บทคัดย่อ

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อสร้างต้นแบบระดับอุตสาหกรรม (Industrial-scale prototypes) ของเตาอบแห้งที่มีการควบคุมความชื้นและโซ่ออกนอกเตา และเครื่องถอดถุงมือยางที่มีความแม่นยำและ เสถียรภาพ สำหรับสายการผลิตถุงมือยางทางการแพทย์แบบไร้แป้งกึ่งอัตโนมัติด้วยน้ำยางธรรมชาติ เพื่อ พิสูจน์หลักการว่าสามารถนำไปใช้งานจริงได้ นอกจากนี้คณะผู้วิจัยได้ดำเนินการทดลองหาค่าการคงตัวของ ฟิล์มยางในการอบคงรูปเพื่อเป็นข้อมูลสำคัญต่อการออกแบบเตาอบแห้งที่อยู่หลังกระบวนการจุ่มน้ำยาง และเตาอบคงรูปต่อไปด้วยในโครงการนี้ รวมถึงการนำระบบการเผาไหม้แบบไร้เปลวมาทดสอบเพื่อดูความ เป็นไปได้ในการนำมาใช้ในงานอุตสาหกรรมนี้ซึ่งมีการใช้พลังงานความร้อนสูง โดยมีการออกแบบและสร้าง คอมบัสเตอร์แบบไร้เปลวขึ้นมาทดสอบ

สำหรับเตาอบต้นแบบที่เอาโซ่ออกนอกเตาที่สร้างขึ้นและทดสอบ พบว่าสามารถลดจากสูญเสีย พลังงานได้ประมาณ 12% เมื่อพิจารณาความชื้น พบว่าความชื้นไม่ส่งผลต่อระยะเวลาการอบในช่วงของ เงื่อนไขที่กำหนดในการทดสอบ แต่พบว่าอุณหภูมิเป็นตัวแปรที่มีผลสำคัญต่อการอบ ดังนั้นในกระบวนการ การอบแห้งทั่วไปจึงไม่มีความจำเป็นต้องควบคุมความชื้นให้ต่ำเนื่องจากต้องสูญเสียพลังงานในการดึง ความชื้นออกโดยใช่เหตุ ในส่วนของคอมบัสเตอร์แบบไร้เปลวที่สร้างขึ้นมาทดสอบ พบว่าการเผาไหม้แบบไร้ เปลวมีศักยภาพที่สามารถนำไปประยุกต์ใช้กับอุตสาหกรรมถุงมือยางได้ โดยจากผลการศึกษาพบว่า การเผาไหม้แบบไร้เปลวนั้นให้ประสิทธิภาพ (Exergy efficiency) สูงกว่าการเผาไหม้แบบทั่วไป และมีมลภาวะต่ำ กว่าจนเกือบเป็นศูนย์

สำหรับเครื่องถอดถุงมือยางต้นแบบ ได้ถูกจัดสร้างชุดพาเบ้ามือให้เคลื่อนที่ผ่านเครื่องถอดและทำ การทดสอบการทำงานของชุดสายพานพาเบ้ามือแล้ว ปรากฏว่าสามารถทำความเร็วได้ตามต้องการ คือ 0.58 m/s และสามารถบังคับการแกว่งขึ้นลงและบังคับทิศทางของเบ้ามือได้เป็นอย่างดี ผลการทดสอบการ ทำงานของเครื่องต้นแบบพบว่าการเคลื่อนที่ของเบ้ามือและหัวถอดไม่สอดคล้องกัน ทำให้ไม่สามารถ ทดสอบการถอดโดยการขับชุดถอดด้วยชุดลำเลียงได้ แต่พบว่าหากแยกชุดต้นกำลังที่ใช้ขับชุดลำเลียงและ ชุดถอดออกจากกันจะทำให้สามารถเคลื่อนที่สอดคล้องกัน การทำงานของเครื่องถอดต้นแบบก็น่าจะ สามารถทำได้ดีตามแนวคิดออกแบบไว้

ในส่วนของการอบคงรูปพบว่า (1) การลดปริมาณเนื้อยางในสูตรยาง ไม่มีผลต่อระยะเวลาที่ใช้ใน การบ่มเร่งน้ำยาง การระเหยแห้งของฟิล์มยาง และระยะเวลาในการอบคงรูปถุงมือยางทางการแพทย์ (2) สูตรที่มีการใช้สารตัวเติม CaCO₃ พบว่าระยะเวลาการบ่มน้ำยางและการระเหยแห้งของน้ำในฟิล์มยาง จำเป็นต้องยืดออกไปยาวกว่าสูตรที่ไม่มีการใช้สารตัวเติม (3) ในส่วนของสูตรจากโรงงาน พบว่า ยังมี ศักยภาพที่จะลดทั้งเวลาและพลังงาน รวมถึงต้นทุนลงได้อีก

Abstract

This project aims to construct and test the proof-of-concept industrial- scale prototypes of "a drying oven with an outside conveyor chain" and "a stripping machine" for an effective production line of powder-free latex medical gloves with high productivity. Vulcanization process of rubber film is also studied in this phase of research to collect important information, useful for the production line design. In addition, feasibility of using a flameless combustor in industrial is investigated in order to increase energy efficiency of the production line.

The drying oven designed with an outside conveyor chain has been constructed and tested, it was found that the energy loss could be reduced about 12% when compared to the industrial one. When considering the humidity, it did not affected on drying time in the range of testing conditions like the temperature. Therefore, it is not necessary to control at low humidity, which the additional energy is required for removing water. For the flameless combustor, it has the high potential to develop for using in the industrial. This combustor provides high exergy efficiency and very low (zero) emissions.

For the designed stripping machine, it has been constructed and tested. The speed could be done at the target of 0.58 m/s and the formers could be controlled very well. However, the test results showed that movement of former in the main conveyor is not synchronous with the removing tip of the striping machine. This can be solved by avoiding use of the mutual driving motor. The designed stripping machine would work very well when its conveyor driving motor is separated from that of the main conveyor.

Finally, the study of vulcanization process leads to the following conclusions (1) reduction of latex in the compound did not influence on maturation, latex film drying, and vulcanization time. (2) The compound with the filler, CaCO₃, has longer time for maturation, and latex film drying than that without the filler. (3) For the factory compound, it is found that there is opportunity to reduce the time and energy for vulcanization process, including production cost.