the improvements are modest relative to the additional innovations that would be required to achieve complete integration, so much more research and data collection are needed.

The CE also is undergoing a redesign and improvement effort in response to recommendations from a National Academy of Sciences review panel, as described in National Research Council (2013). The report recommends considering three new prototype designs:

- Design A Detailed expenditures through self-administration. This method would improve respondent reporting of expenditures and reduce respondent burden in data collection.
- Design B A comprehensive picture of income and expenditures. This method would use technology, financial records, financial software, and budget balancing to improve estimates of the income statement.
- Design C Dividing tasks among multiple integrated samples. This method would improve estimation of income-statement items through better use of sampling methodology.

While these improvements are valuable and promising, the NAS report does not appear to discuss or advocate the concept of integration beyond improvements to estimation of the income-statement line items.

A detailed discussion of research coming from the TTMS, SCPC, DCPC, and the other U.S. surveys is outside the scope of this paper. Many excellent contributions make use of each of the various surveys, and some use combinations of them. At the same time, analysts are limited in what they do without the integration of the accounts; indeed, a literature review would be useful to enumerate these strengths and limitations and to illustrate what might be done with improved data. Of course, this would take us well beyond the current endeavor.

Relatedly, although we have aggregated up to a common "representative" set of financial accounts, one would often like to disaggregate to some degree and go back to the underlying data organized by the accounts. Given the recent interest in the observed heterogeneous outcomes across U.S. communities in the lead-up and fall-out from the Financial Crisis, it would be natural to disaggregate by geography (ZIP code, SMSA, commuting zone, county, state). Unfortunately many of the surveys were not designed to be representative at this level or lack sufficient observations to provide statistical significance. Indeed, one ends up taking one piece of data from one survey, another from another, and so on. But the available data are not organized systematically under the conceptual framework of integrated financial accounts. This, too, would seem to be a worthwhile endeavor that is beyond the scope of the current paper.

In the broader introduction to this paper and in the measurement efforts in the last few sections, we stressed the importance of payments data that could make it possible to distinguish among the payment instruments, align with more conventional measures of cash flow, and be used to calculate changes in balance-sheet items and income statements. Again, we have not had space in this paper to describe this connection in more detail. Suffice it to note that innovation in financial markets and monetary policy all point to issues related to the still-important use of currency and issues related to the potential of alternative media of exchange based on new asset accounts. Indeed some papers in the literature already note that the impact of monetary policy as previously conducted was a function of the industrial organization of banks at a local level.

In particular, the willingness and ability of households to substitute across cash and demand deposits was found to be crucial in gauging the impact of policy. Better data on payments is thus central to understanding the impact of monetary policy moving forward.

Although we have presented standard accounting practices, the measurement provided by the accounts should be consistent with the measurement suggested by theoretical models. For example, if there were complete markets for contingent claims, then future income flows would be conceptualized as discounted future income adding to contemporary wealth. Contingent assets lose value when the expected states of the world on which their value depends do not occur, but they gain in value if the contracted state is realized. Wealth or net worth would move only with aggregate shocks. With incomplete markets and contracts, it is easier to envision wealth as the buffer stock or pension fund used to deal with this uninsured uncertainty. In any event, there needs to be a review of the contracts and implicit understandings a household has entered into and scrutiny, in turn, of how to treat these in the accounts. This, as well, remains the subject of another paper.

References

- Agarwal, S. and W. Qian. "Consumption and Debt Response to Unanticipated Income Shocks: Evidence from a Natural Experiment in Singapore." *American Economic Review*, **104**(12), 2014, 4205-4230.
- Ahmed, S., M. Imaduddin, A. Sumair, Quaratulein, and F. Naseem. *Quarterly Branchless Banking Newsletter, State Bank of Pakistan Issue* 15, 2015.
- Bech, M. L., A. Martin, and J. McAndrews. "Settlement Liquidity and Monetary Policy Implementation—Lessons from the Financial Crisis." *Economic Policy Review*, forthcoming.
- Briglevics, T., and S. Schuh. "This Is What's in Your Wallet... and Here's How You Use It." Federal Reserve Bank of Boston Working Paper No. 14-5, 2014.
- Carroll, C. D., T. F. Crossley, and J. Sabelhaus, eds. *Improving the Measurement of Consumer Expenditures*. Chicago and London: University of Chicago Press, 2015.
- Campbell, J.. "Household Finance." *Journal of Finance* **61**(4), 2006, 1553–1604.

- Chang, M., W. A. Darity Jr., D. Hamilton, R. O. Jackson, M. Kim and A. P. Muñoz. "The Color of Wealth in Boston." Federal Reserve Bank of Boston Joint Publication with The New School, 2016.
- Cochrane, J. "Toward a run-free financial system" in *Across the Great Divide: New Perspectives on the Financial Crisis*, edited by Martin Neil Baily and John B. Taylor. Stanford: Hoover Institution Press, 2014, 197-249.
- Crossley, T. and J. Winter. "Asking About Expenditures: What have we Learned?" in *Improving the Measurement of Consumer Expenditures*, edited by Christopher D. Carrol, Thomas F. Crossley, and John Sabelhaus. Chicago and London: University of Chicago Press, 2015.
- Darity, W., D. Hamilton, A. E. Price, V. Sridharan, and R. Tippett. "Umbrellas Don't Make it Rain: Why Studying and Working Hard Isn't Enough for Black Americans." Insight Center for Community Economic Development Report, 2015.
- Dillman, D. A., and C. C. House, eds. *Measuring What we Spend: Toward a New Consumer Expenditure Survey*. Washington, D.C.: National Academies Press, 2013.
- Fulford, S., C. Greene, and W. Murdock III. "U.S. Consumer Holdings and Use of \$1 Bills." Federal Reserve Bank of Boston Working Paper No. 15, 2015.
- Garratt, R., A. Martin, J. McAndrews, and E. Nosal. "Segregated Balance Accounts." Federal Reserve Bank of New York Staff Reports No. 730, 2015.
- Greene, C. and S. Schuh. U.S. Consumers' Holdings and Use of \$100 Bills. Federal Reserve Bank of Boston Working Paper No. 14-3, 2014.
- Greene, C., Scott Schuh and Joanna Stavins. The 2014 Survey of Consumer Payment Choice: Summary of Results. Federal Reserve Bank of Boston Working Paper No. 16-3, 2016.
- Imdieke, L. F., and R. E. Smith. *Financial Accounting: First Edition* New York: John Wiley & Sons, Inc., 1987.
- Jack, W., T. Suri, and R. Townsend. "Monetary Theory and Electronic Money: Reflections on the Kenyan Experience." *Economic Quarterly* Federal Reserve Bank of Richmond 96(1), 2010 (first quarter), 83–122.
- Kochar, A. "Parental Benefits from Intergenerational Coresidence: Empirical Evidence from Rural Pakistan." *Journal of Political Economy* **108** (6), 2000, 1184–1209.
- Mian, A. R. and A. Sufi. "House Prices, Home Equity–Based Borrowing, and the US Household Leverage Crisis." *American Economic Review* 101, 2011 (<u>August</u>), 2132–2156.
- Mian, A. R., A. Sufi, and E. Verner. "Household Debt and Business Cycles Worldwide." Kreisman Working Paper Series in Housing Law and Policy, No. 38, 2017. Accessed June 2016. https://ssrn.com/abstract=2655804
- National Research Council. *Measuring What We Spend: Toward a New Consumer Expenditure Survey*. Panel on Redesigning the BLS Consumer Expenditure Surveys, Don A. Dillman and Carol C. House, eds. Committee on National Statistics, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press, 2013.

- Samphantharak, K., and R. M. Townsend. *Households as Corporate Firms: An Analysis of Household Finance Using Integrated Household Surveys and Corporate Financial Accounting.* Cambridge: Cambridge University Press, 2010.
- Schuh, S. "Measuring Consumer Expenditures with Payment Diaries." *Economic Inquiry*, 2017, forthcoming.

TABLE 1
Overview of U.S. Surveys and Diaries and TTMS

	PSID	CE-S/D	SCF	SIPP	HRS/CAMS	S/D-CPC	TTMS
Sponsor	University of Michigan	BLS	Federal Reserve Board	Census Bureau	University of Michigan	Boston Fed	MIT
Vendor	University of Michigan	Census Bureau	NORC/University of Chicago	Census Bureau	University of Michigan	RAND/University of Southern California	Thai Family Research Project
Frequency	Biennial	Monthly	Triennial	Quarterly	Biennial	Yearly/irregular	Monthly
Period	1968-present	1980-present	1983:Q1-present	1983:Q4-present	2008-present	2012, 2015	1998-present
Statistical Calculations	2011, 2013	2011, 2012	2009, 2012	2010, 2011	2010, 2012	2011, 2012	2012
				onnaires and the same of the s			
Observation unit	U.S. Family unit	U.S. Consumer units	U.S. Primary economic units	U.S Households	U.S. Households	U.S. Consumers and households	Thai Households
Mode(s)	Interview	Interview, diary	Interview	Interview	Interview, mail	Interview, diary	Interview
Data collection	Recall	Recording, recall	Recall	Recall	Recall	Recording (1 day), recall (1 year)	Recall
Measurement period	Past year	Daily expenditures (diary), or past year (survey)	"Average" week for expenditures, past year for income	Past month, past 4 months, or past year	Past year	Daily payments (DCPC), or "typical" week, month, year (SCPC)	Past month
				pling		· · · · · · · · · · · · · · · · · · ·	
Target Population	Total U.S. Non- institutional	Total U.S. Non- institutional	Total U.S. Non- institutional	Total U.S.	U.S. ages 50+ Non- institutional	Age 18+ Non- institutional	Rural and Semi- Urban Households
Sampling Frame	Survey Research Center National Sampling Frame	U.S. Census Bureau Master Address File	NORC National Sampling Frame and IRS data	U.S. Census Bureau Master Address File	Panel of adults born 1931-1941	RAND ALP, USC UAS, GfK Knowledge Networks	Initial Village Census
Sample size	~10,000	~7,000	~6,000	14,000-52,000	9,000-15,000	~2,000	~800
Longitudinal panel	4 consecutive quarters	14 days	None	2.5-4 years	Fixed	3-day waves tied to SCPC annual panel	1998-present
CE-S: http://www.bls.gov/CE/capi/2015/cecapihome.htm CE-D: http://www.bls.gov/CE/ced/2013/cedhome.htm TTMS: http://townsend-thai.mit.edu/about/ SIPP: http://www.census.gov/programs-surveys/sipp/about.html PSID: https://psidonline.isr.umich.edu/				DCPC: https://www.		omic/cprc/data-resource conresdata/scf/scfindex	

TABLE 2-a
U.S. Surveys: Balance Sheets - Assets, various dates

	PSID	CES	SCF	HRS	SIPP
Assets	422,616	226,314	632,246	556,295	351,702
Median	151,000		170,600	240,000	67,113
Financial assets	163,376	65,537	262,168	205,461	160,651
(% of assets)	(39)	(29)	(41)	(37)	(46)
CURRENT ASSETS	95,883	65,115	140,176	125,898	102,642
Cash	29,850	30,849	30,354	34,733	12,434
Currency	- ,		12	- ,	, -
Government-backed currency			12		
Private virtual currency					
Bank accounts	29,850	30,849	30,342	34,733	536
Checking accounts	•	17,239	12,660	ŕ	536
Savings accounts		13,610	17,682		
Other deposit accounts		,	0		11,898
Other current assets	66,033	34,266	109,822	91,165	90,208
Certificates of deposit	,	,	4,994	9,354	,
Bonds		408	8,227	14,860	3,376
Mutual funds/hedge funds			40,964		18,830
Publicly traded equity	56,335	33,858	48,874	66,951	
Life insurance	9,698	,	6,763	ŕ	68,002
LONG-TERM INVESTMENTS	67,493	422	121,992	79,563	58,009
Retirement accounts	67,493		97,007	79,563	54,759
Annuities	,		5,490	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Trusts/managed investment accounts			13,773		
Loans to people outside the HH		422	5,722		361
Other important assets			- 4.		2,889
Tangible (physical) assets	259,240	160,777	362,445	336,951	191,051
(% of assets)	(61)	(71)	(57)	(61)	(54)
Business	51,404	(, -)	108,760	55,006	25,921
Housing assets	188,992	160,777	234,187	264,500	154,795
Primary residence	149,211	149,760	170,159	190,818	147,855
Other real estate	39,781	11,017	64,028	73,682	6,940
Vehicles	18,844	,	19,498	17,445	10,335
Unknown assets	- , -		7,633	13,883	
(% of assets)			(1)	(2)	
(70 Of dissets)			(1)	(2)	(2.27) 2012

SOURCES: Panel Study of Income Dynamics (PSID) 2013, Consumer Expenditure Survey (CE) 2012, Survey of Consumer Finances (SCF) 2013, Health and Retirement Survey (HRS) 2012, and Survey of Income and Program Participation (SIPP) 2011. See Section 2 for more details. NOTES: Table entries are average dollar values for the survey's unit of observation, approximately a household. Assets and liabilities are stocks dated as of the time of the survey, generally the end of the year. Sampling weights provided by each survey were used in calculating the average values in accordance with the survey's data documentation. A more detailed data appendix and the Stata programs used to construct the tables are available at https://www.bostonfed.org/about-the-boston-fed/business-areas/consumer-payments-research-center.aspx.

TABLE 2-b
U.S. Surveys: Balance Sheets - Liabilities, various dates

	PSID	CES	SCF	HRS	SIPP
Liabilities	82,288	73,668	112,306	64,614	61,979
Median	18,800		23,000	5,600	3,750
Revolving Debt	2,671	4,512	2,185		2,661
(% of liabilities)	(3)	(6)	(2)		(4)
Credit cards / charge cards	2,671	4,447	2,096		
Revolving store accounts		65	89		
Non-revolving Debt	79,617	69,156	110,121	64,614	59,318
(% of liabilities)	(97)	(94)	(98)	(100)	(96)
Housing	67,506	58,143	87,223	58,584	
Mortgages for primary residence	54,856	52,559	63,889	48,984	
Mortgages for investment real estate or					
second home	12,650	3,086	19,598	4,440	
HELOC/HEL		2,498	3,556		
Loans for improvement			180	5,160	
Loans on vehicles	4,310	3,926	4,508		3,707
Education loans	6,507		5,788		
Business loans			10,317		5,338
Investment loans (e.g., margin loans)			289		102
Unsecured personal loans					
Loans against pension plan			288		
Payday loans / pawn shops					
Other loans	1,294	7,087	1,708	6,030	50,171
Net worth (equity)	340,328	152,646	519,940	491,681	289,723
Cumulative net gifts received					
Cumulative savings					

SOURCES: Panel Study of Income Dynamics (PSID) 2013, Consumer Expenditure Survey (CE) 2012, Survey of Consumer Finances (SCF) 2013, Health and Retirement Survey (HRS) 2012, and Survey of Income and Program Participation (SIPP) 2011. See Section 2 for more details. NOTES: Table entries are average dollar values for the survey's unit of observation, approximately a household. Assets and liabilities are stocks dated as of the time of the survey, generally the end of the year. Sampling weights provided by each survey were used in calculating the average values in accordance with the survey's data documentation. A more detailed data appendix and the Stata programs used to construct the tables are available at https://www.bostonfed.org/about-the-boston-fed/business-areas/consumer-payments-research-center.aspx.

TABLE 3
U.S. Surveys: Income Statements, various dates

	PSID	CES	SCF	HRS	SIPP
Income	67,187	65,316	83,863	79,779	61,431
Median	44,500	46,774	45,000	46,300	45,396
Labor Income	53,623	51,543	53,192	42,377	48,767
(% of total income)	(80)	(79)	(63)	(53)	(79)
Wages and salaries	53,473	51,543	53,192		
Professional practice or trade	113				
Other Labor Earnings	37				
Production Income	3,748	3,075	11,347		1,144
(% of total income)	(6)	(5)	(14)		(2)
Business income (self-employment)	2,472	2,926	11,347		
Rent	1,276	149			1,144
Other income	9,816	10,698	19,324	37,402	18,176
(% of total income)	(15)	(16)	(23)	(47)	(30)
Interest, dividends, etc	2,206	1,204	6,682	18,093	
Government transfer receipts	1,302	5,812	10,670	12,415	7,294
Other transfer receipts, from business	131			423	
Other transfer receipts, from persons		380	372		
All other income	6,177	3,302	1,600	6,471	10,882
Expenditures	1,837	4,345	2,007	0	22,487
Production Costs					
(% of total expenditures)					
Depreciation					
Capital losses					
Business Expenses					
Cost of Labor Provision					
Cost of Other Production Activities					
Taxes	1,837	4,345	2,007		2,798
(% of total expenditures)	(100)	(100)	(100)		,
Employment taxes	` /	2,508	` '		585
Other taxes	1,837	1,837	2,007		2,213
Net income	65,350	60,971	81,856	79,779	38,944

SOURCES: Panel Study of Income Dynamics (PSID) 2013, Consumer Expenditure Survey (CE) 2012, Survey of Consumer Finances (SCF) 2013, Health and Retirement Survey (HRS) 2012, and Survey of Income and Program Participation (SIPP) 2011. See Section 2 for more details. NOTES: Table entries are average dollar values for the survey's unit of observation, approximately a household. Income and expenses are reported for the prior 12 months, or annualized where necessary. Sampling weights provided by each survey were used in calculating the average values in accordance with the survey's data documentation. A more detailed data appendix and the Stata programs used to construct the tables are available at https://www.bostonfed.org/about-the-boston-fed/business-areas/consumer-payments-research-center.aspx.

TABLE 4
U.S. Surveys: Statements of Cash Flows

(Cash defined as Current Assets)	PSID	CES	SCF	HRS	SIPP
	2010-2012	2011-2012	2010-2013	2010-2012	2010-2011
Net income (+)	65,350	60,971	81,856	79,779	38,944
Adjustments:					
Depreciation (+)	0	0	0	0	0
Change in Account Receivables (-)	0	0	0	0	0
Change in Account Payables (+)	0	0	0	0	0
Change in Inventory (-)	0	0	0	0	0
Change in Other (not Cash) Current Assets (-)	0	0	0	0	0
Consumption of Household Produced Outputs (-)	0	0	0	0	0
Cash flows from Production	65,350	60,971	81,856	79,779	38,944
Consumption expenditure (-)	-43,766	-44,849	-28,850	-45,073	-22,487
Capital (durable goods) expenditure (-)	0	0	0	0	0
Cash flows from Consumption and Investment	-43,766	-44,849	-28,850	-45,073	-22,487
Transfers to/from Long-Term Investments	-362	0	1,231	0	0
Lending (-)	0	-151	1,359	50	4,452
Borrowing (+)	4,230	8,089	-4,349	-3,757	-8,988
Net Gifts Received (+)	0	0	0	0	0
Cash flows from Financing	3,868	7,938	-1,759	-3,707	-4,536
Change in Cash Holding (from Statement of Cash Flows)	25,452	24,060	51,247	31,000	11,921
Change in Cash Holding (from Statement of Balance Sheet)	3,091	17,770	3,843	1,678	-18,622
Cash flows error	22,362	6,290	47,404	29,322	30,543
Internal Error	25%	13%	37%	24%	25%
External Error	30%	8%	61%	39%	42%

SOURCES: Panel Study of Income Dynamics (PSID) 2010-2013, Consumer Expenditure Survey (CE) 2011-2012, Survey of Consumer Finances (SCF) 2010-2013, Health and Retirement Survey (HRS) 2010-2012, and Survey of Income and Program Participation (SIPP) 2010-2011. See Section 2 for more details. NOTES: Table entries are average dollar values for the survey's unit of observation, approximately a household. Cash flows are at a yearly rate and are constructed with the most recent prior data available. Sampling weights provided by each survey were used in calculating the average values. A more detailed data appendix and the Stata programs used to construct the tables are available at https://www.bostonfed.org/about-the-boston-fed/business-areas/consumer-payments-research-center.aspx.

TABLE 5
TTMS and SCPC/DCPC: Balance Sheets, October 2012

Assets89,082301,425LiabilitiesMedian146,053MedianFinancial assets35,553836Revolving Debt(% of assets)(40)(0)(% of liabilities)CURRENT ASSETS35,321836Credit cards / charge cardsCash35,332836Revolving store accountsCurrency30,874836Non-revolving DebtGovernment-backed currency30,874836(% of liabilities)Bank accounts4,458HousingOther current assets-11Mortgages for primary residenceCertificates of depositMortgages for investment real estatesNet ROSCA position-11HELOC/HELAccounts receivable0Loans for improvementBondsAccounts payableLoans on vehiclesPublicly traded equityEducation loansLife insuranceBusiness loansInvestment loans (e.g., margin loans)LONG-TERM INVESTMENTS232Investment loans (e.g., margin loans)Retirement accountsUnsecured personal loansAnnuitiesLoans against pension planTrusts/managed investment accountsPayday loans / pawn shopsOther loansOther loans	5,317 te .	120,689 42,935 5,306 (4) 5,306 115,383 (96) 67,278 67,278
Financial assets35,553836Revolving Debt(% of assets)(40)(0)(% of liabilities)CURRENT ASSETS35,321836Credit cards / charge cardsCash35,332836Revolving store accountsCurrency30,874836Non-revolving DebtGovernment-backed currency30,874836Non-revolving DebtGovernment-backed currency30,874836(% of liabilities)Bank accounts4,458HousingOther current assets-11Mortgages for primary residenceCertificates of depositMortgages for investment real estatNet ROSCA position-11Loans for improvementAccounts receivable0Loans for improvementMutual funds/hedge fundsLoans on vehiclesPublicly traded equityEducation loansLife insuranceBusiness loansLONG-TERM INVESTMENTS232Investment loans (e.g., margin loans)Retirement accountsUnsecured personal loansAnnuitiesLoans against pension planTrusts/managed investment accountsPayday loans / pawn shopsOther loansOther loans	5,317 te .	5,306 (4) 5,306 115,383 (96) 67,278
(% of assets)(40)(0)(% of liabilities)CURRENT ASSETS35,321836Credit cards / charge cardsCash35,332836Revolving store accountsCurrency30,874836Non-revolving DebtGovernment-backed currency30,874836Non-revolving DebtGovernment-backed currency30,874836Non-revolving DebtGovernment-backed currency30,874836Non-revolving DebtGovernment-backed currency30,874836Non-revolving DebtBank accounts4,458HousingOther current assets-11Mortgages for primary residenceNet ROSCA position-11HELOC/HELAccounts receivable0Loans for improvementBondsAccounts payableLoans on vehiclesPublicly traded equityEducation loansEducation loansLife insuranceBusiness loansInvestment loans (e.g., margin loans)LONG-TERM INVESTMENTS232Investment loans (e.g., margin loans)Retirement accountsUnsecured personal loansLoans against pension planAnnuitiesLoans against pension planPayday loans / pawn shopsOther loansTrusts/managed investment accounts232Other loansOther loansOther loans	5,317 te .	(4) 5,306 115,383 (96) 67,278
CURRENT ASSETS.35,321836Credit cards / charge cards.Cash.35,332836Revolving store accounts.Currency.30,874836Non-revolving DebtGovernment-backed currency.30,874836Non-revolving DebtBank accounts.4,458Housing.Other current assets11Mortgages for primary residence.Certificates of deposit.Mortgages for investment real estarNet ROSCA position11HELOC/HEL.Accounts receivable.0Loans for improvement.Bonds.Accounts payable.Mutual funds/hedge funds.Loans on vehicles.Publicly traded equity.Education loans.Life insurance.Business loans.LONG-TERM INVESTMENTS.232Investment loans (e.g., margin loans)Retirement accounts.Unsecured personal loans.Annuities.Loans against pension plan.Trusts/managed investment accountsPayday loans / pawn shops.Other leading.232Tangible (physical) assets53,529148,421	5,317 te .	5,306 115,383 (96) 67,278
Cash	5,317 te .	115,383 (96) 67,278
Cash	5,317 te .	(96) 67,278
Government-backed currency 30,874 836 (% of liabilities) Bank accounts 4,458 Other current assets11 Mortgages for primary residence Certificates of deposit Mortgages for investment real estatement receivable 0 Loans for improvement Accounts payable Loans on vehicles Education loans Loans on vehicles Business loans. LONG-TERM INVESTMENTS 232 Investment loans (e.g., margin loans) Retirement accounts. Loans against pension plan Trusts/managed investment accounts Other lending 232 Tangible (physical) assets 53,529 148,421	 te .	(96) 67,278
Bank accounts	 te . 	67,278
Other current assets11Mortgages for primary residenceCertificates of deposit.Mortgages for investment real estatNet ROSCA position11HELOC/HEL	 te . 	,
Certificates of deposit	te .	67,278
Net ROSCA position		
Net ROSCA position		
Accounts receivable		
Mutual funds/hedge funds		
Publicly traded equity Life insurance	1,480	
Life insurance		
LONG-TERM INVESTMENTS232Investment loans (e.g., margin loans)Retirement accounts		
Retirement accounts		
Annuities		
Trusts/managed investment accounts Other lending	••••	
Other lending		
Tangible (physical) assets 53,529 148,421		
	3,837	48,105
(% of assets) (60) (49) Net worth (equity)	83,765	180,736
Business assets		
Agricultural assets	56,779	
Housing/household assets		
Primary residence		
Inventories		
Livestock		
Other nonfinancial assets		
Unknown assets 152,168		
(% of assets) (50)		
Continued in next column		

NOTES: Thai Baht converted to U.S. Dollars at a rate of 30.68 Baht per Dollar. Values are stocks as of the time of the survey, which for the CPC is between the beginning of September and the end of October. TTMS entries are at the household level. CPC entries are either at the household level or converted to a household level by multiplying consumer values by 2.045. A more detailed appendix and the Stata programs used to construct the tables are available at https://www.bostonfed.org/about-the-boston-fed/business-areas/consumer-payments-research-center.aspx.

 $SOURCES: Townsend\ Thai\ Monthly\ Survey\ (TTMS),\ Survey\ of\ Consumer\ Payment\ Choice\ (SCPC).$

Table 6
TTMS and SCPC/DCPC: Income Statements, October 2012

	TTMS	SCPC/ DCPC		TTMS	SCPC/ DCPC
Income	1,643	5,921	Expenditures	813	1,840
Median		4,413	Production Costs	813	
Censored income		4,789	(% of total expenditures)	(100)	
Labor Income	252		Business	251	
(% of total income)	(15)		Agricultural activities	529	
Production Income	1,368		Cultivation	133	
(% of total income)	(83)		Livestock	292	
Business	326		Capital losses	1	
Agricultural activities	1,042		Depreciation	12	
Cultivation	536		Other expenses	280	
Livestock	392		Fish and shrimp	104	
Produce	390		Labor provision	32	
Capital gains	2		Other production activities	1	
Fish and shrimp	114		Taxes		1,840
Other income	23		(% of total expenditures)		(100)
(% of total income)	(1)				
Continued in next column			Net income	830	4,081

NOTES: Thai Baht converted to U.S. Dollars at a rate of 30.68 Baht per Dollar. Values are stocks as of the time of the survey, which for the CPC is between the beginning of September and the end of October. TTMS entries are at the household level. CPC entries are either at the household level or converted to a household level by multiplying consumer values by 2.045. CPC household income is originally reported in buckets; precise estimates are imputed with the help of SCF data. A more detailed appendix and the Stata programs used to construct the tables are available at https://www.bostonfed.org/about-the-boston-fed/business-areas/consumer-payments-research-center.aspx.

SOURCES: Townsend Thai Monthly Survey (TTMS), Diary of Consumer Payment Choice (DCPC), Survey of Consumer Payment Choice (SCPC)

TABLE 7
TTMS and DCPC: Statements of Cash Flows, October 2012

(Cash defined as Currency)	TTMS	DCPC
Net income (annual basis) (+)	8,750	69,207
Net income (monthly basis) (+)	729	5,767
Adjustments:		
Depreciation (+)	94	0
Change in Account Receivables (-)	-37	0
Change in Account Payables (+)	0	0
Change in Inventory (-)	80	0
Consumption of Household Produced Outputs (-)	-6	0
Net Capital Gains (+)	-1	
Cash flows from Production	859	5,767
Consumption expenditure (-)	-245	-6,767
Capital (durable goods) expenditure (-)	-77	0
Cash flows from Consumption and Investment	-327	-6,767
Change in Demand Deposits (-)	-67	-421
Change in NFDA deposits (-)	na	59
Change in Foreign Currency (-)	na	-2
Change in Credit Card Balance (-)	na	1,292
Change in Long-term Assets (-)	76	-669
Change in Other Debts (-)	4	na
Cash flows from Financing	13	259
Change in Currency Balance (from Statement of Cash Flows)	544	-741
Change in Currency Balance (from Statement of Balance Sheet)	544	164
Cash flows error	0	905
Internal Error	na	135%

NOTES: Thai Baht converted to U.S. Dollars at a rate of 30.68 Baht per Dollar. Values are stocks as of the time of the survey, which for the CPC is between the beginning of September and the end of October. TTMS entries are at the household level. CPC entries are either at the household level or converted to a household level by multiplying consumer values by 2.045. CPC household income is originally reported in buckets; precise estimates are imputed with the help of SCF data. A more detailed appendix and the Stata programs used to construct the tables are available at https://www.bostonfed.org/about-the-boston-fed/business-areas/consumer-payments-research-center.aspx.

SOURCES: Townsend Thai Monthly Survey (TTMS), Diary of Consumer Payment Choice (DCPC), Survey of Consumer Payment Choice (SCPC)

TABLE 8
Payment Instruments and their Balance Sheet Accounts

Balance Sheet Accounts	Payment Instruments		
Assets (mor	ney)		
	U.S. currency		
Currency	Foreign currency		
	Private currency (e.g., Bitcoin)		
Traveler's check	Traveler's check		
	Checks (personal or certified)		
Checking accounts owned by consumers	Debit card		
(demand and other checkable deposits)	OBBP		
	BANP		
Checking accounts owned or managed by			
financial institutions or non-financial	Cashier's check		
payment service providers (but may have	Prepaid card		
pass-through deposit insurance for	Money order		
consumers)			
Savings accounts owned by consumers	Checks		
("non-transactions" accounts in the non-	Debit card		
M1 part of M2 with direct payment	OBBP		
capability)	BANP		
Liabilities (cr	redit)		
Revolving credit	Credit card		
Non-revolving credit	Charge card		
Non-levolving credit	Text/SMS		

Source: Authors' analysis and Greene, Schuh, and Stavins (2016).

TABLE 9
DCPC Statement of Account Flows, October 2012

	Flows associated with accounts								
	Currency	DDA	NFDA	Foreign currency	LTFA	Revolving debt	Other debt	All	
A. Production (inflows)	388	5,379	na	na	na	na	na	5,767	
B. Consumption and investment (outflows)	-1,038	-4,422	-58	na	-	-1,249	na	-6,771	
B.1 Consumption expenditure	-1,038	-4,422	-58	na	-	-1,249	na	-6,771	
B.2 Capital (durable goods) expenditure	na	na	na	na	-	na	na	na	
C. Financing	-91	-536	-1	2	na	-43	669	0	
C.1 Deposits (inflows)	498	564	20	2	na	na	669	1,753	
From currency	-	564	15	2	na	na	8	589	
From demand deposits	455	-	2	na	na	na	643	1,100	
From non-financial deposit accounts	21	na	-	na	na	na	0	21	
From foreign currency	0	na	na	-	na	na	na	0	
From long-term financial assets	na	na	na	na	-	na	na	0	
From revolving accounts	22	na	3	na	na	-	18	43	
From other debt	na	na	na	na	na	na	-	0	
Addendum: Total deposits (inflows)	886	5,943	20	2	na	na	669	7,520	
C.2 Withdrawals (outflows)	-589	-1,100	-21	0	na	-43	na	-1,753	
To currency	-	-455	-21	0	na	-22	na	-498	
To demand deposits	-564	-	na	na	na	na	na	-564	
To non-financial deposit accounts	-15	-2	-	na	na	-3	na	-20	
To foreign currency	-2	na	na	-	na	na	na	-2	
To long-term assets	na	na	na	na	-	na	na	0	
To revolving accounts	na	na	na	na	na	-	na	0	
To other debt	-8	-643	0	na	na	-18	-	-669	
Addendum: Total withdrawals (outflows)	-1,627	-5,522	-79	na	na	-1,292	na	-8,524	
D. Change in account balance (from Statement of Account Flows)	-741	421	-59	2	na	-1,292	669	-1,004	
E. Change in account balance (from Balance Sheets)	164	na	na	na	-4,501	-673	9,489	-8,816	
F. Flow error	905	na	na	na	na	-619	-8,820	7,812	
G. Error (% lagged account balance)	135%	na	na	na	na	92%	93%	-89%	

NOTE: DDA are demand deposit accounts; NFDA are nonfinancial deposit accounts; LTFA are long-term financial assets.

FIGURE 1
Relation Between Household Income Statement and Balance Sheet

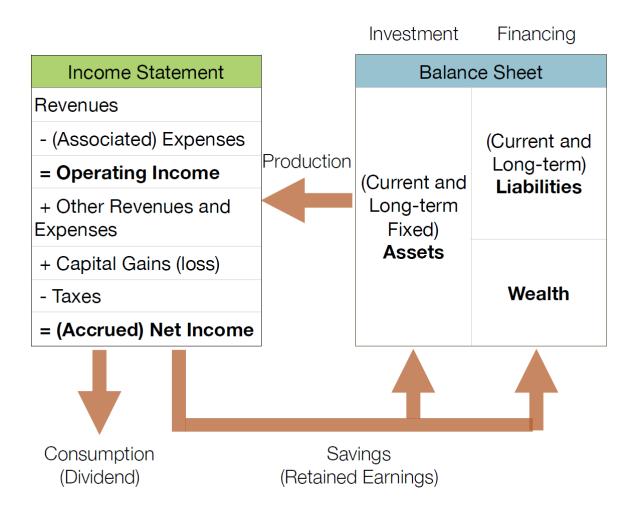


FIGURE 2
Constructing Financial Statements from a Panel Household Survey

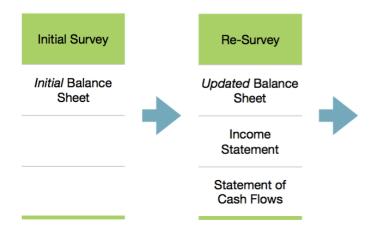
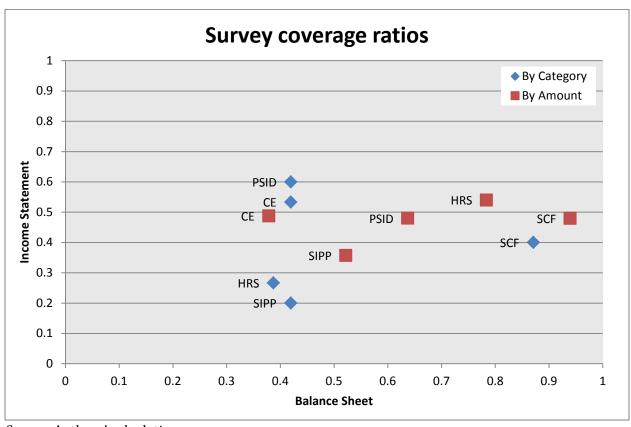



FIGURE 3
Financial Statement Line-Item Coverage Ratios for U.S. Surveys

Source: Authors' calculations.

ข้อจำกัดด้านการกู้ยืมและ การตัดสินใจเป็นผู้ประกอบการ ของครัวเรือนไทย

"นโยบายที่ช่วยเพิ่มโอกาสในการเข้าถึงแหล่งเงินทุน น่าจะมีประสิทธิผลมากกว่านโยบายสินเชื่อดอกเบี้ยต่ำที่ ยังไม่ได้ช่วยให้คนบางกล่มเข้าถึงแหล่งเงินทนได้"

ISSUE 1 / 2017 2 Jan 2017

อาชว์ ปวีณวัฒน์ มหาวิทยาลัยหอการค้าไทย

ครัวเรือนในประเทศไทยเผชิญทับข้อจำกัดด้านการทู้ยืม ทำให้บางครัวเรือนที่มีความสามารถสูงแต่มีระดับ สินทรัพย์ต่ำไม่สามารถรวบรวมเงินทุนได้เพียงพอที่จะเริ่มทำธุรกิจได้ นอกจากนี้ ธุรกิจของครัวเรือนจำนวนมากยังให้ ผลตอบแทนที่สูงกว่าอัตราดอกเบี้ย แต่ครัวเรือนเหล่านี้กลับไม่สามารถขอสินเชื่อเพื่อนำมาขยายกิจการได้ ดังนั้น หาก ภาครัฐต้องการสนับสนุนครัวเรือนที่มีความสามารถสูงเหล่านี้ในการดำเนินกิจการ นโยบายที่ช่วยเพิ่มโอกาสในการ เข้าถึงแหล่งเงินทุน เช่น การค้ำประทันสินเชื่อ หรือ การร่วมลงทุน น่าจะมีประสิทธิผลมากกว่านโยบายสินเชื่อดอกเบี้ยต่ำ ที่ยังไม่ได้ช่วยให้คนบางกลุ่มเข้าถึงแหล่งเงินทุนได้

วิสาหกิจขนาดย่อม (small enterprises หรือ SEs) เป็นส่วนสำคัญในการขับเคลื่อนเศรษฐกิจของประเทศไทย โดยมูลค่าผลผลิตจาก SEs ในปี พ.ศ. 2557 คิดเป็นร้อยละ 27.8 ของผลิตภัณฑ์มวลรวมในประเทศ (GDP) และ SEs ก่อให้เกิด การจ้างงานคิดเป็นสัดส่วนร้อยละ 72.5 ของการจ้างงานโดย วิสาหกิจทั้งหมด (สำนักงานส่งเสริมวิสาหกิจขนาดกลางและ ขนาดย่อม 2558) ดังนั้น การสนับสนุนการดำเนินงานของ SEs และการผลักดันให้เกิดผู้ประกอบการรายใหม่ จึงเป็นนโยบาย ที่ทุกรัฐบาลให้ความสำคัญ บทความนี้จะนำเสนองานวิจัยที่ ศึกษาการตัดสินใจทำธุรกิจของครัวเรือนและข้อจำกัดที่ส่งผล ต่อการตัดสินใจดำเนินธุรกิจโดยใช้ข้อมูลการสำรวจระดับ ครัวเรือนในประเทศไทย

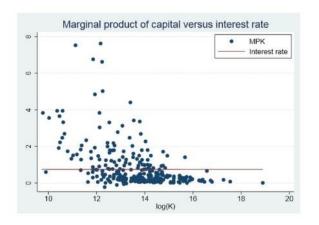
การตัดสินใจเป็นผู้ประกอบการของครัวเรือน

Evans and Jovanovic (1989) เสนอแบบจำลองที่ สามารถใช้อธิบายการตัดสินใจเป็นผู้ประกอบการของครัวเรือน โดยในแบบจำลองดังกล่าว ผลตอบแทนจากการทำธุรกิจจะ ขึ้นอยู่กับความสามารถในการเป็นผู้ประกอบการ (entrepreneurial ability) และครัวเรือนที่มีความสามารถในการเป็นผู้ประกอบการ สูงจะเลือกทำธุรกิจ ในขณะที่ครัวเรือนที่มีความสามารถใน การเป็นผู้ประกอบการต่ำจะเลือกเป็นลูกจ้าง นอกจากนี้ ระดับ สินทรัพย์ของครัวเรือนยังส่งผลต่อการตัดสินใจประกอบธุรกิจ เนื่องจากครัวเรือนจะเผชิญกับข้อจำกัดในการกู้ยืม (borrowing constraints) ทำให้ครัวเรือนที่มีความสามารถสูง แต่มีระดับ สินทรัพย์ต่ำ อาจไม่สามารถรวบรวมเงินทุนได้เพียงพอที่ จะเริ่มต้นทำธุรกิจหรือทำให้ธุรกิจมีขนาดเล็กกว่าขนาดที่ เหมาะสมได้

ข้อจำกัดในการกู้ยืมของครัวเรือนไทย

Paulson and Townsend (2004) ศึกษาผลกระทบของข้อจำกัดในการเข้าถึงแหล่งเงินทุนต่อกิจกรรมทาง เศรษฐกิจของครัวเรือนในประเทศไทย โดยใช้ข้อมูลการสำรวจ ระดับครัวเรือนรายปี ในปี พ.ศ. 2540 ซึ่งเป็นส่วนหนึ่งของชุด โครงการ Townsend Thai Project โดยชุดข้อมูลดังกล่าวรวบรวม

ข้อคิดเห็นที่ปรากฏในบทความนี้เป็นความเห็นของผู้เขียน ซึ่งไม่จำเป็นต้อง สอดคล้องกับความเห็นของสถาบันวิจัยเศรษฐกิจป๋วย อึ๊งภากรณ์



ข้อมูลของครัวเรือนที่อาศัยอยู่นอกเขตเทศบาลใน 4 จังหวัด ได้แก่ ฉะเชิงเทรา ลพบุรี บุรีรัมย์ และ ศรีสะเกษ รวมกันทั้งสิ้น 2.880 ครัวเรือน

Paulson and Townsend (2004) ศึกษาปัจจัยที่ส่งผล ต่อการตัดสินใจเริ่มต้นทำธุรกิจโดยเปรียบเทียบลักษณะของ ครัวเรือนที่เริ่มธุรกิจใหม่ภายในระยะเวลา 5 ปี (พ.ศ. 2535–2540) กับครัวเรือนที่ไม่ได้ทำธุรกิจ ผลการศึกษาซื้ว่า ครัวเรือนที่ หัวหน้าครัวเรือนมีอายุน้อยกว่า มีระดับการศึกษาสูงกว่าและมี สินทรัพย์มากกว่า จะมีโอกาสในการเริ่มต้นทำธุรกิจมากกว่า นอกจากนี้ ระดับสินทรัพย์ของครัวเรือนยังช่วยเพิ่มระดับ การลงทุนเริ่มต้นและลดโอกาสที่ครัวเรือนจะเผชิญกับข้อจำกัด ในการขยายขนาดของกิจการอีกด้วย ซึ่งสอดคล้องกับ สมมุติฐานที่ว่า ครัวเรือนในประเทศไทยเผชิญกับข้อจำกัดใน การเข้าถึงแหล่งเงินทุน

Pawasutipaisit and Townsend (2011) เปรียบเทียบ ผลผลิตหน่วยสุดท้ายของทุน (marginal product of capital หรือ MPK) ของครัวเรือนที่มีระดับสินทรัพย์ที่แตกต่างกัน โดย MPK เป็นตัวซี้วัดว่าครัวเรือนจะได้รับผลตอบแทนเพิ่มขึ้น เท่าใดจากการลงทุนเพิ่มขึ้นหนึ่งหน่วย ซึ่งหากไม่มีข้อจำกัด ด้านการลงทุนแล้ว MPK ของทุกครัวเรือนควรจะเท่ากัน โดยมี ค่าเท่ากับอัตราดอกเบี้ย อย่างไรก็ตาม Pawasutipaisit and Townsend (2011) พบว่า MPK ของครัวเรือนขึ้นอยู่กับระดับ สินทรัพย์ของครัวเรือน โดยครัวเรือนที่มีระดับสินทรัพย์ต่ำ จะมี ค่า MPK สูงกว่าครัวเรือนที่มีระดับสินทรัพย์สูง (รูปที่ 1) ซึ่งเป็น หลักฐานสนับสนุนสมมุติฐานที่ว่าครัวเรือนเผชิญกับข้อจำกัด ในการเข้าถึงแหล่งเงินทุน นอกจากนี้ ยังพบว่า MPK ของครัวเรือน

รูปที่ 1: ผลผลิตหน่วยสุดท้ายของทุน อัตราดอกเบี้ย และสินทรัพย์ของครัวเรือน

ที่มีระดับสินทรัพย์ต่ำหลายครัวเรือนมีค่าสูงกว่าอัตราดอกเบี้ย อีกด้วย ซึ่งสะท้อนให้เห็นว่าหากครัวเรือนในกลุ่มดังกล่าว สามารถเข้าถึงแหล่งเงินกู้ในอัตราดอกเบี้ยปกติเพื่อนำมา ขยายกิจการ จะได้รับผลตอบแทนเพิ่มขึ้นได้

ผลของวิทฤตเศรษฐกิจ

วิกฤตเศรษฐกิจที่เกิดขึ้นในเดือนกรกฎาคม พ.ศ. 2540 ส่งผลให้ผลิตภัณฑ์มวลรวมประชาชาติของประเทศไทยลดลง ร้อยละ 7.6 ในปี พ.ศ. 2541 อัตราการว่างงานเพิ่มขึ้นจากร้อยละ 3.2 ในปี พ.ศ. 2540 เป็นร้อยละ 7.3 ในปี พ.ศ. 2541 และส่งผลให้มี การเคลื่อนย้ายแรงงานครั้งใหญ่ โดย Paulson and Townsend (2005) พบว่าสัดส่วนของครัวเรือนที่ทำธุรกิจในชุดข้อมูล Townsend Thai Project เพิ่มขึ้นจากประมาณร้อยละ 11 ใน ปี พ.ศ. 2540 เป็นร้อยละ 30 ในปี พ.ศ. 2541

Paulson and Townsend (2005) ได้ศึกษาผลของ วิกฤตเศรษฐกิจต่อการตัดสินใจทำธุรกิจของครัวเรือน โดยใน ชุดข้อมูลแบ่งครัวเรือนที่ทำธุรกิจออกเป็น 3 กลุ่มตามช่วงเวลา ที่เริ่มต้นทำธุรกิจ คือ กลุ่มที่เริ่มทำธุรกิจก่อนวิกฤตเศรษฐกิจ กลุ่มที่เริ่มทำธุรกิจในช่วงวิกฤตเศรษฐกิจ และกลุ่มที่เริ่มทำธุรกิจ หลังวิกฤตเศรษฐกิจ¹โดย Paulson and Townsend (2005) พบว่า ระดับสินทรัพย์ของครัวเรือนไม่ส่งผลต่อโอกาสในการเริ่ม ทำธุรกิจในช่วงวิกฤตและหลังวิกฤต ซึ่งแตกต่างจากช่วงก่อน เกิดวิกฤตที่ระดับสินทรัพย์ของครัวเรือนช่วยเพิ่มโอกาสใน การเริ่มทำธุรกิจ ผลดังกล่าวอาจสะท้อนว่า วิกฤตเศรษฐกิจ ช่วยลดข้อจำกัดในการเข้าถึงแหล่งเงินทุนของครัวเรือน แต่ Paulson and Townsend (2005) มองว่าไม่เป็นเช่นนั้น เนื่องจาก ลักษณะของธุรกิจที่เริ่มในช่วงวิกฤตและหลังวิกฤต แตกต่าง จากธุรกิจที่เริ่มในช่วงก่อนเกิดวิกฤตอย่างมีนัยสำคัญ โดย สัดส่วนของธุรกิจบ่อกุ้ง/บ่อปลาและร้านค้าซึ่งคิดเป็นร้อยละ 48 ของธุรกิจที่เริ่มก่อนเกิดวิกฤต ลดลงเหลือเพียงร้อยละ 13 ของธุรกิจที่เริ่มในช่วงวิกฤต และร้อยละ 14 ของธุรกิจที่เริ่มหลัง วิกฤตตามลำดับ ในทางกลับกันสัดส่วนของธุรกิจค้าส่งและค้า ปลีกเพิ่มจากร้อยละ 17 ในช่วงก่อนวิกฤต เป็นร้อยละ 47 ในช่วง วิกถต ก่อนที่จะลดลงมาเหลือร้อยละ 25 ภายหลังวิกฤต นอกจากนี้ ระดับเงินลงทุนที่ใช้ในการเริ่มกิจการก็ลดลงเป็น อย่างมากเช่นกัน โดยค่ามัธยฐานของระดับการลงทุนลดจาก

36,747 บาท ในช่วงเวลาก่อนเกิดวิกฤต ลงมาเหลือ 1,350 บาท ในช่วงวิกฤต (รายละเอียดในตารางที่ 1)

นอกจากนั้น Paulson and Townsend (2005) ยังพบว่า ในช่วงเวลาเดียวกัน ผลกำไรของธุรกิจที่เริ่มก่อนเกิดวิกฤต มีค่า สูงกว่าธุรกิจที่เริ่มในช่วงวิกฤตหรือหลังวิกฤตอย่างเห็นได้ชัด ซึ่งสะท้อนถึงระดับความสามารถในการเป็นผู้ประกอบการที่ แตกต่างกัน โดย Paulson and Townsend (2005) เชื่อว่า จำนวนครัวเรือนที่ทำธุรกิจเพิ่มสูงขึ้นอย่างรวดเร็วในช่วงวิกฤต และหลังวิกฤตไม่ได้เป็นเพราะวิกฤตเศรษฐกิจช่วยลดข้อจำกัด ในการเข้าถึงแหล่งเงินทุนของครัวเรือน แต่เป็นเพราะวิกฤต เศรษฐกิจทำให้ผลตอบแทนจากการเป็นลูกจ้างลดลง อันเนื่อง มาจากค่าจ้างที่ลดลงหรือการถูกเลิกจ้าง จึงทำให้ครัวเรือนที่เคย เป็นลูกจ้างเปลี่ยนมาเริ่มทำธุรกิจมากขึ้น ถึงแม้ว่าความสามารถ ในการเป็นผู้ประกอบการจะไม่สูงนัก

ตารางที่ 1 : ลักษณะของธุรกิจแบ่งตามช่วงเวลาที่เริ่มดำเนินการ

ประเภทของธุรกิจ	ก่อนวิกฤต		ในช่วงวิกฤ	Ø	หลังวิกฤต		
	ร้อยละ	ระดับการลงทุน	ร้อยละ	ระดับการลงทุน	ร้อยละ	ระดับการลงทุน	
บ่อกุ้ง/บ่อปลา	19	42,027	6	37,800	10	14,745	
ร้านค้า	29	26,595	7	10,366	4	5,362	
ค้าส่ง/ค้าปลีก	17	52,533	47	793	25	0	
อื่นๆ	35	78,626	40	5,166	61	0	
รวมทั้งหมด	100	36,747	100	1,350	100	0	
จำนวนครัวเรือน	102		208		213		

ที่มา: Paulson and Townsend (2005)

หมายเหตุ: ตัวเลขระดับการลงทุน แสดงถึง ค่ามัธยฐานของมูลค่าการลงทุนเริ่มต้น โดยใช้มูลค่าในปี พ.ศ. 2540

ข้อสรุปและนัยเชิงนโยบาย

งานวิจัยที่นำเสนอในบทความนี้ ชี้ให้เห็นว่าครัวเรือนในประเทศไทยเผชิญกับข้อจำกัดในการเข้าถึงแหล่งเงินทุน ทำให้ บางครัวเรือนที่มีความสามารถสูง แต่มีสินทรัพย์ต่ำ ไม่สามารถรวบรวมทุนได้เพียงพอที่จะเริ่มทำธุรกิจ ผลการศึกษายังชี้ว่า ธุรกิจของครัวเรือนจำนวนมากให้ผลตอบแทนที่สูงกว่าอัตราดอกเบี้ย แต่ครัวเรือนเหล่านี้กลับไม่สามารถขอสินเชื่อเพื่อนำมา ขยายกิจการได้ ดังนั้น หากภาครัฐต้องการสนับสนุนครัวเรือนที่มีความสามารถสูงเหล่านี้ในการดำเนินกิจการ นโยบายที่ช่วยเพิ่ม โอกาสในการเข้าถึงแหล่งทุน เช่น การค้ำประกันสินเชื่อ หรือการร่วมลงทุน น่าจะมีประสิทธิผลมากกว่านโยบายสินเชื่อดอกเบี้ยต่ำ ยังไม่ได้ช่วยให้คนบางกลุ่มเข้าถึงแหล่งเงินทุนได้

เอกสารอ้างอิง

สำนักงานส่งเสริมวิสาหกิจขนาดกลางและขนาดย่อม 2558. "รายงานสถานการณ์วิสาหกิจขนาดกลางและขนาดย่อม ปี 2558" Evans, D. S. and B. Jovanovic (1989): "An Estimated Model of Entrepreneurial Choice under Liquidity Constraints," Journal of Political Economy, 97(4): 808-827.

Paulson, A. L. and R. M. Townsend (2004): "Entrepreneurship and Financial Constraints in Thailand," Journal of Corporate Finance, 10(2): 229–262.

Paulson, A. L. and R. M. Townsend (2005): "Financial Constraints and Entrepreneurships: Evidence from the Thai Financial Crisis," Federal Reserve Bank of Chicago Economic Perspectives, 29(3): 34–48.

Pawasutipaisit, A. and R. M. Townsend (2011): "Wealth Accumulation and Factors Accounting for Success," Journal of Econometrics, 161(1): 56–81.

Topics: Development, Financial Markets

Tags: Townsend Thai Project, Financial Constraints, Occupational Choices

¹ กลุ่มที่เริ่มทำธุรกิจก่อนช่วงวิกฤตเศรษฐกิจ หมายถึง ครัวเรือนที่เริ่มทำธุรกิจระหว่างปี พ.ศ. 2535-2540 กลุ่มที่เริ่มทำธุรกิจในช่วงวิกฤตเศรษฐกิจ หมายถึง ครัวเรือนที่เริ่มทำธุรกิจในปี พ.ศ. 2541 และกลุ่มที่เริ่มทำธุรกิจหลังช่วงวิกฤตเศรษฐกิจ หมายถึง ครัวเรือนที่เริ่มทำธุรกิจระหว่างปี พ.ศ. 2542-2544

อุปสรรคของการพัฒนาระบบประกัน ที่สมบูรณ์ในชุมชนชนบทของไทย

"การปกปิดรายได้ที่แท้จริงของครัวเรือนเป็นอุปสรรค สำคัญต่อการพัฒนาระบบประกันที่จะช่วยให้ครัวเรือน บริหารจัดการความเสี่ยงได้ดีขึ้น"

ISSUE 3 / 2017 30 Jan 2017

นราพงศ์ ศรีวิศาล จุฬาลงกรณ์มหาวิทยาลัย

อุปสรรคของการพัฒนาระบบประกันภัยที่จะช่วยให้ครัวเรือนสามารถรักษาระดับการบริโภคให้คงที่ได้อย่าง สมบูรณ์ (smooth consumption) คือ ปัญหา asymmetric information ในรูปแบบต่างๆ ได้แก่ ปัญหาการ เปลี่ยนแปลงพฤติกรรมไปในทางที่ไม่สมควร (moral hazard) ปัญหาข้อจำกัดในการปฏิบัติตามข้อตกลงกลุ่ม (limited commitment) และปัญหาการปกปิดรายได้ที่แท้จริง (hidden income) ของครัวเรือน จากการศึกษา โดยข้อมูล Townsend Thai Monthly Micro Data พบว่าอุปสรรคสำคัญสำหรับครัวเรือนในชุมชนชนบทของไทย ในกลุ่มตัวอย่างนี้ คือ การปกปิดรายได้ที่แท้จริง ดังนั้น การมีนโยบายที่ช่วยให้ผู้รับประกันสามารถเข้าถึงข้อมูลที่จะช่วย ประมาณรายได้ที่แท้จริงของครัวเรือนได้ดีขึ้น จะส่งผลดีต่อการสร้างสภาพแวดล้อมที่ส่งเสริมให้เกิดการพัฒนาระบบ ประกันความเสี่ยงของครัวเรือนในชุมชนชนบทไทยได้

ในทางเศรษฐศาสตร์ การรักษาระดับการบริโภคที่ เหมาะสม (smooth consumption) จะช่วยให้ครัวเรือนได้รับ อรรถประโยชน์ (utility) สูงสุดจากทรัพยากรที่มี แต่ในทาง ปฏิบัติ หลายครัวเรือนต้องเผชิญกับความเสี่ยงในหลายรูปแบบ ซึ่งส่งผลต่อความไม่แน่นอนของรายได้ อาทิ ภัยธรรมชาติที่ ส่งผลต่อผลิตผลการเกษตร อุบัติเหตุ หรือโรคภัยไข้เจ็บที่ ส่งผลต่อแรงงานในครัวเรือน เป็นต้น ด้วยเหตุนี้หลาย ครัวเรือนที่ไม่มีการบริหารจัดการความเสี่ยงที่ดีพอ อาจจะ ต้องลดการบริโภคลงในบางช่วงเวลาที่มีรายได้น้อยและ บริโภคมากขึ้นเมื่อมีรายได้ดี อย่างไรก็ตาม พัฒนาการใน ตลาดการเงิน (financial market) ได้ทำให้เกิดเครื่องมือทาง การเงินหลายชนิดที่ช่วยในการกระจายความเสี่ยง (risk diversification) เพื่อให้ครัวเรือนสามารถรักษาระดับการบริโภค ได้ดีขึ้น ซึ่งหมายรวมถึงผลิตภัณฑ์เพื่อการออม (saving) เพื่อ

การกู้ยืม (borrowing) และเพื่อการประกันภัย (insurance) นอกจากนี้ ยังมีผลการศึกษาวิจัยหลายชิ้น¹ ที่ชี้ให้เห็นว่ามี ระบบการบริหารจัดการความเสี่ยงอย่างไม่เป็นทางการ (informal risk-sharing system) เช่น ในรูปแบบของการช่วยเหลือ เกื้อกูลระหว่างครัวเรือน ซึ่งช่วยในการกระจายความเสี่ยงของ ครัวเรือนโดยเฉพาะในพื้นที่ที่ยังไม่สามารถเข้าถึงตลาดเงิน ได้มากเท่าที่ควร ดังเช่นในเขตชนบทของประเทศไทย คำถามที่ น่าสนใจ คือ ทำไมเครื่องมือทางการเงินหรือการบริหารจัดการ ความเสี่ยงที่มีอยู่ในปัจจุบันยังไม่เพียงพอที่จะช่วยให้ครัวเรือน สามารถรักษาระดับการบริโภคให้คงที่ได้ ทำไมข้อมูลสำรวจ ภาคครัวเรือนโดยทั่วไปยังชี้ให้เห็นถึงความสัมพันธ์ทางบวก ระหว่างการอุปโภคบริโภคกับรายได้ที่มักจะมีความผันผวน อะไรคือปัญหาหรืออุปสรรคในการเข้าถึงผลิตภัณฑ์ประกันภัย ที่ดีพอเพื่อให้ครัวเรือนบริหารจัดการความเสี่ยงได้อย่าง สมบูรณ์

ข้อคิดเห็นที่ปรากฏในบทความนี้เป็นความเห็นของผู้เขียน ซึ่งไม่จำเป็นต้อง สอดคล้องกับความเห็นของสถาบันวิจัยเศรษฐกิจป๋วย อึ๊งภากรณ์

ความเสี่ยงอาจแบ่งได้เป็นสองประเภทใหญ่ คือ ความ เสี่ยงที่เกิดขึ้นเฉพาะครัวเรือน (idiosyncratic risk) ซึ่งจะส่งผล กระทบต่อบางครัวเรือนเท่านั้น และความเสี่ยงที่เกิดขึ้นใน ระดับชุมชนหรือระบบเศรษฐกิจโดยรวม (aggregate risk) ซึ่ง จะส่งผลกระทบต่อทุกครัวเรือนในชุมชนหรือในระบบเศรษฐกิจ นั้นๆ ในกรณีของ aggregate risk นั้น แต่ละครัวเรือนในชุมชน หรือระบบเศรษฐกิจเดียวกันจะไม่สามารถบริหารจัดการโดย การช่วยเหลือซึ่งกันและกันได้ เนื่องจากทุกครัวเรือนจะได้รับ ผลกระทบเหมือนและพร้อมๆ กัน อย่างไรก็ตาม ผลิตภัณฑ์ การออมและการกู้ยืมต่างๆ จะมีบทบาทสำคัญในการบริหาร จัดการความเสี่ยง เพราะสามารถช่วยให้ครัวเรือนจัดสรรทรัพย์ สินเพื่อการบริโภคข้ามช่วงเวลา (intertemporal allocation) ได้ เช่น ในช่วงเวลาที่เกิดน้ำท่วมหรือภัยแล้งซึ่งเป็น aggregate shock ที่ทำให้ทุกครัวเรือนในหมู่บ้านเดียวกันได้รับผลผลิต จากการเพาะปลูกต่ำและส่งผลให้มีรายได้น้อยนั้น ครัวเรือน อาจจำเป็นต้องบริโภคจากรายได้ที่เก็บออมไว้หรือที่กู้ยืมมา แทน เนื่องจากทุกครัวเรือนประสบปัญหาในเวลาเดียวกัน ทำ ให้การขอความช่วยเหลือจากคนในหมู่บ้านเดียวกันเป็นไปได้ ยาก เป็นต้น ส่วนในกรณีของ idiosyncratic risk อาทิ กรณี ที่หัวหน้าครัวเรือนประสบอุบัติเหตุทำให้ทุพพลภาพและไม่ สามารถประกอบอาชีพได้ หรือเสียชีวิต ผลิตภัณฑ์การออม หรือการกู้ยืมอาจไม่เพียงพอ เนื่องจากรายได้ของครัวเรือนจะ ลดลงอย่างถาวร ในกรณีเช่นนี้ ระบบประกันภัยเพื่อกระจาย ความเสี่ยงระหว่างครัวเรือนจะมีบทบาทสำคัญในการลดความ เสียหายที่เกิดขึ้น เนื่องจากจะมีการจัดสรรทรัพยากรระหว่าง ครัวเรือน (Cross-sectional Allocation) ไปช่วยเหลือครัวเรือน ที่โชคร้ายดังกล่าวได้

นักเศรษฐศาสตร์หลายท่าน² ได้พัฒนาแบบจำลอง ทางเศรษฐศาสตร์เพื่อศึกษาความสัมพันธ์ระหว่างรายได้และ การบริโภคที่จะใช้อธิบายพฤติกรรมการบริโภคของครัวเรือน ในสถานการณ์ต่างๆ และพบว่าในกรณีที่ครัวเรือนสามารถออม หรือกู้ยืมเงินได้โดยไม่มีข้อจำกัด และไม่มีปัญหา asymmetric information กล่าวคือ ทุกฝ่ายที่เกี่ยวข้องสามารถได้รับข้อมูล ที่จำเป็นเกี่ยวกับครัวเรือนอย่างถูกต้องครบถ้วนเพื่อใช้ใน การตัดสินใจ ระบบประกันภัยที่จะช่วยให้ครัวเรือนสามารถ รักษาระดับการบริโภคได้โดยไม่ขึ้นกับรายได้ที่เปลี่ยนแปลงใน

แต่ละช่วงเวลาจะสามารถเกิดขึ้นได้ กล่าวอีกนัยหนึ่ง คือ asymmetric information เป็นหนึ่งในปัจจัยสำคัญที่ทำให้ ผลิตภัณฑ์ทางการเงินสำหรับบริหารจัดการความเสี่ยงใน หลายรูปแบบไม่สามารถเกิดและคงอยู่ได้ตามกลไกตลาด ซึ่ง ส่งผลให้ผลิตภัณฑ์ที่มีอยู่ในปัจจุบันไม่เพียงพอให้ครัวเรือน สามารถขจัดความเสี่ยงของรายได้ที่ไม่แน่นอนเพื่อรักษาระดับ การบริโภคให้คงที่ได้อย่างสมบูรณ์

หนึ่งในปัญหา asymmetric information ที่เป็นอุปสรรค ต่อการสร้างระบบประกันรายได้ที่สมบูรณ์ ได้แก่ ในกรณีที่ ครัวเรือนมีแนวโน้มที่จะเปลี่ยนแปลงพฤติกรรมไปในทางที่ไม่ สมควรหลังจากเข้าร่วมระบบประกันภัย หรือในทางเศรษฐ-ศาสตร์เรียกว่า moral hazard งานวิจัยหลายชิ้น ได้แก่ Phelan (1998) และ Rogerson (1985) เป็นต้น ได้ผนวกปัญหา moral hazard เข้าไปในแบบจำลองทางเศรษฐศาสตร์เพื่อศึกษา ความสัมพันธ์ระหว่างรายได้และการบริโภค ซึ่งในกรณีนี้ปัญหา moral hazard เกิดจากการที่ครัวเรือนต้องใช้ความพยายามใน การลงแรงงานหรือความคิดในกระบวนการผลิตเพื่อให้ได้ผล ผลิตที่ดี แต่มีความเป็นไปได้ที่ความพยายามดังกล่าวอาจไม่ ส่งผล ดังนั้น หากผู้รับประกันไม่สามารถตรวจสอบถึงระดับ ความพยายามที่ครัวเรือนใช้ในการผลิตได้ ผู้รับประกันจะไม่ สามารถทราบได้ว่าครัวเรือนลดความพยายามในการผลิตลง หรือทำเต็มความสามารถแต่โชคร้ายได้รับผลผลิตที่ไม่ดี ด้วย เหตุนี้ จึงมีช่องทางให้ครัวเรือนลดต้นทุนการผลิตด้วยการไม่ พยายามลงแรงลงความคิด แล้วไปขอรับสินไหมชดเชยกับทาง ผู้รับประกันแทน โดยอ้างว่าได้พยายามแล้วแต่โชคร้ายได้ ผลผลิตน้อย

Limited Commitment หรือขีดจำกัดในการสร้าง และปฏิบัติตามข้อตกลงของกลุ่มครัวเรือน เป็นอีกปัญหา asymmetric information ที่เป็นอุปสรรคต่อการเกิดระบบ ประกันที่สมบูรณ์ โดยเฉพาะระบบประกันที่เกิดจากการรวม กลุ่มครัวเรือนและกระจายความเสี่ยงภายในกลุ่มครัวเรือน ตัวอย่างเช่น ในกรณีที่หลายครัวเรือนรวมกลุ่มกันเพื่อประกัน ความเสี่ยงของรายได้ที่ผันผวน โดยมีข้อตกลงร่วมกันให้ใน แต่ละช่วงเวลาครัวเรือนที่โชคดีได้รับผลผลิตหรือรายได้ดีให้ ความช่วยเหลือแก่ครัวเรือนที่โชครัวยได้รับผลผลิตหรือรายได้ ต่ำ หากข้อตกลงดังกล่าวไม่สามารถบรรลุได้หรือแต่ละครัวเรือน

มีแนวโน้มที่จะไม่ปฏิบัติตามข้อตกลงดังกล่าวเมื่อมีรายได้ดี แล้วนั้น การประกันลักษณะดังกล่าวจะไม่สามารถเกิดและคง อยู่ได้ ดังที่ศึกษาในงานวิจัยของ Kimball (1988), Coate and Ravallion (1993), และ Ligon et, al. (2002) โดยใช้แบบจำลอง ทางเศรษฐศาสตร์ที่เพิ่มความเป็นไปได้ในการเกิดปัญหา limited commitment ดังกล่าว

อีกปัจจัยสำคัญที่เป็นอุปสรรคต่อการเกิดการประกัน ความผันผวนของรายได้ คือ ปัญหาที่ผู้บริหารจัดการระบบ ประกันหรือผู้รับประกันไม่สามารถตรวจสอบรายได้ที่แท้จริง ของแต่ละครัวเรือนได้ ทำให้ครัวเรือนมีแรงจูงใจที่จะรายงาน รายได้ที่ต่ำกว่าความเป็นจริง หรืออาจกล่าวได้ว่า ครัวเรือน พยายามปกปิดรายได้บางส่วน เพื่อให้ได้รับการจัดสรรความ ช่วยเหลือจากระบบประกันเพิ่มมากขึ้น

ในทางปฏิบัติ นอกเหนือจากการทราบว่าปัจจัยใดบ้าง ที่อาจจะเป็นอุปสรรคต่อการเกิดระบบประกันที่สมบูรณ์แล้ว ประเด็นที่สำคัญกว่าคือการซึ้ชัดว่าปัจจัยใดเหล่านี้ที่เป็นสาเหตุ หลักของอุปสรรคดังกล่าวในสถานการณ์จริง เพื่อให้สามารถ สร้างนโยบายมาเพื่อแก้ปัญหาได้อย่างตรงจุด เพราะหากใช้ นโยบายผิดแล้วอาจส่งผลเสียมากขึ้นได้

เพื่อให้ทราบถึงปัจจัยที่แท้จริงที่เป็นอุปสรรคต่อการมี ประกันรายได้อย่างสมบูรณ์ Kinnan (2014) ได้ใช้แบบจำลอง ทางเศรษฐศาสตร์ที่ผนวกความเป็นไปได้ที่จะเกิดปัญหา moral hazard. limited commitment และ hidden income ในการศึกษา ความสัมพันธ์ระหว่างรายได้และการบริโภค เพื่อพัฒนาวิธีการ วิเคราะห์ทางเศรษฐมิติว่า ปัจจัยใดเป็นอุปสรรคสำคัญของการ เกิดระบบประกันที่สามารถช่วยให้ครัวเรือนรักษาระดับการ บริโภคได้อย่างสมบูรณ์ โดยใช้ความสามารถในการคาดการณ์ การบริโภคของครัวเรือนจากตัวแปรที่สร้างจากข้อมูลรายได้ใน อดีตเพื่อแยกปัญหา moral hazard และ limited commitment ออกจาก hidden income จากนั้น Kinnan (2014) ได้นำวิธีการ ดังกล่าวมาทดสอบกับข้อมูล Townsend Thai Monthly Micro data ที่มีรายละเอียดเกี่ยวกับรายได้ที่แท้จริงและการบริโภคใน ระดับครัวเรือนเป็นอนุกรมเวลา (time series) ที่ยาวเพียงพอ การศึกษานี้พบว่าสาเหตุสำคัญของปัญหาสำหรับครัวเรือนใน ชนบทไทยเหล่านี้ คือการปกปิดรายได้ที่แท้จริง (hidden income) ไม่ใช่ moral hazard และ limited commitment

เพราะฉะนั้น นโยบายที่เหมาะสมกับชุมชนชนบทใน ประเทศไทย ดังเช่นครัวเรือนในข้อมูล Townsend Thai Monthly Micro data ควรเป็นนโยบายที่ช่วยลดปัญหา hidden income ทำให้ผู้รับประกันสามารถประเมินรายได้ของผู้ซื้อประกันใน สถานการณ์ต่างๆ ได้ดีขึ้น

นโยบายที่การันตีการจ้างงานหรือประกันรายได้ใน ชนบทมีแนวโน้มที่จะทำให้ปัญหา moral hazard และ limited commitment รุนแรงขึ้น เพราะการที่ประชาชนมีทางเลือกที่จะ ทำงานที่รัฐจัดให้จะทำให้ผลเสียจากการลดความพยายามในการ ผลิตหรือความจำเป็นที่จะต้องเข้าร่วมกับระบบการแชร์ความ เสี่ยงในชุมชนลดลง ในส่วนของปัญหา hidden income นั้น Kinnan (2014) เห็นว่านโยบายนี้จะทำให้ครัวเรือนไม่สามารถอ้าง ได้ว่ามีรายได้น้อยเกินไป ซึ่งอาจจะช่วยลดปัญหา hidden income ที่เกิดขึ้นในระบบแชร์ความเสี่ยงระหว่างครัวเรือนหรือ เกิดขึ้นต่อผู้รับประกันในชุมชนชนบทไทยได้ เพราะมีขอบเขต ของรายได้ขั้นต่ำซัดเจนขึ้น อย่างไรก็ตาม นโยบายการันตีการจ้าง งานหรือประกันรายได้อาจยังไม่ใช่นโยบายที่เหมาะสมในการลด อุปสรรคการเกิดประกันที่มีสาเหตุจาก hidden income ประการ แรกเนื่องจากนโยบายดังกล่าวเป็นการเพิ่มต้นทุนของภาครัฐ ซึ่ง โดยรวมแล้วอาจจะมีมูลค่าสูงกว่าผลประโยชน์ที่ได้จากการลด ปัญหา hidden income ประการที่สอง นโยบายประกันการจ้างงาน หรือประกันรายได้อาจจะไม่ได้ทำให้ปัญหา hidden income ลด น้อยลง ภาครัฐหรือองค์กรที่ใช้นโยบายดังกล่าวเองยังคงต้อง เผชิญกับปัญหาการปกปิดรายได้ โดยเฉพาะสำหรับครัวเรือนชนบท ที่ภาครัฐไม่มีวิธีการตรวจสอบรายได้แท้จริงที่ดีกว่าผู้รับประกัน ที่อยู่ในพื้นที่และเข้าใจสถานการณ์ต่างๆ ของชุมชนได้ดี ดังนั้น นโยบายเหล่านี้อาจเป็นเพียงการย้ายปัญหา hidden income จากชุมชนสู่รัฐบาล

นโยบายที่มีศักยภาพมากกว่าการประกันการจ้างงาน หรือประกันรายได้ในแง่ของการลดปัญหา hidden income ได้แก่ การใช้ดัชนีซี้วัดรายได้ (income index) ซึ่งสร้างจากตัว แปรต่างๆ ที่ผู้รับประกันสามารถวัดได้อย่างถูกต้อง และเป็นดัชนี ที่มีความสามารถในการบ่งซี้ระดับรายได้ครัวเรือนในสถานการณ์ ต่างๆ ได้ใกล้เคียงกับความเป็นจริง โดยผู้รับประกันสามารถ อ้างอิงถึงดัชนีดังกล่าวในการประเมินรายได้ครัวเรือนเพื่อ หลีกเลี่ยงการปกปิดรายได้ที่แท้จริงจากครัวเรือน อย่างไรก็ตาม

ความท้าทายลำดับแรกของการแก้ปัญหาด้วยวิธีนี้คือการสร้าง ดัชนีรายได้ดังกล่าว นอกจากนี้ การประกันโดยใช้ดัชนีรายได้จะ ประสบความสำเร็จได้ก็ต่อเมื่อครัวเรือนมีความเข้าใจและยอมรับ ในข้อบ่งชี้ของดัชนีนั้น มิฉะนั้นแล้วจะไม่มีอุปสงค์ในการเข้าร่วม ประกันจากครัวเรือน

ข้อสรุป

การสร้างนโยบายเพื่อส่งเสริมให้เกิดประกันให้ครัวเรือนสามารถบริหารจัดการความเสี่ยงเพื่อรักษาระดับการบริโภคให้ คงที่ได้อย่างสมบูรณ์ (smooth consumption) ตามกลไกตลาด จำเป็นต้องเข้าใจถึงสาเหตุสำคัญที่เป็นอุปสรรคต่อการเกิด ประกันดังกล่าว สำหรับครัวเรือนในชุมชนชนบทไทยจากการศึกษาด้วยข้อมูล Townsend Thai Monthly Micro Data นั้น อุปสรรคที่สำคัญคือการปกปิดรายได้ที่แท้จริงของครัวเรือนต่อผู้รับประกัน (hidden income) ดังนั้น นโยบายที่จะส่งผลดีควร ช่วยลดปัญหาดังกล่าว อาทิ การใช้ดัชนีชี้วัดรายได้ของแต่ละครัวเรือนที่เชื่อถือได้และเป็นที่ยอมรับของทั้งผู้ชื้อและผู้รับประกัน เป็นต้น

เอกสารอ้างอิง

Coate, S. and M. Ravallion (1993): "Reciprocity without Commitment: Characterization and Performance of Informal Insurance Arrangements." Journal of Development Economics, vol.40, p.1-24.

Kimball, M. S. (1998): "Farmers' Cooperatives as Behavior toward Risk." American Economic Review, vol.78, p.224-232.

Kinnan, C. (2014): "Distinguishing Barriers to Insurance in Thai Villages."

Ligon, E., J. P. Thomas, and T. Worrall (2002): "Informal Insurance Arrangements with Limited Commitment: Theory and Evidence from Village Economies." Review of Economic Studies, vol.69, p.209-244.

Mace, B. J. (1991): "Full Insurance in the Presence of Aggregate Uncertainty." Journal of Political Economy, vol.99, p.928-956.

Phelan, C. (1998): "On the Long Run Implications of Repeated Moral Hazard." Journal of Economic Theory, vol.79, p.174-191.

Rogerson, W. P. (1985): "Repeated Moral Hazard. Econometrica." vol.53, p.69-76.

Townsend, R. M. (1994): "Risk and Insurance in Village India." Econometrica, vol.62, p.539-591.

Townsend, R. M. (1995): "Financial Systems in Northern Thai Villages." Quarterly Journal of Economics, vol.110, p.1011-1046.

Udry, C. (1994): "Risk and Insurance in a Rural Credit Market: An Empirical Investigation in Northern Nigeria." Review of Economic Studies, vol.61, p.495-526.

Wilson, R. (1968): "The Theory of Syndicates. Econometrica." vol.36, p.119-132.

Topics: Development

Tags: Complete Insurance, Townsend Thai Project, Hidden Income

¹ อาทิ Townsend (1994), Townsend (1995), Udry (1994)

² อาทิ Mace (1991), Wilson (1968) เป็นต้น