ชื่อโครงการ เครื่องวิเคราะห์เปอร์เซ็นต์เนื้อยางแห้งในยางก้อนถ้วยด้วยเทคนิคคลื่นความถี่สูง สัญญาเลขที่ RDG 5950014

## บทคัทย่อ

ยางก้อนถ้วยเป็นผลผลิตยางพาราที่มีแนวโน้มจะเพิ่มมากขึ้นสำหรับประเทศไทย การซื้อขาย ยางก้อนถ้วยอาศัยความชำนาญของผู้ซื้อในการพิจารณาคุณสมบัติทางกายภาพ เช่น สี จำนวนชั้น และความหนาแน่นของเนื้อยาง ใช้ในการแบ่งประเภทของยางก้อนถ้วยที่มีปริมาณเนื้อยางแห้งอยู่ ภายใน มีด้วยกัน 3 ประเภท คือ ยางก้อนถ้วยสด DRC 45-55 % ยางก้อนถ้วยหมาด มี DRC 55-65 % และยางก้อนถ้วยแห้ง มี DRC มากกว่า 65 % ซึ่งไม่ได้บอกค่าที่ถูกต้อง

งานวิจัยนี้มุ่งเน้นที่จะออกแบบและพัฒนาเครื่องต้นแบบเพื่อวิเคราะห์ค่าเปอร์เซ็นต์เนื้อยาง แห้งในยางก้อนถ้วยโดยเทคนิคอวกาศว่าง ซึ่งจะรับส่งคลื่นความถี่สูง 2.4 กิกะเฮิรตซ์ไปยังยางก้อน ถ้วย การรับส่งคลื่นนี้จะเป็นส่วนของเซนเซอร์ซึ่งได้ออกแบบเป็นท่อโลหะทรงกระบอกรองรับคลื่น ความถี่ 2.4 กิกะเฮิรตซ์ ที่ปลายท่อมีแผ่นพลาสติกบางปิดเพื่อเป็นที่วางยางก้อนถ้วย พลังงานของ คลื่นสะท้อนกลับจะแปรเปลี่ยนไปตามคุณสมบัติของยางก้อนถ้วย และวงจรตรวจวัดจะแปลงค่า พลังงานเป็นเอาท์พุตในรูปของแรงดันไฟฟ้า ระบบสมองกลจะป้อนแรงดันเป็นอินพุตของโมเดลทาง คณิตศาสตร์เพื่อวิเคราะห์ค่าเปอร์เซ็นต์เนื้อยางแห้งในยางก้อนถ้วย การทดสอบเครื่องต้นแบบ ดำเนินการในห้องปฏิบัติการ ใช้ตัวอย่างยางก้อนถ้วยจำนวน 27 ตัวอย่าง ที่ได้เตรียมขึ้นมาที่รู้ค่า เปอร์เซ็นต์เนื้อยางแห้งตั้งต้น และมีลักษณะที่เป็นเนื้อเดียวกันเสมือนการกรีด 1 มีด มีรูปทรงคล้าย ทรงกระบอกมีปริมาตร 500 มิลลิลิตร ผลการทดสอบของยางก้อนถ้วยที่มีค่าเปอร์เซ็นต์เนื้อยางแห้งในยางก้อนถ้วน ตัวอย่าง เวลาที่ใช้ในการประมวลผลน้อยกว่า 5 วินาทีต่อตัวอย่างยางก้อนถ้วย ซึ่งไม่สามารถแยกแยะ ประเภทของยางก้อนถ้วยในการซื้อชายได้ การพิจารณาตัวแปรอื่นๆ เช่น น้ำหนักของยางก้อนถ้วย มุมเฟสของคลื่นสะท้อนกลับ ก็จะเพิ่มมิติในการวิเคราะห์ค่าเปอร์เซ็นต์เนื้อยางแห้งในยางก้อนถ้วย และให้ผลความถูกต้องเพิ่มมากขึ้น

ชื่อโครงการ Dry Rubber Content Analyzer for Cup Lump using High Frequency สัญญาเลขที่ RDG 5950014

## **Abstract**

Cup lump is one kind of raw rubber products from natural rubber tree which plantation is widespread over Thailand. In trading of cup lumps, an examiner subjectively estimate quality of cup lump in form of dry rubber content (DRC) or moisture content (MC) by what physical appearing like color and softness. The price paid for cup lump is upon DRC. Cup lump is classified into three categories: Fresh Medium Dry cup lump. Each of which has different amount of dry rubber content. Dry cup lump has the highest DRC of greater than 65%. Fresh cup lump has lowest DRC of less than 55%. Medium cup lump has DRC of 55%-65%. The physical estimation of DRC in cup lump would be an unclear point of reliability and accuracy caused an unfair trade.

The research aimed to develop a prototype tool for fast, inexpensive, and nondestructive dry rubber content determination of cup lump. High frequency free space technique with 2.4 GHz was employed in trans-receiver mode via a sensor system. The sensor was designed in a cylindrical shape made of brass and closed one end. At the opened-end of the vertical sensor was a lid made with a thin plate of plastic where allows a placement of cup lump. The high frequency wave fed near the bottom cylindrical would travel into cup lump at the top cylindrical. Upon amount of DRC in cup lump, a power detection of a reflected wave would be converted directly into electric voltage which as an input of a processing unit for a DRC modeling. We especially conducted a prototype test as in experimental laboratory with 27 samples of single-cut cup lumps. Each cup lump sample was prepared from latex with a known DRC mixed with diluted formic acid. The coagulated cup lump had a shape looked like a cylindrical bowl with 500 ml in volume. A result of the prototype test shown that there were 22 cup lump samples with an accepted measurement of DRC in which an error was less than 5%. Practically, this prototype would need more improvement in order to be a DRC meter for the cup lump trade. Considering other parameters as weight of cup lump, phase of reflected wave would increase more accuracy and reliability of the modeling.