

1

2

3 **Distribution and characteristics of black**

4 **carbon from biomass burning in the**

5 **middle- and low-latitude Asian**

6 **and its impact on regional climate and**

7 **monsoon precipitation**

8

9 **September 2020**

10 Prof. Dr. Siwatt Pongpiachan¹

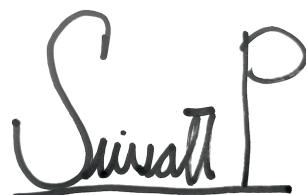
11 Dr. Danai Tipmanee²

12 Dr. Suratta Bunsomboonsakul¹

13 ¹Director of NIDA Center for Research & Development of Disaster Prevention & Management,
14 School of Social and Environmental Development, National Institute of Development
15 Administration (NIDA), 118 Moo3, Sereethai Road, Klong-Chan, Bangkok 10240
16 THAILAND

17 ²Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, 80
18 Moo 1, Vichit Songkram Rd., Kathu, Phuket 83120, Thailand

19
20
21
22
23
24
25
26


27 **Preface**

28 I was delighted to respond to an invitation from Prof. Dr. Junji Cao, a deputy director of
29 Institute of Earth Environment, Chinese Academy of Sciences (IEECAS) to join an
30 international project funded by National Natural Sciences Foundation of China (NSFC)
31 and Thailand Research Fund (TRF) under the topic of Climate Change & Climate
32 Variability Research in Monsoon Asia. It is a topic well enough investigated by Western
33 researchers in the past, but has become increasingly important during these early years
34 of the 21st Century in Asian countries. I believe therefore that there is a place for a
35 geochemist like me and that notwithstanding the immense activity in the research area
36 the report will have a reasonable shelf life. This is because it constantly connects the
37 argumentation to the fundamentals of physics and chemistry associated with aerosols and
38 other environmental compartments, and these do not change with time.

39 To have appreciated each and every one of the previous studies I have drawn on would
40 not only have lengthened the report to no real purpose but, more seriously, might even
41 have been a distraction to a reader. I wish that this appreciation in the preface of such
42 sources will suffice.

43 I am hopeful that graduate students will benefit from the report as well as those already
44 professionally involved with atmospheric pollution, climate sciences, atmospheric
45 chemistry, paleoclimate and limnology. I am very much hoping that it will be of use to those
46 involved in argumentation of such matters in the media. I shall be delighted to hear from
47 readers who have comments or suggestions to make.

48

A handwritten signature in black ink, appearing to read "Siwatt P". The signature is fluid and cursive, with a large, stylized "S" and "P" at the ends.

49

50 Prof. Dr. Siwatt Pongpiachan

51 School of Social & Environmental Development (SSED)

52 National Institute of Development Administration (NIDA)

53

54

55

56

57

Chapter I

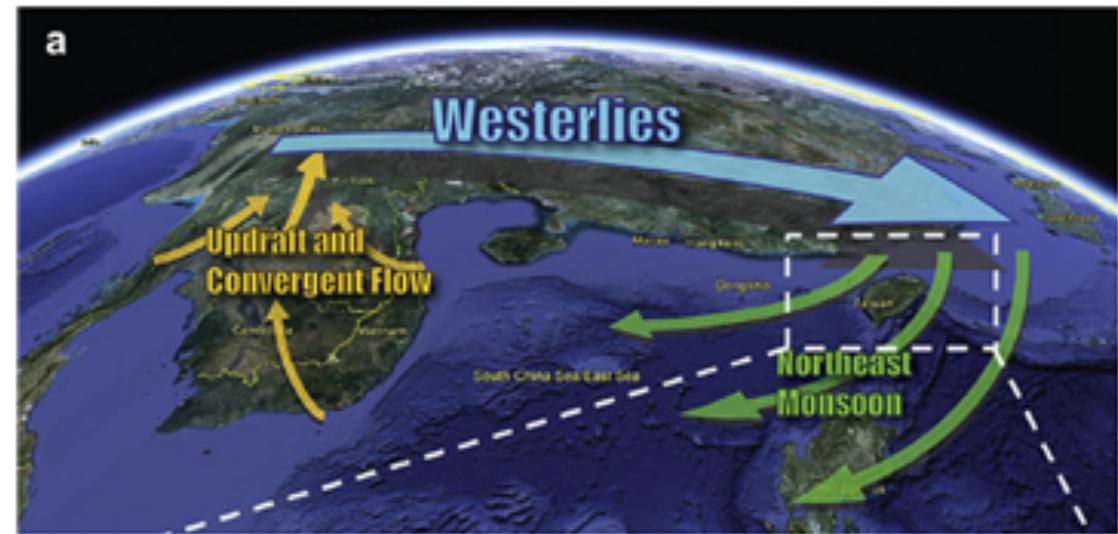
58

Introduction

59

60 **1.1 Research Background**

61


62 Biomass burning (BB) has been a pollution source for over 300 million years in
63 history. It plays a role of ‘catalyst’ affecting the whole ecosystem on earth. BB emitting
64 large amounts of trace gases and aerosol particles that play important roles in atmospheric
65 chemistry and climate (1). Carbonaceous aerosol (including organic carbon/OC and black
66 carbon/BC) is the major pollutant produced by BB, accounting for 60-80% of the total
67 pollutants.

68

69 BC affect the Earth's temperature and climate by altering the radiative properties of
70 the atmosphere. The magnitude of the direct radiative forcing from black carbon itself
71 exceeds that due to CH₄, suggesting that black carbon may be the second most important
72 component of global warming after CO₂ in terms of direct forcing [Jacobson, 2001].
73 Estimates of the direct radiative effect of BC complied by Bond et al. [2013] range between
74 0.1 and 1.63 W/m². Besides, BC mixed with other aerosol components can serve as cloud
75 condensation nuclei. These particles may thus substantially influence cloud microphysical
76 and optical properties. An effect that could have repercussions for the radiation budget and
77 the hydrological cycle in the tropics. However, OC is often held responsible for light
78 scattering effect which can lead to global cooling. Thus, a number of researches indicate
79 that the OC/EC ratio can be used as an index for the aerosol radiation effect. In addition,
80 brown carbon, the absorbing component of OC associated with biomass burning absorbs
81 light primarily at the low visible wavelengths and the near ultraviolet range of the
82 spectrum; therefore, BrC also has significant radiative forcing impacts on the Earth's
83 atmospheric energy balance and even climate change (2, 3).

84

85 Although BC is a minor component of aerosol (usually it only accounts for a few
86 to ten percent), due to its unique physical and chemical properties as well as the synergy
87 with other aerosol, it still have significant impacts on air quality and global climate system.
88 The different percentage of BC from aerosol mass showed geographical divergence,
89 closely related to the emission source (4). Tropical Southeast (SE) Asia is an active
90 biomass-burning region as a result of the increasing deforestation and agricultural activities
91 [Stott, 1988; Christopher and Kimberly, 1996]. BB serves to clear land for shifting
92 cultivation, to convert forests to agricultural and pastoral lands, and to remove dry
93 vegetation in order to promote agricultural productivity and the growth of higher yield
94 grasses, with the characteristics of large-emission, high-diversity, and relative
95 concentration of burning time in the region. Christopher and Kimberly [1996] have
96 identified east-central India and the region containing Thailand, Laos, Cambodia and
97 Vietnam as the two major areas of biomass burning in India and SE Asia (5). The BC
98 emission from SE Asia could be transferred to the downwind areas (including the east coast
99 of China and even high-altitude region) under the guidance of the monsoon (see Fig. 1.1),
100 and its impact is a key concern. In recent years, scientific attention has shifted from the
101 role of black carbon as a pollutant to its importance as a driver of climate change in SE
102 Asia. For instance, Lau, Kim and Kim (6) suggest that increased dust loading coupled with
103 black carbon emission from local sources in northern India during late spring may lead to
104 an advance of the rainy periods and subsequently an intensification of the Indian summer
105 monsoon. The enhanced rainfall over India is associated with the development of an
106 aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia
107 (Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the
108 adjacent oceanic regions; thinning of glaciers over the Himalayas caused by BC deposition
109 (7).
110

111
112 **Figure. 1.1.** Conceptual model for climatological circulation pattern in March for high-
113 altitude and low-level transport pathways by westerly and northeast monsoon flows (8)
114

115 Although earth's atmospheric energy balance owing to BC has been recognized
116 widely, great uncertainty still exists in assessing the climate change effects of BB emitting
117 BC in SE Asia region; the main bottleneck are that 1) no sufficiently long-term and targeted
118 ground-based observations in Southeast Asia; 2) the lack of assessment in different
119 combustion ways; 3) the climate effects of black carbon and homology pollutants from BB
120 are still controversial. Firstly, most researches of BC and its climate effects are conducted
121 in South Asia (mostly in Indo-Gangetic plain), but rarely in SE Asia. Secondly, two
122 different combustion ways (flaming combustion and smoldering combustion) have been
123 found having divergent results of emission. Flaming combustion has been found having
124 more BC while the smoldering has more OC. Moreover, as to PAHs, flaming contributes
125 more than smoldering does. This divergence causes different effects on radiation, climate
126 as well as monsoon precipitation. Finally, biomass burning in SE Asia is an important
127 source of BC and other homologous contaminants (organic carbon, sulfates, and gas
128 precursors) in this region. Climate effects of BC and homologous pollutants shows not only
129 opposing effects but also regional differences, such as, positive radiative forcing from BC
130 but negative from other homologous aerosols. And aerosol demonstrates a stronger effect
131 on continents than marine, on high latitude than low one, on East Asia than other regions
132 at the same latitude.

133 At present, the urgent need for understand BC and its climate change effects have
134 been recognized by scientists as well as governments, and research projects has been taken
135 in SE Asia gradually. For example, BASE-ASIA (Biomass-burning Aerosols in South-East
136 Asia: Smoke Impact Assessment) and the 7-SEAS (7-South-East Asian Studies)/Dongsha
137 Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA,
138 respectively, to characterize the chemical, physical, and radiative properties of biomass-
139 burning emissions near the source regions, and assess their effects. Chuang, Chou,
140 Sopajaree, Lin, Wang, Sheu, Chang and Lee (9) is the first study to characterize the
141 chemistry of biomass-burning aerosols near the source region in the northern SEA, i.e.,
142 border of Thailand and Myanmar (at Doi Suthep, near Chiang Mai city) where highly
143 intense fires happen nearby. Their results suggest the biomass-burning aerosols are mainly
144 produced by smoldering softwood. The biomass-burning plume from northern SEA was
145 sampled at several locations along the transport pathway. Plume signatures were observed
146 at LABS in central Taiwan (10), above boundary layer over Hong Kong (5, 11), and
147 possibly even near the surface in the southern Taiwan (12). These studies provide the first
148 relatively complete dataset of aerosol chemistry and physical observations conducted in
149 the source/sink region in the northern SE Asia, with particular emphasis on the marine
150 boundary layer and lower free troposphere. However, reviewing these researches, most of
151 them are short-term observations and lacking of specificity (e.g. feedback mechanisms
152 between BC and Asian monsoon cycle, etc.), which impedes further discussions on
153 characteristics and the impact of BC producing from biomass burning in SE Asia.

154
155 For a better understanding of direct and indirect climate effects from biomass
156 combustion BC, and improve the accuracy of model simulation in predicting future climate
157 change trends, it's necessary to explore the history of biomass burning through BC in
158 sediment. Before the industrialization, biomass combustion was the only source of BC in
159 atmosphere. Therefore, to study the history of biomass combustion can facilitate us to
160 understand the effect of BC exerted on climate; also assist us to predict the future climate
161 change and biomass combustion trend. In Asia however, on one hand we lack the history
162 log of the long-term biomass burning, on the other, the majority of previous biomass
163 combustion history were restructured through charcoal, so the divergence of combustion

164 methods were never considered by any researchers before. Hence, researches on the
165 connection between climate change and carbonaceous aerosol emission are limited.

166

167 Recently, the applicant reconstructed the combustion history of flaming
168 combustion and smoldering combustion in North America via experiments with different
169 types of char-soot (13). Soot is a common residue of smoldering combustion, which
170 reserves the features of the original organic substance. Char, by contrast, can be found rich
171 after flaming combustion. Although in previous researches most of them claim that char
172 is the primary form of BC while the sediments and soil researches emphasize on soot, in
173 fact, whatever aerosol or sediments, those two forms of carbon compounds are ubiquitous.
174 However, due to the difference in physi-chemical characteristics, the transport trajectories
175 are different. To be more specific, the transport of char often occurs in a relatively short
176 distance in regions, while the soot always travels far across continents. Furthermore, our
177 research will involve the verification on the hypothesis that soot in sediments are from
178 atmosphere. Also because of the divergence of OC/EC between char and soot, we
179 reconstruct atmospheric soot concentration history through that in sediments. This serves
180 as a new approach of predicting the long-term OC/EC ratios and also makes it possible for
181 understanding and quantifying the interactive effect between carbonaceous aerosol and
182 climate change. In addition, the applicants also found that flaming combustion often
183 occurred in dry area, smoldering by contrast often happened in wet area. Therefore, we
184 generated a hypothesis that more flaming wildfires occurring in dry regions, more
185 smoldering wildfires in wet regions. They have different OC and BC emissions, especially,
186 higher OC/BC in wet regions and lower OC/BC in dry regions. Thus, OC/BC ratios, which
187 are the key factor influencing on climatic effects of carbonaceous aerosols (14), can be
188 evaluated, and this can be used in modeling studies. What we want to do is to confirm this
189 hypothesis through the comparison of wildfire history (the Holocene), smoldering and
190 flaming, in both wet, say Thailand, and dry regions, say western China. The comparison of
191 carbonaceous aerosol compositions will be also conducted to support our hypothesis. In
192 addition, biomass burning source emissions will be tested in different fuels and different
193 loading (wet and dry).

194

195 In spite of various studies associated with OC/EC in atmospheric particles around
196 the world, the number of publications related with carbonaceous aerosols in Thailand is
197 strictly limited. In 2013, Pongpiachan et al (2013) reported the estimation of gas-particle
198 partitioning coefficients (K_p) of carcinogenic polycyclic aromatic hydrocarbons in
199 carbonaceous aerosols collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand by using
200 Dachs-Eisenreich model (15). This is the first study to assess the diurnal variation of
201 OC/EC in PM10 collected at three different altitudes in urban atmosphere of Southeast
202 Asian cities. Dachs-Eisenreich model highlights the crucial role of adsorption in gas-
203 particle partitioning of low molecular weight PAHs, whereas both absorption and
204 adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in
205 urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor
206 role in gas-particle partitioning of PAHs in Chiang-Mai, Bangkok and Hat-Yai. Recently,
207 Pongpiachan et al (2015) published the study of effects of day-of-week trends and vehicle
208 types on PM2.5-bounded carbonaceous compositions in Science of the Total Environment
209 (16). The application of diagnostic binary ratios of OC/EC and estimations of secondary
210 organic carbon (SOC) coupled with autocorrelation plots (Box and Jenkins) highlight the
211 enhanced impacts of traffic emissions, especially from diesel vehicles, on PM2.5-bound
212 carbonaceous compositions on weekdays relative to weekends. Hierarchical cluster
213 analysis (HCA) coupled with principal component analysis (PCA) underline the
214 importance of diesel emissions as the primary contributors of carbonaceous aerosols,
215 particularly during weekdays. The spatial and temporal distribution of carbonaceous PM10
216 was assessed in eight air quality observatory sites in Bangkok from February to December
217 2007 (17). The relatively low OC/EC ratios observed in Bangkok highlight the influence
218 of transportation sector in governing carbonaceous aerosols, particularly in heavy traffic
219 congestion area. Three-dimensional plots of principal components (PCs) successfully
220 discriminate “traffic emission” group from those of “urban residential background” group.
221 Over the past decades, there are many studies analyze OC/EC coupled with PAHs in core
222 sediments in different locations around the world. Since PAHs are widely considered as a
223 consequence of imperfect combustions of hydrocarbon, various investigations have been
224 attempted to connect PAHs with historical trends of atmospheric black carbon in lake
225 sediment record (18-20). Despite the countless number of publications associated with

226 PAHs in various environmental compartments in different countries, there are only a few
227 studies related with this topic in Thailand (21-26).

228
229 Above all, the impact of black carbon aerosols on climate has become one of the
230 hot topics in the international atmospheric research field. However, the divergent regional
231 climate effects are generated by such a large amount of biomass combustion in SE Asia,
232 especially the medium-term and long-term effects on regional climate exerted by different
233 combustion modes are still poorly understood. Therefore, it is urgent for us to carry out a
234 more systemic and in-depth research in this field. This will provide scientific basis for
235 China and SE Asia in sustainable social and economic development and ecological
236 management. On the other hand the severe particulate air pollution from BB in SE Asia,
237 provides a unique platform for scientists worldwide to obtain new insights into many
238 aspects of atmospheric chemistry and physics and its climate effects. This calls for
239 international collaboration.

240
241 This proposed project is based on the collaborative research project "Climate
242 Change (Climate Change & Climate Variability Research in Monsoon Asia)" of National
243 Natural Science Foundation of China (NSFC) and Thailand Research Foundation (TRF) in
244 2016. And the proposed topic is in line with '2.2 Land surface, their impacts and
245 interactions with climate' application requirements in the guide of TRF.

246
247 This project is proposed by Siwatt Pongpiachan of the School of Social and
248 Environmental Development, National Institute of Development Administration (NIDA),
249 Thailand, and Yongming Han, a professor from the Institute of Earth Environment, Chinese
250 Academy of Science. The applicant, Siwatt Pongpiachan, has devoted himself to the study
251 on air quality in Thailand, especially the environmental and health effects of VOCs in
252 carbonaceous aerosols, since he worked in the School of Social and Environmental
253 Development, National Institute of Development Administration (NIDA). Thanks to his
254 diverse abroad study experience, his group established a good cooperative relationship with
255 world-famous scientific institutions in Japan, England and China (Hongkong included),
256 and became one of the best groups on aerosol study in Thailand. The Chinese partner, the

257 Key Laboratory of Aerosol Chemistry and Physics (KLACP) at the Institute of Earth
258 Environment, Chinese Academy of Sciences (IEECAS), focuses on chemical nature and
259 sources of particulate matter as well as model studies of air pollution in China. With over
260 50 publications per year and around 2000 citations of their work per year, the KLACP is
261 recognized as one of the world-leading groups in the characterization of chemical and
262 physical properties of aerosol particles and their sources in urban, rural, mountain, desert,
263 and pristine Tibet-Qinghai regions, as well as modelling studies of air pollution with
264 regional and global models e.g., WRF-CHEM, CMAQ, MOZART. Since 1980's, KLACP
265 has accomplished a series of aerosol observation campaigns around China. Tens of
266 representative urban and rural sites were established, among which 10 are for continuous
267 observations, including Sanya and Yulong Mountain sites in this project. Over the past 10
268 years, the KLACP has coordinated several large field measurement campaigns with world-
269 leading groups including the Desert Research Institute, University of Minnesota,
270 University of Washington, NOAA, PSI and the Polytechnic University of Hong Kong. The
271 KLACP was also the first laboratory established in China for carbonaceous aerosol studies.
272 The KLACP pioneered the first nationwide summertime and wintertime carbonaceous
273 aerosol studies in China (14 cities) in 2003, leading to the first picture of particulate air
274 pollution in China (Cao et al., 2007) (27). Multi-discipline techniques, including systematic
275 observation, analytical method development, record re-construction, and numeral
276 simulation, were integrated in this lab to enrich the fundamental understanding of black
277 carbon climatology.

278
279 Since 2010, when Siwatt Pongpiachan began his post-doctoral research in KLACP,
280 a strong collaboration has successfully been established between his group and the KLACP
281 at CAS. In January 2015, the President of NIDA, Assoc. Prof. Pradit Wanarat visited the
282 KLACP and signed a Memorandum Of Understanding (MOU) with IEECAS, reaching a
283 consensus about all-dimensional cooperation in the exchange of faculty members and
284 students, joint research activity, organization seminars, etc. With the support of this
285 agreement, a PhD candidate in the KLACP, Wei Chong, firstly conducted an aerosol
286 observation experiment for a month from March to May 2015 in Thailand. Recently, Prof.
287 Cao Junji in the KLACP was invited to attend the first International Conference on Disaster

288 Management: From the Polar Regions to the Local Communities and give a plenary
289 presentation. During the conference, Prof. Cao discussed the joint project in depth with
290 Assoc. Prof. Dr. Siwatt Pongpiachan, which further strengthened the collaboration between
291 these two groups and will be a perfect basis for a successful joint Chinese-Thailand project.
292

293 **1.2 Objectives**

294 In this study, we will do researches on three subjects. The first one focuses on the
295 history of biomass burning in the past 2000 years from lake sediments, its emissions, and
296 their relations with climate change, which will provide a understanding of the mechanical
297 relationship between biomass burning and climate change. The second one is the
298 distribution and physicochemical characteristics of black carbon by aerosol observations,
299 which will provide the key parameters for radiative forcing simulations and will test the
300 hypothesis in paleo-wildfire study. The last one is the impacts of biomass burning on the
301 radiation and monsoon precipitation in Asia from model simulations. Thus, this research
302 has three objectives listed below:

303

304 1) We will collect 6 lake sediment cores in different climatic zones and
305 reconstruct the wildfire history including both flaming and smoldering
306 combustion in the Asia in the middle- and low-latitude Asian regions covering
307 the past 2000 years. The relationship among the climatic zones, vegetation
308 types, the combustion types, and carbonaceous aerosol emissions from
309 biomass burning will be put forward.

310 2) We will find out the transport and evolution characteristics of black carbon;
311 obtain the particle size distribution, mixing state, optical property, and
312 hygroscopic characteristics of black carbon at a high time resolution scale; and
313 establish the connection between aerosol radioactive forcing and these
314 characteristics of black carbon mentioned above.

315 3) Using the WRF-Chem model, we will find out the radiative effects of
316 carbonaceous aerosol emitted from biomass burning in the middle- and low-
317 latitude Asian regions; discuss its influence on monsoon precipitation, and

318 forecast the trend of biomass burning, its emissions and their direct and
319 indirect climate effects in the next 30 years.

320

321 **1.3 Expected Outcomes**

322 1) The variations of wildfires overview map or based historical map
323 2) The intrinsic mechanism of the occurrences of biomass burning with climate
324 change
325 3) WRF-Chem dynamical and chemical transport model
326 4) Biomass burning distribution maps
327 5) Impacts of carbonaceous aerosols
328 6) Decision making guidelines for local government
329 7) 2-4 international high-quality papers
330 8) Corroboration between Thailand and China.
331 9) Capacity building; research assistants, student
332 10) Websites

333

334

335

336

337

338

339

340

341

342

343

344

345

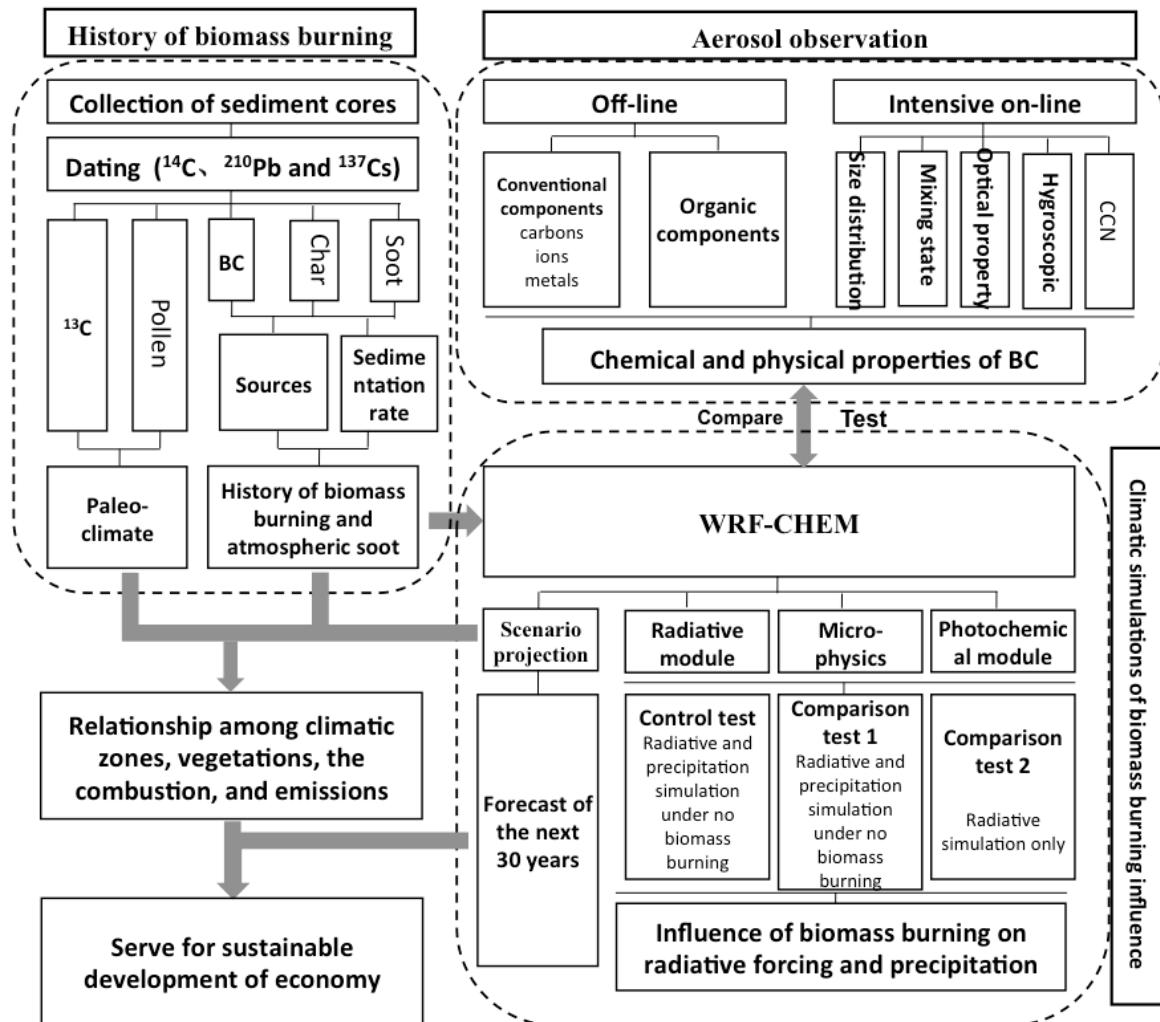
346

347

348

Chapter II

349


Research Methodology

350

351

352

2.1 Research Methodology

353

Figure 2.1. A flowchart of research methodology

354

355

356

This study was composed with three phases. Firstly, the history of biomass burning and atmospheric soot was carefully studied by the collection of lake sediment cores. Paleoclimate

parameters such as ^{14}C , ^{210}Pb and ^{137}Cs coupled with OC/EC were deliberately characterized and statistically analyzed. Secondly, the chemical characterization of $\text{PM}_{2.5}$ were conducted by using GC-MS/MS and DRI Model 2001 Thermal/Optical Carbon Analysis (TOR/TOT). All physicochemical properties (e.g. hygroscopic, CCN, optical property, mixing states, and size distribution) were monitored online. Thirdly, the climatic simulation of biomass burning influence was assessed by using WRF-CHEM model, which is composed of photochemical module, microphysics and radiative module. In addition, the schematic diagram of research methodology was clearly illustrated in Fig. 2.1.

367

368 **2.1.1 History of biomass burning in the past 2000 years, its emissions, 369 and their relations with climate change**

370 12 sediment cores covering the past ~2,000 years will be collected from 6 lakes
371 (three from Thailand, namely, Phayao Lake, Bueng Ken Lake, and Songkhla Lake; and three
372 from China, namely, Qinghai Lake, Lugu Lake, and Tengchong Maar Lake) with different
373 climatic zones and different annual precipitation rates using a kind of gravity core. Two
374 parallel cores will be collected from each lake. Sampling slices will be done in the field
375 works at 0.5-3 cm intervals with approximately time resolutions of ~3-20 years. ^{14}C
376 (radiocarbon) analysis from selected charcoal materials of sediment cores will be used for
377 chronology reconstruction. ^{137}Cs and ^{210}Pb analysis will be conducted to date the
378 chronology of the different sediment cores for the past ~150 years.

379

380 Black carbon (BC), char, and soot concentrations will be measured using the
381 thermal-optical method, which will be used for the historical reconstruction of wildfires,
382 flaming and smoldering combustion, and atmospheric soot concentrations in the past 2,000
383 years. ^{13}C stable isotope and pollen will be quantified to reconstruct the paleo-climate
384 variations. PAHs, and OPAHs will be analyzed for recent sediments covering the past
385 ~150 years to compare with the BC, char and soot results to test the effectiveness of our
386 reconstruction of the wildfire history since both BC and PAHs originate mainly from
387 burning. The relative contributions of flaming and smoldering combustion will be found
388 out by the char/soot ratios in sediment cores. Meanwhile, the relative emissions of
389 carbonaceous aerosol (organic and black carbon) from biomass burning will be evaluated

390 from the relative contributions of flaming to smoldering fires in the past 2,000 years. The
391 comparison of wildfire history including both flaming and smoldering combustion with
392 paleo-climate (wet and dry) parameters indicated by pollen and ^{13}C data in different zones
393 will give us the mechanism understanding the relationship between will fire and climate.
394

395 **2.1.2 Distribution and physicochemical characteristics of black carbon**

396 In this subject, we plan to take one year-round PM_{2.5} samples simultaneously at low
397 latitude area of Asian, Phuket, Thailand, as well as Sanya, Sansha, and Mt. Yulong, China.
398 The concentrations of black carbon will be quantified to investigate their temporal and
399 spatial distribution. The ME-2 receptor model will be used to study the contributions of
400 different sources on black carbon mass, while the regional atmospheric chemistry model
401 will be used to quantify the contributions from local and regional transport. The regional
402 atmospheric chemistry model will also be used to understand the evolution characteristics
403 of black carbon during monsoon and non-monsoon. The intrinsic relationship between the
404 physical and chemical properties of black carbon aerosol and the aerosol radiative forcing
405 will be investigated to improve the key parameters in the radiative transfer model.

406 407 **2.1.3 Impacts of biomass burning on the radiation and monsoon** 408 **precipitation in Asia**

409 We will apply the state-of-art regional WRF-Chem dynamical and chemical
410 transport model and emission inventories of biomass burning estimated by MODIS
411 monitoring to assess the impacts of biomass burning in Southeast Asia on Asian climate.
412 In order to better separate the direct and indirect climate effects of biomass burning on the
413 radiation and monsoon precipitation in Asia, an aerosol-radiation module, photochemistry
414 module and a new activation algorithm for cloud condensation nuclei (CCN)/ ice nuclei
415 (IN) are developed in WRF-Chem model. In this proposal, we will also evaluate the
416 potential impacts of biomass burning on Asian climate due to the activity data and emission
417 control in the next decades.

418 419 **2.2 Chemical analysis of PAHs**

420

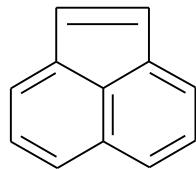
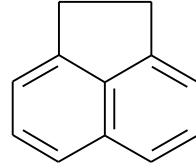
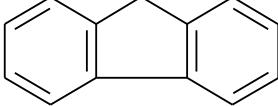
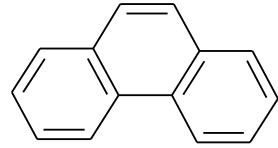
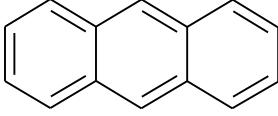
421 2.2.1 General information of PAHs

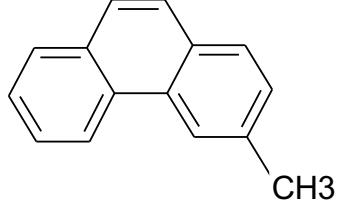
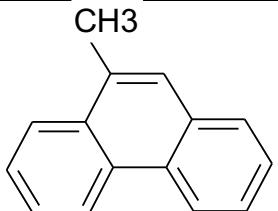
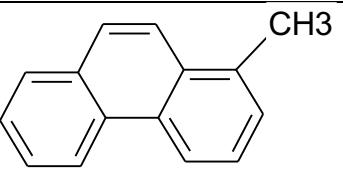
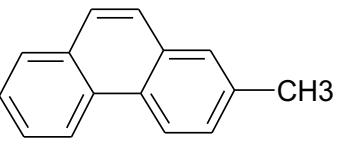
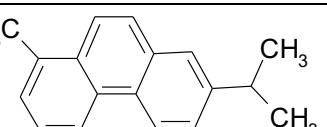
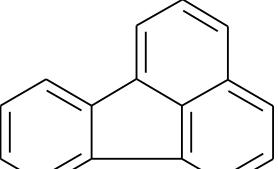
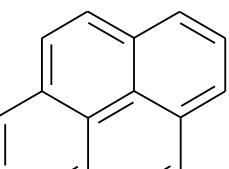
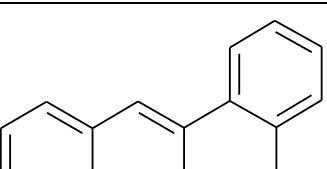
422

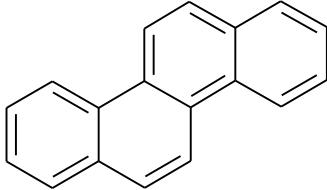
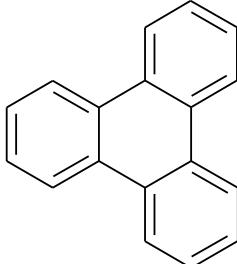
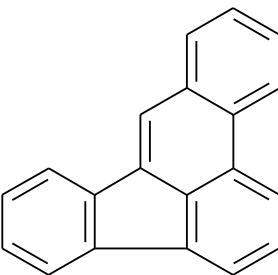
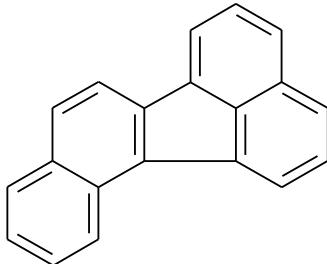
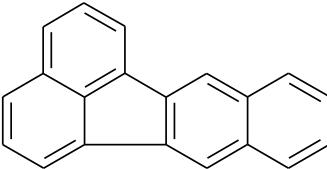
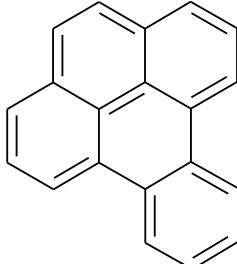
423 PAHs are a class of very stable organic molecules made up of only carbon and hydrogen
424 and contain two to eight fused aromatic rings. PAHs are formed during incomplete
425 combustion of organic materials such as fossil fuels, coke and wood. These molecules
426 were oriented horizontal to the surface, with each carbon having three neighboring atoms
427 much like graphite. The structures of a variety of representative PAHs can be seen in [Table 2.1](#).
428 Epidemiological evidence suggests that human exposures to PAHs, especially B[a]P
429 are high risk factors for carcinogenic and mutagenic effects. There are hundreds of PAH
430 compounds in the environment, but only 16 of them are included in the priority pollutants
431 list of US EPA. Many PAHs have also been identified as cancer-inducing chemicals for
432 animals and/or humans. In 1775, the British surgeon, Percival Pott, was the first to
433 consider PAHs as toxic chemicals with the high incidence of scrotal cancer in chimney
434 sweep apprentices. Occupational exposure of workers by inhalation of PAHs-both volatile
435 and bound to respirable particulate matter- and by dermal contact with PAHs-containing
436 materials, occurs at high levels during coke production, coal gasification, and iron and
437 steel founding. Coke oven workers have a 3- to 7- fold risk increase for developing lung
438 cancer.

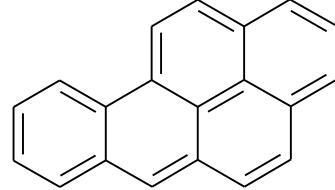
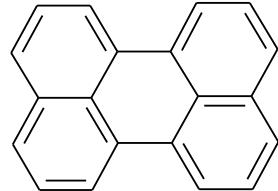
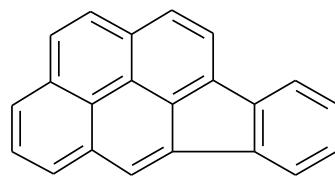
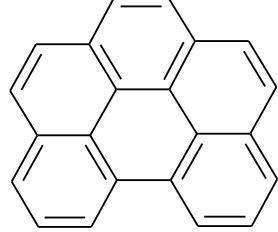
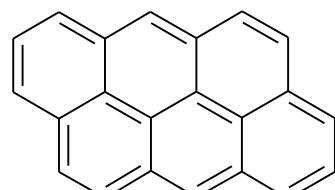
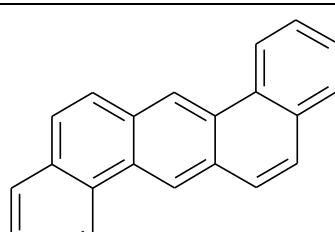
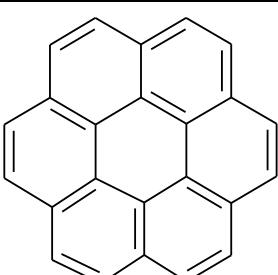
439

440 For this reason, the monitoring of PAHs in environmental media is a reasonable approach
441 to assess the risk for adverse health effects. Since the fate of PAHs in the natural
442 environment is mainly governed by its physiochemical properties, the study of general
443 properties of the compounds is of great concern. It is well known that aqueous solubility,
444 volatility (e.g. Henry's law constant of air/water partition coefficient, octanol/air partition
445 coefficient), hydrophobicity or lipophilicity (e.g., n-octanol/water partition coefficient) of
446 PAHs vary widely (Mackay and Callcot, 1998), the differences among their distribution
447 in aquatic systems, the atmosphere, and the soil are significant. Molecular weight and
448 chemical structure influence physical and chemical properties between individual PAHs.






449









450 The vapour pressure and water solubility basically decrease with the increasing molecular
 451 weight. The fate of PAHs in the environment is largely determined by physiochemical
 452 property, as a result, high mobility of low molecular weight species can be expected. On
 453 the other hand, PAHs are also quite involatile, and have relatively low vapour pressure
 454 and resistance to chemical reactions. As a consequence PAHs are persistent in the
 455 environment and demonstrate a tendency to accumulate in biota, soils, sediments, and are
 456 also highly dispersed by the atmosphere. Furthermore, PAHs become more resistant to
 457 biotic and abiotic degradation as the number of benzene rings increase.







458








459 **Table 2.1. Chemical structures of PAHs.**

460

Congener	Abbreviation	M.W. [g]	Chemical Structure
Acenaphthylene	Ac	152	
Acenaphthene	Ace	154	
Fluorene	Fl	166	
Phenanthrene	Ph	178	
Anthracene	An	178	

3-Methyl Phenanthrene	3-MePh	192	
9-Methyl Phenanthrene	9-MePh	192	
1-Methyl Phenanthrene	1-MePh	192	
2-Methyl Phenanthrene	2-MePh	192	
1-methyl-7-isopropyl phenanthrene (Retene)	Ret	234	
Fluoranthene	Fluo	202	
Pyrene	Py	202	
Benz[a]anthracene	B[a]A	228	

Chrysene	Chry	228	
Triphenylene	Tri	228	
Benzo[<i>b</i>]fluoranthene	B[<i>b</i>]F	252	
Benzo[<i>j</i>]fluoranthene	B[<i>j</i>]F	252	
Benzo[<i>k</i>]fluoranthene	B[<i>k</i>]F	252	
Benzo[<i>e</i>]pyrene	B[<i>e</i>]P	252	

Benzo[<i>a</i>]pyrene	B[<i>a</i>]P	252	
Perylene	Per	252	
Indeno[<i>1,2,3-cd</i>]pyrene	Ind	276	
Benzo[<i>g,h,i</i>]perylene	B[<i>g,h,i</i>]P	276	
Anthanthrene	Ant	276	
Dibenzo[<i>a,h</i>]anthracene	D[<i>a,h</i>]A	278	
Coronene	Cor	300	

461

462

463 **2.2.2 Chemical extraction of PAHs**

464

465 **2.2.2.1 Materials**

466 All solvents are HPLC grade, will be purchased from Fisher Scientific. The EPA 16 PAH
467 surrogate cocktail in methanol ($100 \mu\text{g ml}^{-1}$) which will be used as internal standard will
468 be obtained from Greyhound/Chemserve. Silica gel (0.040–0.063 mm) will be purchased
469 from Merck. Soxhlet thimbles and glass fiber filters will be obtained from Whatman
470 (Maidstone, UK). All materials used (silica gel, glass and cotton wool, GFFs etc.) were
471 Soxhlet extracted with DCM for 24 h, and kept dry (in desiccator) until use. Quartz fibre
472 filters will be cleaned by baking at 550°C overnight. All glassware will be cleaned by
473 washing with decanted water before drying at 55°C , and rinsed with DCM just before
474 use.

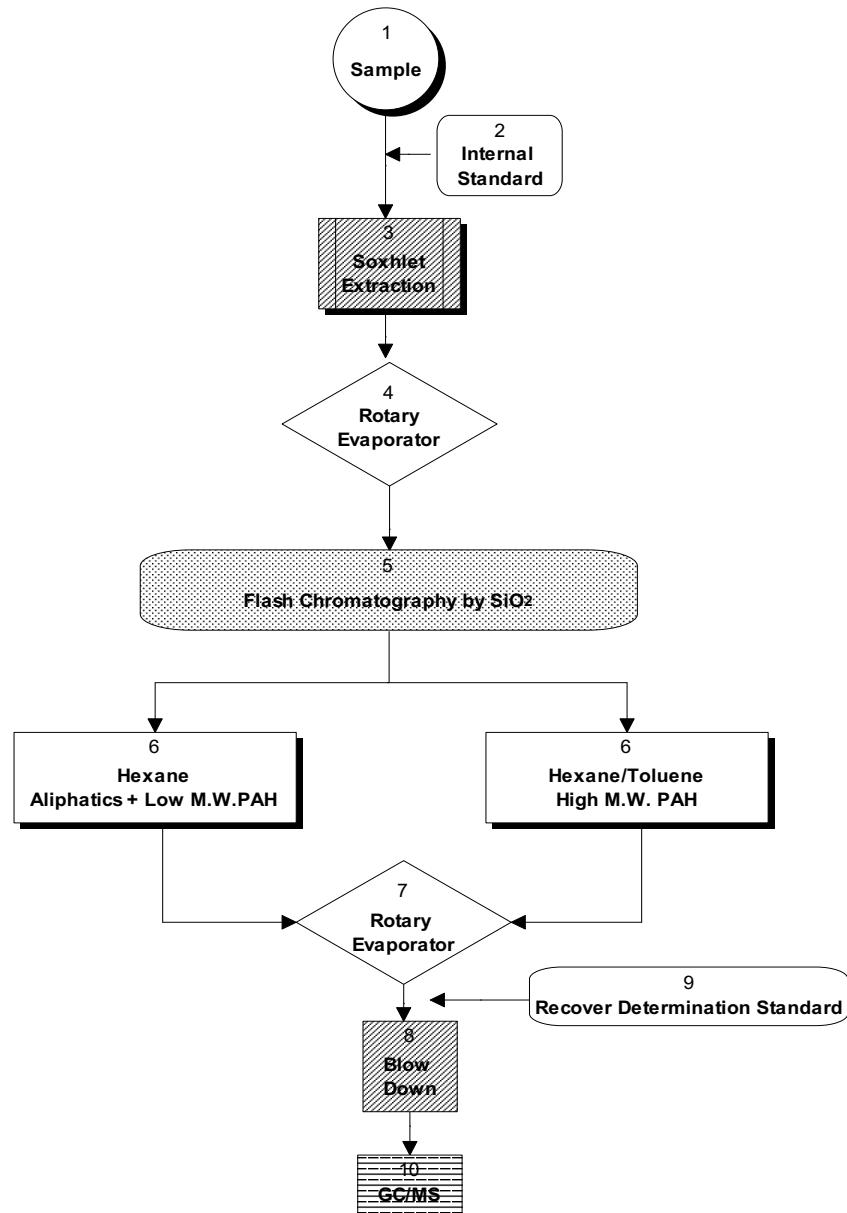
475

476 **2.3.2 Sampling Extraction**

477

478 The extraction of PAHs will be conducted using 250 ml of Soxhlet extractors. After $\text{PM}_{2.5}$
479 determination, the QMFs will be divided in to two parts using stainless scissors. After
480 that, the Soxhlet extraction of $\text{PM}_{2.5}$ filter samples and $\text{PM}_{2.5}$ filter blanks will be placed
481 inside the Soxhlets, spiked with a known amount of internal standard (deuterated PAHs),
482 and extracted with DCM for 24 h.

483


484 **2.3.3 Fractionation/cleanup and Blow-down Process**

485

486 The fractionation/cleanup process followed the method reported by Gogou et al (1996).
487 After the extraction, the DCM solvent will be concentrated to dryness by a combination
488 of rotary evaporation and blowing under a gentle nitrogen stream (see Fig. 2.2). The
489 concentrated extract is then diluted in 10 ml of n-hexane before application to the top of
490 a disposable silica gel column. The extract is then fractionated into individual compound

491 classes by flash chromatography on silica gel as follows: The concentrate will be applied
492 to the top of a 30 x 0.7 cm diameter column, containing 1.5 g of silica gel (activated at
493 150 °C for 3 h). Nitrogen pressure will be used to in order to obtain a flow of 1.4 ml min⁻¹
494 at the bottom of the column. The following solvents will be used to elute the different
495 compound classes: (1) 15 ml n-hexane (fraction 1, light molecular weight PAHs); (2) 15
496 ml toluene-n-hexane (5.6:9.4) (fraction 2, middle and heavy molecular weight PAHs). In
497 consideration of the toxicity of the solvent and the solubility of PAHs, toluene will be
498 selected for the study. After the fractionation, the eluates will be concentrated by using
499 rotary evaporator followed by the evaporation under a gentle nitrogen stream (set flow
500 rate at 1.0 mbar). Because of the low dissipation capability of toluene, a percentage (5-
501 25%) of acetone will be added to increase the volatility. The sample will be further
502 reduced to incipient prior to being made up to volume with cyclohexane prior to GC/MS
503 analysis.

504

505

506 **Figure 2.2.** A flowchart of chemical analysis of PAHs

507

508

509

510

511

512

513

2.2.3 Water Soluble Ionic Species (WSIS) Analysis

514 All filter samples were stored in a refrigerator at about 4 °C as soon as possible after sampling was
515 completed. This was necessary to prevent any negative artifacts caused by losses of semi-volatile.
516 Also field blank filters were collected to subtract the positive artifacts due to adsorption of gas
517 phase organic compounds onto the filter during and/or after sampling. The analysis of water
518 soluble particulate anion species including Cl⁻, NO₃⁻ and SO₄²⁻ion was performed by using an ion
519 chromatography (Dionex DX-100) equipped with an IonPac AS4A-SC 4mm (10-32 P/N 43174)
520 anion specific column, an AG4A-SC 4 mm (10-32 P/N 43175) guard column and a 25 µl sample
521 loop (Msibi, 1992). Filters were cut, placed in a polyethylene vial (20 ml), and extracted with 10
522 ml of deionized water for 30 min. The extract was filtered through 0.2 µm pore size Millipore
523 Teflon filters for cleanup. The GP40 gradient pump was used to set the ratio of two eluents (i.e.
524 distilled water (mobile phase A) and NaOH solutions (mobile phase B)) pumped through the
525 column at rate of 2 ml min⁻¹. The nitrogen gas was applied for generating the flow rate and set at
526 2 PSI. The mixture of standard solutions was made up by dissolving NaCl (1.646 g), NaNO₃
527 (1.373g) and (NH₄)₂SO₄ (1.376 g) into 1L of distilled water (1000 ppm). In addition, all the WSIS
528 analysis had been conducted at the Key Laboratory of Aerosol Chemistry and Physics, Institute of
529 Earth Environment, Chinese Academy of Sciences (IEECAS), Xi'an, People Republic of China
530 (PRC).

531

532

2.2.4 OC/EC Analysis

533 Carbon analysis was carried out at the Key Laboratory of Aerosol Chemistry and Physics,
534 IEECAS, Xi'an, PRC. The calibrations and QA/QC of the measurements were conducted by Dr.
535 Wang Qiyuan, a research scientist at the IEECAS. The samples were analyzed for OC and EC
536 using DRI Model 2001 (Thermal/Optical Carbon Analyzer) with the IMPROVE thermal/optical
537 reflectance (TOR) protocol. The protocol heats a 0.526 cm² punch aliquot of a sample quartz filter
538 stepwise at temperatures of 120 °C (OC1), 250 °C (OC2), 450 °C (OC3), and 550 °C (OC4) in a
539 non-oxidising helium atmosphere, and 550 °C (EC1), 700 °C (EC2), and 800 °C (EC3) in an
540 oxidising atmosphere of 2% oxygen in a balance of helium. When oxygen is added, the original
541 and pyrolysed black carbon burnt and the reflectance increase. The amount of carbon measured

542 after oxygen is added until the reflectance achieves its original value is reported as optically-
543 detected pyrolysed carbon (OP).

544 **2.3 References**

- 545 1. J. R. Marlon *et al.*, Climate and human influences on global biomass burning over the past
546 two millennia. *Nature Geosci* **1**, 697-702 (2008).
- 547 2. M. O. Andreae, A. Gelencsér, Black carbon or brown carbon? The nature of light-
548 absorbing carbonaceous aerosols. *Atmos. Chem. Phys.* **6**, 3131-3148 (2006).
- 549 3. C. E. Chung, V. Ramanathan, D. Deamer, Observationally constrained estimates of
550 carbonaceous aerosol radiative forcing. *Proceedings of the National Academy of Sciences*
551 **109**, 11624-11629 (2012).
- 552 4. T. C. Bond *et al.*, A technology-based global inventory of black and organic carbon
553 emissions from combustion. *Journal of Geophysical Research: Atmospheres* **109**, n/a-n/a
554 (2004).
- 555 5. C. Y. Chan *et al.*, Characteristics of biomass burning emission sources, transport, and
556 chemical speciation in enhanced springtime tropospheric ozone profile over Hong Kong.
557 *Journal of Geophysical Research: Atmospheres* **108**, ACH 3-1-ACH 3-13 (2003).
- 558 6. K. M. Lau, M. K. Kim, K. M. Kim, Asian summer monsoon anomalies induced by aerosol
559 direct forcing: the role of the Tibetan Plateau. *Climate Dynamics* **26**, 855-864 (2006).
- 560 7. S. Menon *et al.*, Black carbon aerosols and the third polar ice cap. *Atmos. Chem. Phys.* **10**,
561 4559-4571 (2010).
- 562 8. N.-H. Lin *et al.*, An overview of regional experiments on biomass burning aerosols and
563 related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-
564 SEAS. *Atmospheric Environment* **78**, 1-19 (2013).
- 565 9. M.-T. Chuang *et al.*, Characterization of aerosol chemical properties from near-source
566 biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. *Atmos.*
567 *Environ.* **78**, 72-81 (2013).
- 568 10. C.-T. Lee *et al.*, The enhancement of PM2.5 mass and water-soluble ions of biosmoke
569 transported from Southeast Asia over the Mountain Lulin site in Taiwan. *Atmospheric*
570 *Environment* **45**, 5784-5794 (2011).

571 11. X. Deng *et al.*, Effects of Southeast Asia biomass burning on aerosols and ozone
572 concentrations over the Pearl River Delta (PRD) region. *Atmospheric Environment* **42**,
573 8493-8501 (2008).

574 12. M.-C. Yen *et al.*, Climate and weather characteristics in association with the active fires in
575 northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha
576 Experiment. *Atmospheric Environment* **78**, 35-50 (2013).

577 13. Y. M. Han *et al.*, Reconstruction of atmospheric soot history in inland regions from lake
578 sediments over the past 150 years. *Scientific Reports* **6**, 19151 (2016).

579 14. R. Saleh *et al.*, Brownness of organics in aerosols from biomass burning linked to their
580 black carbon content. *Nat. Geosci.* **7**, 647-650 (2014).

581 15. Pongpiachan, S., Ho, K. F & Cao, J., 2013. Estimation of Gas-Particle Partitioning
582 Coefficients (K_p) of Carcinogenic Polycyclic Aromatic Hydrocarbons by Carbonaceous
583 Aerosols Collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand. *Asian Pacific Journal
584 of Cancer Prevention*, 14(4), 3369-84.

585 16. Pongpiachan, S., Kositanont, C., Palakun, J., Liu, S., Ho, K.F., and Cao, J. 2015. Effects of
586 day-of-week trends and vehicle types on PM_{2.5}-bounded carbonaceous compositions.
587 *Science of the Total Environment*, 532, 484-494.

588 17. Pongpiachan, S., Kudo, S., and Sekiguchi, K., 2014. Chemical Characterization of
589 Carbonaceous PM₁₀ in Bangkok, Thailand. *Asian Journal of Applied Sciences*, DOI:
590 10.3923/ajaps.2014 (<http://docsdrive.com/pdfs/knowledgia/ajaps/2014/325-342.pdf>).

591 18. Cong, Z., Kang, S., Gao, S., Zhang, Y., Li, Q., and Kawamura, K., 2013. Historical trends
592 of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake
593 sediment record. *Environ. Sci. Technol. Lett.* **47 (6)**, 2579-2586.

594 19. Cornelissen, G., Gustafsson, O., Bucheli, T.D., Jonker, M.T.O., Koelmans, A.A., and van
595 Noort, P.C.M., 2005. Extensive sorption of organic compounds to black carbon, coal, and
596 kerogen in sediments and soils: Mechanisms and consequences for distribution,
597 bioaccumulation, and biodegradation. *Environ. Sci. Technol.* **39(18)**, 6881-6895.

598 20. Oen, A.M.P., Cornelissen, G., and Breedveld, G.D., 2006. Relation between PAH and
599 black carbon contents in size fractions of Norwegian harbor sediments. *Environ. Pollut.*
600 **141(2)**, 370-380.

601 21. Pongpiachan, S., 2014. Application of Binary Diagnostic Ratios of Polycyclic Aromatic
602 Hydrocarbons for Identification of Tsunami 2004 Backwash Sediments in Khao Lak,
603 Thailand," The Scientific World Journal, Article ID 485068, 14 pages, 2014.
604 doi:10.1155/2014/485068.

605 22. Pongpiachan, S., 2015. A Preliminary Study of Using Polycyclic Aromatic Hydrocarbons
606 as Chemical Tracers for Traceability in Soybean Products. *Food Control.* **47**, 392-400.

607 23. Pongpiachan, S., Tipmanee, D., Khumsup, C., Kittikoon, I., and Hirunyatrakul, P., 2015.
608 Assessing risks to adults and preschool children posed by PM2.5-bound polycyclic
609 aromatic hydrocarbons (PAHs) during a biomass burning episode in Northern Thailand.
610 *Sci Tot Environ.*, **508**, 435-444.

611 24. Pongpiachan, S., Hattayanone, M., Choochuay, C., Mekmok, R., Wuttijak, N., and
612 Ketratanakul, A. 2015. Enhanced PM₁₀ bounded PAHs from shipping emissions. *Atmos*
613 *Environ.*, **108**, 13-19.

614 25. Pongpiachan, S. 2015. Incremental Lifetime Cancer Risk of PM2.5 Bound Polycyclic
615 Aromatic Hydrocarbons (PAHs) before and after the Wildland Fire Episode, Aerosol and
616 Air Quality Research, In Press (http://aaqr.org/ArticlesInPress/AAQR-15-01-SISEASIA-0011_proof.pdf).

618 26. Pongpiachan, S., Tipmanee, D., Deelaman, W., Muprasit, J., Feldens, P., and Schwarzer,
619 K., 2013. Risk assessment of the presence of polycyclic aromatic hydrocarbons (PAHs) in
620 coastal areas of Thailand affected by the 2004 tsunami. *Mar Pollut Bullet.*, **76**, 370-378.

621 27. Cao, J.J., Lee, S.C., Chow, J.C., et al. 2007. Spatial and seasonal distributions of
622 carbonaceous aerosols over China. *J. Geophys. Res.*, **112**, D22S11, doi:
623 10.1029/2006JD008205.

624 28. Y. M. Han, J. Marlon, J. J. Cao, Z. D. Jin, Z. S. An, Holocene linkages between char, soot,
625 biomass burning and climate from Lake Daihai, China. *Global Biogeochem. Cycles* **26**,
626 doi:10.1029/2012GB004413 (2012).

627 29. Y. M. Han *et al.*, Climate and Fuel Controls on North American Paleofires: Smoldering to
628 Flaming in the Late-glacial-Holocene Transition. *Scientific Reports* **6**, 20719 (2016).

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Chapter-III

648

Results & Discussion

649

650

Effects of Agricultural Waste Burning on PM_{2.5}-Bound

651

Polycyclic Aromatic Hydrocarbons, Carbonaceous

652

Compositions, and Water-Soluble Ionic Species in the

653

Ambient Air of Chiang-Mai, Thailand

654

ABSTRACT

655

656 PM_{2.5} is widely regarded as a major air pollutant due to its adverse health impacts and
657 intimate relationship with the climate system. This study aims to characterize the chemical
658 components (e.g., organic carbon (OC), elemental carbon (EC), water soluble ionic species (WSIS)
659 and polycyclic aromatic hydrocarbons (PAHs)) in PM_{2.5} collected at Doi-Inthanon in Chiang-Mai,
660 Thailand, the highest mountain in Thailand. All samples ($n=50$) were collected by MiniVolTM
661 portable air samplers from March 2017 to March 2018. The OC/EC ratio from this study was
662 6.8 ± 3.0 , and the decreasing order of the WSIS concentrations was $\text{SO}_4^{2-} > \text{Na}^+ > \text{Ca}^{2+} > \text{NH}_4^+ > \text{NO}_3^-$
663 $> \text{K}^+ > \text{Cl}^- > \text{NO}_2^- > \text{Mg}^{2+} > \text{F}^-$. The concentration of total PAHs was $2,360 \pm 2,154 \text{ pg m}^{-3}$. Principal
664 component analysis (PCA) highlights the importance of vehicular exhaust, biomass burning, diesel
665 emissions, sea-salt aerosols and volatilization from fertilizers as the five dominant potential
666 sources that accounted for 51.6%, 16.2%, 10.6%, 5.20% and 3.70% of the total, respectively. The
667 rest of the 12.7% variance probably is associated with unidentified local and regional sources such
668 as incinerators, joss paper/incense burning, and domestic cooking. Interestingly, the results from
669 the source estimations from the PCA underlined the importance of vehicular exhaust as the major
670 contributor to the PM_{2.5} concentrations in the ambient air of Chiang-Mai. However, it is crucial to
671 emphasize that the impacts of agricultural waste burning, fossil fuel combustion, coal combustion

672 and forest fires on the variations of OC, EC and WSIS contents were not negligible. This study not
673 only enhances the knowledge of aerosol chemical characterizations but also provides information
674 for health risk assessments of inhalation exposure to PAHs in the context of the local inhabitants
675 of northern Thailand.

676 **Keywords:** PM_{2.5}, PAHs, Carbonaceous Compositions, Water Soluble Ionic Species, Biomass
677 Burning

678

679 **3.1 INTRODUCTION**

680 Particulate matter (PM) or aerosols are defined as very small diameter solids or liquids that remain
681 suspended in the atmosphere (Cooper, 2002), and they are a significant worldwide environmental
682 issue, are well known as public health and climate hazards (Harrison and Yin, 2000; Metzger et
683 al., 2004; Dai et al., 2013; Pani et al., 2016a, 2016b; Tsay et al., 2016; Chen et al., 2017; Pani et
684 al., 2018) and cause visibility degradation (Tao et al., 2009). Over the past decades, international
685 attention has been paid to fine particles discharged as a consequence of open biomass burning.
686 Agricultural waste burning has usually operated to clean land before the next crop cycle
687 (Pongpiachan et al., 2017). Biomass burning (BB) is reported almost every year with varying
688 intensities during the dry season in northern Thailand and in neighbouring countries, such as
689 Myanmar, Laos, Cambodia and Vietnam, due to agricultural waste burning (Tsay et al., 2016;
690 Pongpiachan et al., 2017; Pani et al., 2018), and emits substantial amounts of PM_{2.5} and trace
691 gaseous species into the atmosphere (Chantara et al., 2012; Wiriya et al., 2013; Tsay et al., 2016;
692 Pani et al., 2018; Punsompong and Chantara, 2018; Thepnuan et al., 2019). BB emits substantial
693 amounts of trace gaseous species and PM into the atmosphere (Jian and Fu, 2014) and its

694 contribution to carbonaceous aerosols at urban sites (Fine et al., 2001; Lanz et al., 2008) has been
695 identified to be significant.

696 BB emissions contain significant amounts of water-soluble ionic species (WSIS), such as NH_4^+ ,
697 K^+ , and NO_3^- (Ryu et al., 2007; Mkoma et al., 2013; Lee et al., 2016; Khamkaew et al., 2016; Pani
698 et al., 2018). Chemical analyses of smoke aerosols during forest fires have shown that potassium
699 (K^+) and ammonium ions (NH_4^+) are the dominant cations and that sulphate ions (SO_4^{2-}) are the
700 most abundant anions (Pio et al., 2008). It is also crucial to highlight that biomass burning is the
701 major source of OC, EC, NO_3^- , NH_4^+ , SO_4^{2-} and K^+ (Niemi et al., 2004). Multiple studies have
702 confirmed the role of K^+ as a biosmoke tracer (Duan et al., 2004; Zhang et al., 2010; Lee et al.,
703 2011; Cheng et al., 2013).

704 In recent years, scientists around the world have paid more attention to carbonaceous particulates
705 because they influence global warming, cloud microphysics (Seinfeld and Pandis, 1998; Lyamani
706 et al., 2006), global climate change (Hitzenberger et al., 1999; Dan et al., 2004) and have adverse
707 effects on human health (Na et al., 2004). Moreover, cardiovascular mortality and morbidity rates
708 are associated with increased levels of urban carbonaceous particulate matter (Ito et al., 2011).
709 Furthermore, several organic compounds such as PAHs and PCBs are found in OC mixtures,
710 which possess carcinogenic and mutagenic effects (WHO, 2013). Currently, most studies have
711 highlighted the behaviour of particulate PAHs in tropical countries and in northern Thailand
712 (Bourotte et al., 2005; Boonyatumanond et al., 2007; Vasconcellos et al., 2010; Pongpiachan,
713 2013a,b, 2015; Pongpiachan et al., 2013a,b, Pongpiachan et al., 2015a). Despite countless
714 measurements of PAH compositions in coarse and fine particles around the world, there is
715 inadequate information focusing on the characterization of particulate PAHs in tropical
716 atmospheres. Most studies have targeted estimations of source apportionment (Wan et al., 2006;

717 Gupta et al., 2011; Dvorská et al., 2012; Hu et al., 2012; Pongpiachan et al., 2009). Unfortunately,
718 there is limited information associated with PM_{2.5}-bound OC, EC, WSIS and PAHs in northern
719 Thailand.

720 Chiang-Mai is the third-largest province in Thailand, covering an area of 20,107 square kilometres.
721 It is the second-largest province in the country in terms of population and also attracts many
722 millions of visitors each year. Due to its mountainous geographical features, Chiang-Mai has
723 suffered from poor air quality, especially during the dry season, for decades. Previous studies have
724 indicated that biomass burning, vehicular emissions, industrial emissions, and anthropogenic
725 activities are the main contributors for air pollutants (Tsai et al., 2013; Janta and Chantara, 2017;
726 Pani et al., 2018; Thepnuan et al., 2019). The understanding of atmospheric aerosol compositions
727 and their major sources is undoubtedly essential for reducing ambient PM levels and improving
728 air quality. This study was carried out to evaluate the emission sources and chemical characteristics
729 of the OC, EC, WSIS and PAHs components in PM_{2.5}. Overall, the main objectives of this study
730 are to (i) characterize the chemical compounds (e.g. OC, EC, OC/EC, WSIS, and PAHs) from
731 PM_{2.5} samples collected in Chiang-Mai; (ii) statistically analyse the chemical composition of PM_{2.5}
732 and its relationships to source identification; and (iii) perform source apportionment of the
733 chemical composition of PM_{2.5} using hierarchical cluster (HCA) and principal component analysis
734 (PCA).

735

736 **3.2. MATERIALS & METHODS**

737 **3.2.1. Sampling site**

738 The air quality observatory site is located at the National Astronomical Research Institute
739 of Thailand (NARIT) at the summit of Doi-Inthanon, Chiang-Mai province (see Fig. 3.1). It is

740 important to mention that Doi-Inthanon is the highest mountain in Thailand. The sampling location
741 is at 18°54'40.5"N and 99°13'01.4"E. Chiang-Mai is the third-largest province in Thailand,
742 covering an area of 20,107 square kilometres. It is the second-largest in the country in terms of
743 population, with 1,746,840 people currently residing in Chiang-Mai. The city is a popular
744 destination among travellers. Chiang-Mai has relatively cool weather throughout the year. There
745 has been an increasing number of articles related to air quality in northern Thailand (Wiwatanaadate
746 and Liwsrisakun, 2011; Pongpiachan S, 2013b). These can be correlated with the PM_{2.5} levels,
747 which are caused by large-scale 'hot spot' locations. The pollutant sources can be identified, for
748 example, pollutants from forest fires, burning of agriculture waste, and trans-boundary haze
749 pollution.

Figure 3.1. Map of the Air Quality Observatory Sites in this Study

750
751
752

753 All samples ($n=50$) were collected on quartz-fibre filters using MiniVolTM portable air samplers
754 (Airmetrics) through 47 mm filters at flow rates of 5 L min^{-1} . All samples were collected over a
755 period of 72 h, and then, sample collections were halted for 24 h and were then followed by another
756 collection session of 72 h; this pattern was repeated throughout the study period. After the sample
757 collections, the filters were carefully kept in Petri slide dishes that were individually wrapped in
758 aluminium foil to avoid any loss from photodegradation and were stored in a freezer at 4°C to
759 maintain their chemical stability until subsequent analysis. The quartz-fibre filter samples were
760 divided into two segments. One of the filters was analysed for OC/EC, and the other one was
761 analysed for PAHs and WSIS. This monitoring campaign was conducted from March 2017 to
762 March 2018.

763

764 **3.2.2. Carbonaceous aerosol analyses: Thermal analysis protocols**

765 The carbonaceous aerosol components, OC and EC, were quantified using a Desert
766 Research Institute (DRI) Model 2001 carbon analyser (Atmoslytic Inc., Calabasas, CA, USA). The
767 IMPROVE_A thermal/optical reflectance (TOR) protocol was used for the analyses (Chow et al.,
768 2007a). The thermal/optical carbon analyser bases its analysis on the oxidation of organic carbon
769 (OC) compounds and of elemental carbon (EC) at different temperatures.

770 Carbonate carbon is determined by estimating the CO_2 acidification from organic sample that
771 punches before the normal carbon analysis procedure. This protocol uses seven temperature
772 programmes for seven different fractions. The temperature protocol is applied for separating OC
773 and EC. It is the same as that for the TOR and TOT burning correction. This protocol includes
774 total OC, total EC, and total carbon, which are monitored by both reflectance (OPR) and

775 transmittance (OPT). This protocol is dependent on the thermal/optical analysis that is applied for
776 quantification of the thermally derived sub-fractions of OC and EC.

777 Thermal analysis using heat (thermal/optical carbon analyser) follows the IMPROVE
778 protocol (Interagency Monitoring of Protected Visual Environments) using the thermal/optical
779 reflectance (TOR) method. There are eight types of carbonaceous compounds that are
780 differentiated by their combustion temperatures, namely, OC1, OC2, OC3, OC4, EC1, EC2, EC3
781 and OP. Total OC was defined as the sum of four OC fractions (OC1-OC4) plus OP, whereas the
782 total EC was technically defined as the sum of three EC fractions (EC1-EC3) minus OP. In this
783 study, TD-GC/MS was employed for both qualitative and quantitative analyses of PAHs. Injection
784 port thermal desorption (TD), coupled with gas chromatography/mass spectrometry (GC/MS), was
785 applied to quantify the non-polar organic compounds in the PM_{2.5} samples. The details of the
786 analytical procedures have been provided in previous publications and will not be further
787 mentioned here (Ho and Yu, 2004; Chow et al., 2007b; Ho et al., 2008).

788

789 **3.2.3. Statistical analysis**

790 Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used for the
791 classification and source apportionments of OC, EC, WSIS and PAHs using the Statistical Package
792 for Social Sciences (SPSS) version 13 software. Data preprocessing consisted first of subjecting
793 all data to a logarithmic transformation. This technique is the most common approach for
794 transforming environmental data, as it is robust for non-normal data distributions (Field et al.,
795 1982). PCA enables multivariate data reduction by transforming the data into orthogonal
796 components that are linear combinations of the original variables. Therefore, PCA reduces
797 multidimensional data to fewer dimensions. Hence, this method is used to identify trends and

798 clusters within the data. In addition, the correlation coefficients of OC, EC and WSIS are regularly
799 used to identify the relationships between aerosol components (Kocak et al., 2004 and Hegde et
800 al., 2007) and are used in this study to observe these relationships and to identify the sources of
801 OC, EC and WSIS.

802

803 **3.3. RESULTS & DISCUSSION**

804 **3.3.1. Mass concentrations of carbonaceous compounds (OC and EC)**

805 The average mass concentrations of atmospheric PM_{2.5} and its carbonaceous chemical components
806 (OC and EC) in Chiang-Mai were collected from March 2017 to March 2018. The concentrations
807 of the average compositions of each carbon fraction relative to the total carbon (TC), OC and EC
808 levels in Chiang-Mai are summarized in Table 3.1. The average concentrations of the
809 carbonaceous chemical components are 9.98±8.00, 8.38±6.41, 1.60±1.65, 0.10±0.08, 1.26±1.02,
810 3.60±2.54, 2.57±2.49, 2.28±1.95, 0.16±0.07 and 0.02±0.05 $\mu\text{g m}^{-3}$ for TC, OC, EC, OC1, OC2,
811 OC3, OC4, EC1, EC2 and EC3, respectively.

812 **Table 3.1. Summary of the concentrations of TC, OC and EC in Chiang-Mai, Thailand**

Species	Unit	Mean ± SD (n=50)	Minimum	Maximum
TC	$\mu\text{g m}^{-3}$	9.98±8.00	0.74	32.81
OC	$\mu\text{g m}^{-3}$	8.38±6.41	0.67	26.82
EC	$\mu\text{g m}^{-3}$	1.60±1.65	0.07	7.26
OC1	$\mu\text{g m}^{-3}$	0.10±0.08	0.00	0.30
OC2	$\mu\text{g m}^{-3}$	1.26±1.02	0.16	4.69
OC3	$\mu\text{g m}^{-3}$	3.60±2.54	0.40	11.37
OC4	$\mu\text{g m}^{-3}$	2.57±2.49	0.08	10.46
EC1	$\mu\text{g m}^{-3}$	2.28±1.95	0.01	7.10
EC2	$\mu\text{g m}^{-3}$	0.16±0.07	0.05	0.34

EC3	$\mu\text{g m}^{-3}$	0.02±0.05	0.00	0.24
-----	----------------------	-----------	------	------

813

814 In Chiang-Mai, Pani et al (2019) presented the concentrations of carbonaceous compounds in
 815 PM_{2.5} at Doi Ang Khang (DAK) and at Chiang Mai University (CMU) during the dry season of
 816 2015. The TC mass concentrations were 54.9 ± 15.8 and $56.0 \pm 22.4 \mu\text{g m}^{-3}$ at DAK and at CMU,
 817 respectively. The percentage contributions from OC were 87% and 83% at DAK and CMU,
 818 respectively. In addition, the percentage contribution of OC obtained from this study was 84%.
 819 This result is consistent with previous studies indicating that BB might have been the principal
 820 source of carbonaceous substances (Khamkaew et al., 2016; Pani et al., 2018; Thepnuan et al.,
 821 2019). In contrast, the EC fractions were regarded as being relatively lower than the OC fractions.
 822 Since EC has a chemical structure similar to impure graphite, it appears reasonable to assume that
 823 vehicle exhaust is the major source of EC. As a consequence, the most important sources of EC
 824 are fossil fuel combustion and biomass burning (Gelencsér, 2004).

825 OC can either be directly emitted into the atmosphere from the incomplete combustion of organic
 826 compounds or can form by the condensation of compounds produced by atmospheric
 827 photooxidation and polymerization of organic species (Jimenez et al., 2008), including thousands
 828 of organic compounds (e.g., aromatic compounds, carboxylic compounds with polar substituents
 829 and aliphatic compounds) with a variety of physical and chemical properties. OC may be emitted
 830 directly from sources such as industrial processes and by natural occurrences (e.g. primary OC) or
 831 can form in the atmosphere due to gas-to-particle conversion of semi- and low-volatility organic
 832 compounds (e.g., secondary OC). Quantification of the contributions of primary and secondary
 833 organic carbon is quite difficult to determine through direct chemical analysis, since OC contains
 834 a complex mixture of many compounds. Particles containing OC might show a significant risk to
 835 human health, as well (Mauderly and Chow, 2008). The carbonaceous compounds or total carbon

836 (TC) in the atmosphere represent one of the main components of the total mass of suspended fine
837 particles. They are composed of organic carbon (OC) with a contribution of 70–80% (Seinfeld and
838 Pandis, 2006).

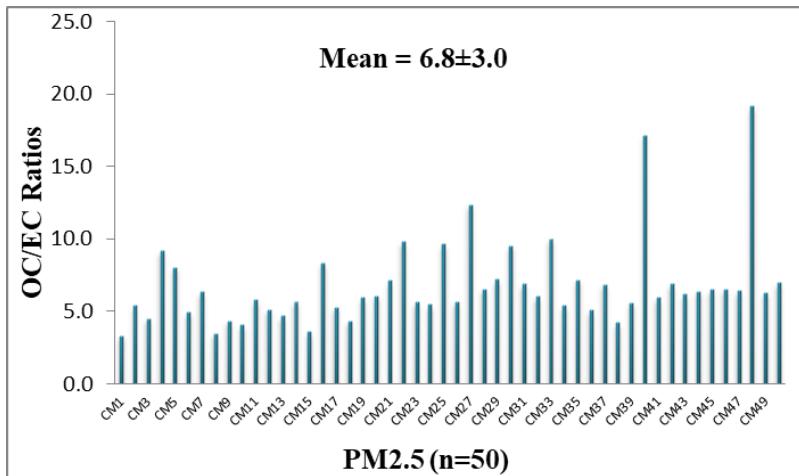
839 In the case of four OC fractions, OC3 was the most abundant ($3.60\pm2.54 \mu\text{g m}^{-3}$), followed
840 by OC4 ($2.57\pm2.49 \mu\text{g m}^{-3}$), OC2 ($1.26\pm1.02 \mu\text{g m}^{-3}$) and OC1 ($0.10\pm0.08 \mu\text{g m}^{-3}$). Additionally,
841 EC1 was the major fraction ($2.28\pm1.95 \mu\text{g m}^{-3}$) in the EC. Chuang et al (2013b) reported that OC3
842 can be used as a biomass burning tracer adjacent to emission sources, while OC2 is the most
843 abundant fraction of OC released from coal combustion (Chow et al., 2004) and motor vehicle
844 exhaust (Cheng et al., 2015). Biomass burning combustion sources are considered to be the greatest
845 contributors to primary carbonaceous particle levels in the atmosphere (Zheng et al., 2005; Cao et
846 al., 2005; Cheng et al., 2013; Chen et al., 2017) and many studies have used their fractions for
847 source apportionment of biomass burning (Chow et al., 2004; Cao et al., 2005; Han et al., 2007,
848 2009b, 2010).

849

850 **3.3.2. The OC/EC ratios, Atmospheric Concentrations of Water-Soluble Ionic Species
851 (WSIS) and PAHs in PM_{2.5}.**

852 **3.3.2.1. OC/EC ratios**

853 The ratio of OC to EC (OC/EC) is often used to obtain information on emission sources
854 (Chow et al., 2004; Dan et al., 2004; Cao et al., 2005; Han et al., 2007, 2009). **Table 3.2** shows the
855 literature values of particulate OC/EC ratios reported for different emission sources. The average
856 OC/EC ratio from this study was 6.8 ± 3.0 (Table 2).


857 **Table 3.2.** The binary ratios of OC to EC for different emission sources.

Emission source	EC	OC	OC/EC ratio	References
Ambient PM _{2.5} ^a	2.1 ± 1.0	10.8 ± 4.9	5.2 ± 2.7	Kwangsam Na et al., 2004

Light-duty gasoline vehicles ^a	22.6	50.1	2.20	Hildemann et al., 1991
Light-duty gasoline vehicles ^b	13.5±8.02	30.1±12.3	2.20	Watson et al., 1994
Heavy-duty diesel vehicles ^a	40.5	32.6	0.80	Hildemann et al., 1991
Tunnels ^c	25.5±4.90	19.2±8.46	0.76	Gillies et al., 2001
Tunnels ^b	16.9	16.8	N.A.	Pant et al., 2016
Paved road dust ^b	1.12±0.30	14.7±2.00	13.1	Watson et al., 1994
Residential wood combustion ^b	12.3±4.20	51.3±11.7	4.15	Watson et al., 2001
Meat charbroiling ^a	0.0±0.5	33.8±2.0	N.A.	Schauer et al., 1999
Natural gas home appliances ^a	6.70	84.9	12.7	Hildemann et al., 1991
Forest fires ^a	3.23±1.80	46.8±15.6	14.51	Watson et al., 2001
Ambient PM2.5 ^b	1.60±1.65	8.38±6.41	6.8±3.0	This study

858

859 Note: N.A.=not applicable.

860 ^aMass % of fine particle mass.861 ^bMass concentration.862 ^cmg per vehicle-kilometre.

863

Figure 3.2. Temporal variations in the OC/EC ratios for 50 samples from Chiang-Mai from March 2017 to March 2018

864 OC/EC ratios can be used to classify the main sources of air pollutants (Wang et al., 2015).

865 Some studies have reported that OC/EC ratios greater than two indicate SOC formation (Chow et

866 al., 1996; Chow et al., 2004). Table 3.3 shows that the OC/EC ratios from both vehicle exhaust

867 and biomass burning range from 4.0 to 60 (Pio et al., 2008; Zhang., 2008, Chuang et al., 2013;

870 Chuang et al., 2014; Chuang et al., 2016; Ferek et al., 1998; Lee et al., 2016; Andreae and Merlet,
871 2001; Cachier et al., 1989; Masurek et al., 1991; Ward et al., 1992; Cao et al., 2005), the ratios for
872 motor vehicles (diesel and gasoline) range from 0.02 to 4.0 (Dallmann et al., 2014; Kwangsam Na
873 et al., 2004; Turpin and Huntzicker, 1995; Schauer et al., 2001; Kirchstetter et al., 2001,2004;
874 Cadle et al., 1999), the ratios for fossil fuel combustion range from 1.1 to 4.1 (Watson et al., 2001;
875 Koch, 2001; Cao et al., 2005), the ratios for coal combustion range from 2.7 to 12.0 (Watson et
876 al., 2001 and Cao et al., 2005), the ratios for forest fires show a range of 14.51- 16.0 (Watson et
877 al., 2001), the ratios secondary organic carbon show a range of 3.3-33 (Saarikoski et al., 2008;
878 Boreddy et al., 2018b), the ratios for long-range transport show a range of 3.01-12 (Pani et al.,
879 2017; Saarikoski et al., 2008) and cooking emissions ratios show a range of 4.3–7.7 (See and
880 Balasubramanian, 2008). It is important to emphasize that the PM_{2.5}-bound OC/EC ratios collected
881 during the dry season at Doi Ang Khang and at Chiang Mai University were 6.8±0.6 and 5.2±1.3,
882 respectively (Pani et al., 2019). As a consequence, the OC/EC ratio obtained from this study (e.g.,
883 6.8±3.0) is surprisingly consistent with the results of Pani et al (2019), thus emphasizing that
884 biomass burning is the major source of carbonaceous compounds in this region.

885

886

887

888

889

890

891

892

893 **Table 3.3** The literature values of the OC to EC (OC/EC) ratios for different emission sources

Emission sources	OC/EC	References
	5.1	Pio et al., 2008
	4.0-8.0	Zhang., 2007
	5.7	Chuang et al., 2013
	6.7	Ferek et al., 1998
	6.8	Lee et al., 2016
Biomass burning	5-8	Andreae and Merlet., 2001
	9	Cachier et al., 1989
	10	Mazurek et al., 1991
	12	Ward et al., 1992
	12.3	Cao et al., 2005
	16.7	Ward et al., 1992
	60.3	Cao et al., 2005
	1.1	Watson et al., 2001
Fossil fuel combustion	4	Koch., 2001
	4.1	Cao et al., 2005
Coal combustion	2.7	Watson et al., 2001
	3.0 and 12.0	Cao et al., 2005
Forest fires	~ 16.0	Watson et al., 2001
	14.51	Watson et al., 2001
	0.06	Dallmann et al., 2014
	0.8	Kwangsam Na et al., 2004
	0.3	Turpin and Huntzicker., 1995
	0.8	Hildemann et al., 1991
Vehicle exhaust	0.02	Dallmann et al., 2014
	1.0-4.0	Schauer et al., 1999,2002
	0.9	Kirchstetter et al., 2004
	2.2	Kwangsam Na et al., 2004
	2.05-2.36	Cadle et al., 1999
Secondary organic carbon	3.3	Saarikoski et al., 2008
	21-33	Boreddy et al., 2018b
Long-range transport	3.01 and 3.58	Pani et al., 2017
	12	Saarikoski et al., 2008
Traffic	0.7	Saarikoski et al., 2008
Cooking emissions	4.3-7.7	See and Balasubramanian., 2008

894

895

896

897

898 **3.3.2.2. Secondary Organic Carbon (SOC) Contributions**

899 Carbonaceous aerosols with OC/EC values greater than two can be considered to contain
900 significant quantities of SOC (Chow et al., 1996; Gray et al., 1986). According to Castro et al.
901 (1999), the SOC contribution can be estimated by calculating the minimum values of the OC/EC
902 ratios in all samples. The SOC was computed from equation 1:

903
$$\text{SOC} = \text{OC}_{\text{total}} - \text{EC} \times (\text{OC/EC})_{\text{min}}$$

904 **Equation 1**

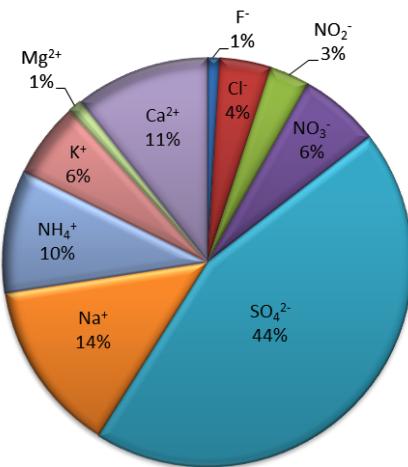
905 where SOC is the secondary OC, OC_{total} denotes the total OC, and $(\text{OC/EC})_{\text{min}}$ is the average of
906 the three minimum OC/EC ratios. Ji et al. (2016) described the formation and influencing factors
907 of SOC, which show that photochemical oxidation and atmospheric temperatures play important
908 roles in the formation of SOCs. SOCs are distributed in a particle phase after the oxidation of
909 volatile organic carbon (VOC) by active radicals in the atmosphere (Li et al., 2018). Chemical
910 reactions involving gas–particle conversion occur during long-distance transport of aerosol
911 particles (Zhang et al., 2012).

912 In this study, there was a high correlation between OC-EC and K^+ . Normally, OC, EC and
913 K^+ are generated from biomass burning and from in $\text{PM}_{2.5}$. It is crucial to note that the high OC/EC
914 ratios (6.8 ± 3.0), coupled with the high SOC contents ($8.12 \pm 0.26 \mu\text{g m}^{-3}$) detected at Chiang-Mai,
915 highlight the dominant effects of biomass/agricultural waste burning in northern Thailand. These
916 findings are consistent with the comparatively high SO_4^{2-} , NH_4^+ , K^+ levels observed at Chiang-
917 Mai. Strong positive correlations of OC vs. K^+ ($r=0.95$) and EC vs. K^+ ($r=0.90$) were also detected
918 (see Fig. 3.4). BB is another possible means for forming SOC (Mancilla et al., 2015) and it has
919 been common in Chiang-Mai to burn biomass for farming preparation.

920

921 **3.3.2.3. Water Soluble Ionic Species (WSIS)**

922 WSIS dominate major portions of atmospheric particles (Harrison et al., 2004; Querol et al., 2001)
923 and they may be harmful to human health as they can easily enter human lungs and trigger
924 respiratory diseases (Adamson, 1999). For this particular reason, chemical characterizations of
925 WSIS have been conducted worldwide by many researchers using various types of analytical
926 techniques (Morales et al., 1998; Wang and Shooter, 2001; Lin, 2002; Chandra Mouli, et al., 2003).
927 Most of these studies have investigated the major ions, such as NH_4^+ , Ca^{2+} , K^+ , Na^+ , Mg^{2+} , Cl^- ,
928 NO_3^- , and SO_4^{2-} . It is well known that BB emissions are responsible for relatively large amounts
929 of WSIS in atmospheric particles (Chuang et al., 2013; Lee et al., 2016; Pani et al., 2018). Since
930 BB releases great amounts of carbonaceous aerosols, coupled with WSIS, into the atmosphere
931 (Cao et al., 2005; Lee et al., 2011; Chuang et al., 2013; Mkoma et al., 2013), the assessment of
932 WSIS, OC, and EC can provide valuable information regarding their formation, characteristics,
933 and potential emission sources.


934

935 As previously mentioned, the most dominant species in this study was SO_4^{2-} , which mainly
936 converts SO_2 gaseous precursors into particles. **Fig. 3.3** presents the concentrations of ten WSIS
937 species in $\text{PM}_{2.5}$. The results showed that SO_4^{2-} , Na^+ , Ca^{2+} , NH_4^+ , NO_3^- , K^+ , Cl^- , NO_2^- , Mg^{2+} and
938 F^- were the dominant WSIS species, which accounted for 44%, 14%, 11%, 10%, 6%, 6%, 4%, 3%,
939 1% and 1% of the total mass of ions, respectively. Secondary inorganic aerosols (SIA), including
940 SO_4^{2-} , NH_4^+ , and NO_3^- , were the major ions found in this study. This finding suggests that SIA are
941 mainly present in fine particles, which is in good agreement with previous studies (Kong et al.,
942 2010; Long et al., 2014; Pani, et al., 2019). It is also crucial to note that Na^+ , Ca^{2+} , Mg^{2+} and F^-

943 can be used as geochemical tracers representing maritime aerosols (Chan et al. 1997; Wang and
944 Shooter, 2001).

945

Percentage contributions of WSIS collected from Chiang-Mai.

946
947
948

Figure 3.3. Percentage contributions of WSIS collected from Chiang-Mai

949 For this study, the individual WSIS concentrations of the $\text{PM}_{2.5}$ samples in Chiang-Mai during
950 March 2017 to March 2018 were in a decreasing order of $\text{SO}_4^{2-} > \text{Na}^+ > \text{Ca}^{2+} > \text{NH}_4^+ > \text{NO}_3^- > \text{K}^+ > \text{Cl}^-$
951 $> \text{NO}_2^- > \text{Mg}^{2+} > \text{F}^-$. These data indicate that traffic (e.g., SO_4^{2-}) and long-range atmospheric transport
952 of maritime aerosols (e.g., Na^+) are the two major contributors to WSIS in $\text{PM}_{2.5}$. SO_4^{2-} , and NO_3^-
953 and NH_4^+ mainly form in the atmosphere by gas-to-particle conversion from their precursor gases
954 (e.g., SO_2 , NO_x and NH_3). Although the major source of NO_x is traffic emissions, in particular,
955 incomplete combustion of fossil fuels from diesel engines and cement kiln manufacturing can be
956 another major source of NO_x emissions (Mousavi et al., 2014). Kalaboukas et al. (1999) and Yao
957 et al. (2016) reported that SO_4^{2-} is normally created mainly from fossil fuel combustion by the
958 photochemical formation of SO_2 from traffic and industrial activity. In contrast, Pengchai et al.
959 (2009) indicated that vehicle exhaust and biomass burning were two major sources of SO_4^{2-} in the

960 ambient air of northern Thailand. Consequently, it seems reasonable to conclude that the PM_{2.5}-
 961 bound SO₄²⁻ obtained in this study could be derived from mixed sources between biomass burning
 962 and fossil fuel combustion.

963 **3.3.2.4. Pearson correlation analysis of OC-EC and WSIS**

964 The Pearson correlations of OC, EC and WSIS in PM_{2.5} were investigated and the results
 965 are shown in Fig 3.4. The OC concentrations were strongly correlated with EC ($r=0.95$). The SO₄²⁻
 966 concentrations were greatly correlated with NH₄⁺ ($r=0.91$). The K⁺ concentrations were positively
 967 correlated with OC ($r=0.95$) and EC ($r=0.89$). Pani et al (2019) reported that strong correlations
 968 were also found between SO₄²⁻ and NH₄⁺ ($r=0.95$) from studies in Chiang-Mai during the dry
 969 period. The result of this study also demonstrated the similar patterns observed in previous
 970 investigations conducted in Chiang-Mai province.

	OC	EC	F	Cl ⁻	NO ₂ ⁻	NO ₃ ⁻	SO ₄ ²⁻	Na ⁺	NH ₄ ⁺	K ⁺	Mg ²⁺
EC	.953**										
F	.630**	.621**									
Cl ⁻	-0.261	-.291*	-0.034								
NO ₂ ⁻	-.297*	-.288*	-0.099	0.216							
NO ₃ ⁻	.685**	.639**	.615**	-0.016	0						
SO ₄ ²⁻	.656**	.584**	.307*	-0.259	-0.183	.536**					
Na ⁺	.689**	.618**	.611**	0.085	-0.014	.606**	.606**				
NH ₄ ⁺	.608**	.515**	0.256	-0.219	-0.047	.612**	.909**	.531**			
K ⁺	.952**	.897**	.534**	-0.278	-0.209	.717**	.785**	.706**	.769**		
Mg ²⁺	.317*	0.26	0.222	.429**	0.261	.563**	.339*	.603**	.448**	.406**	
Ca ²⁺	.721**	.679**	.439**	0.024	-0.044	.549**	.537**	.634**	.460**	.693**	.532**

971 **Bold:** R > 0.7

972 **Figure 3.4. Pearson correlation analysis of OC, EC and WSIS in PM_{2.5}**

973

974 **3.3.2.5. Concentrations of PAHs**

975 The concentrations of PAHs are summarized in Table 3.4 for the concentrations of \sum PAHs (e.g.,
 976 the sum of 19 PAH contents) for the annual averages, the standard deviations (SD) and the ranges
 977 for 19 PAHs examined in this study. The concentration of total PAHs was $2,360 \pm 2,154 \text{ pg m}^{-3}$.
 978 The values in this study were lower than those measured in other areas such as Beijing and

979 Guangzhou, which are often known as heavily polluted areas in China (Zhou et al., 2012; Wang
980 et al., 2016).

981

982 **Table 3.4. Summary of PAHs concentrations in Chiang-Mai, Thailand**

PAHs (pg m ⁻³)	Mean	S.D.	Min.	Max.
Ace	39.6	41.8	5.2	225
Fl	32.4	37.8	7.6	219
Phe	125	199	21.7	1038
Ant	19.9	22.3	6.0	121
Fluo	53.8	46.0	8.2	205
Pyr	54.2	47.8	5.9	183
B[a]A	122	91.8	18.8	470
Chry	51.6	48.9	2.2	180
B[b]F	176	167	5.8	732
B[k]F	203	202	1.3	929
B[a]F	27.6	26.4	1.7	117
B[e]P	96.0	84.4	4.8	381
B[a]P	169	167	8.8	703
Per	19.2	17.1	1.3	76.6
Ind	467	380	3.8	1712
B[g,h,i]P	398	321	4.4	1403
D[a,h]A	103	86.5	1.5	405
Cor	144	108	1.2	467
D[a,e]P	54.8	55.5	0.7	273
ΣPAHs*	2360	2154		

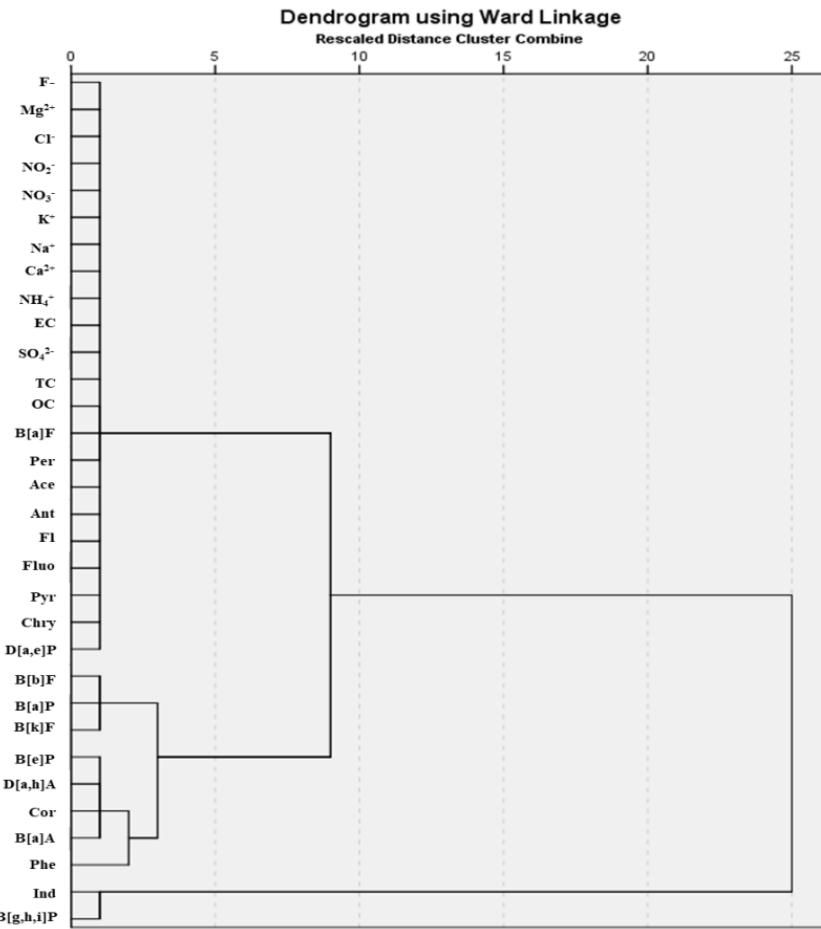
983 *Note that ΣPAHs is the sum of Ace, Fl, Phe, Ant, Fluo, Pyr, B[a]A, Chry, B[b]F, B[k]F, B[a]F,
984 B[e]P, B[a]P, Per, Ind, B[g,h,i]P, D[a,h]A, Cor, and D[a,e]P.
985

986 Over the past few decades, numerous studies concerned with source identifications, quantitative
987 source apportionments, and ecological risk assessments of PAHs in the ambient air of Thailand
988 have conducted intensive investigations (Pongpiachan, 2013a,b, 2014, 2015 a,b). In the northern
989 part of Thailand, agricultural waste and biomass burning during cold periods have released large
990 amounts of particulate matter, especially ultra-fine particles, including PM_{2.5}-bound PAHs, into
991 the atmosphere. There are a number of recent studies that use PAHs data to obtain inferences of
992 particulate pollution sources (Yunker et al., 2002; Marchand et al., 2004; Bourette et al., 2005;

993 Akyuz and Cabuk, 2008). Nine of the 16 USEPA priority PAHs are related to combustion
994 processes such as those of coal, petroleum and diesel. These PAHs are known as combustion PAHs
995 (CPAH), namely, Flu, Pry, B[a]A, Chry, B[b]F, B[k]F, B[a]P, B[g,h,i]P and Ind (Ravindra et al.,
996 2008). The ratios of the concentrations of these CPAHs have been used in many studies to identify
997 potential sources of PAHs in aerosols (Manoli et al., 2004). In this study, relatively high
998 abundances of Ind and B[g,h,i]P were detected, indicating that traffic emissions, petroleum
999 combustion and industrial waste burning can be considered as the emission sources of PAHs for
1000 the ambient air of Chiang-Mai (Zhou et al., 1999; Ravindra et al. 2008).

1001

1002 **3.3.3. Source identification and pattern recognition**


1003 To identify the potential sources of the OC, EC, WSIS and PAHs, two multivariate statistical
1004 analyses are introduced in this section. In section 3.2.4, the relatively high correlation coefficients
1005 of $K^+ vs. OC$ and $K^+ vs. EC$ indicate that biomass burning is the main contributor to carbonaceous
1006 aerosols. Furthermore, the relatively high abundance of Ind and B[g,h,i]P suggests that motor
1007 vehicle exhaust can be considered as one of the major emission sources of PAHs in this region. In
1008 this section, source identification, coupled with quantitative source apportionment of targeted
1009 chemical species, is investigated by using two multivariate statistical analyses, namely,
1010 hierarchical cluster analysis (HCA) and principal component analysis (PCA).

1011

1012 **3.3.3.1. Classification of Chemical Compounds by Hierarchical Cluster Analysis (HCA)**

1013 HCA was performed to identify the homogeneous groups of carbonaceous aerosol components,
1014 including OC, EC, WSIS and 19 individual PAHs in $PM_{2.5}$. The hierarchical dendrogram is shown
1015 in Fig 3.5. Three major groups of carbonaceous aerosol components were clearly distinguished.

1016 The first group contains F^- , Mg^{2+} , Cl^- , NO_2^- , NO_3^- , K^+ , Na^+ , Ca^{2+} , NH_4^+ , EC, SO_4^{2-} , TC, OC, B[a]F,
1017 Per, Ace, Ant, Fl, Fluo, Pyr, Chry, D[a,e]P, all OCs, EC and WSIS. This indicates that the major
1018 sources are mixtures of biomass burning, fossil fuel, coal combustion, and industrial emissions
1019 (Kong et al., 2010; Long et al., 2014; Pani, et al., 2019). In addition, the pyrogenic sources, namely,
1020 the motor vehicle emissions from both gasoline and diesel emissions and the leakage of used oil
1021 and road dust have been previously identified as the original sources of this group (Dahle et al.,
1022 2003; Fang et al., 2009; Liu et al., 2009). In accordance with previous literature reports, 3–4 ring
1023 PAHs have been found in the road dust in urban cities (Zakaria et al., 2002; Boonyatumanond et
1024 al., 2007). The second group consists of B[b]F, B[a]P, B[k]F, B[e]P, D[a,h]A, Cor, B[a]A and Phe,
1025 which are the high-molecular-weight PAHs with 5–6 rings. This group usually originates from
1026 road-paving asphalt, crude oil, bitumen (Ahrens and Depree, 2010) and road dust (Larsen and
1027 Baker, 2003). The last group consists of Ind and B[g,h,i]P, which are the anthropogenic PAHs
1028 from the use of petroleum products, motor vehicles, oil combustion and industrial waste
1029 incinerators (Zhou et al., 1999; Ravindra et al. 2008).

1030
1031 **Figure 3.5.** Hierarchical Cluster Analysis (HCA) of carbonaceous compounds, water soluble
1032 ionic species and 19 individual PAHs in PM_{2.5} at Chiang-Mai, Thailand.
1033

1034 **3.3.3.2. Source estimations from PCA**

1035 As is widely known, PCA is a multivariate technique. PCA achieves multivariate data reduction
1036 by transforming the data into orthogonal components that are linear combinations of the original
1037 variables. Hence, PCA reduces multidimensional data into fewer dimensions. (Wold et al, 1987).
1038 In this study, the concentrations of OC-EC, WSIS and 19 individual PAHs from 50 samples were
1039 selected as the active variables. The majority of the variance (87.3%) of the scaled data was
1040 explained by five eigenvectors/principal components. The first principal component (PC1)
1041 explains 51.6% of the total variance, while the second principal component (PC2) accounts for

1042 16.2% of the total variance. Interestingly, PC3, PC4, and PC5 describe 10.6%, 5.20%, and 3.70%
 1043 of the total variance, respectively (see Table 3.5).

1044

1045 **Table 3.5.** Rotated Component Matrix^a of carbonaceous compounds, water soluble ionic species
 1046 and 19 individual PAHs in PM_{2.5} at Chiang-Mai, Thailand

Composition s	Principal components (PC)				
	PC1	PC2	PC3	PC4	PC5
TC	.303	.836	.284	-.219	.104
OC	.310	.834	.296	-.205	.115
EC	.265	.812	.227	-.266	.054
F ⁻	.102	.742	.156	-.057	-.395
Cl ⁻	-.186	.002	-.105	.740	-.329
NO ₂ ⁻	.070	-.164	-.195	.656	.078
NO ₃ ⁻	.039	.818	.060	.131	.111
SO ₄ ²⁻	.239	.602	.127	-.100	.643
Na ⁺	.061	.830	.116	.220	.078
NH ₄ ⁺	.161	.606	-.028	-.018	.711
K ⁺	.263	.827	.251	-.145	.340
Mg ²⁺	-.059	.570	-.058	.684	.210
Ca ²⁺	.303	.697	.200	.218	.116
Ace	.118	.204	.944	-.123	-.003
Fl	.092	.060	.817	.013	.283
Phe	.116	.286	.918	-.117	-.103
Ant	.182	.219	.915	-.126	-.090
Fluo	.566	.538	.501	-.143	-.013
Pyr	.673	.543	.350	-.139	-.009
B[a]A	.508	.409	.658	-.204	-.023
Chry	.770	.520	-.004	-.215	.048
B[b]F	.914	.352	.008	-.087	.058
B[k]F	.925	.304	.008	-.063	.070
B[a]F	.946	.288	.007	-.075	.037
B[e]P	.929	.286	.179	-.074	.043
B[a]P	.924	.332	-.075	-.096	.052
Per	.947	.277	.056	-.071	.063
Ind	.960	.016	.149	.017	.063
B[g,h,i]P	.919	.055	.327	-.001	.018
D[a,h]A	.972	.047	.149	.007	.045
Cor	.882	-.076	.296	.056	.050
D[a,e]P	.861	-.094	.203	.115	.069

Variance [%]	51.6	16.2	10.6	5.20	3.70
Estimated source	Vehicular Exhaust	Biomass Burning	Diesel Emissions	Sea-Salt Aerosols	Agricultural Emissions

1047

1048 a Rotation Method: Varimax with Kaiser Normalization.

1049 b Bold loading > 0.70

1050

1051

1052 PC1 represents high loading factors of Chry, B[b]F, B[k]F, B[a]F, B[e]P, B[a]P, Per, Ind,
 1053 B[g,h,i]P, D[a,h]A, Cor and D[a,e]P, which can be described as the high molecular weight 4-6 ring
 1054 PAHs. Since these congeners are deeply connected with vehicle exhaust, it is reasonable to
 1055 conclude that traffic emissions explain 51.6% of the total variance. It is also worth mentioning that
 1056 B[k]F and B[g,h,i]P have been used as tracers of vehicle emissions (Miguel and Pereira, 1989;
 1057 Harrison et al., 1996). While B[g,h,i]P and Cor are related to gasoline vehicles (Khalili et al., 1995;
 1058 Schauer et al., 2002), B[a]P, B[k]F and B[g,h,i]P are identified as tracers of diesel/gasoline
 1059 emissions (Teixeira et al., 2013). Chry and B[k]F can be considered as geochemical markers for
 1060 identifying coal combustion (Smith and Harrison, 1998; Ravindra et al., 2008). While B[b]F and
 1061 Ind can be used as biomarkers for oil combustion, D[a,h]A, Per, B[a]P and B[e]P are widely
 1062 considered as tracers for discriminating the air pollutants released from industrial stacks (Ravindra
 1063 et al., 2008).

1064 PC2 is related to biomass burning, accounting for 16.2% of the total variance, with a high
 1065 loading factor for OC, EC and WSIS. This PC is believed to be the biomass burning source of
 1066 carbonaceous compositions. OC, EC and K⁺ are generated from biomass burning. BB emissions
 1067 contain a significant amount of WSIS, such as NH₄⁺, K⁺, and NO₃⁻ (Chuang et al., 2013; Mkoma
 1068 et al., 2013; Lee et al., 2016; Pani et al., 2018). Moreover, BB also emits significant amounts of

1069 carbonaceous aerosols that are composed of both OC and EC into the atmosphere (Cao et al., 2005;
1070 Chuang et al., 2013; Mkoma et al., 2013).

1071 PC3 accounts for 10.6% of the total variance and has high loading factors for Ace, Fl, Phe
1072 and Ant. Several studies have reported that the most significant PAH compound from diesel engine
1073 exhaust was Phe (Nelsen, 1989; Lim et al., 2005; Szewczyńska et al., 2017). As a consequence,
1074 PC3 can be attributed to vehicle exhaust, particularly diesel emissions. This interpretation is
1075 consistent with the fact that Pyr and Fluo can also be considered as chemical tracers of vehicle
1076 emissions (Szewczyńska et al., 2017).

1077 PC4, which explains 5.20% of the total variance, is associated with sea-salt aerosols
1078 because of relatively high loading factors of Cl⁻. The results suggest a strong influence from
1079 maritime aerosols in PM_{2.5}. This explanation is in good agreement with previous studies conducted
1080 in Brisbane, Australia and in Auckland, New Zealand, highlighting Cl⁻ as a chemical tracer of
1081 maritime aerosols (Chan et al., 1997; Wang and Shooter, 2000).

1082 The last group, PC5, shows a relatively high loading factor from NH₄⁺. It is the only WSIS
1083 that possesses a high correlation coefficient ($r=0.71$) with PC5. It is well known that volatilization
1084 from fertilizer is the main source of NH₄⁺ in particulate matter (Lee and Hopke, 2006; Sheppard
1085 et al., 2010). Thepnuan et al. (2019) reported the photochemical formation of SO₂ from both
1086 traffic/industrial activities and biomass burning because of the high affinity of SO₄²⁻ for NH₄⁺.
1087 SO₄²⁻, NO₃⁻ and NH₄⁺ mainly form in the atmosphere by gas-to-particle conversion from their
1088 precursor trace gaseous species (e.g. SO₂, NO_x and NH₃) (Mousavi et al., 2014).

1089
1090
1091

1092 **3.4. Reference**

1093 Adamson I Y R, Prieditis H, Vincent R., 1999. Pulmonary Toxicity of an Atmospheric
1094 Particulate Sample Is Due to the Soluble Fraction. *Toxicol. Appl. Pharmacol.* 157(1),
1095 43- 50.

1096

1097 Ahrens M. J, Depree C V., 2010. A source mixing model to apportion PAHs from coal tar
1098 and asphalt binders in street pavements and urban aquatic sediments, *Chemosphere*.
1099 81, 1526– 1535.

1100

1101 Akyuz M, Cabuk H., 2008. Particle associated polycyclic aromatic hydrocarbons in the
1102 atmospheric environment of Zonguldak, Turkey. *Sci. Total Environ.* 405, 62–70.

1103

1104 Andreae M O, Merlet P., 2001. Emission of trace gases and aerosols from biomass burning.
1105 *Glob. Biogeochem. Cycles* 15, 955–966.

1106

1107 Boonyatumanond R, Murakami M, Wattayakorn G, Togo A, Takada H., 2007. Sources of
1108 polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian
1109 megacity, Bangkok, Thailand. *Sci Total Environ.* 384, 420-432.

1110

1111 Boonyatumanond R, Wattayakorn G, Amano A, Inouchi Y, Takada H., 2007.
1112 Reconstruction of pollution history of organic contaminants in the upper Gulf of
1113 Thailand by using sediment cores: First report from Tropical Asia Core (TACO)
1114 project, *Mar. Pollut. Bull.* 54, 554–565.

1115

1116 Boreddy S K R, Haque M M, Kawamura K., 2018b. Long-term (2001–2012) trends of
1117 carbonaceous aerosols from a remote island in the western North Pacific: an outflow
1118 region of Asian pollutants. *Atmos. Chem. Phys.* 18, 1291–1306.

1119

1120 Bourette C, Forti M C, Taniguchi S, Caruso M, Lotufo P A., 2005. A wintertime study of PAHs
1121 in fine and coarse aerosols in Sao Paulo city, Brazil 2005. *Atmos. Environ.* 39, 3799–3811.

1122

1123 Cachier H, Bremond M.P, Buat-Ménard P., 1989. Carbonaceous aerosols from different
1124 tropical biomass burning sources. *Nature* 340, 371–373.

1125

1126 Cachier H, Ducret J, Brémond M.P, Gaudichet A, Lacaux J P, Yoboué V, Baudet J., 1991.
1127 Biomass burning in a savanna region of the Ivory Coast. In: Levine, J.S. (Ed.), *Global*
1128 *Biomass Burning: Atmospheric, Climatic and Biospheric Implications*. MIT Press,
1129 Cambridge, Mass, pp. 174–180.

1130

1131 Cadle S H, Mulawa P A, Hunsanger E C, Nelson K, Ragazzi R A, Barrett R, Gallagher G L,
1132 Lawson D R, Knapp K T, Snow R., 1999. Composition of light-duty motor vehicle
1133 exhaust particulate matter in the Denver, Colorado area. *Environ. Sci. Technol.* 33,
1134 2328–2339.

1135

1136 Cao J J, Wu F, Chow J C, Lee S C, Li Y, Chen S W, An Z S, Fung K K, Watson J G, Zhu C
1137 S, Liu S X., 2005. Characterization and source apportionment of atmospheric organic
1138 and elemental carbon during fall and winter of 2003 in Xi'an, China. *Atmos. Chem. Phys.*
1139 5, 3127–3137.

1140

1141 Castro L M, Pio C A, Harrison R M, Smith D J T., 1999. Carbonaceous aerosol in urban and
1142 rural European atmospheres: estimation of secondary organic carbon concentrations.
1143 *Atmos. Environ.* 33, 2771–2781.

1144

1145 Chan Y C, Simpson R W, Mctainsh G H, Vowles P D, Cohen D D, Bailey G M., 1997.
1146 Characterisation of chemical species in $PM_{2.5}$ and PM_{10} aerosols in Brisbane,
1147 Australia. *Atmos. Environ.* 31(22), 3237-3250.

1148

1149 Chandra M P, Venkata M S, Jayarama R S., 2003. A study on major inorganic ion
1150 composition of atmospheric aerosols at Tirupati. *J. Hazard. Mater.* 96 (2-3), 217- 228.

1151

1152 Chantara S, Sillapapiromsuk S, Wiriya W., 2012. Atmospheric pollutants in Chiang Mai
1153 (Thailand) over a five-year period (2005-2009), their possible sources and relation to
1154 air mass movement. *Atmos. Environ.* 60, 88-98.

1155

1156 Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam M S, Wang S, Hao J, Zhang H, He C, Guo H,
1157 Fu H, Miljevic B, Morawska L, Thai P, Lam Y F, Pereira G, Ding A, Huang X, Dumka
1158 U C., 2017. A review of biomass burning: emissions and impacts on air quality, health and
1159 climate in China. *Sci. Total Environ.* 579, 1000–1034.

1160

1161 Cheng Y, Engling G, He K B, Duan F K, Ma Y L, Du Z Y, Liu J M , Zheng M, Weber R J.,
1162 2013. Biomass burning contribution to Beijing aerosol. *Atmos. Chem. Phys.* 13, 7765–
1163 7781

1164

1165 Cheng Y, Lee S, Gu Z, Ho K, Zhang Y, Huang Y, Chow J C, Watson J G, Cao J, Zhang R.,
1166 2015. $PM_{2.5}$ and $PM_{10-2.5}$ chemical composition and source apportionment near a
1167 Hong Kong roadway. *Particuology.* 18, 96–104.

1168

1169 Chow J C, Watson J G, Douglas Z L, Lowenthal H, Frazier C A, Solomon P A. Thuillier R
1170 H, Magliano K., 1996. Descriptive analysis of $PM_{2.5}$ and PM_{10} at regionally
1171 representative locations during SJVAQS/AUSPEX, *Atmos. Environ.* 30, 2079–2112.

1172

1173 Chow J C; Watson J G; Lu Z; Lowenthal D H; Frazier C A., 1996. Solomon, P.A.;
1174 Thuillier, R.H.; Magliano, K. Descriptive analysis of $PM_{2.5}$ and PM_{10} at regionally
1175 representative locations during sjvaqs/auspex. *Atmos. Environ.* 30, 2079–2112.

1176

1177 Chow J C, Watson J G, Kuhns H, Etyemezian V, Lowenthal D H, Crow D, Kohl S D,
1178 Engelbrecht J P, Green M.K., 2004. Source profiles for industrial, mobile and area
1179 sources in the big bend regional aerosol visibility and observational (BRAVO) study.
1180 *Chemosphere.* 54 (2), 185–208.

1181

1182 Chow J C, Watson J G, Chen L W A, Chang M C O, Robinson N F, Trimble D, Kohl S., 2007a.
1183 The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining
1184 consistency with a long term database. *J. Air Waste Manage. Assoc.* 57 (9), 1014–1023.
1185

1186 Chow J C, Yu J Z, Watson J G, Ho S S H, Bohannan T L, Hays M D, Fung K K., 2007b. The
1187 application of thermal methods for determining chemical composition of carbonaceous
1188 aerosols: a review. *J. Environ. Sci. Health A.* 42 (11), 1521–1541.
1189

1190 Chuang M T, Chou C K, Sopajareepom K, Lin N H, Wang J L, Sheu G R, Chang Y C, Lee C
1191 T., 2013. Characterization of aerosol chemical properties from nearsource biomass
1192 burning in Chiang Mai, Thailand during 7-SEAS/Dongsha experiment. *Atmos. Environ.* 78, 72–81.
1193

1194 Chuang M T, Chou C C K, Sopajaree K, Lin N H, Wang J L, Sheu G R, Chang Y J, Lee
1195 C T., 2013b. Characterization of aerosol chemical properties from near-source
1196 biomass burning in the northern Indochina during 7-SEAS/Dongsha Experiment.
1197 *Atmos. Environ.* 78, 72–81.
1198

1200 Chuang M T, Lee C T, Lin N H, Chou C C K, Wang J L, Sheu G R, Chang S C, Wang S H,
1201 Huang H, Cheng H W, Weng G H, Lai S Y, Hsu SP, Chang Y.J., 2014. Carbonaceous
1202 aerosols in the air masses transported from Indochina to Taiwan: long-term
1203 observation at mountain Lulin. *Atmos. Environ.* 89, 507–516.
1204

1205 Chuang H C, Hsiao T C, Wang S H, Tsay S C, Lin N H., 2016. Characterization of
1206 particulate matter profiling and alveolar deposition from biomass burning in
1207 Northern Thailand: the 7-SEAS study. *Aerosol Air Qual. Res.* 16, 2897–2906.
1208

1209 Cooper D C, Alley F C., 2002. Particulate Matter. In *Air Pollution control: A Design
1210 Approach*,3rd ed. Illinios: Waveland Press Inc, 99-102.
1211

1212 Dahle S, Savinov V M, Matishov G G, Evensen A, Nas K., 2003. Polycyclic aromatic
1213 hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and
1214 Yenisei Bay, *Sci. Total. Environ.* 306, 57 71.
1215

1216 Dai W, Gao J, Cao G, Ouyang F., 2013. Chemical composition and source identification of
1217 PM_{2.5} in the suburb of Shenzhen, China. *Atmos. Res.* 122, 391–400.
1218

1219 Dallmann T R, Onasch T B, Kirchstetter T W, Worton D R, Fortner E C, Herndon S C, Wood
1220 E C, Franklin J P, Worsnop D R, Goldstein A H, Harley R.A., 2014.
1221 Characterization of particulate matter emissions from on-road gasoline and diesel
1222 vehicles using a soot particle aerosol mass spectrometer. *Atmos. Chem. Phys.* 14, 7585–
1223 7599.
1224

1225 Dan M, Zhuang G, Li X, Tao H, Zhuang, Y., 2004. The characteristics of carbonaceous species
1226 and their sources in PM2.5 in Beijing. *Atmos. Environ.* 38, 3443–3452.
1227

1228 Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning
1229 contribution to the urban aerosol organic carbon concentrations in Beijing. *Atmos.*
1230 *Environ.* 38, 1275–1282.

1231

1232 Dvorská A, Komprdová K, Lammel G, Klánová J, Plachá H., 2012. Polycyclic aromatic
1233 hydrocarbons in background air in central Europe Seasonal levels and limitations for
1234 source apportionment. *Atmos. Environ.* 46, 147-54.

1235

1236 Ferek R J, Reid J S., Hobbs P V, Blake D R, Liousse C., 1998. Emission factors of
1237 hydrocarbons, trace gases and particles from biomass burning in Brazil. *J. Geophys.*
1238 *Res.* 103, 32107–32118.

1239

1240 Fang M D, Chang W K, Lee C L, Liu J T., 2009. The use of polycyclic aromatic hydrocarbons
1241 as a particulate tracer in the water column of Gaoping (Kaoping) Submarine Canyon, *J. Mar.*
1242 *Syst.* 76, 457–467.

1243

1244 Field J G, Clarke K R, Warwick R M., 1982. A practical strategy for analysing multispecies
1245 distribution patterns, *Mar. Ecol. Prog. Ser.* 8, 37–52.

1246

1247 Gelencsér A., 2004. Carbonaceous aerosols. Springer, Netherlands.

1248

1249 Gillies J A, Gertler A W, Sagebiel J C, Dippel W.A., 2001. On-road particulate matter (PM_{2.5}
1250 and PM₁₀) emissions in the Sepulveda tunnel, Los Angeles, California. *Environ. Sci. Technol.*
1251 35, 1054–1063.

1252

1253 Gray H. A, Cass G. R, Huntzicker J., 1986. Characteristics of atmospheric organic and
1254 elemental carbon particle concentrations in Los Angeles. *Environ. Sci. Technol.* 20,
1255 580–589.

1256 Gupta S, Kumar S A, Srivastava A, Jain K V., 2011. Size distribution and source apportionment
1257 of polycyclic aromatic hydrocarbons (PAHs) in aerosol particle samples from the atmospheric
1258 environment of Delhi, India. *Sci Total Environ.* 409, 4674-4680.

1259

1260 Han Y M, Cao J J, Chow J C, Watson J G, Fung K, Jin Z D, Liu S X, An Z S., 2007.
1261 Evaluation of the thermal/optical reflectance method for discrimination between soot-
1262 and char-EC. *Chemosphere.* 69, 569–574.

1263

1264 Han Y M, Cao J J, Chow J C, Watson J G, An Z S., Liu S X., 2009b. Elemental carbon in
1265 urban soils and road dusts in Xi'an, China and its implication for air pollution. *Atmos.*
1266 *Environ.* 43, 2464–2470.

1267

1268 Han Y M, Cao J J, Lee S C, Ho K F, An Z S., 2010. Different characteristics of char and soot
1269 in the atmosphere and their ratio as an indicator for source identification in Xi'an,
1270 China. *Atmos. Chem. Phys.* 10, 595–607.

1271

1272 Harrison R M, Smith D J T, Luhana L., 1996. Source apportionment of atmospheric
1273 polycyclic aromatic hydrocarbons collected from an urban location in Birmingham,
1274 UK. *Environ. Sci. Technol.* 30, 825–832.

1275

1276 Harrison R M, Yin, J., 2000. Particulate matter in the atmosphere: which particle properties
1277 are important for its effects on health? *Sci. Total Environ.* 249, 85–101.

1278

1279 Hegde P, Sudheer A K, Sarin M M. Manjunatha B R., 2007. Chemical characteristics of
1280 atmospheric aerosols over southwest coast of India. *Atmos. Environ.* 41(36), 7751–
1281 7766.

1282

1283 Hildemann L M, Markowski G R, Cass G R., 1991. Chemical composition of emissions from
1284 urban sources of fine organic aerosol. *Environ. Sci. Technol.* 25, 744–759.

1285

1286 Harrison R M, Jones A M, Lawrence R G., 2004. Major component composition of PM10
1287 and PM2.5 from roadside and urban background sites, *Atmos. Environ.* 38, 4531–4538.

1288

1289 Hitzenberger R, Jennings S G, Larson S M, Dillner A, Cachier H, Galambos Z, Rouc A, Spain
1290 T G., 1999. Intercomparison of measurement methods for black carbon aerosols. *Atmos.*
1291 *Environ.* 33, 2823–2833.

1292

1293 Ho S S., Yu J Z., 2004. In-injection port thermal desorption and subsequent gas
1294 chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons
1295 and n-alkanes in atmospheric aerosol samples. *J. Chromatogr. A.* 1059, 121–129.

1296

1297 Ho S S, Yu J Z, Chow J C, Zielinska B, Watson J G, Sit E H L, Schauer J J., 2008. Evaluation of an in injection port thermal desorption-gas chromatography/mass
1298 spectrometry method for analysis of non-polar organic compounds in ambient aerosol
1299 samples. *J. Chromatogr. A.* 1200, 217–227.

1300

1301

1302 Hu J, Liu Q C, Zhang P G, Zhang L Y., 2012. Seasonal variation and source apportionment
1303 of PAHs in TSP in the atmosphere of Guiyang, Southwest China. *Atmospheric. Res.*
1304 118, 271–9.

1305

1306 Ito K, Mathes R, Ross Z, Nadas A, Thurston G, and Matte T., 2011. Fine particulate matter
1307 constituents associated with cardiovascular hospitalizations and mortality in New York
1308 City. *Environ. Health Perspect.* 119, 467–73.

1309

1310 Janta, R, Chantara, S., 2017. Tree bark as bioindicator of metal accumulation from road traffic
1311 and air quality map: a case study of Chiang Mai, Thailand. *Atmos. Pollut. Res.* 8 (5), 956–
1312 967.

1313

1314 Ji D, Zhang J, He J, Wang X, Pang B, Liu Z, Wang L, Wang Y., 2016. Characteristics of
1315 atmospheric organic and elemental carbon aerosols in urban Beijing, China. *Atmos.*
1316 *Environ.* 125, 293–306.

1317 Jiménez-Moreno G, Fauquette S, Suc, J P., 2008. Vegetation, climate and paleoaltitude
1318 reconstructions of eastern alpine mountain ranges during the Miocene based on pollen
1319 records from Austria: Central Europe: *J BIOGEOGR.* 35, 1638–1649.

1320

1321 Kalabokas P D, Viras L G, Repapis C C., 1999. Analysis of the 11-year record (1987– 1997)
1322 of air pollution measurements in Athens, Greece. Part I: primary air pollutions. *Glob.*
1323 *Nest Int. J.* 1, 157–167.

1324

1325 Khalili N R, Scheff P A, Holsen T M., 1995. PAH source fingerprints for coke ovens, diesel
1326 and, gasoline engines, highway tunnels, and wood combustion emissions. *Atmos. Environ.* 29,
1327 533–542.

1328

1329 Khamkaew C, Chantara S, Janta R, Pani S K, Prapamontol T, Kawichai S, Wiriya W, Lin N
1330 H., 2016. Investigation of biomass burning chemical components over Northern
1331 Southeast Asia during 7-SEAS/BASELInE 2014 campaign. *Aerosol Air Qual. Res.*
1332 16 (11), 2655–2670.

1333

1334 Kirchstetter T W, Corrigan C E, Novakov T., 2001. Laboratory and field investigation of the
1335 adsorption of gaseous organic compounds onto quartz filters. *Atmos. Environ.* 35,
1336 1663–1671.

1337

1338 Kirchstetter T W, Novakov T, Hobbs P V., 2004. Evidence that the spectral dependence of
1339 light absorption by aerosols is affected by organic carbon. *J. Geophys. Res.* 109,
1340 D21208.

1341

1342 Koch D., 2001. Transport and direct radiative forcing of carbonaceous and sulfate aerosols in
1343 the GISS GCM. *J. Geophys. Res. Atmos.* 106, 20311–20332.

1344

1345 Koçak M, Mihalopoulos N, Kubilay N., 2004. Ionic composition of lower tropospheric
1346 aerosols at a Northeastern Mediterranean site: implications regarding sources and long-
1347 range transport. *Atmos. Environ.* 38 (14), 2067–2077.

1348

1349 Kong S F, Han B, Bai Z P, Chen L, Shi J W, Xu Z., 2010. Receptor modeling of PM_{2.5}, PM₁₀
1350 and TSP in different seasons and long-range transport analysis at a coastal site of
1351 Tianjin, China. *Sci. Total Environ.* 408, 4681–4694.

1352

1353 Kwangsam N, Aniket A, Sawant C S, David R, Cocker III., 2004. Primary and secondary
1354 carbonaceous species in the atmosphere of Western Riverside County, California.
1355 *Atmos. Environ.* 38, 1345–1355.

1356

1357 Larsen R K, Baker J E., 2003. Source apportionment of polycyclic aromatic hydrocarbons
1358 in the urban atmosphere: a comparison of three methods, *Environ. Sci. Technol.* 37,
1359 1873–81.

1360

1361 Lee, C., Chuang, M., Lin, N., Wang, J., Sheu, G., Chang, S., Wang, S., Huang, H., Chen, H.,
1362 Liu, Y., Weng, G., Lai, H., Hsu, S., 2011. The enhancement of PM_{2.5} mass and water-

1363 soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in
1364 Taiwan. *Atmos. Environ.* 45, 5784–5794.

1365

1366 Lee, J. H., & Hopke, P. K. (2006). Apportioning sources of PM_{2.5} in St. Louis, MO using speciation
1367 trends network data. *Atmospheric Environment*, 40, 360-377.

1368

1369 Lee C, Ram S S, Nguyen D, Chou C, Chang S, Lin N, Chang S, Hsiao T, Sheu G, OuYang C,
1370 Chi K, Wang S, Wu X., 2016. Aerosol chemical profile of near-source biomass
1371 burning smoke in Sonla, Vietnam during 7- SEAS campaigns in 2012 and 2013.
1372 *Aerosol Air Qual. Res.* 16 (11), 2603–2617.

1373

1374 Li H, Duan F, Ma Y, He K, Zhu L, Ma T, Ye S, Yang S, Huang T, Kimoto T., 2018. Case
1375 study of spring haze in Beijing: Characteristics, formation processes, secondary
1376 transition, and regional transportation. *Environ. Pollut.* 242, 544–554.

1377

1378 Liu Y, Chena L, Huang Q H., Li W Y, Tang Y J, Zhao J. F., 2009. Source apportionment of
1379 polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River,
1380 Shanghai, China, *Sci. Total. Environ.* 407, 2931–2938.

1381

1382 Lim M C H, Ayoko G A, Morawska L., 2005. Characterization of elemental and polycyclic
1383 aromatic hydrocarbon compositions of urban air in Brisbane. *Atmos. Environ.* 39,
1384 463-476.

1385

1386 Lin J J., 2002. Characterization of water-soluble ion species in urban ambient particles.
1387 *Environ. Int.* 28(1-2), 55-61.

1388

1389 Long S L, Zeng J R, Li Y, Bao L M, Cao L L, Liu K, Xu L, Lin J, Liu W, Wang G H, Yao J,
1390 Ma C Y, Zhao Y.D., 2014. Characteristics of secondary inorganic aerosol and sulfate
1391 species in size-fractionated aerosol particles in Shanghai. *J. Environ. Sci.* 26, 1040–
1392 1051.

1393

1394 Lyamani H, Olmo F J, Alcàntara A, Alados-Arboledas L., 2006. Atmospheric aerosols during
1395 the 2003 heat wave in southeastern Spain II: microphysical columnar properties and
1396 radiative forcing. *Atmos. Environ.* 40, 6465–6476.

1397

1398 Mancilla Y, Herckes P, Fraser M P, Mendoza A., 2015. Secondary organic aerosol
1399 contributions to PM_{2.5} in Monterrey, Mexico: Temporal and seasonal variation. *Atmos.*
1400 *Res.* 153, 348–359.

1401

1402 Manoli E, Kouras A, Samara C., 2004. Profile analysis of ambient and source emitted
1403 particle-bound polycyclic aromatic hydrocarbons from three sites in Northern
1404 Greece. *Chemosphere.* 56, 867– 878.

1405

1406 Marchand N, Besombes JL, Chevron, Masclet P, Aymoz G, Jaffrezo JL., 2004. Polycyclic
1407 aromatic hydrocarbons (PAHs) in the atmosphere of two French Alpine valleys: sources
1408 and temporal patterns. *Atmos. Chem. Phys.* 4, 1167–1181.

1409
1410 Mauderly J L, Chow J C., 2008, 'Health effects of organic aerosols', Inhalation Toxicology
1411 (20) 257– 288. Borbély-Kiss I, Koltay E, Szabó GY, Bozó L, Tar K (1999):
1412 Composition and sources of urban and rural atmospheric aerosol in Eastern
1413 Hungary. J. Aerosol Sci. 30, 369–391.
1414
1415 Mazurek M, Cass G, Simoneit B., 1991. Biological input to visibility - reducing aerosol
1416 particles in the remote arid southwestern United States. Environ. Sci. Technol. 25 (4),
1417 684–694.
1418
1419 Metzger K B, Tolbert P E, Klein M, Peel J L, Flanders W D, Todd K, Mulholland J A, Ryan
1420 P.B, Frumkin H., 2004. Ambient air pollution and cardiovascular emergency
1421 department visits. Epidemiology 15, 46–56.
1422
1423 Miguel A H, Pereira P A P., 1989. Benzo(k)fluoranthene, benzo(ghi)perylene, and indeno (1,2,3,-
1424 cd)pyrene: new tracers of automotive emissions in receptor modeling. AerosolSci. Technol.
1425 10, 292–295.
1426
1427 Mkoma S L, Kawamura K, Fu P Q., 2013. Contributions of biomass/biofuel burning to organic
1428 aerosols and particulate matter in Tanzania, East Africa, based on analysis of ionic species,
1429 organic and elemental carbon, levoglucosan and mannosan. Atmos. Chem. Phys.
1430 13, 10325–30338.
1431
1432 Morales J A, Pirela D, de Nava M G, de Borrego B S, Velásquez H, Durán J., 1998.
1433 Inorganic water-soluble ions in atmospheric particles over Maracaibo Lake Basin in
1434 the western region of Venezuela. Atmos. Res. 46 (3-4), 370-320.
1435
1436 Mousavi S, Mariotti R, Bagnoli F, Costantini L, Cultrera N G M, Arzani K., 2017. The eastern
1437 part of the Fertile Crescent concealed an unexpected route of olive (*Olea europaea* L.)
1438 differentiation. Ann. Bot. 119 1305–1318.
1439
1440 Na K, Sawant A A, Song C, Cocker III D.R., 2004. Primary and secondary carbonaceous species
1441 in the atmosphere of Western Riverside County, California. Atmos. Environ. 38, 1345–
1442 1355.
1443
1444 Neilson A H., 1998. PAHs and Related Compounds. Springer, Berlin.
1445
1446 Niemi J V, Tervahattu H, Vehkamäki H, Kulmala M, Koskentalo T, Sillanpää M, Rantamäki
1447 M., 2004. Characterization and source identification of a fine particle episode in
1448 Finland. Atmos. Environ. 38, 5003–5012.
1449
1450 Pani S K, Wang S H, Lin N H, Tsay S C, Lolli S, Chuang M T, Lee C T, Chantara S, Yu J
1451 Y., 2016a. Assessment of aerosol optical property and radiative effect for the layer
1452 decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha
1453 Experiment. J. Geophys. Res. Atmos. Res. 121, 4894–4906.
1454

1455 Pani S K, Wang S H, Lin N H, Lee C T, Tsay S C, Holben B N, Janjai S, Hsiao T C, Chuang
1456 M T, Chantara S., 2016b. Radiative effect of springtime biomass-burning aerosols
1457 over northern Indochina during 7-SEAS/BASELInE 2013 Campaign. *Aerosol Air*
1458 *Qual. Res.* 16, 2802–2817.

1459

1460 Pani S K, Lee C T, Chou C C K, Shimada K, Hatakeyama S, Takami A, Wang S H, Lin N H.,
1461 2017. Chemical characterization of wintertime aerosols over islands and mountains
1462 in East Asia: impacts of the continental Asian outflow. *Aerosol Air Qual. Res.* 17(12),
1463 3006–3036.

1464

1465 Pani S K, Lin N H, Chantara S, Wang S H, Khamkaew C, Prapamontol T, Janjai S., 2018.
1466 Radiative response of biomass-burning aerosols over an urban atmosphere in northern
1467 peninsular Southeast Asia. *Sci. Total Environ.* 633, 892–911

1468

1469 Pani S K, Chantara S, Khamkaew C, Leed C T, Lina N H., 2019. Biomass burning in the
1470 northern peninsular Southeast Asia: Aerosol chemical profile and potential
1471 exposure. *Atmos. Res.* 224, 180–195.

1472

1473 Pengchai P, Chantara S, Sopajaree K, Wangkarn S, Tengcharoenkul U, Rayanakorn M., 2009.
1474 Seasonal variation, risk assessment and source estimation of PM₁₀ and PM₁₀-Bound PAHs in
1475 the ambient air of Chiang Mai and Lamphun, Thailand. *Environ. Monit. Assess.* 154, 197–
1476 218.

1477

1478 Pio C A, Legrand M, Alves C A, Oliveira T, Afonso J, Caseiro A, Puxbaum H, Sanchez- Ochoa
1479 A, Gelencse'r A., 2008. Chemical composition of atmospheric aerosols during the 2003
1480 summer intense forest fire period. *Atmos. Environ.* 42, 7530–7543.

1481

1482 Pongpiachan S, Bualert S, Sompongchaiyakul P, Kositanon C., 2009. Factors affecting
1483 sensitivity and stability of polycyclic aromatic hydrocarbons. *Anal Lett.* 42, 2106–
1484 2130.

1485

1486 Pongpiachan S., 2013a. Vertical distribution and potential risk of particulate polycyclic
1487 aromatic hydrocarbons in high buildings of Bangkok, Thailand. *Asian Pac J Cancer*
1488 *Prev.* 14, 1865–1877.

1489

1490 Pongpiachan S., 2013b. Diurnal variation, vertical distribution and source apportionment of
1491 carcinogenic polycyclic aromatic hydrocarbons (PAHs) in Chiang-Mai, Thailand. *Asian*
1492 *Pac J Cancer Prev.* 14, 1851–1863.

1493

1494 Pongpiachan S, Choochuay C, Hattayanone M., 2013a. Temporal and spatial distribution of
1495 particulate carcinogens and mutagens in bangkok, Thailand. *Asian Pac J Cancer Prev.* 14,
1496 1879–1887.

1497

1498 Pongpiachan S, Ho K F, Cao J., 2013b. Estimation of gas-particle partitioning coefficients
1499 (kp) of carcinogenic polycyclic aromatic hydrocarbons by carbonaceous aerosols

1500 collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand. *Asian Pac J Cancer Prev.*
1501 14, 3369-3384.

1502

1503 Pongpiachan S., 2015. Assessment of Reliability when Using Diagnostic Binary Ratios of
1504 Polycyclic Aromatic Hydrocarbons in Ambient Air PM₁₀. *Asian Pac J Cancer Prev.*
1505 16, 8605-8611.

1506

1507 Pongpiachan S, Tipmanee D, Khumsup C, et al., 2015a. Assessing Risks to Adults and
1508 Preschool Children Posed by PM_{2.5}-bound polycyclic aromatic hydrocarbons (pahs)
1509 during a biomass burning episode in northern Thailand. *Sci Total Environ.* 508, 435-444.

1510

1511 Pongpiachan S, Hattayanone M, Cao J., 2017. Effect of agricultural waste burning season
1512 on PM_{2.5}-bound polycyclic aromatic hydrocarbon (PAH) levels in Northern
1513 Thailand. *Atmos. Pollut. Res.* 8, 1069-1080.

1514

1515 Punsompong P, Chantara S., 2018. Identification of potential sources of PM₁₀ pollution from
1516 biomass burning in northern Thailand using statistical analysis of trajectories. *Atmos.*
1517 *Pollut. Res.* 9, 1038-1051.

1518

1519 Querol X, Alastuey A, Rodriguez S, Plana F, Ruiz C R, Cots N, Massague G, Puig O., 2001.
1520 PM₁₀ and PM_{2.5} source apportionment in the Barcelona Metropolitan Area, Catalonia,
1521 Spain, *Atmos. Environ.* 35, 6407-6419.

1522

1523 Ravindra K, Sokhi R, Van Grieken R., 2008. Atmospheric polycyclic aromatic hydrocarbons:
1524 source attribution, emission factors and regulation. *Atmos. Environ.* 42, 2895-2921.

1525

1526 Ryu S Y, Kwon B G, Kim Y J, Kim H H, Chun K.J., 2007. Characteristics of biomass
1527 burning aerosol and its impact on regional air quality in the summer of 2003 at
1528 Gwangju, Korea. *Atmos. Res.* 84, 362-373.

1529

1530 Saarikoski S, Timonen H, Saarnio K, Aurela M, Järvi L, Keronen P, Kerminen V M,
1531 Hillamo R., 2008. Sources of organic carbon in fine particulate matter in northern
1532 European urban air. *Atmos. Chem. Phys.* 8, 6281-6295.

1533

1534 Schauer J J, Kleeman M J, Cass G R, Simoneit B R T., 1999. Measurement of emissions from
1535 air pollution sources.1. C1 through C29 organic compounds from meat charbroiling. *Environ.*
1536 *Sci. Technol.* 33, 1566-1577.

1537

1538 Schauer J J, Kleeman M J, Cass G R, Simoneit B R T., 2001. Measurement of emissions from
1539 air pollution sources. C1-C29 organic compounds from fireplace combustion of wood.
1540 *Environ. Sci. Technol.* 35, 1716-1728.

1541

1542 Schauer J J, Kleeman M J, Cass G R, Simoneit B R T., 2002. Measurement of emissions from
1543 air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor
1544 vehicles. *Environ. Sci. Technol.* 36, 1169-1180.

1545

1546 See S W, Balasubramanian R., 2008. Chemical characteristics of fine particles emitted from
1547 different gas cooking methods. *Atmos. Environ.* 42, 8852–8862.

1548 Sheppard, S. C., Bittman, S., & Bruulsema, T. W. (2010). Monthly ammonia emissions from
1549 fertilizers in 12 Canadian Ecoregions. *Canadian journal of soil science*, 90(1), 113-127.

1550

1551 Shettle E P, Fenn R W., 1979. Models for the Aerosols for the Lower Atmosphere and the
1552 Effects of Humidity Variations on Their Optical Properties, AFGL-TR-79-0214
1553 Environ. Res. pp 676.

1554

1555 Seinfeld J H, Pandis S N., 1998. *Atmospheric Chemistry and Physics: From Air Pollution to
1556 Climate Change*. John Wiley, New York.

1557

1558 Smith D J T, Harrison R M., 1998. Polycyclic aromatic hydrocarbons in atmospheric
1559 particles. In: Harrison, R.M., Van Grieken, R. (Eds.), *Atmospheric Particles*. Wiley.
1560

1561 Szewczyńska M, Dąbrowska J, Pyrzyńska K., 2017. Polycyclic Aromatic Hydrocarbons in
1562 the Particles Emitted from the Diesel and Gasoline Engines. *Pol. J. Environ. Stud.*
1563 26, 801-807.

1564

1565 Tao J, Ho K F, Chen L, Zhu L, Han J, Xu Z., 2009. Effect of chemical composition of PM_{2.5}
1566 on visibility in Guangzhou, China, 2007 spring. *Particuology*. 7 (1), 68–75.

1567

1568 Teixeira E, Mattiuzzi C, Agudelo-Castañeda D, de Oliveira Garcia K, Wiegand F., 2013.
1569 Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using
1570 diagnostic ratios and receptor model in urban/industrial region. *Environ. Monit. Assess.* 185,
1571 9587–9602.

1572

1573 Thepnuan D, Chantara S, Lee C, Lin N, Tsai Y., 2019. Molecular markers for biomass
1574 burning associated with the characterization of PM_{2.5} and component sources during
1575 dry season haze episodes in Upper South East Asia. *Sci. Total Environ.* 658, 708–722.

1576

1577 Tsay S C, Maring H B, Lin N H, Buntoung S, Chantara S, Chuang H C, Gabriel P M,
1578 Goodloe C S, Holben B N, Hsiao T C, Christina H N, Janjai S, Lau W K M, Lee C T,
1579 Lee J, Loftus A M, Nguyen A X, Nguyen C M, Pani S K, Pantina P, Sayer A M, Tao
1580 W K, Wang S H, Welton E J, Wiriya W, Yen M C., 2016. Satellite surface perspectives of
1581 air quality and aerosol-cloud effects on the environment: an overview of 7-
1582 SEAS/BASELInE. *Aerosol Air Qual. Res.* 16, 2581–2602.

1583

1584 Tsai Y I, Sopajaree K, Chotruksa A, Wu H C, Kuo S C., 2013. Source indicators of
1585 biomass burning associated with inorganic salts and carboxylates in dry season
1586 ambient aerosol in Chiang Mai Basin, Thailand. *Atmos. Environ.* 78, 93–104.

1587

1588 Turpin B J, Huntzicker J J., 1995. Identification of secondary organic aerosol episodes and
1589 quantification of primary and secondary organic aerosol concentrations during
1590 SCAQS. *Atmos. Environ.* 29, 3527–3544.

1591

1592 Vasconcellos P C, Souza D Z, Sanchez-C O, Bustillos J O, Lee H, Santos F C, Nascimento K
1593 H, Araújo M P, Saarnio K, Teinilä K, Hillamo R., 2010. Determination of anthropogenic and
1594 biogenic compounds on atmospheric aerosol collected in urban, biomass burning and
1595 forest areas in São Paulo, Brazil. *Sci Total Environ.* 408, 5836-5844.

1596

1597 Wan X, Chen J, Tian F., 2006. Source apportionment of PAHs in atmospheric particulates of
1598 Dalian: Factor analysis with nonnegative constraints and emission inventory
1599 analysis. *Atmos. Environ.* 40, 66-75.

1600

1601 Wang H, Shooter D., 2001. Water-soluble ions of atmospheric aerosols in three New
1602 Zealand cities: seasonal changes and sources. *Atmos. Environ.* 35, 6031-6040.

1603

1604 Wang X M, Chen W H, Chen D H, Wu Z Y, Fan Q., 2016. Long-term trends of fine
1605 particulate matter and chemical composition in the Pearl River Delta Economic Zone
1606 (PRDEZ), China. *Front. Environ. Sci. Eng.* 10 (1), 53-62.

1607

1608 Ward D E, Susott R A, Kauffman J B, Babbitt R E, Cummings D L, Dias B, Holben B N,
1609 Kaufman Y J, Rasmussen R A, Setzer A W., 1992. Smoke and fire characteristics for
1610 cerrado and deforestation burns in Brazil: BASE-B experiment. *J. Geophys. Res.* 97
1611 (14), 601-614 619.

1612

1613 Watson J G, Chow J C, Lu Z, Fujita E M, Lowenthal D H, Lawson D R., 1994. Chemical
1614 mass balance source apportionment of PM₁₀ during the Southern California air quality
1615 study. *Environ. Sci. Technol.* 21, 1-36.

1616

1617 Watson J G, Chow J C, Houck J E., 2001. PM_{2.5} chemical source profiles for vehicle
1618 exhaust, vegetative burning, geological material, and coal burning in Northwestern
1619 Colorado during 1995. *Chemosphere.* 43, 1141-1151.

1620

1621 Wiriya W, Chantara S, Sillapapiromsuk S, Lin N H., 2016. Emission profiles of PM₁₀- bound
1622 polycyclic aromatic hydrocarbons from biomass burning determined in chamber for
1623 assessment of air pollutants from open burning. *Aerosol Air Qual. Res.* 16, 2716e2727.

1624

1625 Wiwatanadate P, Liwsrisakun C., 2011. Acute effects of air pollution on peak expiratory flow
1626 rates and symptoms among asthmatic patients in Chiang Mai, Thailand. *Int J Hyg
1627 Environ Health.* 214, 251-257.

1628

1629 WHO (World Health Organization)., 2013. Air quality guidelines for Europe. 2nd ed.
1630 Copenhagen: WHO Regional Publications, European Series No. 91.

1631

1632 Wold S, Essensen K. Geladi, P., 1987. Principal component analysis, Chemometrics and
1633 Intelligent Laboratory systems. 2, 37- 52.

1634

1635 Yao L, Yang L, Yuan Q, Yan C, Dong C, Meng C, Sui X, Yang F, Lu Y, Wang W., 2016.
1636 Sources apportionment of PM_{2.5} in a background site in the North China Plain. *Sci.
1637 Total Environ.* 541, 590-598.

1638 Yunker M B, Macdonald R W, Vingarzan R, Mitchell R H, Goyette D, Sylvestre S., 2002.
1639 PAHs in the Fraser River Basin: a critical appraisal of PAH ratios as indicators of PAH
1640 sources and composition. *Organic Geochemistry*. 33, 489–515.

1641

1642 Zakaria M P, Takada H, Ohno K, Yamada J, Kouno E, Kumata, H., 2002. Distribution of
1643 Polycyclic Aromatic Hydrocarbons (PAHs) in Rivers and Estuaries in Malaysia: A
1644 Widespread Input of Petrogenic PAHs, *Environ. Sci. Technol.* 36, 1907–1918.

1645

1646 Zhou J M, Zhang R J, Cao J J, Chow J C, Watson J G., 2012. Carbonaceous and ionic
1647 components of atmospheric fine particles in Beijing and their impact on atmospheric
1648 visibility. *Aerosol Air Qual. Res.* 12(4), 492–502.

1649

1650 Zhang X Y, Wang Q Y, Zhang C X, Guo W, Gong L S., 2008. Carbonaceous aerosol
1651 composition over various regions of China during 2006. *J. Geophys. Res.* 113,
1652 D14111.

1653

1654 Zhang Z, Engling G, Lin C, Chou C C, Lung S C, Chang S, Fan S, Chan C, Zhang Y., 2010.
1655 Chemical speciation, transport and contribution of biomass burning smoke to ambient
1656 aerosol in Guangzhou, a mega city of China. *Atmos. Environ.* 44, 3187–3195.

1657

1658 Zhang R, Tao J, Ho K F, Shen Z, Wang G, Cao J, Liu S, Zhang L, Lee S C., 2012.
1659 Characterization of atmospheric organic and elemental carbon of PM_{2.5} in a typical
1660 semi-arid area of northeastern China. *Aerosol Air Qual. Res.* 12, 792–802.

1661

1662 Zheng X, Liu X, Zhao H, Duan F, Yu T, Cachier H., 2005. Seasonal characterization of
1663 biomass burning contribution in airborne particles in Beijing. *Sci. Sin. Chim.* 35, 346–
1664 352.

1665

1666 Zhou J L, Fileman T W, Evans S, Donkin P, Readman J W, Mantoura R F C, Rowland S.,
1667 1999. The partition of fluoranthene and pyrene between suspended particles and
1668 dissolved phase in the Humber Estuary: a study of the controlling factors, *Sci. Total.*
1669 *Environ.* 244, 305–321.

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687 **Chapter-IV**

1688 **Results & Discussion**

1689

1690

1691 **Impacts of Vehicular Exhausts on Variations of Particulate**

1692 **Chemical Compounds in Ambient Air of Bangkok, Thailand**

1693

1694

1695 **Abstract**

1696

1697 In this study, a chemical characterization of $\text{PM}_{2.5}$ -bounded carbonaceous compositions
1698 (OC, EC), water-soluble ionic species (WSIS), and polycyclic aromatic hydrocarbons (PAHs) in
1699 the ambient air of Bangkok was carefully investigated. The arithmetic mean of $\text{PM}_{2.5}$ concentration
1700 was $77.0 \pm 21.2 \mu\text{g m}^{-3}$. The average concentrations of TC, OC and EC were 10.65 ± 5.39 , 8.03 ± 4.02
1701 and $2.62 \pm 1.49 \mu\text{g m}^{-3}$, respectively. The comparatively high OC/EC ratio (i.e. 3.52 ± 1.41) coupled
1702 with strong positive correlation between K^+ and other carbonaceous compositions (i.e. K^+ vs. OC
1703 ($r=0.86$), K^+ vs. EC ($r=0.87$), K^+ vs. Char-EC ($r=0.82$)) suggest that biomass burnings are one of
1704 the major contributors in sampling area. The $\sum \text{PAHs}$ concentrations (e.g. the sum of 19 PAH
1705 profiles) was $2.78 \pm 1.48 \mu\text{g m}^{-3}$, which the highest concentration of B[g,h,i]P and Ind were
1706 determined as $0.516 \pm 0.271 \mu\text{g m}^{-3}$ and $0.404 \pm 0.221 \mu\text{g m}^{-3}$, respectively.

1707 Hierarchical cluster analysis (HCA) indicated that the main source was a mixture from
1708 numerous combustion activities (e.g. biomass burning, vehicular exhausts, fossil fuel, coal and
1709 industrial). It is also remarkable to underline that Principal Component Analysis (PCA)
1710 successfully classified five principal sources of $\text{PM}_{2.5}$ samples, including vehicular exhaust,
1711 biomass burning, sea salt aerosols, power plants and industrial emission, which clarified for
1712 43.7%, 24.0%, 10.5%, 6.48% and 4.46%, respectively. As a consequence, the results indicated
1713 that the effects of both local (e.g. vehicular exhausts) and regional (e.g. agricultural waste

1708 burnings) sources play an important role in governing the level of PM_{2.5} in Bangkok's atmosphere.
1709 In addition, policy makers can benefit tremendously from this study to launch an effective air
1710 quality control strategy based on the source apportionment analysis.
1711 **Keywords:** PM_{2.5}, PAHs, Carbonaceous Compositions, WSIS, Backward Trajectories, HCA,
1712 PCA

1713 **4.1. Introduction**

1714 Over the past decades, it has been acknowledged that air pollution is one of significant
1715 environmental problems because of emissions from energy use (World Energy Council, 2013;
1716 Arbabi and Mayfield, 2016) and biomass burning (Guofeng et al., 2012; Pongpiachan et al., 2017a)
1717 in urban and rural areas. In general, the main sources of air pollutants were activities that required
1718 energy consumption, such as land transportation (Silva, 2005), electricity generation (Dung, 1996;
1719 Akunne et al., 2006) and industry (Gocht et al., 2001), especially in the mega cities, including
1720 Bangkok (Vichit-Vadakan and Vajanapoom, 2011; Guo et al., 2014, Pongpiachan et al., 2017b).

1721 It is well known that the air quality problem in Bangkok's atmosphere is caused by high
1722 traffic emissions which greatly affects people's health (Muttamara and Leong, 2000; Pongpiachan
1723 et al., 2014a; 2015). Besides the emissions from biomass burning, particularly during the burned
1724 sugar cane period is also significant environmental problems (Junpen et al. 2018; Kim Oanh, et
1725 al., 2018). During dry seasons, Bangkok is affected by the plumes of smoke originating from long-
1726 range transport from surrounding provinces. The biomass burning and traffic emissions release
1727 large amounts of particulate matters, including PAHs, OC-EC and WSIS (e.g. NH₄⁺, K⁺ and NO₃⁻)
1728 that may lead to an increased the environmental effects as well as the heath impact (Dan et al.,
1729 2004; Harrison and Yin, 2008; Zhao et al., 2013; Pongpiachan et al., 2014a; Irei et al., 2016; Tsay
1730 et al., 2016; Chen et al., 2017; Pani et al., 2018).

1731 Atmospheric PM_{2.5}-bound carbonaceous aerosol compositions have been intensively
1732 studied in several previous and comprehensively considered as persistent organic pollutants
1733 (POPs) (Jones and Voogt, 1999; Dachs and Eisenreich, 2000). Several reports highlight the
1734 adverse health impacts of PAHs as carcinogenic and/or mutagenic substances (e.g. chronic
1735 respiratory diseases, lower respiratory diseases and allergic reaction in skin, as well as skin, lung,
1736 bladder and gastrointestinal cancers) (Bach et al., 2003; Unwin et al., 2006; Campo et al., 2010;
1737 Diggs et al., 2011). PAHs have been widely used as geochemical tracers to identify potential
1738 sources of PM_{2.5} based on the concept of receptor model (Boonyatumanond et al., 2007; Dvorská
1739 et al., 2012; Hu et al., 2012; Pongpiachan, et al., 2013a,b, 2015; Choochuay et al., 2020).

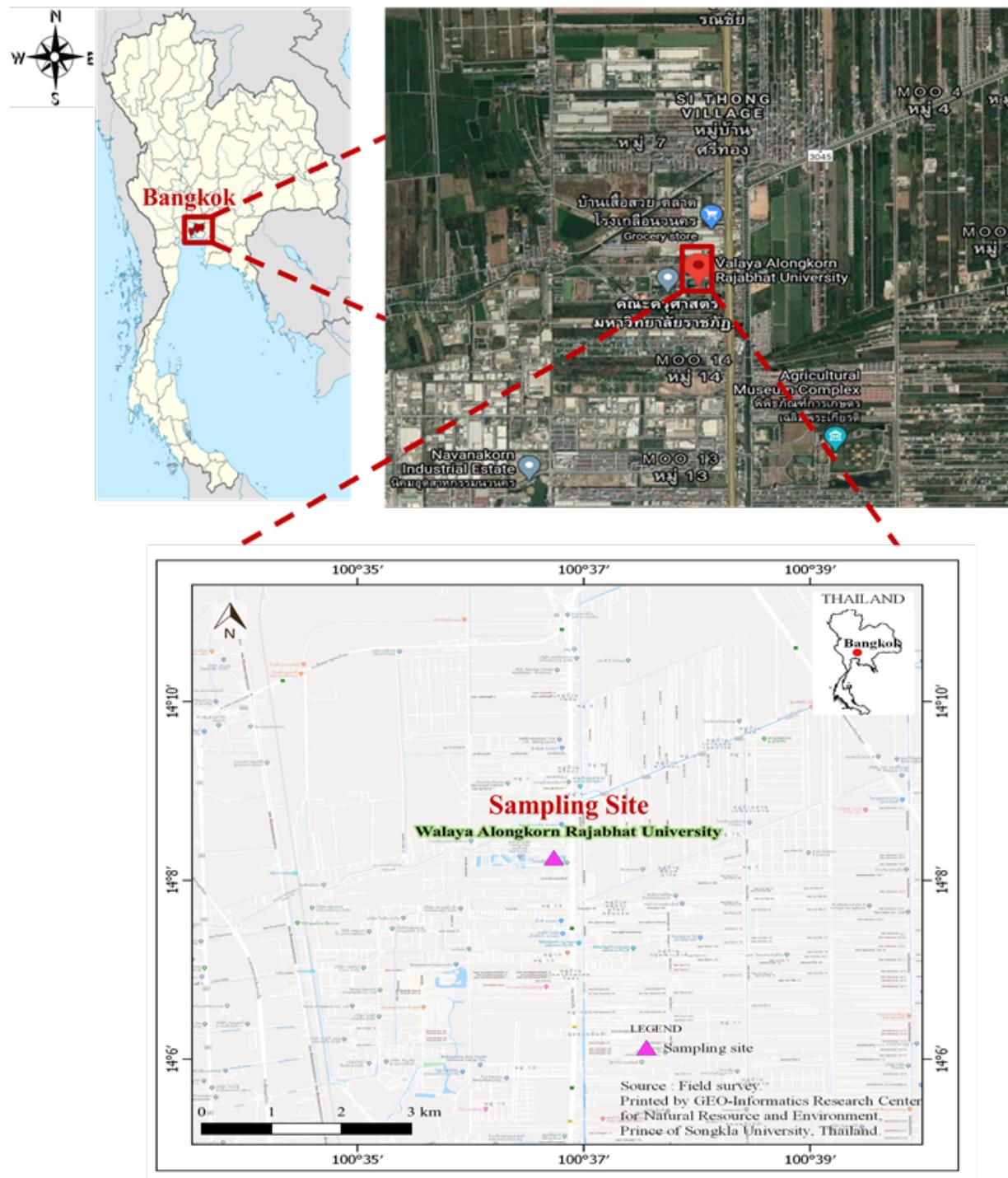
1740 Over the past few decades, it is also worth mentioning that PM_{2.5}-bound carbonaceous
1741 aerosol compositions have been extensively evaluated in the northern and central parts of Thailand
1742 (Pongpiachan et al., 2017a; Pani et al., 2018; Thepnuan et al., 2019; Choochuay et al., 2020). A
1743 previous study reported that the annual mean concentrations of OC and EC at numerous PCD air
1744 quality observatory sites located in Bangkok were 18.8 ± 9.18 (n=94) and $6.65 \pm 2.94 \mu\text{g m}^{-3}$
1745 (n=94), respectively (Pongpiachan et al., 2015). Some previous studies have also investigated the
1746 annual mean of PM_{2.5}-bound carbonaceous aerosol compositions in Bangkok (Pongpiachan et al.,
1747 2014a; Phairuang et al. 2019). It is emphasized that biomass burning is also the main source of
1748 OC-EC and WSIS (e.g. K⁺, NH₄⁺, SO₄²⁻ and NO₃⁻), which K⁺ is widely used as a biomass marker
1749 (Chuang et al., 2013; Lee et al., 2016; Khamkaew et al., 2016; Pani et al., 2018; Choochuay et al.,
1750 2020).

1751 Therefore, the atmospheric behavior of PM_{2.5}-bounded chemical compositions and their
1752 potential sources is definitely important for decreasing PM levels and improving air quality in
1753 ambient air of Bangkok. Overall, the main principles of this research are to (i) quantitatively

1754 characterize the carbonaceous compositions, PAHs, and WSIS in PM_{2.5}; (ii) apply the diagnostic
1755 binary ratios of PAHs for potential source classification; and (iii) employ HCA and PCA for
1756 execute the source apportionment of PM_{2.5} in Bangkok.

1757 **4.2. Materials and Methods**

1758 **4.2.1. Air Quality Observatory Area**


1759 The Aerosol sampling at Bangkok was located at ValayaAlongkorn Rajabhat University.
1760 The mini-vol air sampler is settled up at the rooftop of Science Center Building (5th Floor). The
1761 latitude of Bangkok sampling area is 14.13383 and the longitude is 100.61604. It located in the
1762 central of Thailand that is roughly 1,500 km², which on the riverside of Chao Phraya and close to
1763 the Gulf of Thailand, as well as its low-lying geography of approximately 1.5 meters average
1764 elevation upper mean sea level. It has a tropical atmosphere under the effect of the South Asian
1765 monsoon regularity which has three seasons, namely, summer, rainy, and winter, although
1766 weathers are rather hot year-round.

1767

1768

1769

1770

1771

1772

Figure 4.1. Description of air sample observatory area in Bangkok

1773 PM_{2.5} samples ($n=43$) were conducted from Bangkok, which described in Fig. 4.1. All

1774 PM_{2.5} samples were conducted on a 47 mm Whatman quartz fiber-filter, each quartz fiber-filter

1775 were pre-heated in a furnace at 550 °C for 6 hours before sampling to eliminate the residual carbon.
1776 In sampling process, we used a MiniVol portable air sampler with a flow rate of five lite per minute
1777 for 72 consecutive hours. Each PM_{2.5} sample was reserved in petri slide dish and stored them in a
1778 refrigerator till the next step of analysis. After the sample preservation, all PM_{2.5} samples have
1779 been analyzed for PAHs, OC-EC and WSIS.

1780 **4.2.2. Measurement data in Bangkok**

1781 **4.2.2.1. The measurement of OC-EC**

1782 For each sample was clarified for carbonaceous aerosol concentrations, following the
1783 thermal/optical reflectance procedure and applied a Desert Research Institute Model 2001 carbon
1784 analyzer (Chow et al., 1993). Eight carbonaceous fractions, including four organic carbons (OC1-
1785 OC4), a pyrolyzed carbon fraction (OP), and three elemental carbons (EC1-EC3) were formed
1786 from the carbon analyzer (Chow et al., 2007a).

1787 The quality control and quality assurance (QA/QC) procedures for the OC and EC
1788 measurements that were followed previous studies (Cao et al., 2003). Concisely, methane with
1789 known quantity was used every day for calibration of analyzer. One of ten samples used for
1790 replicate measurements and the variation was below 5% for TC (total carbon) and 10% for OC
1791 and EC.

1792 **4.2.2.2. The measurement of WSIS**

1793 Each PM_{2.5} sample was identified for WSIS, five cations including Na⁺, NH₄⁺, K⁺, Mg²⁺
1794 and Ca²⁺ and five anions including Cl⁻, F⁻, NO₂⁻, NO₃⁻ and SO₄²⁻. The extraction of each PM_{2.5}
1795 filter was used the ion chromatography (IC) that contains with a separation column for measure
1796 the concentration of WSIS in all PM_{2.5} samples. The quality assurance/quality control (QA/QC)
1797 for this measurement, following the previous studies (Wang et al., 2005). Briefly, all solvents that

1798 applied for identification process were pesticide residue grade. All glassware that used in the
1799 process was rinsed by an ultrasonic and incubated at 450 degrees in furnace for six hours.

1800 **4.2.2.3. The measurement of PAHs**

1801 The PM_{2.5} sample was clarified for PAHs concentration by TD-GC/MS, following the in-
1802 injection port thermal desorption (TD) coupled with gas chromatography/mass spectrometry
1803 (GC/MS) which applied for quantify of non-polar organic compounds as a concentration of PAHs.
1804 The quality assurance/quality control (QA/QC) for this measurement, following the previous
1805 studies (Chow et al., 2007b). Shortly, injection port thermal desorption (TD) coupled with gas
1806 chromatography/mass spectrometry (GC/MS), was applied to quantify 19 PAH profiles in the
1807 PM_{2.5} samples. It responds as well as an alternative procedure of ancient solvent extraction
1808 performed by GC/MS analysis.

1809 **4.2.3. Statistical analysis**

1810 This study, statistical analysis was using SPSS system for windows version 22 (SPSS Inc.,
1811 USA), including the minimum, maximum, mean, and standard deviations for the concentrations
1812 of OC, EC, WSIS and PAHs. The identify source appointment was applied by HCA and PCA,
1813 following the previous studies (Larsen and Baker, 2003; Hegde et al., 2007). Approximately, HCA
1814 was applied to cluster chemicals according to the coherent source of PM_{2.5} samples in Bangkok.
1815 Whilst PCA was a statistics curtailment procedure helpful for outline or explain the transition in a
1816 batch of variant into less magnitude than there are variants in that data set.

1817 **4.3. Results and Discussion**

1818 **4.3.1. Mass concentrations of PM_{2.5}, TC, OC and EC**

1819 The mass concentrations of PM_{2.5}, OC and EC are shown in **Table 4.1**. During the study
1820 period the concentrations of PM_{2.5} mass varied from 34.8 to 143.5 $\mu\text{g m}^{-3}$ with a mean of 77.0 ± 21.2

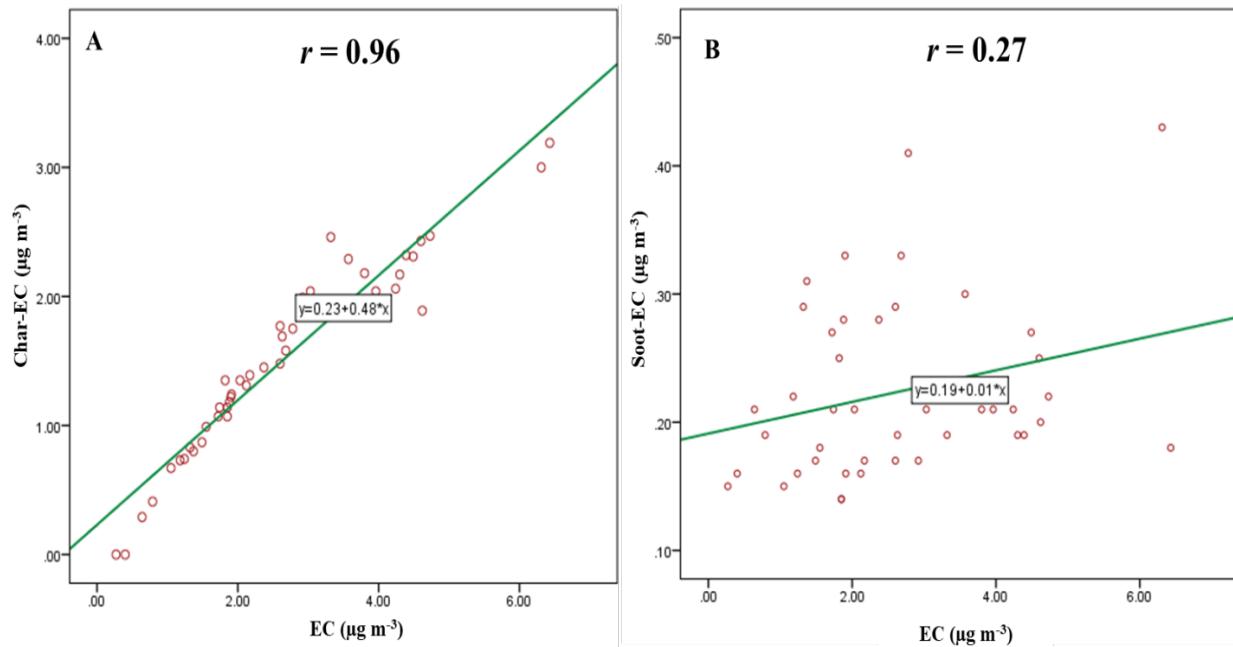
1821 $\mu\text{g m}^{-3}$, highlighting that the mean of $\text{PM}_{2.5}$ levels is much higher than the annual mean
 1822 concentration of Thai National Ambient standard ($25 \mu\text{g m}^{-3}$) as well as USEPA standard. The
 1823 average concentrations of TC, OC and EC were 10.65 ± 5.39 , 8.03 ± 4.02 and $2.62 \pm 1.49 \mu\text{g m}^{-3}$,
 1824 respectively. While the mean mass concentrations of each carbon fraction including OC1, OC2,
 1825 OC3, OC4, EC1, EC2 and EC3 were 0.07 ± 0.09 , 1.31 ± 0.64 , 3.67 ± 1.88 , 2.41 ± 1.64 , 2.97 ± 1.32 ,
 1826 0.22 ± 0.06 and $0.01 \pm 0.02 \mu\text{g m}^{-3}$, respectively.

1827 **Table 4.1. The concentrations of TC, OC and EC in Bangkok**

Species	Minimum ($\mu\text{g m}^{-3}$)	Maximum ($\mu\text{g m}^{-3}$)	Mean \pm SD (n=43)
OC1	N.D.	0.30	0.07 ± 0.09
OC2	0.38	3.57	1.31 ± 0.64
OC3	1.53	10.73	3.67 ± 1.88
OC4	0.46	8.16	2.41 ± 1.64
EC1	0.24	6.25	2.97 ± 1.32
EC2	0.14	0.41	0.22 ± 0.06
EC3	N.D.	0.14	0.01 ± 0.02
OC	2.64	22.75	8.03 ± 4.02
EC	0.27	6.43	2.62 ± 1.49
TC	2.99	29.06	10.65 ± 5.39
$\text{PM}_{2.5}$	34.8	143.5	77.0 ± 21.2

1828
 1829 For OC fractions, OC3 was found the most ($3.67 \pm 1.88 \mu\text{g m}^{-3}$), followed by OC4
 1830 ($2.41 \pm 1.64 \mu\text{g m}^{-3}$), OC2 ($1.31 \pm 0.64 \mu\text{g m}^{-3}$) and OC1 ($0.07 \pm 0.09 \mu\text{g m}^{-3}$). While EC fractions,
 1831 EC1 was found the most ($2.97 \pm 1.32 \mu\text{g m}^{-3}$), followed by EC2 ($0.22 \pm 0.06 \mu\text{g m}^{-3}$) and EC3
 1832 ($0.01 \pm 0.02 \mu\text{g m}^{-3}$), respectively. Several studies applied OC and EC to estimated emission sources
 1833 from local and regional transport such as anthropogenic emissions and burning of biomass
 1834 (Chuang et al., 2013; Cheng et al., 2015; Li et al., 2018). Previous studies reported that OC3 was
 1835 a good relationship with gasoline emission (Cao et al., 2006) and burning of biomass (Chuang et
 1836 al., 2013), while OC2 was a marker of vehicular exhausts (Cheng et al., 2015). Form the result of

1837 EC fractions, EC1 was a strong correlation with vehicular exhausts (Cao et al., 2005) and EC2 was
1838 a good relationship with diesel emissions (Cao et al., 2006).


1839 Several studies showed the result that agricultural burning such as rice straw and sugar
1840 cane in central and northeastern part of Thailand was creating the higher value of black carbon and
1841 organic carbon to the Bangkok area (Junpen et al. 2018; Kim Oanh, et al., 2018). Hence, the results
1842 of this study shows the higher level of PM_{2.5} concentration might be came from the agricultural
1843 burning activities from another province nearby this area, which areas around 250 kilometers far
1844 from Bangkok. Thus, it is much more enough time to enrich the level of organic carbon and PM_{2.5},
1845 which lifetime of black carbon was taking the atmospheric about one week (Cape et al., 2012)

1846 OC can be released straight from various sources, including the man-made processes and
1847 natural germinations (e.g. primary OC) and/or also can produce in the ambience air because of
1848 gas-to-particle exchanging (e.g. secondary OC) (Mauderly and Chow, 2008). While, EC is released
1849 from incomplete combustion processes (e.g. the combustion biomass, the combustion of fossil
1850 fuels and biofuels) and usually applied as a marker of primary organic carbon (Turpin and
1851 Huntzicker, 1995). Generally EC is sub-divided into char and soot. Char-EC was consisted of
1852 submicron particles produced from low temperature combustion of biomass and Soot-EC was
1853 composed from aggregation of gas-phase precursors released from high temperature (>600 °C) of
1854 fossil fuel combustion, which depend on the type of fuel and condition of combustion (Han et al.,
1855 2007, 2009a; Keiluweit et al., 2010). Hence, the ratio of OC/EC and Char-EC/Soot-EC can explain
1856 their environmental (Han et al., 2009a) and benefit in source estimation.

1857 **4.3.2. Distribution of OC/EC ratios and Char-EC/Soot-EC Ratios**

1858 Carbonaceous compounds are essential fraction of atmospheric aerosols (Putaud et al.,
1859 2004). The ratio of OC/EC and Char-EC/Soot-EC were applied to predicate the source of

1860 carbonaceous aerosols (Han et al., 2007, 2009b), as showed in **Table 4.2**. In this study the result
 1861 showed that the OC/EC ratios ranged from 1.87 to 9.96 with an average value of 3.52 ± 1.41 ,
 1862 indicating that the source was gasoline and LPG exhausts (Chow et al., 2004), which the OC to
 1863 EC ratio higher than two points that the secondary organic carbon has a significant to organic
 1864 carbon (Turpin and Huntzicker, 1995). While the Char-EC/Soot-EC ranged from N.D. to 17.93
 1865 with a mean value of 6.94 ± 3.70 . Char-EC/Soot-EC ratio is cogitated a good marker of biomass
 1866 burning more than OC/EC ratio because the primary emission sources can be effected to OC/EC
 1867 ratio (Kumar and Attri, 2016). A high Char-EC/Soot-EC ratio represents the function of biomass
 1868 burning participated Char-EC rising to total EC, on the other hand, the ratio less than one will
 1869 intimates that Soot-EC from fossil fuel combustion outstandingly encourage to total EC. The result
 1870 presented the high ratio of Char-EC/Soot-EC guided that the ambient aerosol was emerging from
 1871 biomass burning activity in Bangkok area.

1872
 1873 **Figure 4.2.** The correlation of Char-EC with total EC (A) and the correlation of Soot-EC with total
 1874 EC (B) in $\text{PM}_{2.5}$ conducted at Bangkok

1875 A strong correlation was found between Char-EC and total-EC ($r = 0.96$), while the
 1876 correlation of Soot-EC with total-EC was weak ($r = 0.27$), correlation is significant at the 0.01
 1877 level (see in Fig. 4.2 (A) and (B)). This recommended that prominent raisings of Char-EC came
 1878 from biomass burning to total-EC of the Bangkok's atmosphere. The correlations of this study
 1879 were agreement with previous studies from China and India (Han et al., 2009; Kumar and Attri,
 1880 2016).

1881 **Table 4.2. Carbon composition and the average ratios of OC/EC, Char-EC/Soot-EC, OC, EC, and**
 1882 **TC to particulate matter in Bangkok**

Species	Minimum	Maximum	Mean \pm SD (n=43)
OC/EC	1.87	9.96	3.52 \pm 1.41
Char-EC/Soot-EC	N.D.	17.93	6.94 \pm 3.70
OC/ PM _{2.5}	0.03	0.25	0.11 \pm 0.05
EC/PM2.5	N.D.	0.08	0.04 \pm 0.02
TC/ PM _{2.5}	0.03	0.33	0.15 \pm 0.07

1883
 1884 For the result of OC/PM_{2.5}, EC/ PM_{2.5} and TC/ PM_{2.5} ratios were 0.11 \pm 0.05, 0.04 \pm 0.02 and
 1885 0.15 \pm 0.07, respectively. The ratios of OC/PM_{2.5} and EC/PM_{2.5} were closer to the resulted value of
 1886 biomass burning that reported by previous studies from Mumbai, Beijing and Delhi (e.g. Zhang et
 1887 al., 2013; Sharma et al., 2014a, b; Kumar and Attri, 2016). Noticeably, during the observation
 1888 period were closer to the reported values of emission source from biomass burning.

1889 **4.3.3. Distribution of Secondary Organic Carbon (SOC)**

1890 The OC/EC ratio in section 3.2 was higher than two its points that the secondary organic
 1891 carbon has a significant to organic carbon. Therefore, SOC was used to calculate by the minimum
 1892 of OC/EC ratios, while EC is used as a primary organic carbon (POC) (Chow et al., 1996; Castro
 1893 et al. 1999). It was followed from the equation 1:

1894
$$SOC = OC_{total} - EC \times (OC/EC)_{pri} \quad (1)$$

1895 Where, OC_{total} presents the value of total OC and $(OC/EC)_{pri}$ is the mean value of the three lowest
1896 OC/EC ratios

1897 The average values of the three minimum OC/EC ratios (1.95) have been used in the
1898 equation for measure the SOC content of $PM_{2.5}$. The mean value of SOC in this study was
1899 $2.92 \pm 1.93 \mu g m^{-3}$. The percentage contribution of SOC to OC_{total} was found 36.3%. This value is
1900 2.3 times (84%) lower than the value that conducted in Milan, Italy (Lonati et al., 2007) and 1.6
1901 times (59%) lower than the value that conducted in Birmingham (Harrison and Yin, 2008) and
1902 Beijing urban site (Dan et al., 2004). But it is higher 2.4 times (15.4%) than the value that
1903 conducted from southern Taiwan (Shen et al., 2020). However this value is close to the value that
1904 observed from roadside area in Hanoi, Vietnam (36.0%) (Thuy et al., 2018). Normally, the SOC
1905 content decreases in urban area and it increases in outlying areas (70–80% in Finokalia) (Shamjad
1906 et al., 2015). The result presented the ratio of SOC to OC at Bangkok had been contributed during
1907 the study period, where the high value maybe effected from the conversion of VOCs, which
1908 released from the traffic exhausts. (Sato et al. 2010).

1909 **4.3.4. Distribution of WSIS**

1910 The concentrations of WSIS in $PM_{2.5}$ are summarized in [Table 4.3](#), which have been widely
1911 studied in different areas. Previous studies reported that SO_4^{2-} and Cl^- are mainly from marine
1912 aerosols, whereas NH_4^+ and K^+ are mainly from burning of biomass (Andreae, 1983; Kocaka et
1913 al., 2007; Park and Cho, 2011; Pongpiachan et al., 2014b). In this study we found the individual
1914 of WSIS concentrations were in a decreasing order of $SO_4^{2-} > NO_3^- > Na^+ > Ca^{2+} > NH_4^+ > K^+$
1915 $> Cl^- > NO_2^- > Mg^{2+} > F^-$. The mean concentration of total ten ions was $12.7 \pm 10.6 \mu g m^{-3}$. By SO_4^{2-}
1916 ($4.81 \pm 3.81 \mu g m^{-3}$) was highest found in $PM_{2.5}$ mass, followed by $NO_3^- (1.85 \pm 1.04 \mu g m^{-3})$ and

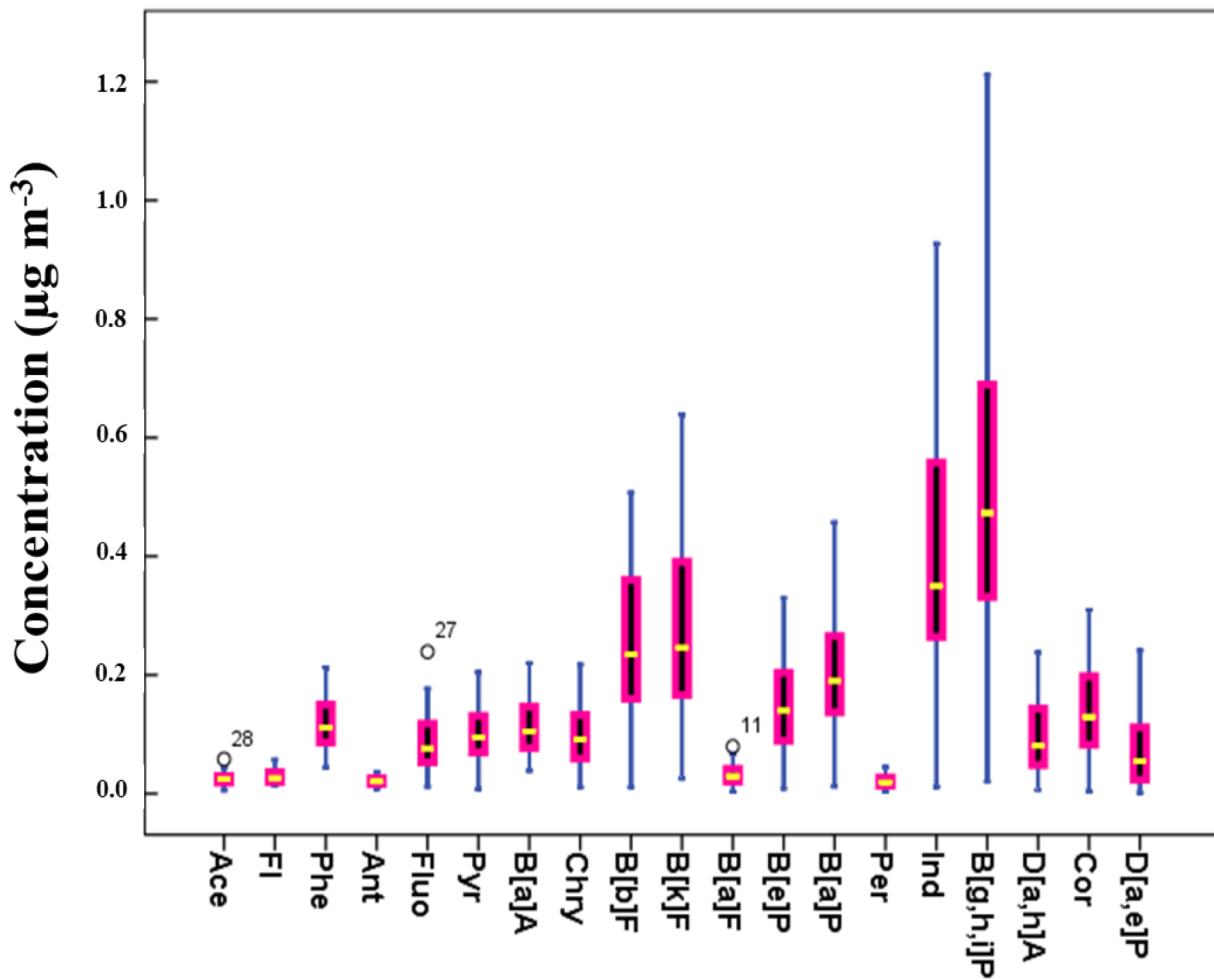
1917 followed closely by Na^+ ($1.78 \pm 0.59 \text{ } \mu\text{g m}^{-3}$), as 38%, 14% and 14% of the total measured ions,
1918 respectively.

1919 **Table 4.3. The concentrations of WSIS conducted in $\text{PM}_{2.5}$ at Bangkok**

Ion Species	Min. ($\mu\text{g m}^{-3}$)	Max. ($\mu\text{g m}^{-3}$)	Mean ($\mu\text{g m}^{-3}$)	% mass of total ion content
F^-	0.06	0.22	0.10 ± 0.03	1%
Cl^-	0.28	6.86	0.59 ± 0.99	5%
NO_2^-	N.D.	1.16	0.40 ± 0.18	3%
NO_3^-	0.59	6.18	1.85 ± 1.04	14%
SO_4^{2-}	0.80	21.40	4.81 ± 3.81	38%
Na^+	1.10	4.51	1.78 ± 0.59	14%
NH_4^+	0.20	3.61	0.97 ± 0.85	8%
K^+	N.D.	1.60	0.65 ± 0.41	5%
Mg^{2+}	0.08	2.53	0.18 ± 0.37	1%
Ca^{2+}	0.60	16.20	1.36 ± 2.33	11%
Total	-	-	12.7 ± 10.6	100%

1920

1921 The higher value concentrations of SO_4^{2-} and NO_3^- that have found in this study could be
1922 related with high oxidation rates of SO_2 and NO_2 for the ambient air of Bangkok. Previous studies
1923 recommended that the aquatic phase oxidation of SO_2 by the catalysis of the transfer metals is
1924 probably a big role of SO_4^{2-} origination during the study period (Sun et al., 2013; Zhao et al., 2013;
1925 Park et al., 2016). While NO_3^- is generally produced through gas phase oxidation procedure of
1926 NO_2 and OH (Smith et al., 1995; Park et al., 2005; Park et al., 2016).


1927 Several previous studies presented that K^+ and NH_4^+ are the major contributors of particles
1928 initiated from burning of biomass and agricultural waste, (Kocaka et al., 2007; Kundu et al., 2010;
1929 Park and Cho, 2011). At Bangkok, the result showed that the K^+ was a high relationship with OC
1930 ($r=0.86$), EC ($r=0.87$) and Char-EC ($r=0.82$), respectively. However K^+ was weakly related with
1931 those marine species (i.e., Na^+ , Cl^- , Mg^{2+} and Ca^{2+}), indicating that K^+ mostly initiated from
1932 combustion activities that led to K^+ conjunction, so in this study K^+ was applied as a marker of
1933 biomass burning. Interestingly, a strong correlation between K^+ with NO_3^- ($r=0.81$) was also found

1934 in Bangkok area, as the major source of NO_3^- is originated from incomplete combustion, including
1935 traffic emissions and industrial emission (Mousavi et al., 2017). Thus, the result suggested that the
1936 combustion sources (e.g. biomass burning and vehicular exhausts) might be played a significant
1937 role in the higher organic carbon in $\text{PM}_{2.5}$ at Bangkok.

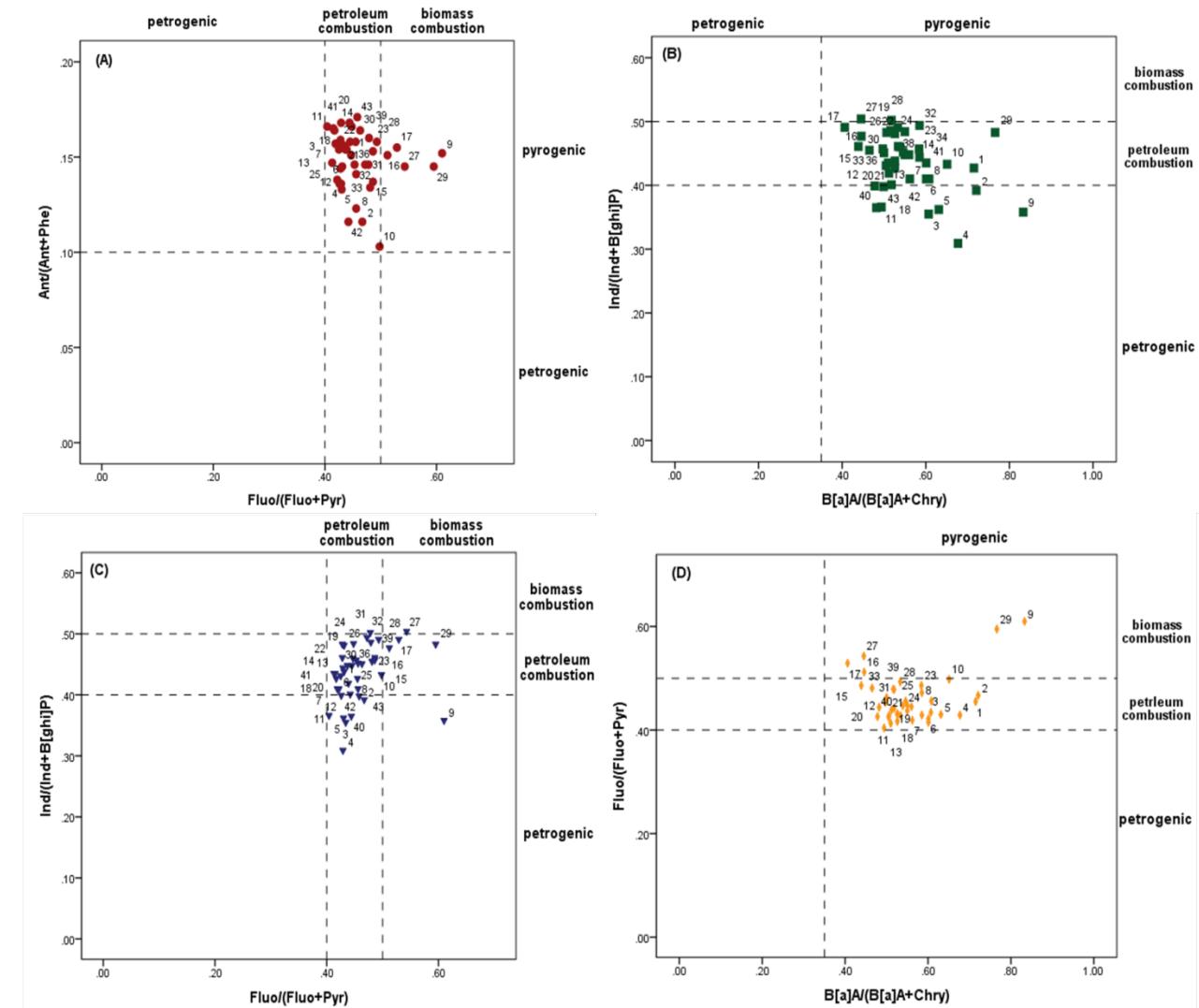
1938 **4.3.5. Distribution of PAHs**

1939 The statistical distributions of individual PAH obtained in Bangkok are plotted in panel as
1940 box and whisker plots were shown in [Fig.4.3](#). In this study we found the individual concentrations
1941 of PAH that analyzed from $\text{PM}_{2.5}$ samples were in a decreasing order of $\text{B}[g,h,i]\text{P} > \text{Ind} > \text{B}[k]\text{F} >$
1942 $\text{B}[b]\text{F} > \text{B}[a]\text{P} > \text{B}[e]\text{P} > \text{Cor} > \text{Phe} > \text{B}[a]\text{A} > \text{Pyr} > \text{Chry} > \text{D}[a,h]\text{A} > \text{Fluo} > \text{D}[a,e]\text{P} > \text{B}[a]\text{F} > \text{Fl} >$
1943 $\text{Ace} > \text{Per} > \text{Ant}$. The $\sum\text{PAHs}$ concentration (the sum of 19 PAH profiles) was $2.78 \pm 1.48 \mu\text{g m}^{-3}$,
1944 which the highest concentration of $\text{B}[g,h,i]\text{P}$ ($0.516 \pm 0.271 \mu\text{g m}^{-3}$), followed by Ind (0.404 ± 0.221
1945 $\mu\text{g m}^{-3}$) have been found in the $\text{PM}_{2.5}$ sample.

1946 Previous studies in Bangkok reported that the dominant PAHs in ambient air were
1947 $\text{B}[g,h,i]\text{P}$, $\text{B}[e]\text{P}$, $\text{B}[a]\text{P}$, $\text{B}[k]\text{F}$, Pyr and Cor (Panther et al., 1999), and in the suburban Bangkok
1948 area, the significant PAHs were $\text{B}[e]\text{P}$, $\text{B}[g,h,i]\text{P}$, Ace , Acy (Kim Oanh et al., 2000).

1949

1950 **Figure. 4.3.** Box-plot of individual concentration of 19 PAHs conducted in PM_{2.5}


1951 In this study, B[g,h,i]P and Ind were presented the highest concentration, indicating that
 1952 vehicular exhausts, industrial combustion and burning of waste might be reflected as the release
 1953 sources of PAHs for the Bangkok's atmosphere (Zhou et al., 1999; Ravindra et al. 2008).

1954 Several previous restudies have recommended the use of PAHs as markers to estimate the
 1955 pollution sources. Those findings found B[g,h,i]P, Ind, B[a]P, B[b]F, B[k]F were the major PAHs,
 1956 whereas smaller portions of B[a]A, Phe, Ant, Pyr, Fluo and Chry were found in the softwood
 1957 burning emissions (Freeman and Cattel, 1990; Bari et al., 2010). Likewise, B[a]P have been used
 1958 as a marker of biomass burning, while B[g,h,i]P and Ind used as tracers of vehicular exhaust

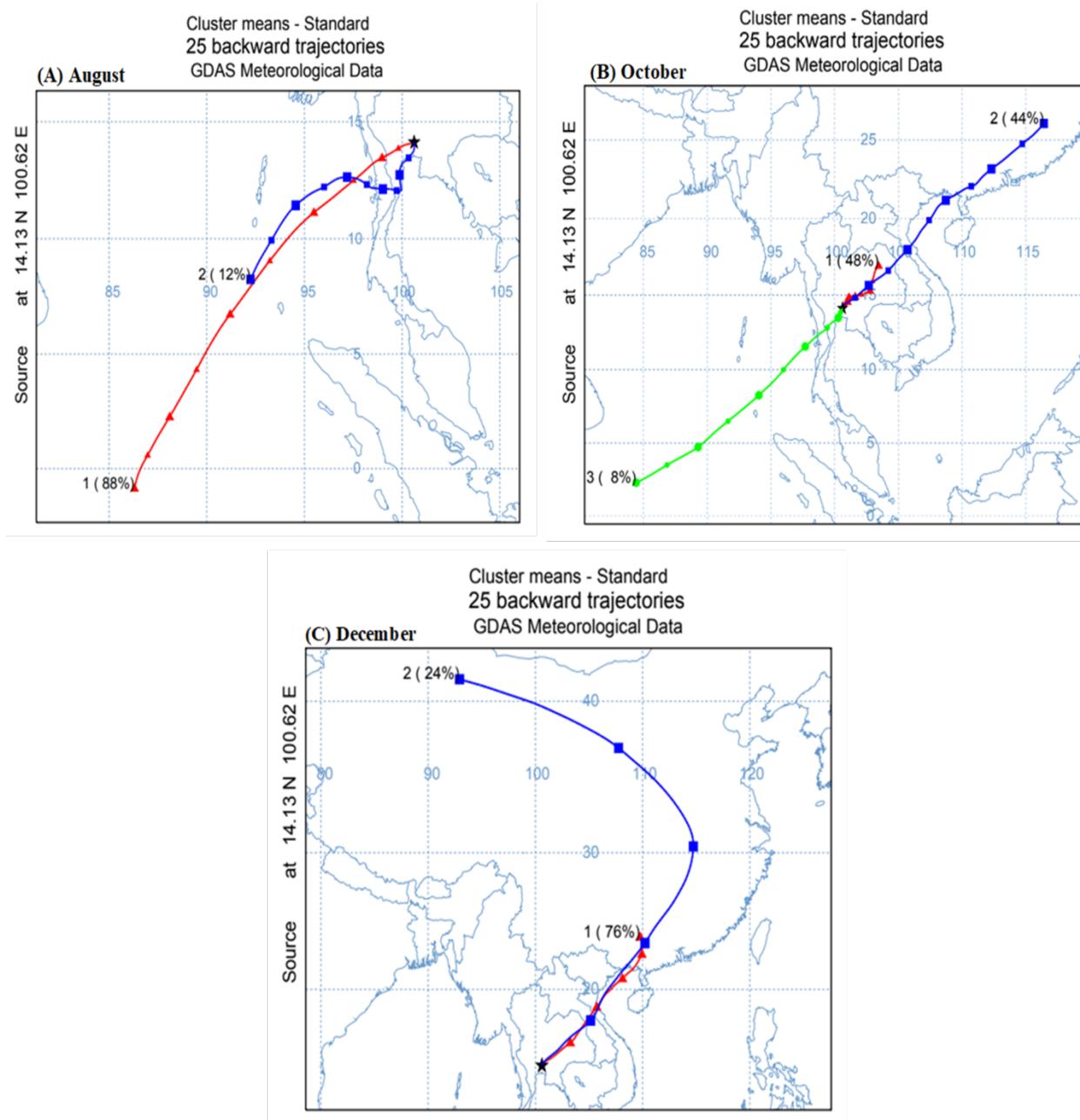
1959 (Kulkarni and Venkataraman, 2000; Chuesaard et al., 2014). In addition, the high molecular weight
1960 PAH congeners (HMW-PAHs) (e.g. B[a]P and D[a,h]A) have been applied for the dominant
1961 emissions occurring from gasoline vehicles. Whilst other HMW-PAHs (e.g. B[a]P, B[g,h,i]P, Ind
1962 and D[a,h]A) released from diesel trucks at higher concentrations than duty vehicles (Miguel et
1963 al., 1989). Moreover, B[g,h,i]P also represented as a specific indicator for gasoline vehicles
1964 (Boström et al., 2002).

1965 **4.3.5.1. Diagnostic Ratios Analysis**

1966 Some PAH ratios have been applied as a descriptor to feature and separate the emission
1967 source (Yunker et al., 2002; Brown and Peake, 2006; Feng et al., 2006; Zhang et al., 2008) such
1968 as Ant/(Ant+Phe), Fluo/(Fluo+Pyr), B[a]A/(B[a]A+Chry) and Ind/(Ind+B[g,h,i]P), as Ant/(Ant
1969 +Phe) < 0.1 was suggest for petrogenic, or > 0.1 pyrogenic source. Fluo/(Fluo+Pyr) of 0.4–0.5
1970 presented petroleum combustion (e.g. traffic emission and furnaces), > 0.5 combustion of biomass
1971 (e.g. combustion of grasses, wood and/or coal) source. For B[a]A/(B[a]A+ Chry), > 0.35 was
1972 indicated as the signal for pyrogenic source (e.g. combustion of biomass, coal, petroleum and
1973 mixed petroleum). Ind/(Ind+B[g,h,i]P), < 0.2 was considered as a petrogenic source, 0.4–0.5 was
1974 combustion of petroleum and > 0.5 related to the combustion of biomass. The diagnostic of the
1975 four ratios during the study periods are shown in Fig. 4.4.

1977 **Figure 4.4.** The diagnostic ratios of: (A) Fluo/(Fluo+Pyr) vs. Ant/(Ant+Phe); (B)
1978 B[a]A/(B[a]A+Chry) vs. Ind/(Ind+B[g,h,i]P) (C) Fluo/(Fluo+Pyr) vs. Ind/(Ind+B[g,h,i]P) and (D)
1979 B[a]A/(B[a]A+Chry) vs. Fluo/(Fluo+Pyr); conducted in Bangkok

1980 In this study, the ratio of Ant/(Ant+Phe) ranged from 0.10 to 0.17, which applied to
1981 differentiate petrogenic (<0.1) and pyrogenic (>0.1). The plurality of portions accommodated a
1982 ratio greater than 0.1 designated a pyrogenic source. The Fluo/(Fluo+Pyr) has a range of 0.40 to
1983 0.61 with a mean of 0.46. Most of sections ratios in between 0.4 to 0.5, indicating petroleum
1984 combustion was a main source (e.g. combustion engines and furnaces). For B[a]A/(B[a]A+Chry)
1985 ranged from 0.41 to 0.83 with a mean of 0.55. It showed that the major source was pyrogenic
1986 (>0.35) (Dvorská et al. 2011), including coals, biomass, fossil and petrol fuels combustion. The

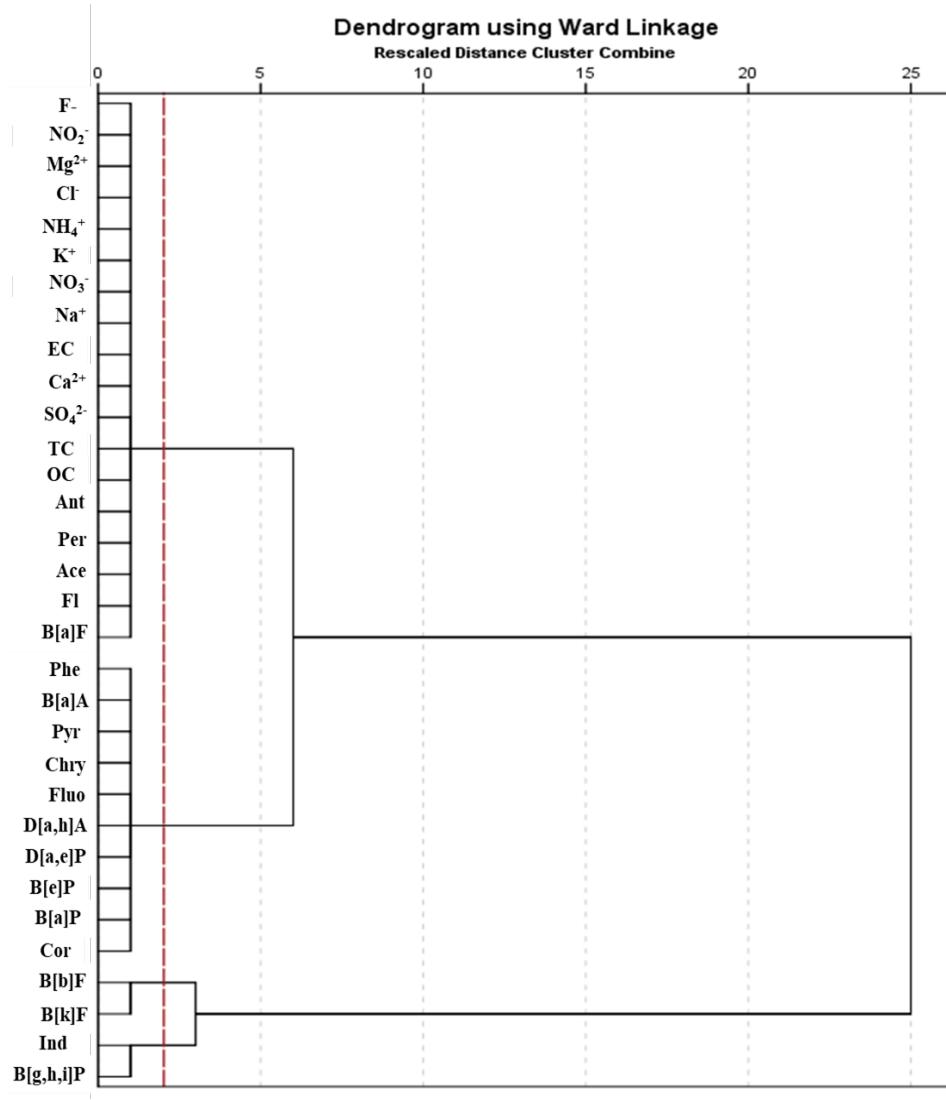

1987 Ind/(Ind+B[g,h,i]P) ranged from 0.31 to 0.50 and a mean of 0.44. The majority of portions
1988 accommodated a ratio from 0.4 to 0.5, which indicates petroleum combustion was a major source.
1989 Overall, the result of the binary ratios showed that petroleum combustion and biomass burning,
1990 particularly vehicular exhausts and the effect of agricultural waste burning from another province
1991 surrounding Bangkok was a major contributor in Bangkok's atmosphere.

1992 **4.3.6. Classification of Air Mass Back Trajectories during the Aerosol Sampling Period**

1993 In order to identify the potential pollution sources in the receptor site, we investigated the
1994 air mass back trajectory using the Hybrid Single-Particle Lagrangian Integrated Trajectory
1995 (HYSPLIT) model (Zhao et al., 2011; Stein et al., 2015; Kassambara, 2017; Moran et al., 2018).
1996 The backward air mass trajectories arriving at Bangkok during the study period in August (Fig.
1997 4.5 (A)) presented that the southwest trajectory patterns were those having the marine pathways
1998 of air mass arriving the Bangkok area from over the sea. Thus, the marine air mass was initiated
1999 from the Indian Ocean and Andaman Sea and had a long distant marine and entered inland at the
2000 southern part of Myanmar and the western part of Thailand before arriving to Bangkok. These air
2001 masses can be carried sea salt aerosols to the Bangkok area, which is also demonstrated in the
2002 recreated mass produces. The majority backward air mass trajectories during October (Fig. 4.5
2003 (B)) have passed over the northeastern trajectory (92% in total) and 8% from southwest trajectory
2004 patterns. Hence, the mainly air masses can be took from the long rang transportation of the biomass
2005 burning that initiated 48% in total from the northeastern regions of Thailand and 44% in total had
2006 a long distant pathway through China and a marine pathway over the Gulf of Vietnam, and then
2007 passing over Vietnam and Lao before arriving to Bangkok. During the study period in December
2008 (Fig. 4.5 (C)), all clusters of the air masses trajectory patterns have passed from the northeastern.
2009 Therefore, the essential sections of the air masses encouraged to the pollutants emitted from

2010 burning of biomass (e.g. agriculture waste, wood and/or grass) vehicles exhaust, combustion of
2011 fossil fuel and coal which transferred from Lao, Vietnam and China.

2012 Interestingly, during the sugarcane harvests season in central and northern part of Thailand
2013 during November to February was related to high level of carbonaceous aerosols and air masses
2014 trajectory patterns from this study in December. From the previous study reported that the owning
2015 of five PAHs profile including B[a]A, B[b]F, B[k]F), B[a]P) and D[a,h]A in cachaça, Brazil which
2016 indicating that the samples that conducted from burnt sugar cane fields had higher significant
2017 PAHs levels more than those samples that conducted from non-burnt sugar cane fields (Tfouni et
2018 al., 2007) and the enriched K⁺ and Cl⁻ were found the most abundant of WSIS in burnt sugar cane
2019 period as well (Álvarez et al., 2018). All chemical level concentrations measured in this study,
2020 including OC, EC, WSIS and PAHs are in a good agreement with the result which have been
2021 reported in Brazil (Lara et al., 2005; lvarez et al., 2016). The concentrations of TC, OC, EC, WSIS
2022 and PAHs during burned and non-burnt sugar cane fields were statistically different for both
2023 period, presenting statistical differences ($p < 0.05$) and ($p < 0.10$). Hence, it points that the burning
2024 of sugarcane leaf for the harvest period had a significant in December which is agreement with the
2025 high-level of chemical characterization of PM_{2.5}-bounded carbonaceous aerosols in the ambient
2026 air of Bangkok.


Figure 4.5. Air mass history during the aerosol sampling period at Bangkok; (A) August 2017, (B) October 2017 and (C) December 2017

2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038

2039 **4.3.7. Source identification and pattern recognition**

2040 **4.3.7.1. HCA for Classification of Chemical Compounds during the Aerosol Sampling Period**

2041 The chemical components in PM_{2.5} samples were classified by cluster analysis of
2042 carbonaceous compositions, WSIS and PAH profiles by the ward method with squared euclidean
2043 distance (see Fig. 4.6).

2044

2045 **Figure 4.6. Dendrogram of PM_{2.5}-bounded chemical compounds in the ambient air of Bangkok**

2046 HCA was applied to separate the homogeneous clusters of individual carbonaceous
2047 component in PM_{2.5} samples. The results indicated that the main components are separated into

2048 four clusters from the 32 individuals. The first cluster consists of F^- , NO_2^- , Mg^{2+} , Cl^- , NH_4^+ , K^+ ,
2049 NO_3^- , Na^+ , OC, Ca^{2+} , EC, TC, SO_4^{2-} , Ant, Per, Ace, Fl and B[a]F, which all OC, EC and WSIS
2050 were in this cluster. It indicated that the main source was mixture from combustion activities (e.g.
2051 biomass, fossil fuel, coal and industrial) (Long et al., 2014; Pani, et al., 2019).

2052 The second cluster includes Phe, B[a]A, Pyr, Chry, Fluo, D[a,h]A, D[a,e]P, B[e]P, B[a]P
2053 and Cor. This cluster ordinarily initiates from pyrogenic sources that emitted from vehicular
2054 exhausts, diesel/gasoline engine, road carpeting asphalt, crude oil and tar (Ahrens and Depree,
2055 2010) and dust from road site (Larsen and Baker, 2003). In agreement with previous studies
2056 reported, 3–4 ring PAHs have been related with vehicular exhausts and road dust in urban cities
2057 (Zakaria et al., 2002; Boonyatumanond et al., 2007).

2058 The third cluster contains of B[b]F and B[k]F, which are the anthropogenic PAHs from
2059 petroleum products, vehicular exhausts, oil combustion and waste incinerators from industrial
2060 (Zhou et al., 1999; Ravindra et al. 2008). As B(k)F and B(b)F are classified as an indicator of fossil
2061 fuels combustion (Park et al., 2002). In summary, this cluster was assumed as vehicular exhausts
2062 contamination and petrogenic sources.

2063 The last cluster encloses Ind and B[g,h,i]P, which are the anthropogenic PAHs from
2064 vehicular exhausts, industrial combustion (e.g. petroleum, oil and/or waste incinerators) (Zhou et
2065 al., 1999; Ravindra et al. 2008; Elghawi et al., 2010). A notable that Ind and B[g,h,i]P were found
2066 from both diesel and gasoline fuelled engines (Elghawi et al., 2010; Birgül et al., 2011).

2067

2068

2069

2070

2071 **4.3.7.2. Source estimations from PCA**

2072 The contaminations of carbonaceous aerosol compositions in fine particles have been
 2073 analysed extensively in many countries (Lee et al., 2011). Thus, multivariate analysis including
 2074 correlation coefficients and PCA have been applied to associate the source of carbonaceous
 2075 compositions, WSIS and PAH profiles (Long et al., 2013).

2076 **Table 4.4. Rotated Component Matrix^a of PM_{2.5}-bounded chemical compounds during the aerosol**
 2077 **sampling period in Bangkok's atmosphere.**

Compositions	Principal components (PC)				
	PC1	PC2	PC3	PC4	PC5
TC	0.12	0.97	N.D.	0.09	0.04
OC	0.12	0.96	-0.05	0.11	0.09
EC	0.12	0.93	0.13	0.02	-0.09
F ⁻	-0.25	0.05	0.25	0.14	0.88
Cl ⁻	N.D.	0.04	0.99	N.D.	0.08
NO ₂ ⁻	-0.02	-0.12	0.06	-0.03	0.92
NO ₃ ⁻	0.13	0.70	0.60	0.09	0.09
SO ₄ ²⁻	0.04	0.66	0.63	-0.28	-0.04
Na ⁺	-0.18	0.52	0.74	0.01	0.23
NH ₄ ⁺	0.01	0.89	-0.02	-0.29	-0.03
K ⁺	0.06	0.91	0.31	-0.01	-0.03
Mg ²⁺	N.D.	0.11	0.99	-0.05	0.02
Ca ²⁺	0.02	0.11	0.98	-0.04	0.07
Ace	0.14	-0.57	-0.24	0.11	0.25
Fl	0.60	-0.42	-0.17	-0.04	0.23
Phe	0.97	-0.02	-0.02	0.04	0.01
Ant	0.96	0.01	N.D.	0.10	-0.10
Fluo	0.88	0.19	-0.02	-0.08	-0.06
Pyr	0.97	0.16	0.01	N.D.	-0.11
B[a]A	0.91	-0.04	0.05	0.21	0.11
Chry	0.98	0.04	N.D.	-0.08	-0.05
B[b]F	0.92	0.13	0.04	0.21	-0.11
B[k]F	0.94	0.08	-0.07	0.26	-0.06
B[a]F	0.90	0.04	-0.02	0.28	-0.07
B[e]P	0.94	0.04	-0.02	0.25	-0.08
B[a]P	0.92	0.06	0.03	0.27	-0.06
Per	0.79	-0.03	0.03	0.43	0.08
Ind	0.74	0.01	-0.04	0.64	-0.01
B[g,h,i]P	0.68	-0.07	-0.02	0.67	0.06
D[a,h]A	0.73	-0.04	-0.03	0.51	-0.07

	Cor	0.36	N.D.	-0.04	0.89	0.06
	D[a,e]P	0.53	-0.19	-0.15	0.59	0.10
	Variance [%]	43.7	24.0	10.5	6.48	4.46
	Estimated source	Vehicular Exhaust	Biomass Burning	Sea-salt Aerosols	Power plants	Industrial Emission

2078 a Rotation Method: Varimax with Kaiser Normalization.

2079 b Bold loading > 0.50

2080 The concentrations of carbonaceous compositions, WSIS and PAH profiles were
 2081 performed as the active variables for PCA analysis (see Table 4.4). The result presented 89.1% for
 2082 the majority of the variance, which described by five principal components (PCs). The result
 2083 showed 43.7% for the total variance in the PC1. Whereas the PC2 clarified for 24.0% of the total
 2084 variance, followed by PC3, PC4, and PC5 explain for 10.5%, 6.48%, and 4.46% of the total
 2085 variance, respectively.

2086 PC1 contains high loading factors of Fl, Phe, Ant, Fluo, Pyr, B[a]A, Chry, B[b]F, B[k]F,
 2087 B[a]F, B[e]P, B[a]P, Per, Ind, B[g,h,i]P, D[a,h]A and D[a,e]P, which can be explained as the
 2088 results are correlated to the result that showed in the result of HCA. Therefore, the reasonable to
 2089 explain PC1 might be delegate of pyrogenic sources that discharged from vehicular exhausts,
 2090 diesel/gasoline engine, road carpeting asphalt, crude oil and tar (Smith and Harrison, 1998;
 2091 Ravindra et al., 2008; Ahrens and Depree, 2010). Due to those congeners are profoundly related
 2092 with vehicle exhaust, it is suitable to predicate that vehicle exhaust describe 43.7% of the total
 2093 variance. While, B[k]F and B[g,h,i]P use as a marker of vehicle emissions (Miguel and Pereira,
 2094 1989; Harrison et al., 1996). Whilst B[a]P, B[k]F and B[g,h,i]P are a marker of diesel/gasoline
 2095 emissions (Ravindra et al., 2008; Teixeira et al., 2013). In agreement with previous studies
 2096 reported, 3–4 ring PAHs have been related with vehicular exhausts and road dust in urban cities
 2097 (Zakaria et al., 2002; Boonyatumonond et al., 2007).

2098 PC2 (24.0% of the total variance) was characterized by high loading of TC, OC, NO_3^- ,
2099 SO_4^{2-} , Na^+ , NH_4^+ and K^+ . The result is related to biomass burning, which OC, EC and K^+ are
2100 assumed to be a tracer for biomass burning, which contain a significant amount of WSIS, such as
2101 NH_4^+ , K^+ , and NO_3^- (Pani et al., 2018). This result is related to the previous studies that conducted
2102 the particle in urban area and the major portion of OC released by biomass burning (de la Campa
2103 et al., 2009; Pirovano et al., 2015; Pani et al., 2019).

2104 PC3 presented for 10.5% of the total variance, which the high loading of Cl^- , Na^+ , SO_4^{2-} ,
2105 NO_3^- , Mg^{2+} and Ca^{2+} . Thus, the significance of long-range transportation has been related to those
2106 components (Chan et al., 1997; Wang and Shooter., 2001), which affected by the plumes of smoke
2107 originating from long-range transport from surrounding provinces. This definition is in a good
2108 compliance with previous studies that the major elements came from sea salt aerosol, including
2109 Cl^- , Na^+ , Mg^{2+} , Ca^{2+} and SO_4^{2-} (Putaud et al., 2004; Radhi et al., 2010).

2110 PC4 (6.48% of the total variance) displayed high loading values of Cor, B[g,h,i]P, Ind,
2111 D[a,h]A and D[a,e]P, in which Cor was highest correlation for this component ($r=0.89$).
2112 Accordingly, it seems suitable to conclude PC4 might be characteristic of the fuels combustion
2113 from power plants because the provinces nearby Bangkok such as Nonthaburi, Chachoengsao,
2114 Samut Prakan and Ayutthaya.

2115 The last cluster PC5, (4.46% of the total variance) had high loading of F^- and NO_2^- , which
2116 showed a high correlation coefficient ($r=86$) and ($r=89$), respectively. Several studies emphasized
2117 that the importance of industrial activities as one of the major sources of F^- component in urban
2118 atmosphere (Haidouti et al., 1993; Mukherjee et al., 2003). Furthermore, F^- and NO_2^- are a typical
2119 pollutant of atmospheric aerosol in Bangkok, which could be from electrolytic aluminum

2120 enterprise (Zhou et al., 2018) and waste incineration (Wang et al., 2015) in industrial estate nearby
2121 the sampling area.

2122 **4.4 Reference**

2123 Ahrens, M.J., Depree, C.V., 2010. A source mixing model to apportion PAHs from coal tar
2124 and asphalt binders in street pavements and urban aquatic sediments, *Chemosphere*.
2125 81, 1526– 1535.

2126

2127 Akunne, A.F., Louis, V.R., Sanon, M., Sauerborn, R., 2006. Biomass solid fuel and acute
2128 respiratory infections: The ventilation factor. *Int. J. Hyg. Environ. Health.* 209, 445–
2129 450.

2130

2131 Álvarez, V.M., Rosasb, F.H., Reyesc, M.M., Murillo, J.H., De La Rosaa, N.S., Arzaluz, M.G.,
2132 Laraa, J.J.F., Cardosoa, G.G., 2018. Sugarcane burning emissions: Characterization and emission factors. *Atmos. Environ.* 193, 262–272.

2133

2134 Andreae, M.O., 1983. Soot carbon and excess fine potassium: Long-range transport of
2135 combustion-derived aerosols. *Science*. 220, 1148–1151.

2136

2137 Arbabi, H., Mayfield, M., 2016. Urban and Rural-Population and Energy Consumption
2138 Dynamics in Local Authorities within England and Wales. *Buildings*. 6, 34.

2139

2140 Bach, P.B., Kelley, M.J., Tate, R.C., McCrory, D.C., 2003. Screening for lung cancer: a review
2141 of the current literature. *Chest*. 123, 72–82.

2142

2143 Bari, M.A., Baumbach, G., Kuch, B., Scheffknecht, G., 2010. Particle-phase concentrations
2144 of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in
2145 southern German. *Air Qual. Atmos. Health.* 3, 103–116.

2146

2147 Bastami, K.D., Afkhami, M., Ehsanpour, M., Mohammadizadeh, M., Haghparast, S., Soltani,
2148 F., Zanjani, S.A., Ghorghani, N.F., Pourzare, R.. 2014. Polycyclic aromatic
2149 hydrocarbons in the coastal water, surface sediment and mullet *Liza Klunzingeri* from
2150 northern part of Hormuz Strait (Persian gulf). *Mar Pollut Bull.* 76,411–416.

2151

2152 Birgül, A., Tasdemir, Y., Cindoruk, S.S., 2011. Atmospheric Wet and Dry Deposition of
2153 Polycyclic Aromatic Hydrocarbons (PAHs) Determined Using a Modified Sampler.
2154 *Atmos. Res.* 101, 341–353.

2155

2156 Boonyatumanond, R., Murakami, M., Wattayakorn, G., Togo, A., Takada, H., 2007. Sources
2157 of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian
2158 megacity, Bangkok, Thailand. *Sci Total Environ.* 384, 420-432.

2159

2160 Boström, C.E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., Rannug,
2161 A., Törnqvist, M., Victorin, K., Westerholm, R., 2002. Cancer risk assessment,

2162

2163 indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air.
2164 Environ. Health Perspect. 110 (3), 451–488.

2165

2166 Brown, J.N., Peake, B.M., 2006. Sources of heavy metals and polycyclic aromatic
2167 hydrocarbons in urban stormwater runoff. Sci. Total. Environ. 359, 145–155.

2168

2169 Campo, L., Rossella, F., Pavanello, S., Mielzynska, D., Siwinska, E., Kapka, L. Bertazzi, P.
2170 A., Fustinon, S., 2010. Urinary profiles to assess polycyclic aromatic hydrocarbons
2171 exposure in coke-oven workers. Toxicol. Lett. 192, 72–78.

2172

2173 Cao, J.J., Lee, S.C., Ho, K.F., Zhang, X.Y., Zou, S.C., Fung, K., Chow, J.C., Watson, J.G.,
2174 2003. Characteristics of carbonaceous aerosol in pearl river Delta region, China during
2175 2001 winter period. Atmos. Environ. 37, 1451–1460.

2176

2177 Cao, J.J., Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K.K., Watson,
2178 J.G., Zhu, C.S., Liu, S.X., 2005. Characterization and source apportionment of
2179 atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an,
2180 China. Atmos. Chem. Phys. 5, 3127–3137.

2181

2182 Cao, G.L., Zhang, X.Y., Zheng, F.C., 2006. Inventory of Black Carbon and Organic Carbon
2183 emissions from China. Atmos. Environ. 40, 6516–6527.

2184

2185 Cape, J.N., Coyle, M., Dumitresan, P., 2012. The atmospheric lifetime of black carbon. Atmos.
2186 Environ. 59, 256–263.

2187

2188 Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T., 1999. Carbonaceous aerosol in urban
2189 and rural European atmospheres: estimation of secondary organic carbon
2190 concentrations. Atmos. Environ. 33, 2771–2781.

2191

2192 Chan, Y.C., Simpson, R.W., McTainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1997.
2193 Characterisation of chemical species in PM_{2.5} and PM₁₀ aerosols in Brisbane, Australia.
2194 Atmos. Environ. 31(22), 3237–3250.

2195

2196 Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H.,
2197 He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y.F., Pereira, G.,
2198 Ding, A., Huang, X., Dumka, U.C., 2017. A review of biomass burning: emissions
2199 and impacts on air quality, health and climate in China. Sci. Total Environ. 579, 1000–
2200 1034.

2201

2202 Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Chow, J.C., Watson, J.G., Cao, J.,
2203 Zhang, R., 2015. PM_{2.5} and PM_{10–2.5} chemical composition and source apportionment
2204 near a Hong Kong roadway. Particuology. 18, 96–104.

2205

2206 ChooChuay, C., Pongpiachan, S., Tipmanee, D., Deelaman, W., Iadtem, N., Suttinun, O.,
2207 Wang, Q., Xing, L., Li, G., Han, Y., Hashmi, M. Z., Palakun, J., Poshyachinda, S.,
2208 Aukkaravittayapun, S., Surapipith, V., Cao, J., 2020. Effects of Agricultural Waste

2209 Burning on PM_{2.5}-Bound Polycyclic Aromatic Hydrocarbons, Carbonaceous
2210 Compositions, and Water-Soluble Ionic Species in the Ambient Air of Chiang-Mai,
2211 Thailand. *Polycyclic Aromat. Compd.* 1-22.

2212

2213 Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993.
2214 The dri thermal/optical reflectance carbon analysis system: Description, evaluation
2215 and applications in U.S. Air quality studies. *Atmos. Environ. Part A: Gen. Top.*, 27,
2216 1185-1201.

2217

2218 Chow, J.C., Watson, J.G., Douglas, Z.L., Lowenthal, H., Frazier, C.A., Solomon, P.A.,
2219 Thuillier, R.H., Magliano, K., 1996. Descriptive analysis of PM2.5 and PM10 at
2220 regionally representative locations during SJVAQS/AUSPEX, *Atmos. Environ.* 30,
2221 2079–2112.

2222 Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S
2223 .D., Engelbrecht, J.P., Green ,M.K., 2004. Source profiles for industrial, mobile and
2224 area sources in the big bend regional aerosol visibility and observational (BRAVO)
2225 study. *Chemosphere*. 54 (2), 185–208.

2226

2227 Chow, J.C., Watson, J.G., Chen, L.W.A., Chang, M.C.O., Robinson, N.F., Trimble, D., Kohl,
2228 S., 2007a. The IMPROVE_A temperature protocol for thermal/optical carbon
2229 analysis: maintaining consistency with a long term database. *J. Air Waste Manage.*
2230 Assoc. 57 (9), 1014–1023.

2231

2232 Chow, J.C., Yu, J.Z., Watson, J.G., Ho, S.S.H., Bohannan, T.L., Hays, M.D., Fung, K.K.,
2233 2007b. The application of thermal methods for determining chemical composition of
2234 carbonaceous aerosols: a review. *J. Environ. Sci. Health A*. 42 (11), 1521–1541.

2235

2236 Chuang, M.T., Chou, C.K., Sopajareepom, K., Lin, N.H., Wang, J.L., Sheu, G.R., Chang,
2237 Y.C., Lee, C.T., 2013. Characterization of aerosol chemical properties from
2238 nearsource biomass burning in Chiang Mai, Thailand during 7-SEAS/Dongsha
2239 experiment. *Atmos. Environ.* 78, 72–81.

2240

2241 Chuesaard, T., Chetiyankornkul, T., Kameda, T., Hayakawa, K., Toriba, A., 2014. Influence
2242 of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons
2243 and their nitro derivatives in Chiang Mai, Thailand. *Aerosol Air Qual. Res.* 14, 1247–
2244 1257.

2245

2246 Dachs, J., Eisenreich, S.J., 2000. Adsorption onto aerosol soot carbon dominates gas-particle
2247 partitioning of polycyclic aromatic hydrocarbons. *Environ. Sci. Technol.* 34, 3690–
2248 3697.

2249

2250 Dan, M., Zhuang, G., Li, X., Tao, H., Zhuang, Y., 2004. The characteristics of carbonaceous
2251 species and their sources in PM_{2.5} in Beijing. *Atmos. Environ.* 38 (21), 3443–3452.

2252

2253 de la Campa, A.S., Pio, C., de La Rosa, J.D., Querol, X., Alastuey, A., González C.Y., 2009.
2254 Characterization and origin of EC and OC particulate matter near the Doñana
2255 National Park (SW Spain). *Environ. Res. J.* 109(6), 671-681.

2256

2257 Diggs, D.L., Huderson, A.C., Harris, K.L., Myers, J.N., Banks, L.D., Rekhadevi P.V., 2011.
2258 Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. *J.
2259 Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev.* 29(4), 324-357.

2260

2261 Dung, N.T., 1996. Determination of some selected Polycyclic Aromatic Hydrocarbons on
2262 particulates emitted from the thermal power plant of the Bai Bang paper company,
2263 Vietnam. Master's Thesis. Division of Environmental Engineering. Asian Institute of
2264 Technology.

2265 Dvorská, A., Lammel, G., Klánová, J., 2011. Use of diagnostic ratios for studying source
2266 apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central
2267 Europe. *Atmos Environ.* 45(2), 420-427.

2268

2269 Dvorská, A., Komprdová, K., Lammel, G., Klánová, J., Plachá, H., 2012. Polycyclic aromatic
2270 hydrocarbons in background air in central Europe Seasonal levels and limitations for
2271 source apportionment. *Atmos. Environ.* 46, 147-54.

2272

2273 Elghawi, U.M., Mayouf, A., Tsolakis, A., Wyszynski, M.L., 2010. Vapour-phase and
2274 Particulate-bound PAHs Profile Generated by a (SI/HCCI) Engine from a Winter Grade
2275 Commercial Gasoline Fuel. *Fuel.* 89, 2019-2025.

2276

2277 Feng, J., Hu, M., Chan, C.K., Lau, P.S., Fang, M., He, L., Tang, X., 2006. A comparative
2278 study of the organic matter in PM2.5 from three Chinese megacities in three different
2279 climatic zones. *Atmos. Environ.* 40, 3983-3994.

2280

2281 Freeman, D.J., Cattel, C.R., 1990. Wood burning as a source of atmospheric polycyclic
2282 hydrocarbons. *Environ. Sci. Technol.* 24, 1581-1585.

2283

2284 Gocht, T., Moldenhauer, K.M., Püttmann, W., 2001. Historical record of polycyclic aromatic
2285 hydrocarbons (PAHs) and heavy metals in floodplain sediments from the Rhine River
2286 (Hessisches Ried, Germany). *Appl. Geochem.* 16, 1707-17821.

2287

2288 Guo, Y., Li, S., Tawatsupa, B., Punnasiri, K., Jaakkola, J.J.K., Williams, G., 2014. The
2289 association between air pollution and mortality in Thailand. *Sci. Rep.* 4, 5509.

2290

2291 Guofeng, S., Siye, W., Wen, W., Yanyan, Z., Yujia, M., Bin, W., Rong, W., Wei, L.,
2292 Huizhong, S., Ye, H., Yifeng, Y., Wei, W., Xilong, W., Xuejun, W., Shu, T., 2012. Emission
2293 factors, size distributions, and emission inventories of carbonaceous
2294 particulate matter from residential wood combustion in rural China. *Environ Sci
2295 Technol.* 46, 4207-4214.

2296

2297 Haidouti , C., Chronopoulou , A., Chronopoulos, J. 1993. Effects of fluoride emissions from
2298 industry on the fluoride concentration of soils and vegetation. *Biochem. Syst. Ecol.*.
2299 21, 195-208.

2300

2301 Han, Y.M., Cao, J.J., Chow, J.C., Watson, J.G., Fung, K., Jin, Z.D., Liu, S.X., An, Z.S., 2007.
2302 Evaluation of the thermal/optical reflectance method for discrimination between soot- and char-
2303 EC. *Chemosphere*. 69, 569–574.

2304

2305 Han, Y.M., Lee, S.C., Cao, J.J., Ho, K.F. and An, Z.S., 2009a. Spatial Distribution and
2306 Seasonal Variation of Char-EC and Soot-EC in the Atmosphere over China. *Atmos.*
2307 *Environ.* 43, 6066–6073.

2308

2309 Han, Y.M., Cao, J.J., Chow, J.C., Watson, J.G., An, Z.S., Liu, S.X., 2009b. Elemental carbon
2310 in urban soils and road dusts in Xi'an, China and its implication for air pollution.
2311 *Atmos. Environ.* 43, 2464–2470.

2312

2313 Harrison, R.M., Smith, D.J.T., Luhana, L., 1996. Source apportionment of atmospheric
2314 polycyclic aromatic hydrocarbons collected from an urban location in Birmingham,
2315 UK. *Environ. Sci. Technol.* 30, 825–832.

2316

2317 Harrison, R.M., Yin, J., 2008. Sources and processes affecting carbonaceous aerosol in central
2318 England. *Atmos. Environ.* 42(7), 1413–1423.

2319

2320 Hegde, P., Sudheer, A.K., Sarin, M.M., Manjunatha, B.R, 2007. Chemical characteristics of
2321 atmospheric aerosols over southwest coast of India. *Atmos. Environ.* 41(36), 7751-
2322 7766.

2323

2324 Hu, J., Liu, Q.C., Zhang, P.G., Zhang, L.Y., 2012. Seasonal variation and source apportionment
2325 of PAHs in TSP in the atmosphere of Guiyang, Southwest China. *Atmospheric. Res.* 118, 271-
2326 9.

2327

2328 Irei, S., Takami, A., Sadanaga, Y., Nozoe, S., Yonemura, S., Bandow, H., Yokouchi Y., 2016.
2329 Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary
2330 air observed on Fukue Island, Nagasaki, Japan. *Atmos. Chem. Phys.* 16(7), 4555-4568.

2331

2332 lvarez, V.M.Á., Guízar, S.R., de la Rosa, N.S., Rodríguez, M.T., Franco, L.N., 2016. Black
2333 Carbon and Particulate Organic Toxics Emitted by Sugarcane Burning in Veracruz,
2334 México. *Int. J. Environ. Sci. Dev.* 7, 290-294.

2335

2336 Jones, K.C., de Voogt, P., 1999. Persistent organic pollutants (POPs): State of the science,
2337 *Environ. Pollut.* 100, 209 – 221.

2338

2339 Junpen, A., Pansuk, J., Kamnoet, O., Cheewaphongphan, P., Garivait, S., 2018. Emission of
2340 Air Pollutants from Rice Residue Open Burning in Thailand, 2018. *Atmosphere*. 9,
2341 449.

2342

2343 Khamkaew C, Chantara S, Janta R, Pani S K, Prapamontol T, Kawichai S, Wiriya W, Lin N
2344 H., 2016. Investigation of biomass burning chemical components over Northern
2345 Southeast Asia during 7-SEAS/BASELInE 2014 campaign. *Aerosol Air Qual. Res.*
2346 16 (11), 2655–2670.

2347

2348 Kassambara, A., 2017. Practical Guide to Cluster Analysis in R: Unsupervised Machine
2349 Learning, Create Space Independent Publishing Platform. 1–147.

2350

2351 Keilweit, M., Nico, P.S., Johnson, M.G., Kleber, M., 2010. Dynamic Molecular Structure of
2352 Plant Biomassderived Black Carbon (Biochar). *Environ. Sci. Technol.* 44, 1247– 1253.

2353

2354 Kim Oanh, N.T., Reutergardh, B., Dung, T.N., Yu, M.H., Co., X. H., 2000. Polycyclic
2355 aromatic hydrocarbons in the airborne particulate matter at a location 40 Km north of
2356 Bangkok, Thailand. *Atmospheric Environment* 34: 4557-4563.

2357

2358 Kim Oanh, N.T., Permadi, D.A., Hopke, P., Smith, K., Dong, N.P., Dang, A.N., 2018. Annual
2359 emissions of air toxics emitted from crop residue open burning in Southeast Asia over the
2360 period of 2010-2015. *Atmos. Environ.* 187, 173-183.

2361

2362 Kocaka, M., Mihalopoulosb, N., Kibilay, N., 2007. Chemical composition of the fine and
2363 coarse fraction of aerosols in the northeastern Mediterranean. *Atmos. Environ.* 41,
2364 7351-7368.

2365

2366 Kulkarni, P., Venkataraman, C., 2000. Atmospheric polycyclic aromatic hydrocarbons in
2367 Mumbai, India. *Atmos. Environ.* 34, 2785–2790.

2368

2369 Kumar, A., Attri, A.K., 2016. Biomass Combustion a Dominant Source of Carbonaceous
2370 Aerosols in the Ambient Environment of Western Himalayas. *Aerosol Air Qual. Res.*
2371 16, 519–529.

2372

2373 Kundu, S., Kawamura, K., Lee, M., 2010. Seasonal variations of diacids, ketoacids and -
2374 dicarbonyls in marine aerosols at Gosan, Jeju Island: Implications for their formation
2375 and degradation during long-range transport, *J. Geophys. Res.* 115, D19307.

2376

2377 Lara, L. L., Artaxo, P., Martinelli, L. A., Camargo, P. B., Victoria, R. L., Ferraz, E.S.B., 2005.
2378 Properties of aerosols from sugar-cane burning emissions in Southeastern Brazil. *Atmos.*
2379 *Environ.* 39, 4627-4637.

2380

2381 Larsen, R.K., Baker, J.E. 2003. Source apportionment of polycyclic aromatic hydrocarbons in
2382 the urban Atmosphere: A comparison of three methods. *Environ. Sci. Technol.* 37,
2383 1873–1881.

2384

2385 Lee, J.Y., Kim, Y.P., Kang, C.H., 2011. Characteristics of the ambient particulate PAHs at
2386 Seoul, a mega city of Northeast Asia in comparison with the characteristics of a
2387 background site. *Atmos. Res.* 99, 50–56.

2388

2389 Lee C, Ram S S, Nguyen D, Chou C, Chang S, Lin N, Chang S, Hsiao T, Sheu G, OuYang C,
2390 Chi K, Wang S, Wu X., 2016. Aerosol chemical profile of near-source biomass
2391 burning smoke in Sonla, Vietnam during 7- SEAS campaigns in 2012 and 2013.
2392 *Aerosol Air Qual. Res.* 16 (11), 2603–2617.

2393

2394 Li, H., Duan, F., Ma, Y., He, K., Zhu, L., Ma, T., Ye, S., Yang, S., Huang, T., Kimoto, T.,
2395 2018. Case study of spring haze in Beijing: Characteristics, formation processes,
2396 secondary transition, and regional transportation. *Environ. Pollut.* 242, 544–554.

2397

2398 Lonati, G., Ozgen, S., Giugliano, M., 2007. Primary and secondary carbonaceous species in
2399 $PM_{2.5}$ samples in Milan (Italy). *Atmos. Environ.* 41 (22), 4599–4610.

2400

2401 Long, S.L., Zeng, J.R., Li, Y., Bao, L.M., Cao, L.L., Liu, K., Xu, L., Lin, J., Liu, W., Wang,
2402 G.H., Yao, J., Ma, C.Y., Zhao, Y.D., 2014. Characteristics of secondary inorganic
2403 aerosol and sulfate species in size-fractionated aerosol particles in Shanghai. *J.
2404 Environ. Sci.* 26, 1040–1051.

2405

2406 Long, Y., Dai, T., Wu, Q., 2013. Sources and distribution of polycyclic aromatic hydrocarbons
2407 in street dust from the Chang-Zhu-Tan Region, Hunan, China. *Environ. Monit. Assess.* 185,
2408 1377–1390.

2409

2410 Mauderly, J.L., Chow, J.C., 2008, 'Health effects of organic aerosols', *Inhalation Toxicology*
2411 (20) 257–288.

2412

2413 Miguel, A.H., Pereira, P.A.P., 1989. Benzo(k)fluoranthene, benzo(ghi)perylene, and indeno
2414 (1,2,3-cd)pyrene: new tracers of automotive emissions in receptor modeling.
2415 *AerosolSci. Technol.* 10, 292–295.

2416

2417 Moran, Z.D., Ditas, F., Walter, D., Saturno, J., Brito, J., Carbone, S., Chi, X., Hrabe, A.I.,
2418 Baars, H., Godoi, R.H.M., Heese, B., Holanda, B. A., Lavric, J.V., Martin, S.T., Ming,
2419 J., Pöhlker, M.L., Ruckteschler, N., Su, H., Wang, Y., Wang, Q., Wang, Z., Weber, B.,
2420 Wolff, S., Artaxo, P., Pöschl, U., Andreae, M.O., and Pöhlker, C., 2018. Long-term study on
2421 coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust
2422 plumes. *Atmos. Chem. Phys.* 18, 10055–10088.

2423

2424 Mousavi, S., Mariotti, R., Bagnoli, F., Costantini, L., Cultrera, N.G.M., Arzani, K., 2017. The
2425 eastern part of the Fertile Crescent concealed an unexpected route of olive (*Olea
2426 europaea* L.) differentiation. *Ann. Bot.* 119 1305–1318.

2427

2428 Mukherjee, S.C., Rahman, M.M., Chowdhury, U.K., Sengupta, M.K., Lodh, D., Chanda, C.R.,
2429 Saha, K.C., Chakraborti, D. 2003. Neuropathy in arsenic toxicity from groundwater arsenic
2430 contamination in West Bengal, India. *J Environ Sci Health A Tox Hazard Subst Environ
2431 Eng.* 38(1),165–183.

2432

2433 Muttamara, S., Leong, S.T., 2000. Monitoring and assessment of exhaust emission in
2434 Bangkok street air. *Environ. Monit. Assess.* 60, 163–180.

2435
2436 Pani, S.K., Lin, N.H., Chantara, S., Wang, S.H., Khamkaew, C., Prapamontol, T., Janjai, S.,
2437 2018. Radiative response of biomass-burning aerosols over an urban atmosphere in
2438 northern peninsular Southeast Asia. *Sci. Total Environ.* 633, 892–911.
2439
2440 Pani, S.K., Chantara, S., Khamkaew, C., Leed, C.T., Lina, N.H., 2019. Biomass burning in
2441 the northern peninsular Southeast Asia: Aerosol chemical profile and potential
2442 exposure. *Atmos. Res.* 224, 180–195.
2443
2444 Panther, B., Hooper, M., Tapper, J. N., 1999. A comparison of air particulate matter and
2445 associated polycyclic aromatic hydrocarbons in some tropical and temperate urban
2446 environments. *Atmos. Environ.* 33, 4087–4099.
2447
2448 Park, S.S., Kim, Y.J., Kang, C.H., 2002. Atmospheric polycyclic aromatic hydrocarbons in
2449 Seoul, Korea. *Atmos. Environ.* 36, 2917–2924.
2450
2451 Park, S.S., Ondov, J.M., Harrison, D., Nair, N.P., 2005. Seasonal and shorter-term variations
2452 in particulate atmospheric nitrate in Baltimore. *Atmos. Environ.* 39, 2011–2020.
2453
2454 Park, S.S., Cho, Y.S., 2011. Tracking sources and behaviors of water-soluble organic carbon
2455 in fine particulate matter measured at an urban site in Korea. *Atmos. Environ.* 45, 60–
2456 72.
2457
2458 Park, S.S., Cho, S.Y., Jung, C.H., Lee, K.H., 2016. Characteristics of water-soluble inorganic
2459 species in PM₁₀ and PM_{2.5} at two coastal sites during spring in Korea. *Atmos. Pollut.*
2460 *Res.* 7, 370–383.
2461
2462 Phairuang, W., Suwattiga, P., Chetiyankornkul, T., Hongtieab, S., Limpaseni, W., Ikemori,
2463 F., Hata, M., Furuuchi, M., 2019. The influence of the open burning of agricultural
2464 biomass and forest fires in Thailand on the carbonaceous components in size-
2465 fractionated particles. *Environ. Pollut.* 247, 238–247.
2466
2467 Pirovano, G., Colombi, C., Balzarini, A., Riva, G.M., Gianelle, V., Lonati, G., 2015. PM_{2.5}
2468 source apportionment in Lombardy (Italy): Comparison of receptor and chemistry-
2469 transport modelling results. *Atmos. Environ.* 106, 56–70.
2470
2471 Pongpiachan, S., 2013a. Diurnal variation, vertical distribution and source apportionment of
2472 carcinogenic polycyclic aromatic hydrocarbons (PAHs) in Chiang-Mai, Thailand. *Asian*
2473 *Pac J Cancer Prev.* 14, 1851–1863.
2474
2475 Pongpiachan, S., 2013b. Vertical distribution and potential risk of particulate polycyclic
2476 aromatic hydrocarbons in high buildings of Bangkok, Thailand. *Asian Pac J Cancer*
2477 *Prev.* 14, 1865–1877.
2478

2479 Pongpiachan, S., Kin F.H., Junji, C., 2014a. Effects of biomass and agricultural waste
2480 burnings on diurnal variation and vertical distribution of OC/EC in Hat-Yai City,
2481 Thailand. *Asian J. Appl. Sci.* 7(5), 360-374.

2482

2483 Pongpiachan, S., Kudo, S., Sekiguchi, K., 2014b. Chemical characterization of carbonaceous
2484 PM₁₀ in Bangkok, Thailand. *Asian J. Appl. Sci.* 606 7 (5), 325-342.

2485

2486 Pongpiachan, S., Tipmanee, D., Khumsup, C., et al., 2015. Assessing Risks to Adults and
2487 Preschool Children Posed by PM_{2.5}-bound polycyclic aromatic hydrocarbons (pahs)
2488 during a biomass burning episode in northern Thailand. *Sci Total Environ.* 508, 435-444.

2489

2490 Pongpiachan, S., Hattayanone, M., Cao, J., 2017a. Effect of agricultural waste burning season
2491 on PM_{2.5}-bound polycyclic aromatic hydrocarbon (PAH) levels in Northern
2492 Thailand. *Atmos. Pollut. Res.* 8, 1069-1080.

2493

2494 Pongpiachan, S., Liu, S., Huang, R., Zhao, Z., Palakun, J., Kositanont, C., Cao, J., 2017b.
2495 Variation in Day-of-Week and Seasonal Concentrations of Atmospheric PM_{2.5}-Bound
2496 Metals and Associated Health Risks in Bangkok, Thailand. *Arch. Environ. Contam. Toxicol.* 72, 364-379.

2497

2498 Putaud, J.P., Van Dingenen, R., Dell'Acqua, A., Raes, F., Matta, E., Decesari, S., Facchini,
2499 M.C., Fuzzi, S., 2004. Size-segregated Aerosol Mass Closure and Chemical
2500 Composition in Monte Cimone (I) during MINATROC. *Atmos. Chem. Phys.* 4, 889-
2501 902.

2502

2503 Radhi, M., Box, M.A., Box, G.P., Mitchell, R.M., Cohen, D.D., Stelcer, E., Keywood, M.D.,
2504 2010. Size-resolved Mass and Chemical Properties of Dust Aerosols from Australia's
2505 Lake Eyre Basin. *Atmos. Environ.* 44, 3519-3528.

2506

2507 Ravindra, K., Sokhi, R., Grieken, R., 2008. Atmospheric polycyclic aromatic hydrocarbons:
2508 source attribution, emission factors and regulation. *Atmos. Environ.* 42, 2895-2921.

2509

2510 Sato, K., Takami, A., Isozaki, T., Hikida, T., Shimono, A., Imamura, T., 2010. Mass
2511 spectrometric study of secondary organic aerosol formed from the photo-oxidation of
2512 aromatic hydrocarbons. *Atmos Environ.* 44, 1080-1087.

2513

2514 Shamjad, P.M., Tripathi, S.N., Pathak, R., Hallquist, M., Arola, A., Bergin, M.H., 2015.
2515 Contribution of Brown Carbon to Direct Radiative Forcing over the Indo-Gangetic
2516 Plain. *Environ. Sci. Technol.* 49, 10474-10481.

2517

2518 Sharma, S.K., Mandal, T.K., Saxena, M., Sharma, R.A., Datta, A., Saud, T., 2014a.
2519 Variation of OC, EC, WSIC and Trace Metals of PM₁₀ in Delhi, India. *J. Atmos. Sol.*
2520 *Terr. Phys.* 113, 10-22.

2521

2522 Sharma, S.K., Mandal, T.K., Sharma, C., Kuniyal, J.C., Joshi, R., Dhyani, P.P., Rohtash, Sen,
2523 A., Ghayas, H., Gupta, N.C., Sharma, P., Saxena, M., Sharma, A., Arya, B.C.,

2524

2525 Kumar, A., 2014b. Measurements of Particulate (PM_{2.5}), BC and Trace Gases Over
2526 the Northwestern Himalayan Region of India. *Mapan* 29, 243–253.
2527

2528 Shen, H., Yang, T., Lu, C., Yuan, C., Hung, C.H., Lin, C., Lee, C., Jing, G., Hu, G., Lo, K.,
2529 2020. Chemical fingerprint and source apportionment of PM_{2.5} in highly polluted events
2530 of southern Taiwan. *Environ. Sci. Pollut. Res.* 27, 6918–6935.
2531

2532 Silva, M.A.B., 2005. Sistema de classificacão Fuzzy para áreas contaminadas. PhD thesis,
2533 Federal University of Rio de Janeiro, Brazil, 11–13.
2534

2535 Smith, N., Plane, J.M.C., Nien, C., Solomon, P.A., 1995. Nighttime radical chemistry in the
2536 San Joaquin Valley. *Atmos. Environ.* 29, 2887-2897.
2537

2538 Smith, D.J.T., Harrison, R.M., 1998. Polycyclic aromatic hydrocarbons in atmospheric
2539 particles. In: Harrison, R.M., Van Grieken, R. (Eds.), *Atmospheric Particles*. Wiley.
2540

2541 Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. *Bull Am
2542 Meteorol Soc.* 96,2059–2077.
2543

2544 Sun, Y.L., Wang, Z.F., Fu, P.Q., Yang, T., Jiang, Q., Dong, H.B., Li, J., Jia, J.J., 2013.
2545 Aerosol composition, sources and processes during wintertime in Beijing, China. *Atmos.
2546 Chem. Phys.* 13, 4577-4592.
2547

2548 Teixeira, E., Mattiuzzi, C., Agudelo-Castañeda, D., de Oliveira, Garcia, K., Wiegand, F., 2013.
2549 Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using
2550 diagnostic ratios and receptor model in urban/industrial region. *Environ. Monit. Assess.* 185,
2551 9587–9602.
2552

2553 Tfouni, S.A.V., Machado, R.M.D., Camargo, M.C.R., Vitorino, S.H.P., Vicente, E., Toledo,
2554 M.C.F., 2007. Determination of polycyclic aromatic hydrocarbons in cachaça by HPLC
2555 with fluorescence detection. *Food Chem.* 101, 334-338.
2556

2557 Thepnuan, D., Chantara, S., Lee, C., Lin, N., Tsai, Y., 2019. Molecular markers for biomass
2558 burning associated with the characterization of PM_{2.5} and component sources during
2559 dry season haze episodes in Upper South East Asia. *Sci. Total Environ.* 658, 708–
2560 722.
2561

2562 Thuy, N.T.T., Dung, N.T., Sekiguchi, K., Thuy, L.B., Hien, N.T.T., Yamaguchi, R., 2018.
2563 Mass Concentrations and Carbonaceous Compositions of PM_{0.1}, PM_{2.5}, and PM₁₀ at
2564 Urban Locations in Hanoi, Vietnam. *Aerosol Air Qual. Res.* 18, 1591–1605.
2565

2566 Tsay, S.C., Maring, H.B., Lin, N.H., Buntoung, S., Chantara, S., Chuang, H.C., Gabriel, P.M.,
2567 Goodloe, C.S., Holben, B.N., Hsiao, T.C., Christina, H.N., Janjai, S., Lau, W.K.M., Lee,
2568 C.T., Lee, J., Loftus, A.M., Nguyen, A.X., Nguyen, C.M., Pani, S.K., Pantina, P., Sayer,
2569 A.M., Tao, W.K., Wang, S.H., Welton, E.J., Wiriya, W., Yen, M.C., 2016. Satellitesurface
2570

2571 perspectives of air quality and aerosol-cloud effects on the environment: an overview
2572 of 7-SEAS/BASELInE. *Aerosol Air Qual. Res.* 16, 2581–2602.

2573

2574 Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and
2575 quantification of primary and secondary organic aerosol concentrations during
2576 SCAQS. *Atmos. Environ.* 29, 3527–3544.

2577

2578 Unwin, J., Cocker, J., Scobbie, E., Chambers, H., 2006. An assessment of occupational
2579 exposure to polycyclic aromatic hydrocarbons in the UK. *Ann. Occup. Hyg.* 50(4),
2580 395–403.

2581

2582 Vichit-Vadakan, N., Vajanapoom, N., 2011. Health Impact from Air Pollution in Thailand:
2583 Current and Future Challenges. *Environ. Health Perspect.* 119(5), A197-A198.

2584

2585 Wang, H., Shooter, D., 2001. Water-soluble ions of atmospheric aerosols in three New
2586 Zealand cities: seasonal changes and sources. *Atmos. Environ.* 35, 6031-6040.

2587

2588 Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., Zheng, A., 2005. The ion
2589 chemistry of PM_{2.5} aerosol in Beijing. *Atmos. Environ.* 39, 3771-3784.

2590

2591 Wang, H., Zhu, B., Shen, L., Xu H., An, J., Xue, G., Cao J., 2015. Water-soluble ions in
2592 atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-
2593 fractionated, seasonal variations and sources. *Atmos. Environ.* 123, 370-379.

2594

2595 World Energy Council. 2013. World Energy Resources: Survey; World Energy Council:
2596 London, UK. 468.

2597

2598 Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D., Sylvestre, S.,
2599 Mitchelld, D., 2002. PAHs in the Fraser River basin: A critical appraisal of PAH ratios
2600 as indicators of PAH source and composition. *Org. Geochem.* 33, 489–515.

2601

2602 Zakaria, M.P., Takada, H., Ohno, K., Yamada, J., Kouno, E., Kumata., H., 2002. Distribution of
2603 Polycyclic Aromatic Hydrocarbons (PAHs) in Rivers and Estuaries in Malaysia:
2604 A Widespread Input of Petrogenic PAHs, *Environ. Sci. Technol.* 36, 1907– 1918.

2605

2606 Zhang, R., Jing, J., Tao, J., Hsu, S.C., Wang, G., Cao, J., Lee, C.S.L., Zhu, L., Chen, Z., Zhao,
2607 Y., Shen, Z., 2013. Chemical Characterization and Source Apportionment of PM_{2.5} in
2608 Beijing: Seasonal Perspective. *Atmos. Chem. Phys.* 13, 7053–7074.

2609

2610 Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y., Wang, X., 2008. Source diagnostics of
2611 polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy
2612 throughfall. *Environ. Pollut.* 153, 594–601.

2613

2614 Zhao, S., Li, Z., Zhou, P., 2011. Ion chemistry and individual particle analysis of atmospheric
2615 aerosols over Mt. Bogda of eastern Tianshan mountains, central Asia. *Environ. Monit.
2616 Assess.* 180, 409–426.

2617
2618 Zhao, X.J., Zhao, P.S., Xu, J., Meng, W., Pu, W.W., Dong, F., He, D., Shi, Q.F., 2013.
2619 Analysis of a winter regional haze event and its formation mechanism in the North
2620 China Plain. *Atmos. Chem. Phys.* 13, 5685-5696.
2621
2622 Zhou, J.L., Fileman, T.W., Evans, S., Donkin, P., Readman, J.W., Mantoura, R.F.C.,
2623 Rowland, S., 1999. The partition of fluoranthene and pyrene between suspended
2624 particles and dissolved phase in the Humber Estuary: a study of the controlling factors,
2625 *Sci. Total. Environ.* 244, 305-321.
2626
2627 Zhou, H., Lü, C., He, J., Gao, M., Zhao, B., Ren, L., Zhang, L., Fan, Q., Liu, T., He, Z.,
2628 Dudagul., Zhou, B., Liu, H., Zhang, Y., 2018. Stoichiometry of water-soluble ions in
2629 $PM_{2.5}$: Application in source apportionment for a typical industrial city in semi-arid
2630 region, Northwest China. *Atmos. Res.* 204, 149-160.
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646

2647

Chapter-V

2648

Results & Discussion

2649

2650

Long-Range Transboundary Atmospheric Transport of

2651

Polycyclic Aromatic Hydrocarbons, Carbonaceous

2652

Compositions, and Water-Soluble Ionic Species in Southern

2653

Thailand

2654

Abstract

2655 This study investigated atmospheric particulate matter (PM) with an aerodynamic diameter
2656 of $<2.5 \mu\text{m}$ (PM_{2.5}) observed at the Prince of Songkla University (Phuket Campus) in southern
2657 Thailand. All samples ($n = 75$) were collected using MiniVol™ portable air samplers from March
2658 2017 to February 2018. Carbonaceous aerosol compositions, i.e., organic carbon (OC) and
2659 elemental carbon (EC), water-soluble ionic species, and polycyclic aromatic hydrocarbons (PAHs)
2660 in the PM_{2.5} samples were identified and quantified. We found that the average PM_{2.5} concentration
2661 was $42.26 \pm 13.45 \mu\text{g m}^{-3}$, the OC/EC ratio was in the range of 2.69–16.9 (mean: 6.05 ± 2.70),
2662 and the average concentration of 10 selected ions was $6.91 \pm 3.54 \mu\text{g m}^{-3}$. The average
2663 concentration of SO₄²⁻ was the highest throughout the entire study period ($2.33 \pm 1.73 \mu\text{g m}^{-3}$);
2664 the average contribution of SO₄²⁻ to the major ionic components was 34%. Surprisingly, the
2665 average concentrations of NO₃⁻ and NH₄⁺ were relatively low. The mean ratio of [NO₃⁻]/[SO₄²⁻]
2666 was 0.33 ± 0.24 . Strong positive correlation was found between K⁺ and both OC and EC ($r = 0.90$
2667 and $r = 0.93$, respectively). It is well known that K⁺ is a marker of biomass burning (BB), whereas
2668 EC is a marker of both BB and fossil fuel combustion. Results showed that BB episodes might
2669 play a major role in producing the observed high levels of OC. The relatively high abundance of
2670 both B[g,h,i]P and Ind suggests that motor vehicles, petroleum/oil combustion, and industrial
2671 waste burning are the primary emission sources of PAHs in the ambient air of Phuket.

2672 Interestingly, principal component analysis (PCA) indicated vehicular exhausts are the main
2673 source of carbonaceous aerosol compositions found in the ambient air of Phuket, whereas the
2674 contributions of marine aerosols and BB to secondary OC were also important.

2675 **Keywords:** PM_{2.5}, PAHs, Carbonaceous Compositions, Water Soluble Ionic Species, Biomass
2676 Burning

2677

2678 **5.1. Introduction**

2679 Although air pollution is primarily an urban phenomenon, it is an important problem
2680 globally. In population centres such as Thailand, large quantities of fuel are consumed in various
2681 economic sectors, for e.g., industry (Gocht et al., 2001), transportation (Silva, 2005), and
2682 electricity generation (Dung, 1996). Combustion of fossil fuels such as coal and petroleum is
2683 responsible for causing the majority of air pollution (Sookkai et al., 2000). Air pollution in the
2684 form of dust, especially particulate matter (PM) with an aerodynamic diameter of <2.5 µm (PM_{2.5}),
2685 is among the most dangerous. This is because it can affect the human respiratory system (Wheeler
2686 et al., 2006), exacerbating conditions such as bronchitis, influenza, pneumonia, tuberculosis,
2687 emphysema, and asthma, especially in children, the elderly, and people with underlying
2688 cardiopulmonary/respiratory diseases (Jinsart et al., 2002).

2689 Carbonaceous aerosols have been studied thoroughly over recent decades because they can
2690 affect human health, ecosystems, and the climate system (Shih et al., 2008). Another major concern
2691 is that they are persistent organic pollutants that can remain in the environment for long periods
2692 (Jones and Voogt, 1999; Dachs and Eisenreich, 2000). Several studies have investigated the
2693 presence of carcinogenic and/or mutagenic substances in the atmosphere, derived via gas-particle
2694 partitioning, e.g., polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls, the

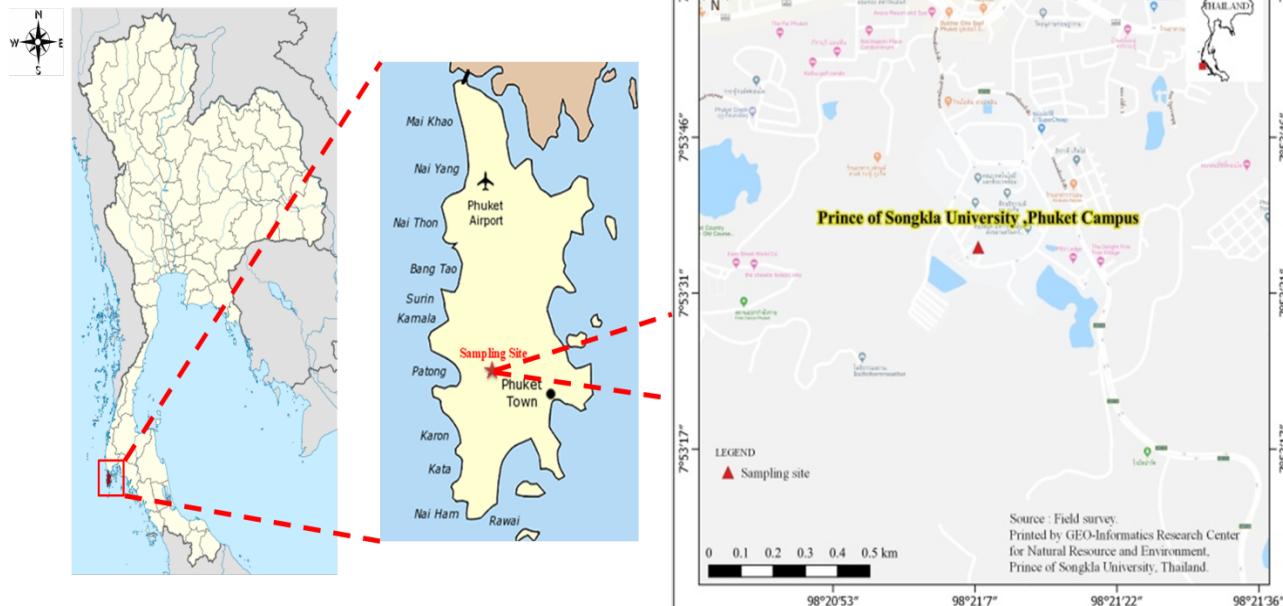
2695 origin of which is incomplete combustion attributable to both natural and anthropogenic sources.
2696 These substances, which are classified as semi-volatile compounds, can be released as solid
2697 material or vapour that can adhere to the surface of other particles (Smith and Harrison, 1998;
2698 Jones and Voogt, 1999; Dachs and Eisenreich, 2000; Schummer et al., 2010). Thus, they can
2699 spread from their source via many media, posing a danger to human health and the ecosystem.
2700 Therefore, measurement of the concentration of these carbonaceous aerosols is highly important.

2701 In Thailand, information on PAHs, carbonaceous compositions, i.e., organic carbon (OC)
2702 and elemental carbon (EC), and water-soluble ionic species (WSIS) in the ambient air of southern
2703 parts of the country is rare. Previous study of carbonaceous aerosols in the coastal city of Hat-Yai
2704 (southern Thailand) found that aged marine aerosols from long-range transportation and/or
2705 particles from biomass burning (BB) made a major contribution to the carbonaceous aerosols
2706 measured at the top of a building in the study area (Pongpiachan et al., 2009, 2013b). Therefore,
2707 this study selected an observation site at the Prince of Songkla University (Phuket Campus) in
2708 southern Thailand to investigate atmospheric PM_{2.5}. Phuket is the largest island in Thailand. It is
2709 located in the south and encircled by the Andaman Sea. It has long slender shape with north-south
2710 orientation. In addition, Phuket has several other large and small satellite islands. Approximately
2711 70% of the land area is mountainous, while the remaining 30% comprises plains. The climate of
2712 Phuket is warm and moist throughout the year.

2713 The first unambiguous evidence that the air pollution seen frequently in fine atmospheric
2714 particles is caused by human activities became available several decades ago. Comprehension of
2715 the composition and major sources of carbonaceous aerosols is important for improving air quality.
2716 Therefore, the objective of this study was to determine the characteristics of OC, EC, WSIS, and
2717 PAHs in the PM_{2.5} samples obtained at the study site. The analysis focused primarily on the

2718 following: (i) characterization of the chemical compounds detected in the PM_{2.5} samples, (ii)
2719 statistical analysis of the chemical composition and its relation to source identification, and (iii)
2720 statistical source apportionment of the chemical composition, including OC, EC, WSIS, and PAHs.

2721


2722 **5.2. Materials and Methods**

2723 **5.2.1. Air Quality Observatory Sites**

2724 The aerosol sampling campaign was undertaken at Building 6 of the Prince of Songkla
2725 University (Phuket Campus) in Thailand (Fig. 5.1). Phuket, the largest island in Thailand, is in the
2726 south and surrounded by the Andaman Sea. The main island has long slender shape with north–
2727 south orientation and it has several other large and small satellite islands. Around 70% of the land
2728 area is mountainous, while the remaining 30% comprises plains. The climate of Phuket is warm
2729 and moist throughout the year. The MiniVolTM air samplers were installed on the rooftop of
2730 Building 6 (4th Floor): 7.89318°N, 98.35209°E (GPS coordinates: 7°53'35.5"N, 98°21'07.5"E).

2731 The monitoring campaign was conducted from March 2017 to February 2018.

Air Quality Observatory site Map

2732

2733 **Figure 5.1. Location of the sampling site used in this study**

2734 Samples of $\text{PM}_{2.5}$ ($n = 75$) were obtained using MiniVolTM portable air samplers
2735 (Airmetrics, USA) with 47-mm quartz filters and a flow rate of 5 L min^{-1} . All samples were
2736 collected over 72-h periods. All $\text{PM}_{2.5}$ samples were stored carefully in individual petri slide dishes
2737 and refrigerated to retain their chemical composition until required for further analysis. All $\text{PM}_{2.5}$
2738 filter samples were analysed for PAHs, OC, EC, and WSIS.

2739 **5.2.2. Chemical Analysis**

2740 **Carbonaceous aerosol analyses: organic carbon (OC) and elemental carbon (EC)**

2741 The measurements of carbonaceous aerosol compositions including calibration and quality
2742 assurance/quality control (QA/QC) processes were performed at the laboratory of the Institute of
2743 Earth Environment, Chinese Academy of Science (Xian, China). The protocols adopted were the
2744 same as reported previous by Chow et al. (2007a). Normally, the OC content was considered as
2745 the sum of individual OC fractions (i.e., OC1 + OC2 + OC3 + OC4) and the EC content was

2746 considered as the sum of individual EC fractions (i.e., EC1 + EC2 + EC3 + OP), based on the
2747 IMPROVE_A thermal optical reflectance protocol (Chow et al., 2007a; Fung et al., 2002).

2748 Carbonate carbon was determined through assessment of CO₂ acidification from organic
2749 samples prior to the normal carbon analysis procedure. Seven temperatures were used for different
2750 fractions. The temperature protocol was applied to separate OC and EC in a process similar to the
2751 thermal optical reflectance and thermal optical transmittance pyrolysis correction. This protocol
2752 produces evaluations of total OC, total EC, and total carbon (TC), monitored by both reflectance
2753 and transmittance. For the QA/QC procedures that have been described elsewhere (Cao et al.,
2754 2003), the instrument was calibrated daily with known quantities of methane. Replicate analyses
2755 were performed for each group for 10 samples and the relative deviation of the replicate analyses
2756 was <5% for TC and <10% for both OC and EC.

2757 **Water-soluble ionic species (WSIS)**

2758 The concentrations of WSIS included five cations (i.e., Na⁺, NH₄⁺, K⁺, Mg²⁺, and Ca²⁺)
2759 and four anions (i.e., Cl⁻, F⁻, NO₃⁻, and SO₄²⁻). An ion chromatograph with a separation column
2760 was used for the extraction from all PM_{2.5} samples. The QA/QC procedure for this analysis
2761 required all glassware to undergo ultrasonic cleaning and oven drying at 450 °C for approximately
2762 6 h. All solvents used in the analysis procedure were pesticide residue grade (Wang et al., 2005).

2763 **Polycyclic aromatic hydrocarbons (PAHs)**

2764 The concentrations of PAHs in the PM_{2.5} samples were measured using in-injection port
2765 thermal desorption coupled with gas chromatography/mass spectrometry, which quantified the
2766 concentration of 19 PAHs as non-polar organic compounds. This analytical procedure is similar
2767 to the alternative method of traditional solvent extraction followed by gas chromatography/mass

2768 spectrometry analysis. The analytical procedures have been described in previous studies (Ho and
2769 Yu, 2004; Chow et al., 2007b).

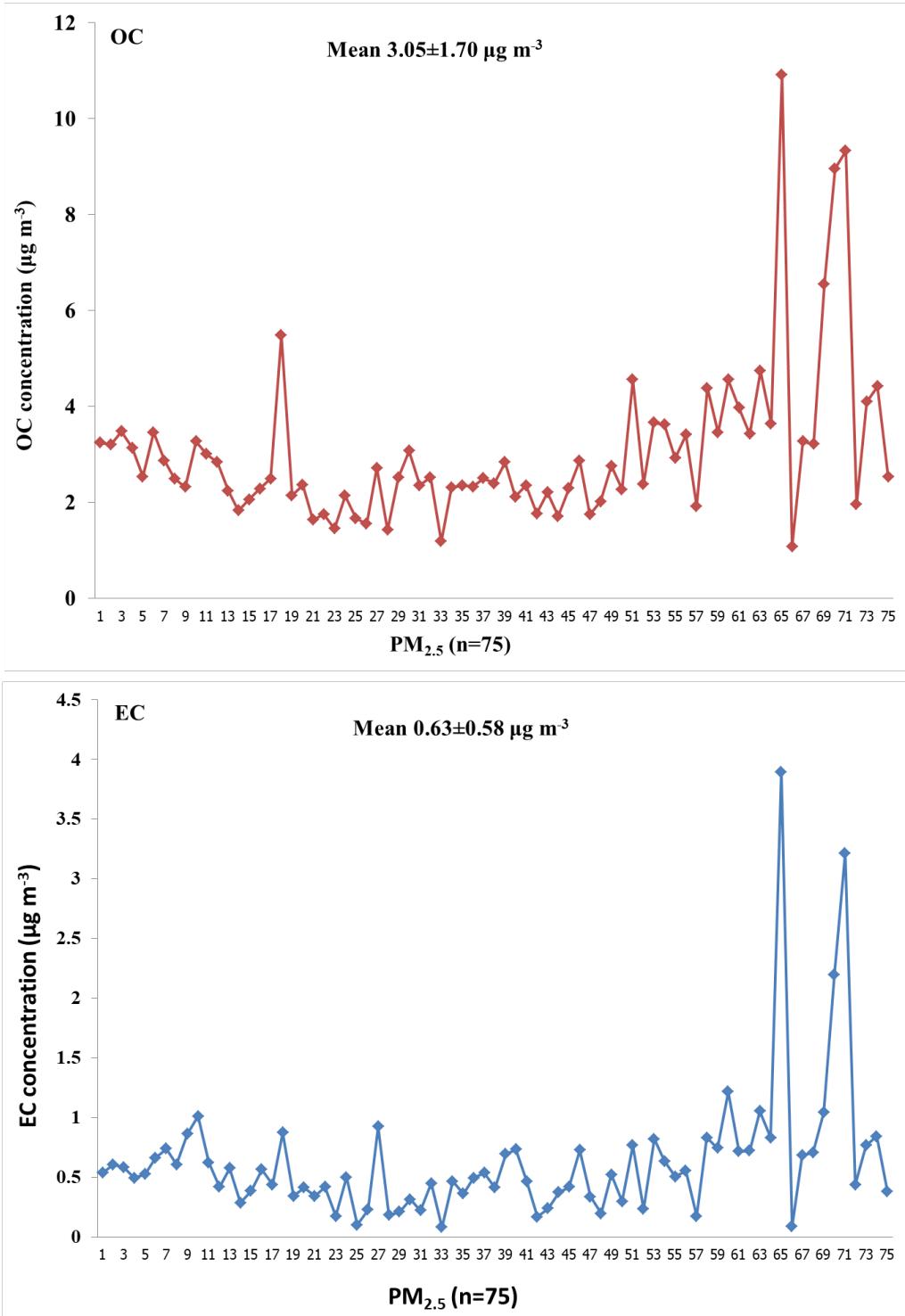
2770 **5.2.3. Statistical Analysis**

2771 This study used the SPSS System for Windows Version 22 to produce descriptive statistics
2772 (minimum, maximum, mean, and standard deviation) of the measured concentrations of PAHs,
2773 carbonaceous compositions, and WSIS. We also used PCA for identification of source
2774 appointment.

2775

2776 **5.3. Results and Discussion**

2777 **5.3.1. Concentrations of Total Carbon (TC), Organic Carbon (OC), and Elemental Carbon
2778 (EC)**


2779 The average concentrations of each carbon fraction for OC, EC, TC, and PM_{2.5} in the
2780 samples from Phuket are presented in Table 5.1, and the concentrations of OC and EC in each
2781 individual sample are shown in Fig. 5.2.

2782
2783 **Table 5.1. Concentrations of OC, EC, TC, and PM_{2.5} samples from Phuket, Thailand**

Species	Minimum ($\mu\text{g m}^{-3}$)	Maximum ($\mu\text{g m}^{-3}$)	Mean \pm SD ($n = 75$)
OC1	0.00	0.22	0.04 ± 0.05
OC2	0.22	1.56	0.53 ± 0.23
OC3	0.73	5.34	1.57 ± 0.75
OC4	0.12	3.37	0.71 ± 0.62
OC	1.08	10.90	3.05 ± 1.70
EC1	0.10	3.74	0.70 ± 0.64
EC2	0.00	0.28	0.13 ± 0.06
EC3	0.00	0.00	0.00 ± 0.00
EC	0.09	3.90	0.63 ± 0.58
TC	1.17	14.80	3.67 ± 2.25

	PM _{2.5}	20.07	91.02	42.26 ± 13.45
--	-------------------	-------	-------	---------------

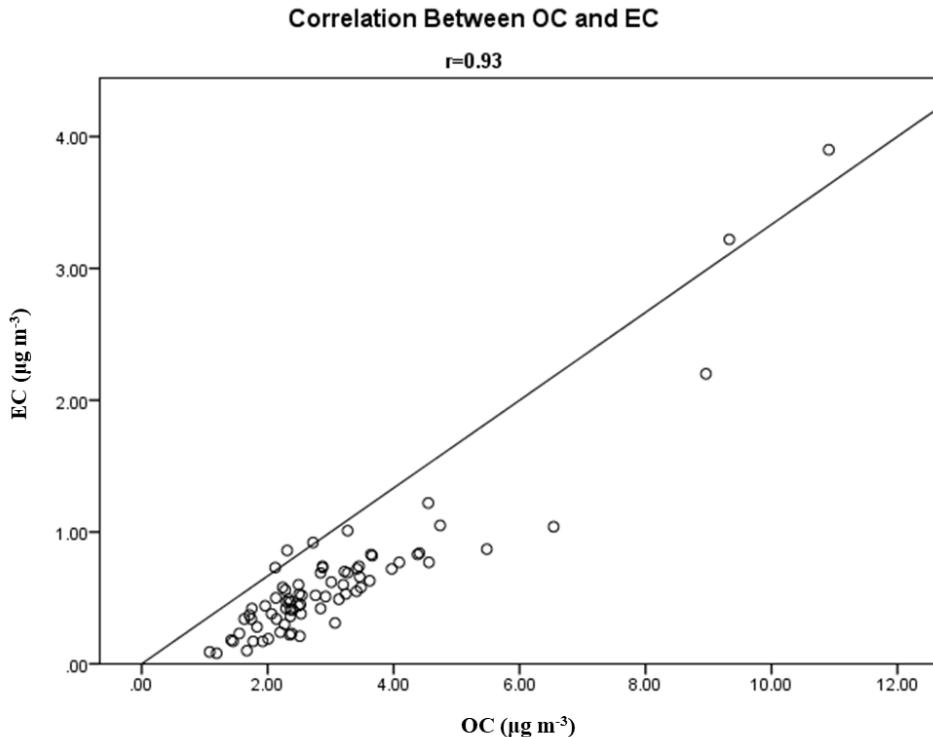
2784
2785 Seinfeld and Pandis (2006) reported that the highest carbonaceous fraction of fine
2786 atmospheric PM is OC at 70–80%, followed by EC and inorganic carbon at 5%. The average
2787 concentrations of carbonaceous chemical components found in our samples are listed in Table 1.
2788 It can be seen that of the OC fractions, OC3 was the highest, followed in descending order by OC4,
2789 OC2, and OC1. For the EC fractions, EC1 was the highest, followed by EC2 and EC3. In
2790 characterizing the chemical composition of aerosols in northern Indochina in March and April
2791 2010, Chuang et al. (2013) found OC3 to be a reasonable tracer of BB, whereas OC2 is known as
2792 a tracer of both coal combustion (Chow et al., 2004) and vehicular exhausts (Cheng et al., 2015).

2793
2794

**Figure 5.2. Concentrations of organic carbon (OC) and elemental carbon (EC) in individual
PM_{2.5} samples collected in Phuket during March 2017 to February 2018**

2795

2796


2797

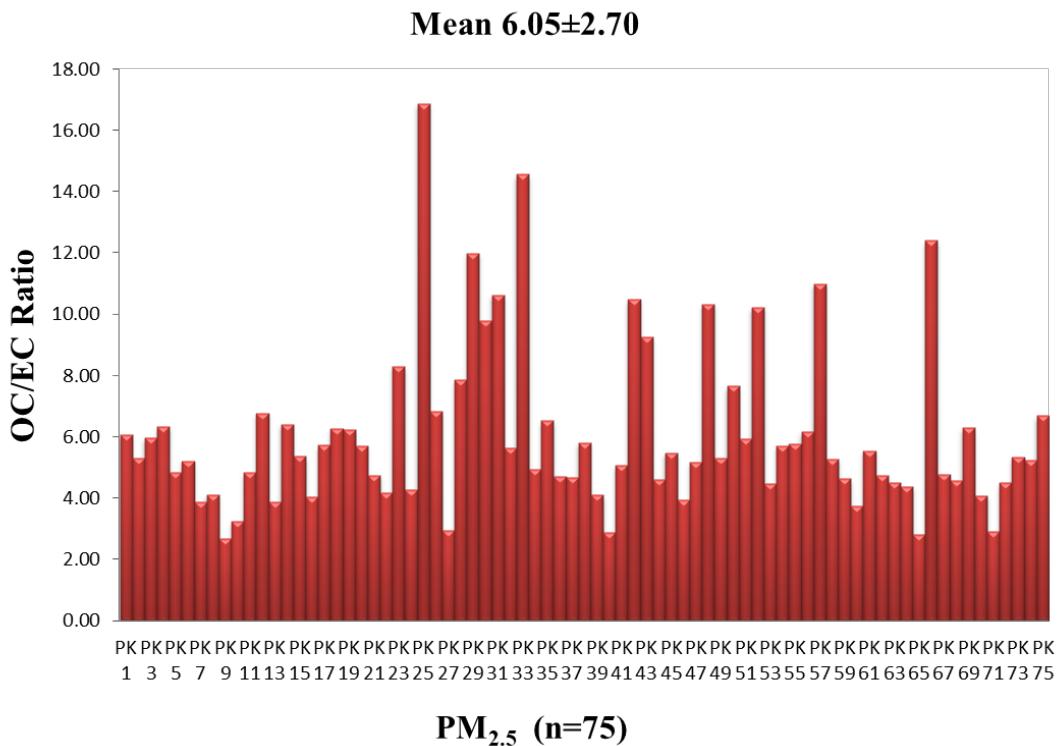
In observations of ambient air throughout an entire year in Phuket, the OC fraction was

found to be the major component because it is released directly into the ambient air following

2798 incomplete combustion of organic compounds (Jimenez et al., 2008). It can be emitted directly
2799 from various sources such as industrial processes and natural occurrences, e.g., BB (primary OC)
2800 or it can be formed from gas–particle partitioning in the air (secondary OC: SOC). It is well known
2801 that OC can have substantial impact on human health (Mauderly and Chow, 2008). Conversely,
2802 the EC fraction was found to be much lower than the OC fraction. As the chemical structure of EC
2803 is similar to that of impure graphite, it appears reasonable to assume that vehicular exhausts are a
2804 major source of EC. Consequently, the most important sources of EC are fossil fuel combustion
2805 and/or BB (Gelencsér, 2004).

2806 The mean values of OC and EC in the $\text{PM}_{2.5}$ samples of this study were 3.05 ± 1.70 and
2807 $0.63 \pm 0.58 \mu\text{g m}^{-3}$, respectively. These values are much smaller in comparison with those from
2808 other areas. However, the average mean concentrations of OC and EC determined in this study are
2809 similar to those reported in autumn and winter in Cape Hedo, Okinawa (Kunwar and Kawamura,
2810 2014). Generally, EC is released from any combustion source and it is usually used as a tracer of
2811 primary OC (Turpin and Huntzicker, 1995). Hence, the relationship between OC and EC can be
2812 used to estimate the source of carbonaceous particles. The relationship between OC and EC in the
2813 $\text{PM}_{2.5}$ samples obtained in Phuket in this study is illustrated in Fig. 5.3. The very strong correlation
2814 between OC and EC ($r = 0.93$) indicates they have similar sources in winter and spring, as reported
2815 by Kunwar and Kawamura (2014).

2816
2817


Figure 5.3. Correlation between organic carbon (OC) and elemental carbon (EC) in the PM_{2.5} samples collected in Phuket during March 2017 to February 2018

2819
2820

5.3.2. OC/EC Ratios and Secondary Organic Carbon (SOC) Contributions OC/EC ratios

2821
2822
2823
2824
2825

Carbonaceous compounds represent a significant fraction of atmospheric aerosols, accounting for 20–35% of PM₁₀ and 20–45% of PM_{2.5} (Yttri et al., 2007; Putaud et al., 2010). The OC/EC ratio is applied frequently to explain the emission sources of carbonaceous aerosol compounds (Han et al., 2007, 2009b). The OC/EC ratios determined in this study were in the range of 2.69–16.9 with a mean value of 6.05 ± 2.70 (Fig. 5.4).

Figure 5.4. The OC/EC ratios of the 75 samples obtained in Phuket (Thailand) during March 2017 to February 2018

The value of the OC/EC ratio can indicate the primary source of pollution (Wang et al., 2015). Several previous studies have investigated carbonaceous PM in northern and central parts of Thailand (Chaiyo et al., 2011, 13; Duangkaew et al., 2013; Pongpiachan et al., 2013a,b; 2014a,b; 2017; Tsai et al., 2013; Chaiyo and Garivait, 2014; Janta and Chantara, 2017; Pani et al., 2018; Thepnuan et al., 2019). However, the availability of data from southern Thailand is limited, especially from Phuket. This knowledge gap is of concern because Phuket is an important economic area; therefore, it is vital that the regional air pollution be investigated for PM₁₀, PM_{2.5}, and PM_{2.5}-bound carbonaceous compounds and PAHs.

The chemical characteristics of carbonaceous aerosols and PAHs of PM₁₀ in the city of Hat-Yai in southern Thailand have been studied by Pongpiachan et al. (2014). Their study suggested that the persistence of high OC/EC ratios in December 2007 could have been attributable to contributions from marine aerosols, BB, and/or long-range transportation. The OC/EC ratio can

2841 be used to estimate the primary sources of pollution. Several studies on carbonaceous PM in
2842 different parts of the world have reported that high OC/EC ratios are related to SOC (Chow et al.,
2843 1993; Turpin and Huntzicker, 1995; Wang et al., 2015). Carbonaceous aerosols with OC/EC values
2844 >2 can be considered to contain significant quantities of SOC. In this study, the range of OC/EC
2845 ratios was 2.69–16.9 (mean: 6.05 ± 2.70). However, a high value of the OC/EC ratio (12) was
2846 reported by Cao et al. (2005) in aerosols derived from residential coal combustion. Therefore, the
2847 wide range of OC/EC ratios found in this study indicates that the emission sources of the PM_{2.5} in
2848 the samples from Phuket were disparate in comparison with previous studies. The types of major
2849 pollution were found attributable to compound pollution under the combined effects of BB (Lee
2850 et al., 2016), SOC (Boreddy et al., 2018b), and cooking emissions (See and Balasubramanian.
2851 2008). However, the concentrations of carbonaceous compounds vary inter-regionally in relation
2852 to local emissions and weather (Heald et al., 2008).

2853 **Secondary organic carbon (SOC) contributions**

2854 The measurement of SOC is moderately difficult because it does not have a direct
2855 analytical method. Many studies have used a widely accepted EC tracer method to measure SOC.
2856 Using this method, the contribution of SOC can be calculated based on the minimum values of
2857 OC/EC ratios, where EC is used as a measure of primary OC (Castro et al., 1999). In this study,
2858 SOC was estimated using the following equation:

$$2859 \quad \text{SOC} = \text{OC}_{\text{total}} - \text{EC} \times (\text{OC/EC})_{\text{pri}} \quad (1)$$

2860 where OC_{total} represents the total OC and (OC/EC)_{pri} is the mean of the three lowest OC/EC ratios.

2861 The mean of the three lowest OC/EC ratios (2.79) was applied in this study to estimate the
2862 SOC content of the PM_{2.5} samples from Phuket. Based on this technique, it was determined that
2863 the annual mean value of SOC was $1.30 \pm 1.63 \mu\text{g m}^{-3}$ and the highest value was $2.82 \mu\text{g m}^{-3}$. The

percentage contribution of SOC to OC_{total} was 42.6% in this study. This value is 1.4 times lower than the value (59.2%) detected in Okinawa, Japan (Kunwar and Kawamura, 2014) and 1.5 times lower than both the value (67.8%) reported for Hat-Yai, Thailand (Pongpiachan et al., 2014) and the value (65%) found in Claremont, USA (Na et al., 2004). Conversely, our value is 2.5 times higher than that observed in Birmingham, United Kingdom (Castro et al., 1999). Our result is close to that found by Li et al. (2009) in their study conducted at a coastal site (37.7%), and similar to values observed in northeastern China (42%) by Zhang et al. (2012) and in Kaohsiung in Taiwan (40%) by Lin and Tai (2001). Despite the relatively high OC/EC ratio (6.05 ± 2.70) observed in our study in Phuket, the SOC content ($1.30 \pm 1.63 \mu\text{g m}^{-3}$) is relatively low, which indicates that marine aerosols in the Phuket region have comparatively low EC content.

5.3.3. Atmospheric Concentrations of Water-Soluble Ionic Species (WSIS) and PAHs in PM_{2.5}

Given that Phuket is the largest island in Thailand, it was considered important to examine the impact of marine aerosols on the characterization of carbonaceous compositions. The chemical characteristics of WSIS have been studied thoroughly in different areas of the world. Several studies have reported that SO₄²⁻ and Cl⁻ are the main contributors to WSIS found in marine aerosols, whereas NH₄⁺ and K⁺ are the main contributors to WSIS in aerosols attributable to BB (Kocaka et al., 2007; Park and Cho, 2011).

The individual and average concentrations of 10 selected ions (SO₄²⁻, Na⁺, Ca²⁺, Cl⁻, NO₃⁻, NO₂⁻, NH₄⁺, K⁺, Mg²⁺ and F⁻) considered in this study are presented in **Table 5.2**.

Table 5.2. Concentrations of water-soluble ionic species (WSIS) observed in the PM_{2.5} samples from Phuket, Thailand

Ionic Species	Mean ($\mu\text{g m}^{-3}$)	Min. ($\mu\text{g m}^{-3}$)	Max. ($\mu\text{g m}^{-3}$)	% mass of total ion content
F ⁻	0.09 ± 0.01	0.07	0.12	1
Cl ⁻	0.53 ± 0.28	0.32	2.47	8

NO_2^-	0.30 ± 0.19	0.00	0.73	4
NO_3^-	0.53 ± 0.21	0.00	1.62	8
SO_4^{2-}	2.33 ± 1.73	0.33	9.21	34
Na^+	1.47 ± 0.39	0.65	3.04	21
NH_4^+	0.29 ± 0.32	0.00	2.38	4
K^+	0.28 ± 0.24	0.00	1.58	4
Mg^{2+}	0.13 ± 0.03	0.06	0.24	2
Ca^{2+}	0.96 ± 0.14	0.66	1.37	14
Total	6.91 ± 3.54	-	-	-

2886

2887 Several previous studies have used diagnostic ratios to analyse the sources of marine
 2888 aerosols and non-marine aerosols or non-sea-salt for WSIS (Karthikeyan and Balasubramanian,
 2889 2006). Such work has determined that the sources of K^+ , SO_4^{2-} , and Ca^{2+} are not solely from
 2890 marine aerosols (Wang et al., 2001). Therefore, the contribution of each of these ions from non-
 2891 sea-salt sources was calculated using the following equations (Hedge et al., 2007; George et al.,
 2892 2008):

2893 $\text{nss-SO}_4^{2-} = (\text{SO}_4^{2-}) - 0.037 * (\text{Na}^+)$ (2)

2894 $\text{nss-Ca}^{2+} = (\text{Ca}^{2+}) - 0.038 * (\text{Na}^+)$ (3)

2895 $\text{nss-K}^+ = (\text{K}^+) - 0.25 * (\text{Na}^+)$ (4)

2896 *Note, nss-SO_4^{2-} , nss-Ca^{2+} , and (nss-K^+) can be used in the formulas above, assuming that marine
 2897 aerosols are the same as sea-salt in terms of chemical composition. Meanwhile, Na^+ is used as a
 2898 marker element to determine whether oceanic or continental concentrations have been calculated
 2899 (George et al., 2008).

2900 Based on the OC/EC ratios in this study, long-range atmospheric transport of BB plumes
 2901 from nearby countries could represent one source. In this region, BB is a widespread activity and
 2902 it is known that PM is transported from Indonesia (Southeast Asia) into southern Thailand
 2903 (Phairuang et al., 2020). The OC/EC ratios in this study were in the range of 2.69–16.88. Moreover,

2904 strong correlation ($r = 0.80$) was found between nss- K^+ and OC, which was found related to long-
2905 range atmospheric transport and the influence of BB on organic aerosols during the study period.

2906 Several studies have reported that Cl^- and SO_4^{2-} are the main components of WSIS found
2907 in marine aerosols, while K^+ and NH_4^+ represent the major contributors to other particles derived
2908 from BB and agricultural waste burning (Park and Cho, 2011; Pongpiachan et al., 2014).
2909 Generally, NO_3^- is considered a marker of particles derived from vehicular emissions and fossil
2910 fuel combustion. Therefore, based on the binary ratios between marine and BB components of
2911 WSIS and traffic emissions, NO_3^- can be used to identify aerosol types.

2912 Normally, SO_4^{2-} , NO_3^- , and NH_4^+ are the major fractions in the form of secondary
2913 inorganic aerosols. In this study, they accounted for 46.0% of total ionic species concentrations.
2914 The average SO_4^{2-} concentration in Phuket was the highest throughout the entire study period
2915 ($2.33 \pm 1.73 \mu\text{g m}^{-3}$); surprisingly, the average concentrations of NO_3^- and NH_4^+ were relatively
2916 low at 0.53 ± 0.21 and $0.29 \pm 0.32 \mu\text{g m}^{-3}$, respectively.

2917 For the classification, $[\text{NO}_3^-]/[\text{SO}_4^{2-}]$ ratios were applied carefully to identify the incidence
2918 of stationary sources (e.g., boilers) and mobile sources (e.g., vehicular exhausts) of nitrogen and
2919 sulphur. They are generally formed via atmospheric reactions of their gaseous phase, e.g., NO_x
2920 and SO_2 . Normally, SO_2 is released via coal combustion, whilst NO_x results from any type of
2921 combustion, e.g., coal power plants and vehicular emissions (Liu et al., 2011; Mkoma et al., 2014).
2922 Several previous studies have recommended the mass ratio of $[\text{NO}_3^-]/[\text{SO}_4^{2-}]$ can be applied to
2923 estimate the relative contribution of stationary sources (e.g., BB, coal combustion) versus mobile
2924 sources (e.g., vehicular emissions) in aerosols (Javid et al., 2015; Park et al., 2015; Deng et al.,
2925 2016; Huang et al., 2016). A high $[\text{NO}_3^-]/[\text{SO}_4^{2-}]$ ratio was found in a region with high levels of
2926 vehicular emissions (Li et al., 2009). The mean $[\text{NO}_3^-]/[\text{SO}_4^{2-}]$ ratio found during this study was

2927 0.33 ± 0.24 . It is lower than that found in other areas in summer in China, e.g., Beijing (0.83),
2928 Tianjin (0.71), and Shijiazhuang (0.56) (Dao et al., 2014) because Phuket is in a tropical region.
2929 The high temperatures in Phuket modulate particulate nitrate into the gaseous phase, which reduces
2930 the $[\text{NO}_3^-]/[\text{SO}_4^{2-}]$ ratio. However, the ratio of 0.3–0.5 found in this study is also lower than that
2931 usually found in China because of the widespread use of sulphur-containing coal by the Chinese
2932 (Yao et al., 2002).

2933 The ions SO_4^{2-} and NH_4^+ are secondary ions that have a complex reaction in that NH_4^+
2934 responds rapidly with SO_4^{2-} to the constant form of ammonium salts (Lai et al., 2007; Li et al.,
2935 2012; Wang et al., 2013). The gas/aerosol distribution of precursor gases in terms of temperature
2936 and humidity affect the reaction of NH_4^+ and NO_3^- (Han et al., 2014). Generally, SO_4^{2-} is
2937 influenced by anthropogenic sources in industrial areas. The concentration of SO_4^{2-} was
2938 significantly higher than that of Na^+ and Cl^- , whereas nss- SO_4^{2-} was the primary species for acid
2939 replacement (Zhang et al., 2010). Similar to other ions with anthropogenic sources (e.g., NO_3^-),
2940 the correlation with those of nss- SO_4^{2-} was reasonable (Zhang et al., 2010).

2941 In general, Na^+ and Cl^- are the sea salt ions that form the largest fractions in marine
2942 aerosols. In this study, the highest concentrations of Na^+ and Cl^- were 1.47 ± 0.39 and 0.53 ± 0.28
2943 $\mu\text{g m}^{-3}$, which accounted for 21.0% and 8.0% of the total ionic species, respectively. For marine
2944 aerosols, Zhang et al. (2010) reported that sea salt aerosols (i.e., NaCl) can emit HCl via exchange
2945 with sulphuric acid and nitric acid, which results in a shortage of Cl^- relative to Na^+ . The annual
2946 average equivalent ratios of Cl^-/Na^+ in the aerosols from Phuket were 3.4 and 3.2 times lower than
2947 those on Yongxing Island and those of seawater, respectively (see Table 5.3). This assumes that
2948 Cl^- enrichment had a high-temperature pyrogenic source, e.g., vehicular exhausts, power plants,
2949 and BB (Stogiannidis and Laane, 2015)

2950 **Table 5.3.** Comparison of equivalent ratios of ionic species in aerosols observed in Phuket, on
 2951 Yongxing Island (Xiao et al., 2017), and those in seawater (Keene et al., 1986)

Ion ratios	Phuket Island	Yongxing Island	Seawater
Cl^-/Na^+	0.37	1.25	1.17
$\text{Mg}^{2+}/\text{Na}^+$	0.09	0.21	0.22
K^+/Na^+	0.19	0.048	0.021
$\text{Ca}^{2+}/\text{Na}^+$	0.68	0.62	0.044
$\text{SO}_4^{2-}/\text{Na}^+$	1.54	0.66	0.12
nss- $\text{SO}_4^{2-}/\text{Na}^+$	1.51	0.54	-
$\text{NO}_3^-/\text{Na}^+$	0.37	0.18	-
$\text{NH}_4^+/\text{Na}^+$	0.20	0.022	-
$\text{NO}_3^-/\text{nss-SO}_4^{2-}$	0.35	0.34	-
$\text{NH}_4^+/\text{nss-Ca}^{2+}$	0.33	0.038	-

2952

2953 **Correlations of chemical composition of PM_{2.5} and its relation to source identification**

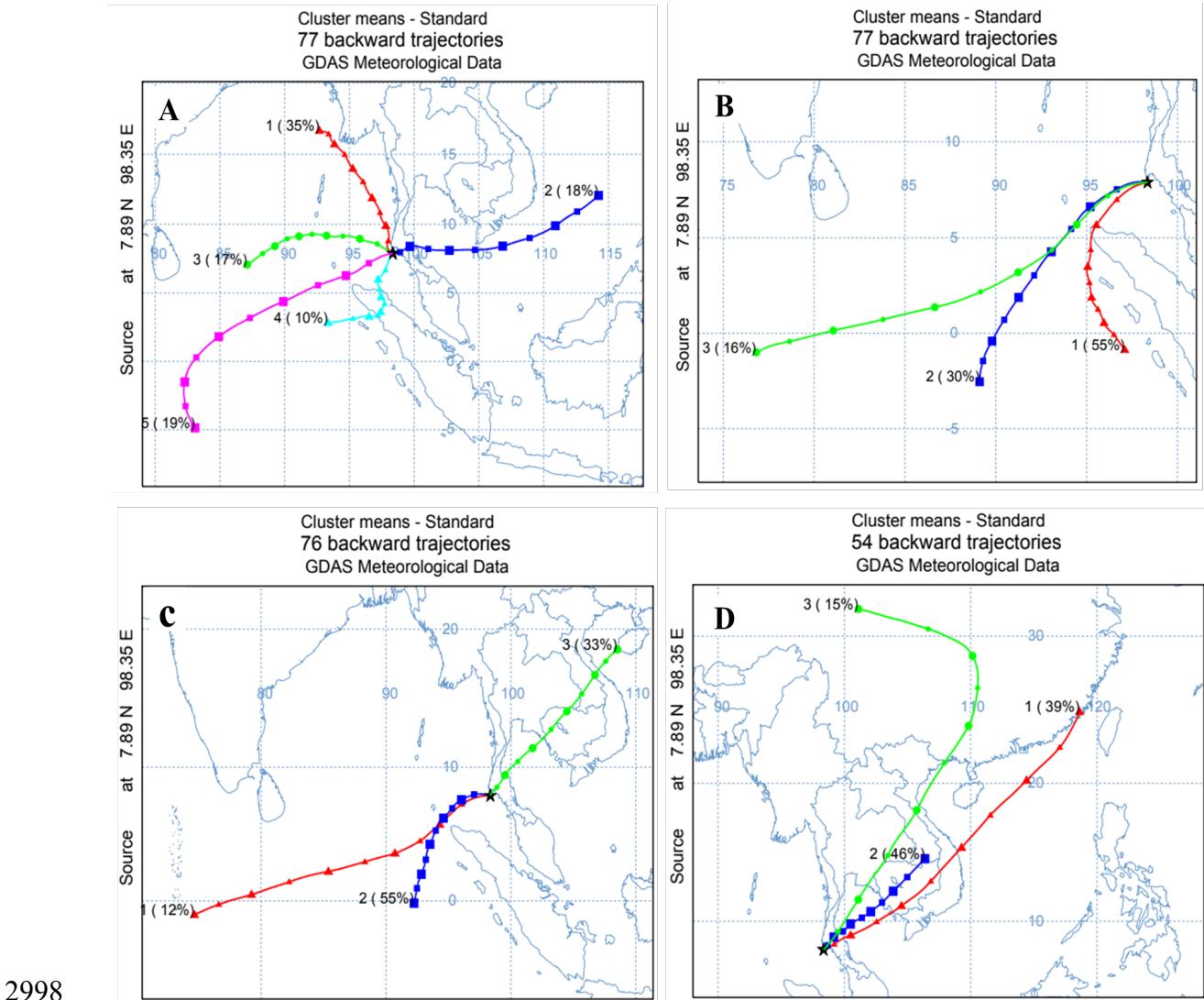
2954 Some ions in carbonaceous aerosol composition such as K^+ , SO_4^{2-} , and Ca^{2+} have multiple
 2955 sources, e.g., ocean and land surfaces. Additionally, nss- SO_4^{2-} in the atmosphere can be derived
 2956 from various sources. It originates from the combustion of fossil fuels such as coal, oil, and natural
 2957 gas (Kunwar and Kawamura, 2014). In Phuket, we found the highest concentrations of
 2958 carbonaceous aerosols found in OC and nss- SO_4^{2-} were 3.05 and $2.28 \mu\text{g m}^{-3}$, respectively. Several
 2959 previous studies reported that SO_4^{2-} and Cl^- are the principal supporters of WSIS normally found
 2960 in marine aerosols, whereas K^+ and NH_4^+ are the primary supporters of particles initiated from BB
 2961 and agricultural waste burning (Matsumoto et al., 1998; Kocaka et al., 2007; Park and Cho, 2011;
 2962 Pongpiachan et al., 2014). The correlations of OC, EC, and WSIS found in this study are shown in
 2963 **Table 5.4**. The results showed strong correlation between K^+ and both OC ($r = 0.90$) and EC ($r =$
 2964 0.93). It is well known that K^+ is a marker of BB (Kundu et al., 2010), whereas EC is a marker of
 2965 incomplete combustion of biomass and/or fossil fuel. We also found strong correlation between
 2966 nss- K^+ and both EC ($r = 0.86$) and OC (0.80); therefore, BB episodes might also play a major role
 2967 in generating the higher OC concentrations. Previous analysis of satellite imagery revealed

2968 evidence of frequent BB episodes in southern Thailand, e.g., in preparation for agriculture,
 2969 agricultural produce burning, and forest fires.

2970

2971 **Table 5.4.** Pearson correlation analysis of OC, EC, and WSIS in PM_{2.5} samples obtained from
 2972 Phuket during March 2017 to February 2018

Correlation coefficients (r) of Carbonaceous Compositions in PM_{2.5} from Phuket, Thailand.


	F ⁻	Cl ⁻	NO ₂ ⁻	NO ₃ ⁻	SO ₄ ²⁻	Na ⁺	NH ₄ ⁺	K ⁺	Mg ²⁺	Ca ²⁺	nss-SO ₄ ²⁻	nss-Ca ²⁺	nss-K ⁺	OC	EC
F ⁻	1														
Cl ⁻	0.13	1													
NO ₂ ⁻	.24*	0.003	1												
NO ₃ ⁻	0.17	0.15	.51**	1											
SO ₄ ²⁻	-0.16	-0.07	-0.02	.55**	1										
Na ⁺	-0.01	.58**	-0.05	.4**	.61**	1									
NH ₄ ⁺	0.07	-0.11	0.2	.67**	.73**	.27*	1								
K ⁺	-0.05	-0.08	0.14	.50**	.79**	.39**	.81**	1							
Mg ²⁺	0.13	.33**	0.03	.47**	.46**	.71**	.37**	.32**	1						
Ca ²⁺	0.001	0.15	0.02	.34**	.71**	.60**	.52**	.65**	.50**	1					
nss-SO ₄ ²⁻	-0.16	-0.08	-0.02	.55**	1.0**	.61**	.73**	.79**	.46**	.71**	1				
nss-Ca ²⁺	0.006	0.1	0.03	.32**	.69**	.53**	.53**	.65**	.45**	1.0**	.69**	1			
nss-K ⁺	-0.04	-0.35	0.17	.37**	.58**	-0.02	.76**	.91**	0.03	.44**	.59**	.47**	1		
OC	-0.07	-0.12	0.06	.41**	.73**	.40**	.72**	.90**	.27*	.59**	.73**	.58**	.80**	1	
EC	-0.04	-0.15	0.1	.46**	.77**	.36**	.78**	.93**	.25*	.58**	.77**	.57**	.86**	.93**	1

t test is < 0.01 for the correlation where r is is > 0.70

2973 Among the major ions measured in marine aerosols in this study, the concentration of NH₄⁺
 2974 was low. It might mean that little ammonia is transported to Phuket; however, surprisingly, NH₄⁺
 2975 was strongly correlated with K⁺ (r = 0.81). It is assumed that one effect of BB was significant
 2976 enrichment of OC in PM_{2.5}. Previous studies related that fertilizer use as well as agriculture waste
 2977 and related domestic activities are sources of gaseous ammonia emissions (Thepanondh et al.,
 2978 2005). Reasonable correlation was found between Mg²⁺ and Na⁺ (r = 0.71) in our Phuket samples.
 2979 Moreover, the ratio of Mg²⁺ to Na⁺ was 0.09, which is 2.3 and 2.4 times lower in comparison with
 2980 the values from Yongxing Island and of seawater, suggesting that the main source of Mg²⁺ might
 2981 be airborne dust rather than sea salt aerosols (Goddard et al., 2007).
 2982

2983 **Air mass back trajectories**

2984 To elucidate potential transport pathways and potential source regions of the aerosols
2985 sampled in this study, we applied the Hybrid Single-Particle Lagrangian Integrated Trajectory
2986 model of the Air Resources Laboratory of the National Oceanic and Atmospheric Administration.
2987 This model has been used for similar purposes in many previous studies (Tiwari et al., 2010; Zhao
2988 et al., 2011; Chen et al., 2015; Cong et al., 2015). The transport pathways of air masses reaching
2989 Phuket are shown in [Fig. 5.5](#). It can be seen that the majority of air masses during March–May
2990 ([Fig. 5.5A](#)) and June–August ([Fig. 5.5B](#)) originate over the sea. Of the air masses that reach Phuket
2991 during March–May, 10% pass over northern Sumatra. Hence, these air masses might carry aerosols
2992 associated with BB, forest fires, and peat fires in Kalimantan and Sumatra in Indonesia (See et al.,
2993 2007). During September–November ([Fig. 5.5C](#)), a significant proportion (33%) of air masses
2994 originates from areas to the northeast of Phuket, e.g., Cambodia, Laos, and Vietnam. From
2995 December 2017 to February 2018 ([Fig. 5.5D](#)), all the air masses that passed over Phuket also
2996 passed over Cambodia, Laos, and China. Thus, these air masses might have contained pollutants
2997 released through BB, agricultural waste burning, fossil fuel combustion, and vehicular exhausts.

Figure 5.5. Air mass back trajectories during March 2017 to February 2018 in Phuket, Thailand: (A) March–May 2017, (B) June–August 2017, (C) September–November 2017, and (D) December 2017 to February 2018

Concentrations of polycyclic aromatic hydrocarbons (PAHs)

The concentrations of PAHs are summarized in Table 5.5. The total concentration of all 19 PAHs was $0.3780 \pm 0.3480 \mu\text{g m}^{-3}$. The values determined in this study are lower than those measured in other areas of Thailand such as Chiang-Mai and Bangkok, which are known as heavily polluted areas (Pongpiachan, 2013a,b; Pongpiachan et al., 2014a,b).

3007

3008

3009 **Table 5.5. Summary of PAH concentrations in Phuket, Thailand**

PAH ($\mu\text{g m}^{-3}$)	Mean	SD	Min.	Max.
Ace	0.0140	0.0096	0.0015	0.0507
Fl	0.0112	0.0079	0.0082	0.0270
Phe	0.0409	0.0411	0.0261	0.0711
Ant	0.0067	0.0045	0.0059	0.0160
Fluo	0.0120	0.0120	0.0070	0.0221
Pyr	0.0110	0.0127	0.0062	0.0160
B[a]A	0.0340	0.0163	0.0206	0.0581
Chry	0.0067	0.0070	0.0028	0.0099
B[b]F	0.0239	0.0220	0.0228	0.0464
B[k]F	0.0238	0.0229	0.0086	0.0340
B[a]F	0.0032	0.0030	0.0025	0.0057
B[e]P	0.0144	0.0134	0.0056	0.0169
B[a]P	0.0174	0.0190	0.0072	0.0224
Per	0.0048	0.0058	0.0029	0.0061
Ind	0.0507	0.0500	0.0359	0.0652
B[g,h,i]P	0.0575	0.0590	0.0348	0.0709
D[a,h]A	0.0133	0.0118	0.0243	0.0032
Cor	0.0239	0.0208	0.0185	0.0356
D[a,e]P	0.0085	0.0091	0.0069	0.0129
ΣPAHs^*	0.3780	0.3480	-	-

3010 * ΣPAHs is the sum of Ace, Fl, Phe, Ant, Fluo, Pyr, B[a]A, Chry, B[b]F, B[k]F, B[a]F, B[e]P,
 3011 B[a]P, Per, Ind, B[g,h,i]P, D[a,h]A, Cor, and D[a,e]P
 3012 Several previous studies have investigated the environmental cycle of PAHs in different

3013 environmental situations in Thailand (Pongpiachan, 2013a,b; Pongpiachan et al., 2014, 2015a). In
 3014 northern Thailand, BB, forest fires, and agricultural waste burning during winter emit large
 3015 quantities of PM into the atmosphere, especially ultra-fine particles that include PM_{2.5}-bound
 3016 PAHs. In central Thailand, vehicular emissions represent a major contributor to atmospheric PM.
 3017 However, in southern Thailand, especially Phuket, the limited availability of PAH data makes it
 3018 difficult to identify the sources of the pollution emitted into the atmosphere.

3019 The concentrations of the individual PAHs in the PM_{2.5} samples obtained in Phuket during
 3020 March 2017 to February 2018 decreased in the following order: B[g,h,i]P > Ind > Phe > B[a]A >
 3021 Cor > B[b]F > B[k]F > B[a]P > B[e]P > Ace > D[a,h]A > Fluo > Fl > Pyr > D[a,e]P > Chry > Ant
 3022 > Per > B[a]F. Of the 16 priority PAHs identified by the United States Environmental Protection

3023 Agency, 9 are emitted via combustion processes such as those involving coal, diesel, and
3024 petroleum. Ravindra et al. (2008) reported that Flu, Pry, B[a]A, Chry, B[b]F, B[k]F, B[a]P,
3025 B[g,h,i]P, and Ind are combustion PAHs. The ratios of the concentrations of these combustion
3026 PAHs have been analysed in many studies to identify the sources of the PAHs in aerosols (Manoli
3027 et al., 2004). In this study, high abundances of B[g,h,i]P and Ind were detected, indicating that
3028 motor vehicles, petroleum/oil combustion, and industrial waste burning are emission sources of
3029 the PAHs found in the ambient air of Phuket (Zhou et al., 1999; Ravindra et al., 2008).

3030 **5.3.4. Principal Component Analysis (PCA)**

3031 We used PCA to identify potential sources of the carbonaceous aerosol compositions of
3032 the PM_{2.5} samples (OC, EC, WSIS, and PAHs). The PCA method is a multivariate procedure that
3033 links multivariate data reduction by transforming the data into rectangular components. Hence,
3034 PCA reduces multidimensional data into smaller dimensions (Wold et al., 1987). The strong
3035 correlation between nss-K⁺ and both OC and EC, discussed in section 3.3, demonstrates that BB
3036 is the main contributor to carbonaceous aerosols. Moreover, the relatively high abundances of
3037 B[g,h,i]P and Ind suggest that vehicular exhausts should be investigated as a potential major
3038 emission source of PAHs in the southern region of Thailand. In this section, source identification
3039 coupled with quantitative source apportionment of targeted chemical species is considered using
3040 PCA.

3041 In this study, the concentrations of OC, EC, WSIS, and 19 individual PAHs from 75
3042 samples were collected as active variables. The majority of the variance (82.8%) of the scaled data
3043 was explained by five eigenvectors/principal components (PCs) (Table 5.6). The first PC (PC1)
3044 accounts for 55.5% of the total variance, while the second PC (PC2) explains 10.9% of the total

3045 variance, followed by PC3–PC5 that describe 10.6%, 5.2%, and 3.7% of the total variance,
 3046 respectively.

3047 **Table 5.6.** Rotated component matrix^a of carbonaceous compounds, WSIS, and 19 individual
 3048 PAHs in the PM_{2.5} samples from Phuket, Thailand

Compositions	Principal Component (PC)				
	PC1	PC2	PC3	PC4	PC5
TC	0.423	0.854	0.139	0.033	-0.005
OC	0.441	0.824	0.157	0.041	-0.023
EC	0.345	0.895	0.080	0.007	0.050
F ⁻	-0.225	-0.002	-0.038	0.052	0.618
Cl ⁻	-0.050	-0.218	-0.015	0.810	0.060
NO ₂ ⁻	0.229	-0.050	-0.014	-0.055	0.774
NO ₃ ⁻	0.191	0.387	0.215	0.284	0.694
SO ₄ ²⁻	0.315	0.754	0.198	0.297	-0.020
Na ⁺	0.155	0.308	0.101	0.883	-0.043
NH ₄ ⁺	0.312	0.734	0.265	0.022	0.345
K ⁺	0.424	0.845	0.127	0.090	0.077
Mg ²⁺	-0.013	0.299	0.154	0.718	0.211
Ca ²⁺	0.130	0.625	0.291	0.452	-0.071
Ace	0.259	0.092	0.838	0.053	0.011
Fl	0.119	0.486	0.663	0.017	0.287
Phe	0.408	0.478	0.614	0.075	0.212
Ant	0.623	0.336	0.595	0.079	0.069
Fluo	0.795	0.465	0.324	0.030	0.041
Pyr	0.850	0.436	0.218	0.014	0.046
B[a]A	0.257	0.187	0.780	0.178	-0.127
Chry	0.774	0.571	0.202	0.015	0.026
B[b]F	0.886	0.322	0.171	-0.013	0.014
B[k]F	0.835	0.379	0.176	0.018	-0.021
B[a]F	0.852	0.290	0.233	0.007	0.114
B[e]P	0.893	0.328	0.231	0.032	0.008
B[a]P	0.849	0.399	0.244	0.061	0.015
Per	0.373	-0.021	0.069	0.000	-0.208
Ind	0.936	0.255	0.133	0.047	-0.005
B[g,h,i]P	0.946	0.200	0.149	0.050	-0.005
D[a,h]A	0.874	0.109	0.069	0.057	0.031
Cor	0.938	0.163	0.090	0.037	0.018
D[a,e]P	0.761	0.095	0.045	0.099	-0.046
Variance [%]	55.5	10.9	6.1	5.2	5.1
Estimated source	Vehicular Exhausts	Biomass Burning	Diesel Emissions	Sea Salt Aerosols	Industrial Emissions

3049
3050 ^aRotation Method: Varimax with Kaiser Normalization.
3051 Bold: loading > 0.5
3052
3053 In accounting for 55.5% of the total variance, PC1 showed high loading of B[g,h,i]P, Cor,
3054 Ind, B[e]P, B[b]F, D[a,h]A, B[a]F, Pyr, B[a]P, B[k]F, Fluo, Chry, D[a,e]P, and Ant with
3055 corresponding correlation coefficients of 0.946, 0.938, 0.936, 0.893, 0.886, 0.874, 0.852, 0.850,
3056 0.849, 0.835, 0.795, 0.774 0.761, and 0.623, respectively. Anthropogenic activity is concentrated
3057 in urban areas; therefore, these positive loadings in PC1 could be attributed to anthropogenic
3058 activities involving combustion of coal, diesel, and petroleum. In particular, the high levels of
3059 molecular 4–6 ring PAHs found in PC1 could be related to vehicular exhausts (Miguel and Pereira,
3060 1989; Harrison et al., 1996) and/or gasoline vehicles (Schauer et al., 2002, Teixeira et al., 2013).
3061 Significant correlations of EC, TC, K⁺, OC, SO₄²⁻, NH₄⁺, Ca²⁺, and Chry were found in
3062 PC2 with correlation coefficients of 0.895, 0.854, 0.845, 0.824, 0.754, 0.734, 0.625, and 0.571,
3063 respectively, accounting for 10.9% of the total variance. It is related to biomass burning coupled
3064 with a high loading on OC, EC and WSIS which K⁺ is a marker of biomass burning which
3065 generated from biomass burning (Lee et al., 2016; Pani et al., 2018). However, OC and EC can be
3066 related to biomass burning as well (Mkoma et al., 2013).
3067 As illustrated in [Table 5.6](#), PC3 represented 6.1% of the total variance. Several studies
3068 reported that Phe and Ant could be used as geochemical tracers of PM released from diesel engine
3069 exhausts and coal combustion (Fang et al., 2006). Findings of a previous study that analysed air
3070 samples collected at the Central Bus Station of Londrina (Brazil) suggested that PAH congeners
3071 with two and three rings were responsible by 90.2% of the total PAHs (Tavares Jr. et al., 2004). In
3072 this study, Phe exhibited the highest atmospheric concentrations with an average value of 0.0409
3073 ± 0.0411 $\mu\text{g m}^{-3}$.

3074 PC4 represented 5.2% of the total variance. The comparatively high loadings of Na^+ ($r = 0.883$), Cl^- ($r = 0.810$), and Mg^{2+} ($r = 0.718$) underline the importance of marine aerosols, which
3075 can be attributed to long-range transportation across the ocean from nearby countries (Chan et al.,
3076 1997; Wang and Shooter, 2001).

3078 PC5 represented 5.1% of the total variance. Moderately high loadings of NO_2^- ($r = 0.774$)
3079 and NO_3^- ($r = 0.694$) were detected together with F^- ($r = 0.618$). Over recent decades, numerous
3080 studies have underlined the importance of industrial activities as one of the major sources of
3081 particulate F^- in the urban atmosphere (Haidouti et al., 1993; Lovelock, 1971; Mukherjee et al.,
3082 2003). For instance, hydrofluoric acid is used widely in the manufacture of chemicals and plastics
3083 and in laundries (WHO, 2000). The relatively low percentage contribution of industrial emissions
3084 was found in reasonable accord with the fact that the factories in Phuket account for only 0.31%
3085 of total number of factories in Thailand, based on a statistical survey conducted by the Department
3086 of Industrial Works of the Ministry of Industry in 2019. Consequently, it appears plausible that
3087 “industrial emissions” represented by PC5 account for only 5.1% of the total variance.

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097 **5.4. Reference**

3098 Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U.,
3099 Lewis, N.F., Ray, B.J., 1996. Relationships among aerosol constituents from asia and
3100 the north pacific during PEM-WEST A. J. Geophys. Res., 101, 2011–2023.

3101

3102 Boreddy, S.K.R., Haque, M.M., Kawamura, K., 2018b. Long-term (2001–2012) trends of
3103 carbonaceous aerosols from a remote island in the western North Pacific: an outflow
3104 region of Asian pollutants. Atmos. Chem. Phys. 18, 1291–1306.

3105

3106 Cao, J.J., Lee, S.C., Ho, K.F., Zhang, X.Y., Zou, S.C., Fung, K., Chow, J.C., Watson, J.G.,
3107 2003. Characteristics of carbonaceous aerosol in pearl river Delta region, China during
3108 2001 winter period. Atmos. Environ. 37, 1451-1460.

3109 Cao, J.J., Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An ,Z.S., Fung, K.K., Watson, J.
3110 G., Zhu, C.S., Liu, S.X., 2005. Characterization and source apportionment of
3111 atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an,
3112 China. Atmos. Chem. Phys. 5, 3127–3137.

3113

3114 Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T., 1999. Carbonaceous aerosol in urban
3115 and rural European atmospheres: estimation of secondary organic carbon
3116 concentrations. Atmos. Environ. 33, 2771–2781.

3117

3118 Chaiyo, U.; Savitri, G.; Wanthongchai, K., 2011. Carbon storage in above-ground biomass of
3119 tropical deciduous forest in Ratchaburi Province, Thailand. World Acad. Sci., Eng.
3120 Technol. 58, 636–641.

3121

3122 Chaiyo, U.; Pizzo, Y.; Garivait, S., 2013, Estimation of carbon released from dry dipterocarp
3123 forest fires in Thailand. Int. J. Environ. Sci. 7, 522–525.

3124

3125 Chaiyo, U., Garivait, S., 2014: Estimation of black carbon emissions from dry dipterocarp
3126 forest fires in Thailand. Atmos. 5, 1002-1019.

3127

3128 Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1997.
3129 Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia.
3130 Atmos. Environ. 31(22), 3237-3250.

3131

3132 Chen, P., Kang, S., Bai, J., Sillanpää, M., Li, C., 2015. Yak dung combustion aerosols in the
3133 Tibetan Plateau: Chemical characteristics and influence on the local atmospheric
3134 environment. Atmos. Res. 156, 58–66.

3135

3136 Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Chow, J.C., Watson, J.G., Cao, J.,
3137 Zhang, R., 2015. PM2.5 and PM10–2.5 chemical composition and source apportionment
3138 near a Hong Kong roadway. Particuology. 18, 96–104.

3139

3140 Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993.
3141 The dri thermal/optical reflectance carbon analysis system: Description, evaluation

3142 and applications in U.S. Air quality studies. *Atmos. Environ. Part A: Gen. Top.*, 27,
3143 1185-1201.

3144

3145 Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S
3146 .D., Engelbrecht, J.P., Green ,M.K., 2004. Source profiles for industrial, mobile and
3147 area sources in the big bend regional aerosol visibility and observational (BRAVO)
3148 study. *Chemosphere*. 54 (2), 185–208.

3149

3150 Chow, J.C., Watson, J.G., Chen, L.W.A., Chang, M.C.O., Robinson, N.F., Trimble, D., Kohl,
3151 S., 2007a. The IMPROVE_A temperature protocol for thermal/optical carbon
3152 analysis: maintaining consistency with a long term database. *J. Air Waste Manage.*
3153 Assoc. 57 (9), 1014–1023.

3154

3155 Chow, J.C., Yu, J.Z., Watson, J.G., Ho, S.S.H., Bohannan, T.L., Hays, M.D., Fung, K.K.,
3156 2007b. The application of thermal methods for determining chemical composition of
3157 carbonaceous aerosols: a review. *J. Environ. Sci. Health A*. 42 (11), 1521–1541.

3158

3159 Chuang, M.T., Chou, C.K., Sopajareepom, K., Lin, N.H., Wang, J.L., Sheu, G.R., Chang,
3160 Y.C., Lee, C.T., 2013. Characterization of aerosol chemical properties from
3161 nearsource biomass burning in Chiang Mai, Thailand during 7-SEAS/Dongsha
3162 experiment. *Atmos. Environ.* 78, 72–81.

3163

3164 Cong, Z., Kang, S., Kawamura, K., Liu, B., Wan, X., Wang, Z., Gao, S., Fu, P., 2015. Carbonaceous aerosols on the south edge of the Tibetan Plateau: Concentrations, seasonality and sources. *Atmos. Chem. Phys.* 15, 1573–1584.

3165

3166

3167 Dachs, J., Eisenreich, S.J., 2000. Adsorption onto aerosol soot carbon dominates gas-particle
3168 partitioning of polycyclic aromatic hydrocarbons. *Environ. Sci. Technol.* 34, 3690–
3169 3697.

3170

3171

3172 Dao, X., Wang, Z., Lv, Y., Teng, E., Zhang, L., Wang, C., 2014. Chemical Characteristics of
3173 Water-Soluble Ions in Particulate Matter in ThreeMetropolitan Areas in the North
3174 China Plain. *PLoS ONE*. 9(12), e113831.

3175

3176 Deng, X.L., Shi, C.E., Wu, B.W., Yang, Y.J., Jin, Q., Wang, H.L., Zhu, S., Yu, C., 2016. Characteristics of the water-soluble components of aerosol particles in Hefei, China.
3177 *J. Environ. Sci.* 42, 32–40.

3178

3179

3180 Duangkaew, S., Limpaseni, W., Suwattiga, P., 2013. Carbon composition of PM10 and PM2.5
3181 in Bangkok ambient air from a city center sampling site. *Rangsit J. Arts Sci.* 3(1), 17–
3182 23.

3183

3184 Dung, N.T., 1996. Determination of some selected Polycyclic Aromatic Hydrocarbons on
3185 particulates emitted from the thermal power plant of the Bai Bang paper company,
3186 Vietnam. Master's Thesis. Division of Environmental Engineering. Asian Institute of
3187 Technology.

3188 Fung, K., Chow, J.C., Watson, J.G., 2002. Evaluation of OC/EC speciation by thermal
3189 manganese dioxide oxidation and the IMPROVE method. *J. Air Waste Manage. Assoc.*
3190 52, 1333-1341.

3191

3192 Fang, G.C., Wu, Y.S., Chen, J.C., Chang, C.N., Ho, T.T, 2006. characteristic of polycyclic
3193 aromatic hydrocarbon concentrations and source identification for fine and coarse
3194 particulates at Taichung Harbor near Taiwan Strait during 2004–2005. *Sci Tot*
3195 *Environ.* 366,729-738.

3196

3197 Gelencsér, A., 2004. Carbonaceous aerosols. Springer, Netherlands.

3198

3199 George, K.S., Nair, P.R., Parameswaran, K., Jacob, S., Abraham, A., 2008. Seasonal trend in
3200 chemical composition of aerosols at a tropical coastal site of India, *J. Geophys. Res.*
3201 113, D16209.

3202

3203 Gocht, T., Moldenhauer, K.M., Püttmann, W., 2001. Historical record of polycyclic aromatic
3204 hydrocarbons (PAHs) and heavy metals in floodplain sediments from the Rhine River
3205 (Hessisches Ried, Germany). *Appl. Geochem.* 16, 1707–17821.

3206

3207 Goddard M.A., Mikhailova, E.A., Post, C.J., Schlautman, M. A. 2007. Atmospheric Mg²⁺ wet
3208 deposition within the continental United States and implications for soil inorganic
3209 carbon sequestration. *Tellus.* 59B, 50–56.

3210 Han, T., Liu, X., Zhang, Y., Gu, J., Tian, H., Zeng, L., Chang, S.Y., Cheng, Y., Lu, K., Hu,
3211 M., 2014. Chemical characteristics of PM10 during the summer in the mega-city
3212 Guangzhou, China. *Atmos Res.* 137, 25–34.

3213 Han, Y.M., Cao, J.J., Chow, J.C., Watson, J.G., Fung, K., Jin, Z.D., Liu, S.X., An, Z.S., 2007.
3214 Evaluation of the thermal/optical reflectance method for discrimination between soot- and char-
3215 EC. *Chemosphere.* 69, 569–574.

3216

3217 Han, Y.M., Cao, J.J., Chow, J.C., Watson, J.G., An, Z.S., Liu, S.X., 2009b. Elemental carbon
3218 in urban soils and road dusts in Xi'an, China and its implication for air pollution.
3219 *Atmos. Environ.* 43, 2464–2470.

3220

3221 Harrison, R.M., Smith, D.J.T., Luhana, L., 1996. Source apportionment of atmospheric
3222 polycyclic aromatic hydrocarbons collected from an urban location in Birmingham,
3223 UK. *Environ. Sci. Technol.* 30, 825–832.

3224

3225 Heald, C.L., Henze, D.K., Horowitz, L.W., Feddema, J., Lamarque, J.F., Guenther, A., Hess,
3226 P.G., Vitt, F., Seinfeld, J.H., Goldstein, A.H., Fung, I., 2008: Predicted change in global
3227 secondary aerosol concentrations in response to future climate, emissions and land use
3228 change, *J. Geophys. Res.* 113, D05211.

3229

3230 Hegde, P., Sudheer, A.K., Sarin, M.M., Manjunatha, B.R., 2007. Chemical characteristics of
3231 atmospheric aerosols over southwest coast of India. *Atmos. Environ.* 41(36), 7751–
3232 7766.

3233

3234 Ho, S.S., Yu, J.Z., 2004. In-injection port thermal desorption and subsequent gas
3235 chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons
3236 and n-alkanes in atmospheric aerosol samples. *J. Chromatogr. A.* 1059, 121–129.

3237

3238 Huang, T., Chen, J., Zhao, W., Cheng, J., Cheng, S., 2016. Seasonal variations and
3239 correlation analysis of water-soluble inorganic ions in PM2.5 in Wuhan, 2013.
3240 *Atmosphere.* 7, 49.

3241

3242 Janta, R., Chantara, S., 2017. Tree bark as bioindicator of metal accumulation from road traffic
3243 and air quality map: a case study of Chiang Mai, Thailand. *Atmos. Pollut. Res.* 8 (5), 956–
3244 967.

3245

3246 Javid, M., Bahramifar, N., Younesi, H., Taghavi, S.M., Givehchi, R., 2015. Dry deposition,
3247 seasonal variation and source interpretation of ionic species at Abali, Firouzkouh and
3248 Varamin, Tehran province, Iran. *Atmos. Res.* 157, 74–90.

3249 Jiménez-Moreno, G., Fauquette, S., Suc, J.P., 2008. Vegetation, climate and paleoaltitude
3250 reconstructions of eastern alpine mountain ranges during the Miocene based on pollen
3251 records from Austria: Central Europe: *J BIOGEOGR.* 35, 1638–1649.

3252

3253 Jinsart, W., Tamura, K., Loetkamonwit, S., Sarawut Thepanondh, S., Kanae, K., Yano, E.,
3254 2002. Roadside Particulate Air Pollution in Bangkok. *J. Air & Waste Manage. Assoc.*
3255 52, 1102-1110.

3256

3257 Jones, K.C., de Voogt, P., 1999. Persistent organic pollutants (POPs): State of the science,
3258 *Environ. Pollut.* 100, 209 – 221.

3259

3260 Karthikeyan, S., Balasubramanian, R., 2006. Determination of water-soluble inorganic and
3261 organic species in atmospheric fine particulate matter. *Microchem. J.*, 82, 49 – 55

3262

3263 Keene, W.C., Pszenny, A.A.P., Galloway, J.N., Hawley, M.E., 1986. Sea-salt corrections and
3264 interpretation of constituent ratios in marine precipitation, *J. Geophys. Res.* 91, 6647–
3265 6657.

3266

3267 Khwaja, M.A., Khan, S.R., 2005. Air pollution: key environmental issues in Pakistan.
3268 Working Paper 99, SDPI, Islamabad Pakistan.

3269

3270 Kocaka, M., Mihalopoulosb, N., Kubilay, N., 2007. Chemical composition of the fine and
3271 coarse fraction of aerosols in the northeastern Mediterranean. *Atmos. Environ.* 41,
3272 7351-7368.

3273

3274 Kundu, S., Kawamura, K., Lee, M., 2010. Seasonal variations of diacids, ketoacids and -
3275 dicarbonyls in marine aerosols at Gosan, Jeju Island: Implications for their formation
3276 and degradation during long-range transport, *J. Geophys. Res.* 115, D19307.

3277

3278 Kunwar, B., Kawamura, K., 2014. One-year observations of carbonaceous and nitrogenous
3279 components and major ions in the aerosols from subtropical Okinawa Island, an
3280 outflow region of Asian dusts. *Atmos. Chem. Phys.* 14, 1819–1836.

3281

3282 Lai, S., Zou, S., Cao, J., Lee, S., Ho, K., 2007. Characterizing ionic species in PM2.5 and PM10
3283 in four Pearl River Delta cities, South China. *J Environ Sci.* 19, 939–947.

3284

3285 Lee, C., Ram, S.S., Nguyen, D., Chou, C., Chang, S., Lin, N., Chang, S., Hsiao, T., Sheu, G.,
3286 OuYang, C., Chi, K., Wang, S., Wu, X., 2016. Aerosol chemical profile of near- source
3287 biomass burning smoke in Sonla, Vietnam during 7- SEAS campaigns in 2012 and 2013.
3288 *Aerosol Air Qual. Res.* 16 (11), 2603–2617.

3289

3290 Li, W., Bai, Z., Liu, A., Chen, J. and Chen, L., 2009. Characteristics of major PM2.5
3291 components during winter in Tianjin, China. *Aerosol Air Qual. Res.* 9, 105–119.

3292

3293 Li X, Wang L, Wang Y, Wen T, Yang Y, Zhao, Y., Wang, Y., 2012. Chemical composition
3294 and size distribution of airborne particulate matters in Beijing during the 2008
3295 Olympics. *Atmos Environ.* 50, 278–286.

3296

3297 Lim, M.C.H., Ayoko, G.A., Morawska, L., 2005. Characterization of elemental and
3298 polycyclic aromatic hydrocarbon compositions of urban air in Brisbane. *Atmos.*
3299 *Environ.* 39, 463-476.

3300

3301 Lin, J.J., Tai, S.H., 2001. Concentrations and distributions of carbonaceous species in
3302 ambient particles in Kaohsiung City, Taiwan. *Atmos. Environ.* 35, 2627-2636.

3303

3304 Liu, J., Zhang, X.L., Xu, X.F., Xu, H.H., 2011. Comparison analysis of variation characteristics
3305 of SO₂, NO_x, O₃ and PM2.5 between rural and urban areas, Beijing. *Environ Sci.*
3306 29, 1059–1065.

3307

3308 Manoli, E., Kouras, A., Samara, C., 2004. Profile analysis of ambient and source emitted
3309 particle-bound polycyclic aromatic hydrocarbons from three sites in Northern
3310 Greece. *Chemosphere.* 56, 867– 878.

3311

3312 Matsumoto, K., Nagao, I., Tanaka, H., Miyaji, H., Iida, T., Ikebe, Y., 1998. Seasonal
3313 characteristics of organic and inorganic species and their size distributions in
3314 atmospheric aerosols over the Northwest Pacific Ocean. *Atmos. Environ.* 32, 1931-
3315 1946.

3316

3317

3318 Mauderly, J.L., Chow, J.C., 2008, 'Health effects of organic aerosols', *Inhalation Toxicology*
3319 (20) 257–288.

3320

3321 Miguel, A.H., Pereira, P.A.P., 1989. Benzo(k)fluoranthene, benzo(ghi)perylene, and indeno
3322 (1,2,3,-cd)pyrene: new tracers of automotive emissions in receptor modeling.
3323 *AerosolSci. Technol.* 10, 292–295.

3324
3325 Mkoma, S.L., Kawamura, K., Fu, P.Q., 2013. Contributions of biomass/biofuel burning to
3326 organic aerosols and particulate matter in Tanzania, East Africa, based on analysis of
3327 ionic species, organic and elemental carbon, levoglucosan and mannosan. *Atmos. Chem.*
3328 *Phys.* 13, 10325–30338.

3329
3330 Mkoma, S.L., Rocha, G.O., Regis, A.C.D., Domingos, J.S.S., Santos, J.V.S., Andrade, S.J.,
3331 Carvalho, L.S., Andrade, J.B., 2014. Major ions in PM_{2.5} and PM₁₀ released from
3332 buses: The use of diesel/biodiesel fuels under real conditions. *Fuel* 115, 109–117.

3333
3334 Na, K., Sawant, A.A., Song, C., Cocker, R.D., 2004. Primary and secondary carbonaceous
3335 species in the atmosphere of Western Riverside County, California. *Atmos. Environ.*
3336 38, 1345-1355.

3337
3338 Phairuang, W., Inerba, M., Furuuchia, M., Hata, M., Tekasakuld, S an., Tekasakul, P., 2020.
3339 Size-fractionated carbonaceous aerosols down to PM_{0.1} in southern Thailand: Local
3340 and long-range transport effects. *Environ. Pollut.* S0269-7491(19)33493-1.

3341
3342 Pani, S.K., Lin, N.H., Chantara, S., Wang, S.H., Khamkaew, C., Prapamontol, T., Janjai, S.,
3343 2018. Radiative response of biomass-burning aerosols over an urban atmosphere in
3344 northern peninsular Southeast Asia. *Sci. Total Environ.* 633, 892–911

3345
3346 Park, S.M., Seo, B.K., Lee, G., Kahng, S.H., Jang, Y.W., 2015. Chemical composition of water
3347 soluble inorganic species in precipitation at Shihwa Basin, Korea. *Atmosphere.* 6, 732–750.

3348
3349 Park, S.S., Cho, Y.S., 2011. Tracking sources and behaviors of water-soluble organic carbon
3350 in fine particulate matter measured at an urban site in Korea. *Atmos. Environ.* 45, 60-
3351 72.

3352
3353 Pongpiachan, S., Bualert, S., Sompongchaiyakul, P., Kositanont, C., 2009. Factors
3354 affecting sensitivity and stability of polycyclic aromatic hydrocarbons. *Anal Lett.* 42,
3355 2106-2130.

3356
3357 Pongpiachan, S., Thamanu, K., Ho., S, Lee, C., Sompongchaiyakul, P., 2009. Predictions of
3358 gas-particle partitioning coefficients (K_p) of polycyclic aromatic hydrocarbons at various
3359 occupational environments of Songkhla province, Thailand. *Southeast Asian J. Trop. Med.*
3360 *Public Health.* 40, 1377-1394.

3361
3362 Pongpiachan, S., Ho, K.F., Cao, J., 2013. Estimation of gas-particle partitioning coefficients
3363 (K_p) of carcinogenic polycyclic aromatic hydrocarbons by carbonaceous aerosols
3364 collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand. *Asian Pac. J. Cancer Prev.*
3365 14 (4), 3369-3384.

3366
3367 Pongpiachan, S., 2013a. Vertical distribution and potential risk of particulate polycyclic
3368 aromatic hydrocarbons in high buildings of Bangkok, Thailand. *Asian Pac J. Cancer*
3369 *Prev.* 14, 1865-1877.

3370
3371 Pongpiachan, S., 2013b. Diurnal variation, vertical distribution and source apportionment of
3372 carcinogenic polycyclic aromatic hydrocarbons (PAHs) in Chiang-Mai, Thailand. *Asian
3373 Pac J Cancer Prev.* 14, 1851-1863.

3374
3375 Pongpiachan, S, Ho, K.F., Cao, J., 2013b. Estimation of gas-particle partitioning coefficients
3376 (kp) of carcinogenic polycyclic aromatic hydrocarbons by carbonaceous aerosols
3377 collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand. *Asian Pac J Cancer Prev.*
3378 14, 3369-3384.

3379
3380
3381 Pongpiachan, S., Kin F.H., Junji, C., 2014a. Effects of biomass and agricultural waste
3382 burnings on diurnal variation and vertical distribution of OC/EC in Hat-Yai City,
3383 Thailand. *Asian J. Appl. Sci.* 7(5), 360-374.

3384
3385 Pongpiachan, S., Kudo, S., Sekiguchi, K., 2014b. Chemical characterization of carbonaceous
3386 PM10 in Bangkok, Thailand. *Asian J. Appl. Sci.* 606 7 (5), 325-342.

3387
3388 Pongpiachan, S., Tipmanee, D., Khumsup, C., et al., 2015a. Assessing Risks to Adults and
3389 Preschool Children Posed by PM2.5-bound polycyclic aromatic hydrocarbons (pahs)
3390 during a biomass burning episode in northern Thailand. *Sci Total Environ.* 508, 435-444.

3391
3392 Pongpiachan, S., Hattayanone, M., Cao, J., 2017. Effect of agricultural waste burning season
3393 on PM2.5-bound polycyclic aromatic hydrocarbon (PAH) levels in Northern
3394 Thailand. *Atmos. Pollut. Res.* 8, 1069-1080.

3395
3396 Putaud, J.P., Van, Dingenen, R., Alastuey, Bauer, H., Birmili, W., Cyrys, J., 2010. A
3397 European aerosol phenomenology – 3: Physical and chemical characteristics of
3398 particulate matter from 60 rural, urban, and kerbside sites across Europe. *Atmos.
3399 Environ.* 44, 1308–1320.

3400
3401 Ravindra, K., Sokhi, R., Grieken, R., 2008. Atmospheric polycyclic aromatic hydrocarbons:
3402 source attribution, emission factors and regulation. *Atmos. Environ.* 42, 2895–2921.

3403
3404 Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2002. Measurement of emissions
3405 from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered
3406 motor vehicles. *Environ. Sci. Technol.* 36, 1169–1180.

3407
3408 Schummer, C., Mothiron, E., Appenzeller, R.M.B., Wennig, R., Millet, M., 2010. Gas/particle
3409 partitioning of currently used pesticides in the atmosphere of Strasbourg (France). *Air Q.
3410 Atmos. Health.* 3, 171-181.

3411 See, S.W., Balasubramanian, R., 2008. Chemical characteristics of fine particles emitted from
3412 different gas cooking methods. *Atmos. Environ.* 42, 8852–8862.

3413
3414 See, S.W., Balasubramanian, R., Rianawati, E., Karthikeyan, S., Streets D.G., 2007.
3415 Characterization and Source Apportionment of Particulate Matter $\leq 2.5 \mu\text{m}$ in

3416 Sumatra, Indonesia, during a Recent Peat Fire Episode. Environ. Sci. Technol. 41,
 3417 3488-3494

3419 Seinfeld, J.H., Pandis, S.N., 2006. Atmospheric Chemistry and Physics: From Air Pollution
 3420 to Climate Change. John Wiley & Sons Inc, New York.

3422 Shabbir, Y., Khokhar, M.F., Shaiganfar, R., Wagner, T., 2016. Spatial variance and
 3423 assessment of nitrogen dioxide pollution in major cities of Pakistan along N5-
 3424 Highway. J. Environ. Sci. 43, 4-14.

3426 Shaiganfar, R., Beirle, S., Sharma, M., Chauhan, A., Singh, R.P., Wagner, T., 2011.
 3427 Estimation of NO_x emissions from Delhi using car max-DOAS observations and
 3428 comparison with OMI satellite data. Atmos. Chem. Phys. 11, 10871-10887.

3430 Shih, S.T., Lai, H.C., Hung, F.H., Ku, Y.S., Tsai, J.P., et al., 2008. Elemental and organic
 3431 carbon exposure in highway tollbooths: A study of Taiwanese toll station workers.
 3432 Sci. Total Environ. 402, 163-170.

3434 Silva, M.A.B., 2005. Sistema de classificacão Fuzzy para áreas contaminadas. PhD thesis,
 3435 Federal University of Rio de Janeiro, Brazil, 11-13.

3437 Smith, D.J.T., Harrison, R.M., 1998. Polycyclic aromatic hydrocarbons in atmospheric
 3438 particles. In: Harrison, R.M., Van Grieken, R. (Eds.), Atmospheric Particles. Wiley.
 3439

3440 Sookkai, S., Itthipoonthanakorn, T., Rodpass, J., 2000. Indoor Radon in Chiang Rai Province,
 3441 Thailand. Health Science. 9(4), 520-523.

3443 Stogiannidis, E., Laane, R., 2015. Source Characterization of Polycyclic Aromatic
 3444 Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities. Rev
 3445 Environ Contam T. 234, 49-133.

3447 Szewczyńska, M., Dąbrowska, J., Pyrzyńska, K., 2017. Polycyclic Aromatic Hydrocarbons in
 3448 the Particles Emitted from the Diesel and Gasoline Engines. Pol. J. Environ. Stud.
 3449 26, 801-807.

3451 Tavares, M.J., Pinto, P., Souza, A.L., Scarminio, L.S., Solci, M.C., 2004. Emission of
 3452 polycyclic aromatic hydrocarbons from diesel engine in a bus station, Londrina, Brazil.
 3453 Atmos. Environ. 38, 5039-5044.

3455 Teixeira, E., Mattiuzzi, C., Agudelo-Castañeda, D., de Oliveira, Garcia, K., Wiegand, F., 2013.
 3456 Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using
 3457 diagnostic ratios and receptor model in urban/industrial region. Environ. Monit. Assess. 185,
 3458 9587-9602.

3460 Thepanondh, S., Ayers, G.P., Hooper, M.A., 2005. Analysis of precipitation chemistry in
 3461 northern Thailand. Clean Air and Environmental Quality. 39, 43-47.

3462
3463 Thepnuan, D., Chantara, S., Lee, C., Lin, N., Tsai, Y., 2019. Molecular markers for biomass
3464 burning associated with the characterization of PM2.5 and component sources during
3465 dry season haze episodes in Upper South East Asia. *Sci. Total Environ.* 658, 708–722.
3466
3467 Tiwari, S., Srivastava, A.K., Bisht, D.S., Bano, T., Singh, S., Behura, S., Srivastava, M.K.,
3468 Chate, D.M., Padmanabhamurty, B., 2010. Black carbon and chemical characteristics
3469 of PM10 and PM2.5 at an urban site of north India. *J. Atmos. Chem.* 62, 193–209.
3470
3471 Tsai, Y.I., Sopajaree, K., Chotruksa, A., Wu, H.C., Kuo, S.C., 2013. Source indicators of
3472 biomass burning associated with inorganic salts and carboxylates in dry season
3473 ambient aerosol in Chiang Mai Basin, Thailand. *Atmos. Environ.* 78, 93–104.
3474
3475 Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and
3476 quantification of primary and secondary organic aerosol concentrations during
3477 SCAQS. *Atmos. Environ.* 29, 3527–3544.
3478
3479 US-EPA-United States, Environmental Protection Agency, 1998. NO_x, how nitrogen oxides
3480 affect the way we live and breathe. Office of Air Quality Planning and Standards
3481 Research Triangle Park, Nc 27711.
3482
3483 Wang, H., Shooter, D., 2001. Water-soluble ions of atmospheric aerosols in three New
3484 Zealand cities: seasonal changes and sources. *Atmos. Environ.* 35, 6031-6040.
3485
3486 Wang, H., An, J., Zhu, B., Shen L., Duan, Q., Shi, Y., 2017. Characteristics of carbonaceous
3487 aerosol in a typical industrial city-Nanjing in Yangtze River Delta, China: size
3488 distributions, seasonal variations, and sources. *Atmosphere.* 8, 73.
3489
3490 Wang, L., Du, H., Chen, J., Zhang, M., Huang, X., Tan, H., Kong, L., Geng, F., 2013
3491 Consecutive transport of anthropogenic air masses and dust storm plume: Two case
3492 events at Shanghai, China. *Atmos Res.* 127, 22–33.
3493 Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., Zheng, A., 2005. The ion
3494 chemistry of PM2.5 aerosol in Beijing. *Atmos. Environ.* 39, 3771-3784.
3495 Wang, Q., Xue, Y., 2015. Characterization of solid tumors induced by polycyclic aromatic
3496 hydrocarbons in mice. *Med Sci Monit Basic Res.* 21, 81-5.
3497
3498 Wheeler, A., Zanobetti, A., Gold, D.R., 2006. The Relationship between Ambient Air
3499 Pollution and Heart Rate Variability Differs for Individuals with Heart and Pulmonary
3500 Diseases. *Environ. Health Persp.* 114(4), 560-567.
3501
3502 Wold, S., Esseen, K., Geladi, P., 1987. Principal component analysis, *Chemometrics and*
3503 *Intelligent Laboratory systems.* 2, 37- 52.
3504
3505 Xiao, H.W., Xiao, H.Y., Luo, L., Shen, C.Y., Long, A.M., Chen, L., Long, Z.H., Li, D.N.,
3506 2017. Atmospheric aerosol compositions over the South China Sea: temporal
3507 variability and source apportionment. *Atmos. Chem. Phys.* 17, 3199–3214.

3508
3509 Yao, X.H., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The
3510 Water-Soluble Ionic Composition of PM2.5 in Shanghai and Beijing, China. *Atmos.*
3511 *Environ.* 36, 4223-4234.
3512
3513 Yttri, K.E., Aas, W., Bjerke, A., Cape, J.N., Cavalli, F., Ceburnis, D., 2007. Elemental and
3514 organic carbon in PM10: a one year measurement campaign within the European
3515 Monitoring and Evaluation Programme EMEP. *Atmos. Chem. Phys.* 7, 5711-5725.
3516
3517 Zhang, M., Chen, J.M., Wang, T., Cheng, T.T., Lin, L., Bhatia, R.S., and Havey, M., 2010.
3518 Chemical characterization of aerosols over the Atlantic Ocean and the Pacific Ocean
3519 during two cruises in 2007 and 2008, *J. Geophys. Res.* 115, 1842-1851.
3520
3521 Zhao, S., Li, Z., Zhou, P., 2011. Ion chemistry and individual particle analysis of atmospheric
3522 aerosols over Mt. Bogda of eastern Tianshan mountains, central Asia. *Environ. Monit.*
3523 *Assess.* 180, 409-426.
3524
3525 Zhou, J.L., Fileman, T.W., Evans, S., Donkin, P., Readman, J.W., Mantoura, R.F.C.,
3526 Rowland, S., 1999. The partition of fluoranthene and pyrene between suspended
3527 particles and dissolved phase in the Humber Estuary: a study of the controlling factors,
3528 *Sci. Total. Environ.* 244, 305-321.
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553

3554

Chapter-VI

3555

Results & Discussion

3556

3557

Black carbon, char, soot and polycyclic aromatic compounds

3558

records in northwestern Thailand: connections to climate

3559

change and human activities

3560

3561

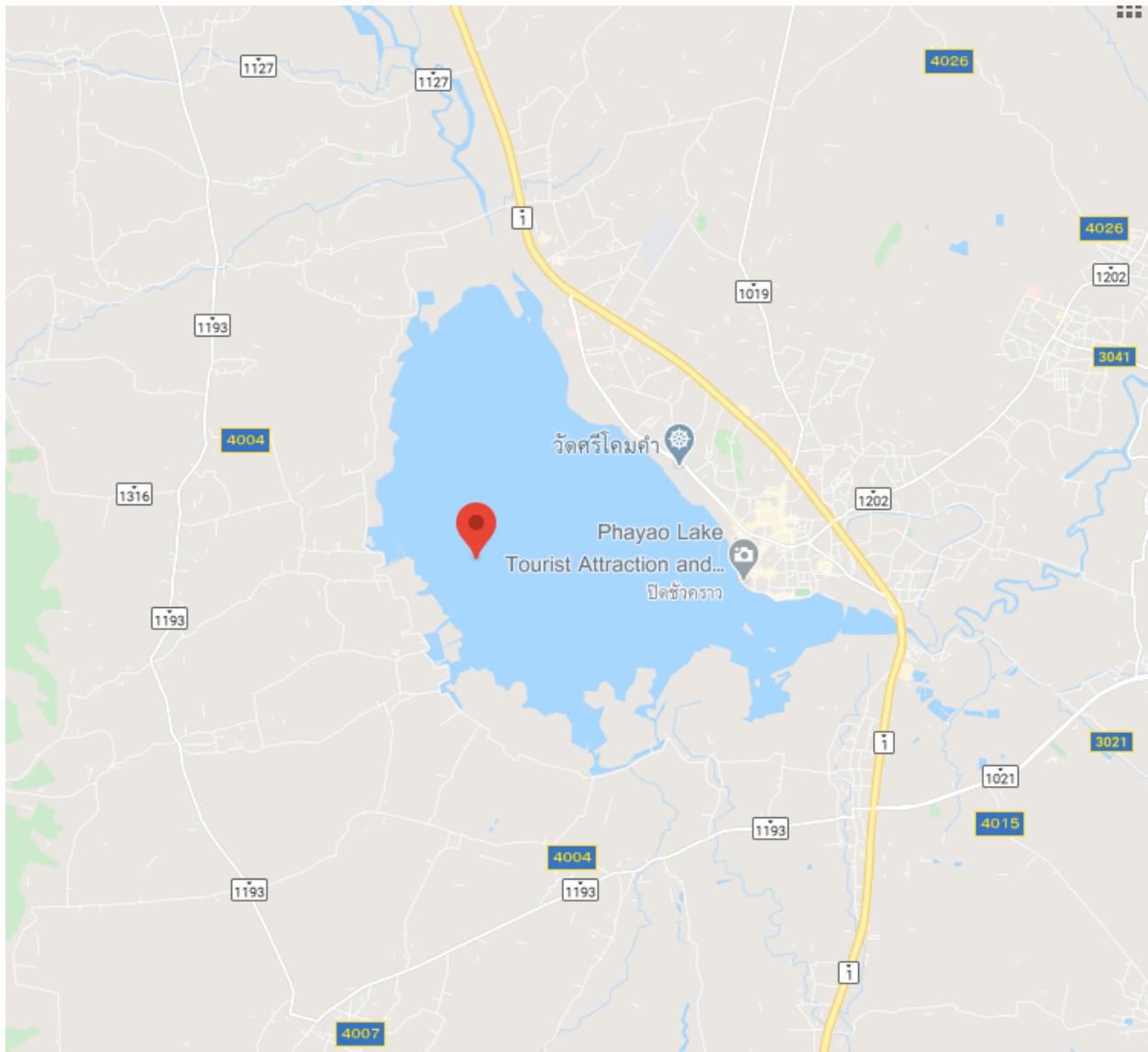
6.1. Introduction

3562 Black carbon (BC) is a kind of particle with highly refractory characteristics uniquely
3563 originating from incomplete combustion of biomass vegetations and fossil fuels^{1,2}. It is ubiquitous
3564 in the environment including the atmosphere, soil, sediments, ice cores, and waters due to the
3565 transport by the atmosphere and riverine. BC has received extensive attentions in recent decades
3566 because as a unique light-absorbing aerosol it has an important role in the Earth's climate system
3567^{3,4}. Especially, in atmosphere science BC is regarded as the specific part of aerosol with a strongly
3568 visible light-absorbing property³, that is, soot, and for the weak light-absorbing part it is regarded
3569 as brown carbon⁵. However, this was not supported by the present BC aerosol measurement⁶
3570 since the most popular methods such as the thermal optical⁷ and optical⁸ methods such as the
3571 aethelometer are not based on its strongly light absorbing characteristics at different visible
3572 wavelengths. These methods very likely report BC concentrations far beyond the soot part but
3573 including char part^{6,9}. Soil and sediment science that mainly focuses on the study of the
3574 geochemical cycles of BC regards BC as the combustion continuum², ranging from slightly
3575 charred, degradable biomass to highly condensed, refractory soot, and it is better to be regarded as
3576 two subtypes, the combustion residues namely char and the combustion condensates namely soot
3577^{6,10}.

3578 BC has both biomass burning and fossil fuel combustion sources, and thus its climatic
3579 properties can be impacted by the transition from the nature biofuel combustion processes to the
3580 human industrial activities. The study of the historical variations of the transition processes, such
3581 as from the pre-industrial to industrial period, is thus meaningful. Previous studies focused mainly
3582 on the developed countries ¹¹⁻¹⁴ and some quick developing countries such as in China ¹⁵⁻¹⁷, and
3583 found that BC, char, and soot records can varied with the different timing of industrialization and
3584 a rapid increase in BC records occurred during the industrial periods. It seems that, from these
3585 studies, human activities contributions to BC emissions have far surpassed those from natural
3586 biomass burning. However, it is still unknown at the global scale whether this is true. Especially,
3587 in the southeastern Asia, where the largest atmospheric brown clouds (ABCs) due to mixing of
3588 human emissions such as fossil fuel sulfates, nitrates, BC, and fly ash, and natural emissions of
3589 organic carbon and BC from biomass burning ¹⁸ contributes to atmospheric solar heating and
3590 global warming, whether the human emitted BC has far more than those from biomass burning. In
3591 addition, when and how these processes happened are still unknown. These limit us understand
3592 the relationship between BC records and natural climate processes and human emissions.

3593 Some studies have used the statistic data of human energy usages and reconstructed BC
3594 history over the past 150 years globally and in south Asia ¹⁹. However, these findings cannot
3595 answer the variations of BC contributions from natural biomass burning. Lake sediments provide
3596 an important medium to records both human emissions and natural inputs. But most of these
3597 studies also emphasized the contributions of fossil fuel emissions to BC records ^{12,20}, while seldom
3598 studies investigated the relationship between BC emissions and climate change such as the
3599 precipitation and temperature variations for the past several hundred years. Studies that
3600 differentiate between the human contributions and natural processes are still sparse. The clear

3601 interpret of BC emissions from natural climate influence and human activities would help us
3602 understand the processes that control BC emissions and facilitate our predictions on future
3603 interactions among human emissions, climate change, biomass burning, and soil nutrients storage.


3604 In this study, we selected the Phayao Lake of northwestern Thailand to investigate the BC,
3605 char, and soot records over the past ~150 years. The objectives of this study are to: (1) reconstruct
3606 the history of BC, char, and soot emissions; (2) identify the dominant factor that influences natural
3607 biomass burning and BC, char, and soot emissions during the pre-industrial periods; (3) find out
3608 the real industrialization time and the sources for BC, char, and soot using the variations of the
3609 polycyclic aromatic compounds; (4) discuss the potential impact of human activities and biomass
3610 burning on lake water and the surrounding soils.

3611

3612 **6.2. Sampling and methodology**

3613 **6.2.1. Study site and sampling**

3614 The Phayao Lake (N 19°09'-19°13', E 99°51'-99°56'; [Fig. 6.1](#)), is located at the southern tips
3615 of two mountains, Doi San Klang and Doi Huai Nam Khao, nourished by the Ing River, and it is
3616 the third largest fresh water resource with a pan basin area of 20.5 km²²¹. It has an average depth
3617 of 1.9 m, and consists of average water volume of 33.84 Mm³ drained from 11 canals into the basin
3618 ²¹. It is the main water supply for the domestic and agricultural activities in this area, and the major
3619 pollution of this lake is caused by the urban run-off and draining of the agricultural activities from
3620 the surrounding area.

3621
 3622 **Figure 6.1. Sample location of Phayao Lake in northeastern Thailand. (A) Phayao Lake in**
 3623 **southeastern Asia with climatic system in this region; (B) Sampling in Phayao Lake**
 3624 **The climate in the Phayao region is influenced by the south Asian monsoon system, the southwest**
 3625 **summer monsoon and the northeast winter monsoon. Three main seasons are identified: 1) summer**
 3626 **(March-May) with the maximum temperature of 39.5°C; 2) rainy (May-October) with the average**
 3627 **of 1,043.9 mm; and 3) winter (November-February) with the minimum temperature of 10.8 °C.**
 3628 **In March, 2016 two parallel sediment cores (PY-1 and PY-2) with lengths of 61 and 50 cm,**
 3629 **respectively, were taken from the centre of the Phayao Lake (Fig. 1) with a water depth of ~3 m**

3630 using a gravity corer (Uwitec, Austria; Fig. S1C). Distinct water-sediment interface and discernible
3631 laminations were observed, indicating a lack of post-depositional disturbance. The cores were
3632 sliced on the site continuously at 0.5 cm intervals for the upper 20 cm and at 1 cm interval for the
3633 lower part. All samples were taken back to the Institute of Earth Environment, Chinese Academy
3634 of Science, and freeze-dried, agate mortar ground, and frozen at -20°C until further analysis. The
3635 water content and dry density data were estimated from the mass of samples before and after
3636 freeze-drying.

3637 **6.2.2. Chronology dating**

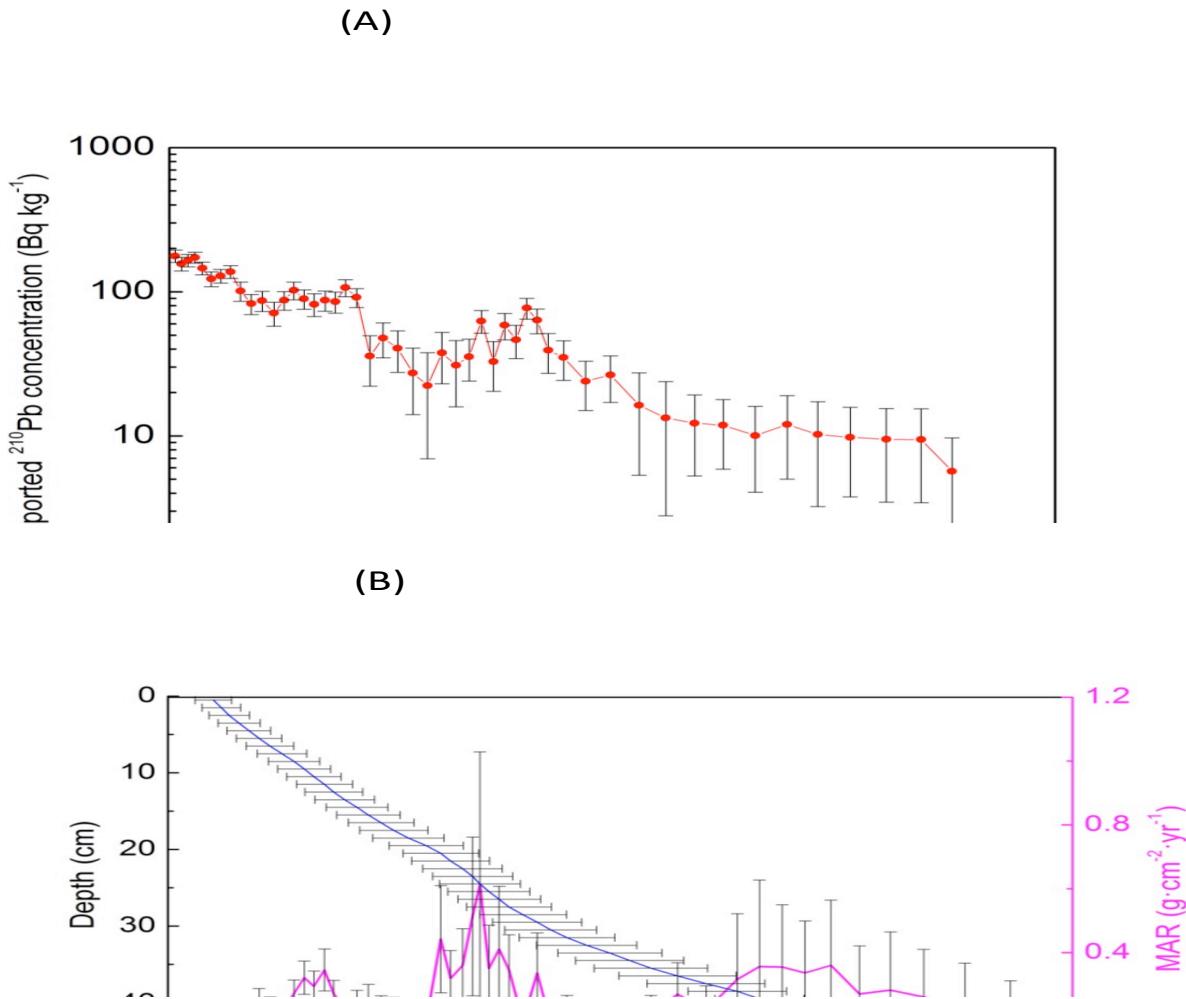
3638 The PY-2 sediment core was selected for chronology dating. The activities of ^{137}Cs , ^{210}Pb ,
3639 and ^{226}Ra were analyzed by direct gamma counting of 3-6 g of dried sediments using a multi-
3640 channel γ -ray spectrometer (PerkinElmer, GWL-120-15) ^{22, 23}. The constant rate of ^{210}Pb supply
3641 (CRS) model²⁴⁻²⁶, which is not influenced by the sediment fluxes, was applied for chronology
3642 reconstruction. The reconstructed dates and their corresponding mass accumulation rates (MARs)
3643 were presented in Fig. 6.2. ^{137}Cs activities presented their values at depths of 9-29 cm,
3644 corresponding the CRS ages of 2003.4-1976.8. However, all these ^{137}Cs activities are all lower
3645 than 10 Bq kg⁻¹, close to their limit of detection, and thus not used as the independent marker in
3646 this study.

3647 **6.2.3. Carbon fractions and polycyclic aromatic compounds measurement**

3648 The sediment core of PY-1 was selected for chemical analyses. The OC and total nitrogen
3649 (TN) concentrations were directly measured using a CHNOS elemental analyzer (Vario EL III,
3650 Elementar Analysensysteme GmbH, Langenselbold, Germany). The comparison of with and
3651 without acid pretreatments showed very similar OC and TN concentrations, which is in agreement
3652 with the fact that the study site has very small influences from mineral dust. We also conducted

3653 duplicate analyses at the rate of one for each batch of 10 samples. The relative standard deviation
3654 was less than 2% for OC and less than 3% for TN.

3655 BC, char, and soot concentrations are determined using the IMPROVE (Interagency
3656 Monitoring of Protected Visual Environments) method with a commercial DRI Thermal/Optical
3657 Carbon Analyzer (Model 2001, Atmoslytic Inc. Calabasas, CA, USA) after chemical pretreatment.
3658 The detailed method can be referred to Han et al. ^{15, 27}.


3659 PACs, including 26 parent- and alkyl-PAHs (Σ 26PAHs, and Σ 25PAHs for those excluding
3660 perylene, which is mainly of in-situ biogenic diagenesis origin ²⁶), 13 oxygenated-PAHs
3661 (Σ 13OPAHs) and 3 azaarenes (nitrogen heterocyclic polycyclic aromatic compounds, Σ 3AZAs)
3662 were measured by 7890A gas chromatograph coupled to a 5975C mass spectrometer (GC/MS,
3663 Agilent, Santa Clara, CA, U.S.A.), with extraction by accelerated solvent extractor (ASE 200:
3664 Dionex, Sunnyvale, CA, USA) followed by clean-up/fractionation using column chromatography
3665 (10 % deactivated silica gel). Detailed description of the method please refer to ^{16, 28}.

3666 Mass accumulation rates (MARs) of BC, char, and soot were calculated using the CRS-
3667 reported MARs for each measured sample multiplied by the corresponding concentrations of BC,
3668 char, and soot.

3669

3670

3671

6.3. Results

3685 Similar variations of OC and TN concentrations were observed, which showed an increasing
3686 trend from 1868 to 1950 and fluctuations thereafter at relatively high values (Fig. 6.3). OC/TN
3687 ratios presented two distinguish parts, with relatively high values before 1980 in spite of
3688 fluctuation and low values after 1980.

3689 BC and char concentrations, with similar variations, presented an overall decreasing trend
3690 from 1868 to present. Highest concentrations of BC and char happened at the bottom of the
3691 sediment core corresponding to 1868-1874. Also, distinct low BC and char concentrations
3692 occurred since 1980. However, for soot, its concentrations presented an opposite trend to BC and
3693 char and showed an roughly overall increasing trend in spite of fluctuations. Although post-1980
3694 soot concentrations were not the highest, they have overall relatively high values than before. The
3695 MARs of BC, char, and soot showed similar profiles with their corresponding concentrations.
3696 Char/soot ratios presented an overall decreasing trend. Similarly, two distinct groups for char/soot
3697 ratios were observed, with lower values (in general lower than 5.0) after 1980 and relatively higher
3698 values (in general higher than 5.0 and highest value reaching over 40.0) before that time.

3699 The concentrations of PAHs, LMW-PAHs, HMW-PAHs, OPAHs, and Az all presented
3700 increasing trends, with abrupt increase occurring at 1980. LMW-/HMW-PAHs presented an
3701 roughly overall decreasing trend.

3702

3703 **6.4. Discussion**

3704 **6.4.1. Distinct increase in fossil fuel contributions since 1980**

3705 From the results of concentrations variations of BC, char, soot, PAHs, HMW-PAHs, and
3706 LMW-PAHs, as well OC/TN, char/soot, and LMW-/HMW-PAHs ratios, a clear separation time

3707 of 1980 can be observed, which corresponds well with the beginning operation of the Mae Moh
3708 coal plant ²⁹ and suggests the industrial period starting here.

3709 MARs of BC and char showed vary similar variations due to much high proportion of char in
3710 BC in this core, and both presented an overall decreasing trends. However, for soot, its MARs
3711 presented an overall increasing trend. Although BC including char and soot originate from both
3712 biomass burning and fossil fuel combustions ¹, due to their different formation pathways for char
3713 and soot, with char being combustion residues produced in relatively low temperature, while soot
3714 as combustion condensates produced via gas-to-particle conversion in relatively high temperature,
3715 high proportions of char can produced in biomass burning while more proportions of soot can be
3716 emitted from fossil fuel combustions. This suggests that the increasing trend in soot MARs is likely
3717 associated with the industrialization. Especially after 1980 a fast increase in soot MARs happened,
3718 while for char MAR it presented a relatively stable level.

3719 Soot, as its ultrafine particle size and regional atmospheric transport ^{2, 10, 30}, has been
3720 suggested to be used to reflect atmospheric soot deposition from its sediment records ¹⁶. Previous
3721 studies have reconstructed soot emission history in southeastern Asia using the statistic data of
3722 human activities, and it presents an emissions growth rapidly in the latter half of the twentieth
3723 century ¹⁹. However, it does not include a emissions from biomass burning. Previous studies have
3724 found a quick increase in soot MARs occurring at ~1950 in eastern China ¹⁶, due to the
3725 industrialization of China, with the post-1980 soot MARs being about 6.7-7.7 times of those for
3726 pre-1950 period. However, in this study although soot MARs present an increasing trend at 1980,
3727 the extent looks not as big as that occurring in China. Soot MARs during post-1980 period were
3728 lower than those during the pre-1980 period in some cases. This may suggest that fossil fuel
3729 emissions in this region are not as big as those occurring in eastern China, the intensive developed

3730 region. In some cases when an intensive biomass burning occurred such as the periods 1911-1921
3731 and 1942-1954 (see Sec. 4.2), the emitted soot concentrations may be higher than those from
3732 industrial emissions. This suggests that in southeastern Asia the soot emissions of biomass burning
3733 and its potential climatic implications cannot be overlooked when we estimate the human
3734 influences ¹⁹. This is consistent with the global estimate on BC sources ³¹, which estimated that
3735 ~42% BC aerosol originated from forest open burning in 1996.

3736 The comparison of soot MARs from Phayao Lake sediments with those in China lake
3737 sediments (Table 6.1) showed a lower values than those from the industrialized regions such as
3738 Chaohu and Taihu regions, while they are comparable with those in rural areas such as Daihai
3739 region and higher than those from relatively remote areas such as Qinghaihu region. Char/soot
3740 ratio has been used as an useful indicator to differentiate fossil fuel combustion from biomass
3741 burning emissions ¹⁰. It showed a clear decreasing trend for char/soot ratios in the studied sediment
3742 core, consistent with the increasing fossil fuel combustion contributions in this region. A
3743 pronounced decrease in char/soot ratios happened in ~1980, with the ratios in general lower than
3744 5.0 compared with those higher than 5.0 for pre-1980 period, which further supports the
3745 industrialization in this region due to the beginning operation of the Mae Moh coal plant ²⁹, which
3746 is located approximately 93 km away in the northern part from the Phayao Lake. The highest post-
3747 1980 soot MARs happened at the year of 2000, which corresponds to the expansion of the Mae
3748 Moh Coal plant, reaching 13 units and producing 2,625 Megawatts electricity ²⁹.

3749
3750 **Table 6.1. Comparison of the concentrations and mass accumulation rates (MARs) of BC, char,**
3751 **and soot, as well as char/soot ratios in Phayao Lake, northern Thailand with those around the**
world in the literature (For the different methods used here please refer to Han et al. ¹⁵)

Areas	Descrip- tion	Concentration (mg g ⁻¹)			Deposition flux (mg cm ⁻² yr ⁻¹)			Met hods	Ref s.
		BC	Char	Soot	BC	Char	Soot		
Lake Phayao, Thailand	Northern Thailand	0.38- 2.87 (0.80)	0.28- 2.8 (0.66)	0.01- 0.30 (0.14)	0.06-0.72 (0.21)	0.05- 0.7 (0.17)	0.01- 0.08 (0.04)	1.9- 41.2 (5.6)	Thi s stud y
Qinghai Lake (North)	edge of north	0.40- 1.45 (0.57)	0.18- 1.09 (0.31)	0.22- 0.35 (0.26)	0.028- 0.101 (0.040)	0.013- 0.076 (0.022)	0.015- 0.025 (0.018)	0.63- 3.30 (1.16)	26
Qinghai Lake (South)	Tibetan Plateau	0.39- 0.61 (0.46)	0.07- 0.36 (0.19)	0.22- 0.38 (0.27)	0.028- 0.044 (0.033)	0.005- 0.026 (0.014)	0.016- 0.027 (0.019)	0.18- 1.43 (0.73)	
Nam Co Lake	Central Tibetan Plateau	0.49- 1.09 (0.74)			0.012- 0.044 (0.026)				IMP RO
Daihai Lake	Rural mountain, North China	0.52- 4.90 (2.26)	0.37- 4.69 (2.05)	0.12- 0.35 (0.21)	0.06-0.7 (0.31)	0.045- 0.67 (0.27)	0.014- 0.043 (0.03)	2.09- 21.64 (9.76)	VE- A
Taihu Lake	urban, Eastern China	0.41- 1.95 (1.01)	0.01- 1.43 (0.60)	0.31- 1.09 (0.42)	0.115- 0.689 (0.33)	0.003- 0.555 (0.20)	0.086- 0.312 (0.13)	0.03- 4.21 (1.51)	
Chaochu Lake	sub-urban, Eastern China	0.61- 2.03 (1.13)	0.48- 1.58 (0.93)	0.08- 0.47 (0.20)	0.170- 0.567 (0.316)	0.135- 0.443 (0.259)	0.023- 0.131 (0.057)	2.82- 8.02 (5.14)	16
Huguangyan Maar Lake	Southeastern China	0.26- 1.73 (0.58)	0.15- 0.82 (0.36)	0.06- 0.98 (0.22)	0.008- 0.068 (0.023)	0.005- 0.032 (0.014)	0.002- 0.038 (0.009)	0.77- 4.62 (2.31)	
Aspvreten, Sweden	background area				0.0071- 0.04				54
Pan-Arctic	Arctic	0.17- 1.5			0.00013- 0.0036				CTO -375
Slovenian Lakes	Alps	0.09- 1.93			0.03-1.10				56
West Pine Pond	New York state	0.6-8			0.0026- 0.077				STN
									14

3752

3753 **6.4.2. Dryness controls biomass burning in southeastern Asia**

3754 MARs of BC, char, and soot, and sometimes their concentrations as well, are traditionally
3755 used as indicators of biomass burning (BB) in wildfire reconstruction ²⁷. Before the
3756 industrialization period, BC, char, and soot originated mainly from biomass burning. Due to their
3757 different formation pathways, i.e. char being combustion residues formed in smoldering fires and
3758 soot via gas-to-particle conversion in flame ^{10,32}, soot and char have been used to indicate regional
3759 high intensity flaming fires and local smoldering fires, respectively ³³. Overall, similar profiles
3760 char and soot MARs were observed, indicating both high intensity and smoldering combustion can
3761 occur simultaneously in a single fire. However, discrepancies still existed for char and soot MARs.
3762 For example, at the bottom of the sediment core, it presented very high char MARs while low soot
3763 MARs, which is likely associated with the local and regional contribution of char and soot,
3764 respectively, or the different transport ways, with char mainly from riverine inputs while soot
3765 mainly from distant atmospheric deposition ¹⁰.

3766 Although there is no consensus regarding the dominant factor that determines BB occurrences
3767 because both dry and wet climate and both high and low temperature from local BB records have
3768 been linked with high BB activities in paleowildfire studies ^{34,35}, dryness is accepted to be the key
3769 factor controlling BB activities in modern global biomass burning observation ³⁶. Palmer Drought
3770 Severity Index (PDSI) is a traditional proxy for soil moisture availability. The comparison of the
3771 MARs of BC, char, and soot with the southeastern Asia PDSI reconstructed from tree ring records
3772 in southeastern Asia ³⁷, presented a good coupling between the BB activities and PDSI. For
3773 example, before 1980 there are three main drought periods: before 1868-1886, and 1911-1921,
3774 and 1942-1954, all of which time correspond with peaks of BC, char, and soot MARs (Fig. 6.4).
3775 Especially, although the 1868-1886 drought event is relatively moderate indicated by the
3776 reconstructed southeastern Asia PDSI by Sano et al. ³⁷, it corresponds the late Victorian Great

3777 Drought³⁸, and thus presents a very high BC and char MARs but with a relatively low soot MARs,
3778 an indicator of regional flaming fires³³. This also suggests that this drought event had likely
3779 different manners in different locations, and in some southeastern Asia regions the intensity of this
3780 drought may be low. This may be also true for the period of 1876-1886, when there were relatively
3781 moderate BC and char MARs. Apparently, the 1942-1954 drought event lasted a long time and
3782 had a relatively high intensity, leading to a very high biomass burning indicated by BC, char, and
3783 soot MARs.

3784 Previous studies^{37, 39} observed that warm sea surface temperature (SST) anomalies in the
3785 tropical Pacific El Niño-like (warm) phases and regional climate forcing over the Indian Ocean
3786 and western Pacific sectors are these important factors contributing to the drought in this region.
3787 This confirms that in this region ENSO-modulated dryness is the dominant factor controlling BB
3788 occurrences and thus their emissions of BC, char, and soot during the pre-industrialization period.
3789 In southeastern Asia, the PDSI has been found to be positively related to temperature while
3790 negatively correlated to precipitation⁴⁰, suggesting that temperature and precipitation may
3791 influence biomass burning and BC, char, and soot emissions in this region. The similar timing of
3792 decrease of temperature and BC, char, and soot MARs from 1950 to 1975 (Fig. 6.5C) may imply
3793 the temperature effect on the drought and biomass burning.

3794 After 1980, the relationship between the drought indicated by the PDSI and the biomass
3795 burning indicated by BC, char, and especially soot MARs, seems weak. This confirms that the
3796 dominant factors controlling on soot MARs variation originated from industrial activities in the
3797 Industrial period. The drought event influences on biomass burning seems weak; for example, the
3798 most pronounced El Niño event that resulted in the extensive drought in southeastern Asia during
3799 1997-1998⁴¹ just caused a relatively small increase in BC and char MARs, which are even lower

3800 than most of their corresponding values during pre-1950 period. However, the increase of
3801 temperature in northwestern Thailand at 1980 may also contribute to drought and biomass burning,
3802 and such effect cannot be totally overlooked.

3803 **6.4.3. Polycyclic aromatic compounds associated with different sources contributions and** 3804 **atmospheric transport**

3805 PACs are important pollutants in the environment and mainly originate from human activities,
3806 and especially similar to BC, char, and soot from combustions, in modern time. A quick increase
3807 in PACs concentrations including Σ 25PAHs, HMW-PAHs, LMW-PAHs, Σ 13OPAHs, and
3808 Σ 3AZAs occurred at ~1980 (Fig. 6.5), which is in well agreement with our demonstration that
3809 industrialization occurred in this region at that time.

3810 Although PAC compounds ratios have been widely used for source identification ^{42, 43}, the
3811 method is limited by availability of local emission data. LMW-/HMW-PAHs ratio seems the
3812 valuable method in historical PACs source identifications ¹⁶, which is seldom impacted by the
3813 local specific emission characteristics. An overall decreasing trend of LMW-/HMW-PAHs ratio
3814 suggests an increase in fossil fuel emissions in this region. Especially, the lowest ratios (lower than
3815 1.0) occurred at ~1980s, which is in well agreement with the local Mae Moh Coal plant with little
3816 emission reduction measures at that time ²⁹. The comparison of the LMW-/HMW-PAHs ratio in
3817 this study with those from our previous works in Chaohu and Taihu Lakes, an industrialized region
3818 in eastern China with LMW-/HMW-PAHs ratios generally lower than 1.5, and from Qinghai Lake,
3819 a relatively rural area at the edge of Tibetan Plateau with LMW-/HMW-PAHs ratios ranging
3820 between 0.76 and 2.17, indicates that the Phayao region is a relatively less human influenced
3821 region.

3822 As soot is sub-micron sized particles and comes mainly from atmospheric deposition in
3823 sediments ^{16, 26}, the ratios of other pollutants to soot would reflect the transport pathways for other

3824 pollutants. For example, in this study the ratios of $\sum 25\text{PAHs}/\text{soot}$, $\sum 13\text{OPAHs}/\text{soot}$, and
3825 $\sum 3\text{AZAs}/\text{soot}$ all present a sharp increase since ~ 1980 . This suggests that the local emissions and
3826 contributions of PAHs, OPAHs, and AZAs increased after 1980 and this is consistent with the
3827 increase of local coal plant emissions. However, considering that the transition from biomass
3828 burning to fossil fuel emissions happened at 1980 (see section 4.1), the differences in emissions of
3829 soot and PACs from biomass burning and fossil fuel combustion cannot be overlooked. As some
3830 of HMW-PACs can perform as the precursors of soot⁴⁴, it may suggest more PACs emitted from
3831 fossil fuel combustions than the proportions of soot. For example, much higher $\sum 25\text{PAHs}/\text{soot}$
3832 ratios happened during the 1980s and at the early of 1990s, while thereafter the ratios of
3833 $\sum 25\text{PAHs}/\text{soot}$ decreased to the same level as the pre-industrial biomass burning period. This
3834 suggests that, on the one hand, the main local fossil fuel emissions from the Mae Moh coal-fired
3835 plant, which mainly occurred during the 1980s and at the early of 1990s, and on the other hand,
3836 there may be a transition of coal burning emissions to vehicle emissions since 2000, which is
3837 supported by the sharp increase in vehicle amounts in Thailand over the past few years. As a
3838 consequence of first-car buyer scheme (Noparumpa and Saengchote, 2017), the total automotive
3839 production in Thailand increased from 1.65 million cars in 2010 to 2.46 million cars in 2013
3840 (http://www.boi.go.th/upload/content/BOI-brochure%202015-automotive-20150325_70298.pdf).
3841 There were also 1.8 million motorcycles produced, with domestic sales of 1.6 million and exports
3842 of 350,000 units. In addition, the monthly sold car numbers in Thailand are clearly reported by the
3843 Thai Automotive Industry Association (<http://www.taia.or.th/Statistics/>).
3844
3845 Noparumpa, T. and Saengchote, K., 2017. The impact of tax rebate on used car market: Evidence
3846 from Thailand. International Review of Finance, 17(1), pp.147-154.
3847

3848 The ratios of $\Sigma 13\text{OPAHs}/\Sigma 25\text{PAHs}$ also support the potential variations of the transition
3849 from coal burning to gasoline emissions since the late of 1990s, when it presents a quick increase
3850 in the $\Sigma 13\text{OPAHs}/\Sigma 25\text{PAHs}$. As gasoline emissions contain more oxygen-contain species⁴⁵, more
3851 OPAHs could be emitted from vehicle emissions than coal combustion.

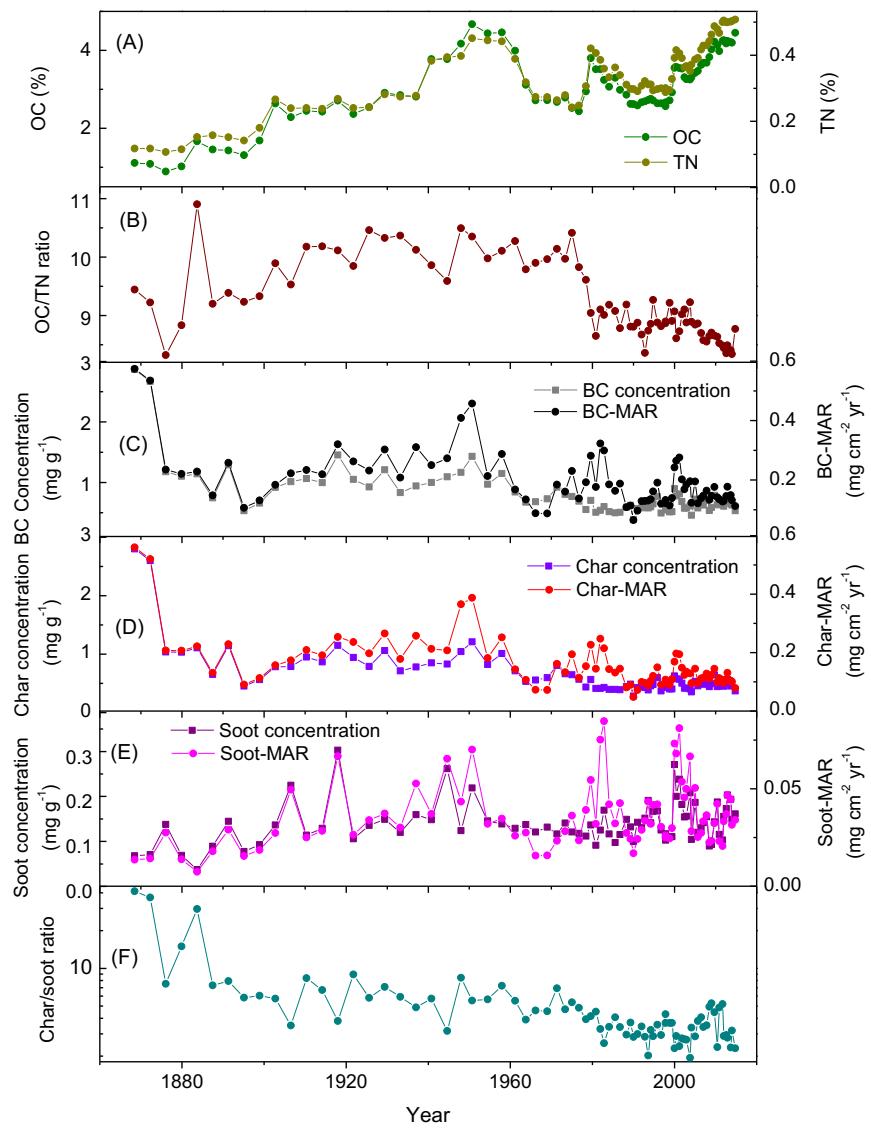
3852 BeP/BaP ratio is a commonly use indicator for atmospheric process as BaP is more vulnerable
3853 to atmospheric degradation than BeP^{46,47} and long-term exposure to atmosphere ultra-violet (UV)
3854 would lead to high BeP/BaP ratios. The historical variation of BeP/BaP ratios presents a decreasing
3855 trend, but with small fluctuations since 1900. Especially, since 1980 the BeP/BaP ratios had just
3856 small increased. This suggests that although atmospheric processes would influence on the PAC
3857 variations in the studied region, the sources transformed from biomass burning via coal
3858 combustion to vehicle emissions may be the main reason for the historical variation of PACs. This
3859 may be also true for soot variations in this region. For more details of PAC variations, please see
3860 the supplementary materials.

3861

3862

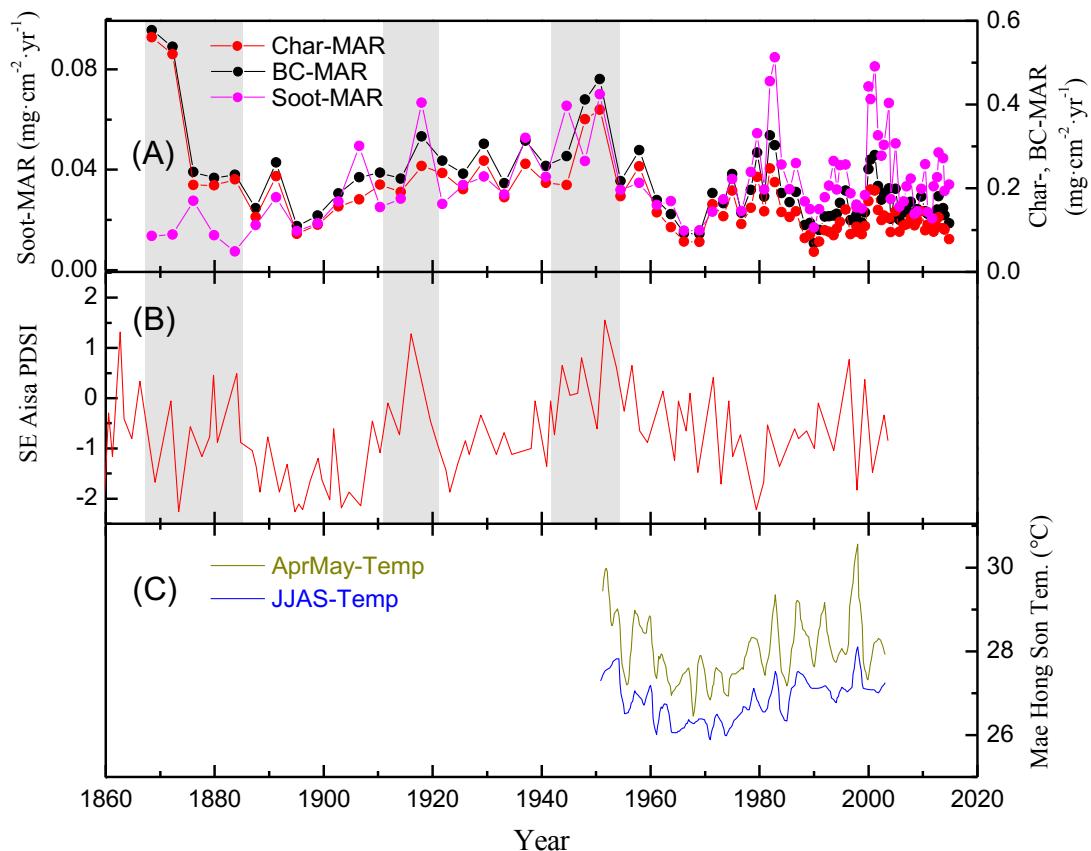
3863 **6.4.4. Potential influences of biomass burning and human activities on lake sediments 3864 and surrounding soil quality**

3865 Sedimentary organic matter can mainly from surrounding soil inputs and in-lake production
3866⁴⁸. OC/TN ratio has been suggested to indicate the relative in-lake production, with low values
3867 indicating a high in-lake production^{48,49}. The concentrations of OC and TN in lake sediments
3868 present an overall increasing trend until ~1950s and fluctuations occurred thereafter (Fig. 6.3-6.4).
3869 During the pre-industrial period the highest OC and TN concentrations happened at ~1950, while
3870 the lowest OC and TN concentrations happened at the bottom of the sediment core (before 1880).
3871 Both of them correspond to a drought climate with high SE Asia PDSI³⁷. So, it is hard to say that


3872 climate is the key factor that controls soil quality. However, the lowest OC and TN concentrations
3873 for pre-1880 period corresponding a long-term drought climate and an extremely high local low
3874 intensity biomass burning indicated by the char-MARs, suggesting that extensive biomass burning
3875 likely decreased OC and TN concentrations in surrounding soils. Thereafter, in the natural
3876 processes until 1950 moderate or low biomass burning that can also produce biochar to keep soil
3877 nutrients ⁵⁰ and thus may restore soil quality. The 1950 drought event may be another extensive
3878 climate event that may result in the reduce in soil organic matter in following years.

3879 Distinct decrease in OC/TN ratios occurred at ~1980, which corresponds well with the
3880 industrialization in this region ²⁹. Also, this is consistent with the fact that industrial and human
3881 agricultural activities would result in enhanced in-lake production ^{51, 52} and promote the
3882 eutrophication. After the industrialization in 1980, the whole variation of OC and TN
3883 concentrations seems similar with that soot MAR fluctuation, with the two peaks of soot MARs
3884 during 1980-1985 (in association with coal plant emissions) and 2000-2007 (in association with
3885 vehicle emissions) corresponding to the high OC and TN concentrations. This may suggest that
3886 the industrial activities may mainly influence OC and TN concentrations in lake sediments, while
3887 whether such effects can also reach the surrounding soil is unknown since the in-lake production
3888 may cause the increase in OC and TN concentrations in lake. In recent year, the OC and TN
3889 concentrations in lake sediments reached their highest, which corresponds to the enhanced in-lake
3890 productions indicated by the reduced OC/TN ratios, suggesting the extensive industrial activities
3891 or fertilizer usage in this region. The most recent study showed that both Nitrogen and Phosphorus
3892 balances in the agricultural system of Phayao Province were negative because of the large amount
3893 of nutrient loss through numerous ways such as nutrient leaching into water systems (Jakrawatana
3894 et al., 2017). Also, the Σ 3AZAs, an indication of unique human products, and Σ 13OPAHs also

3895 reached their highest values in the upmost sediments (Fig. 6.5), supporting the human
3896 contributions to water quality.


3897

3898

3899
3900
3901
3902

Figure 6.3. Historical variations of different carbon fractions (concentration and mass accumulation rate, MAR) and TN concentrations, as well as some of their ratios from sediments of Phayao Lake, northern Thailand

3905 **Figure 6.4.** Variations of mass accumulation rate (MAR) of BC, char, and soot of Phayao
 3906 sediments in comparison of the PDSI (Palmer Drought Severity Index) of southeastern Asia
 3907 reconstructed from tree ring record³⁷ and the historical temperature variations in Mae Hong Son
 3908 of northern Thailand³⁹

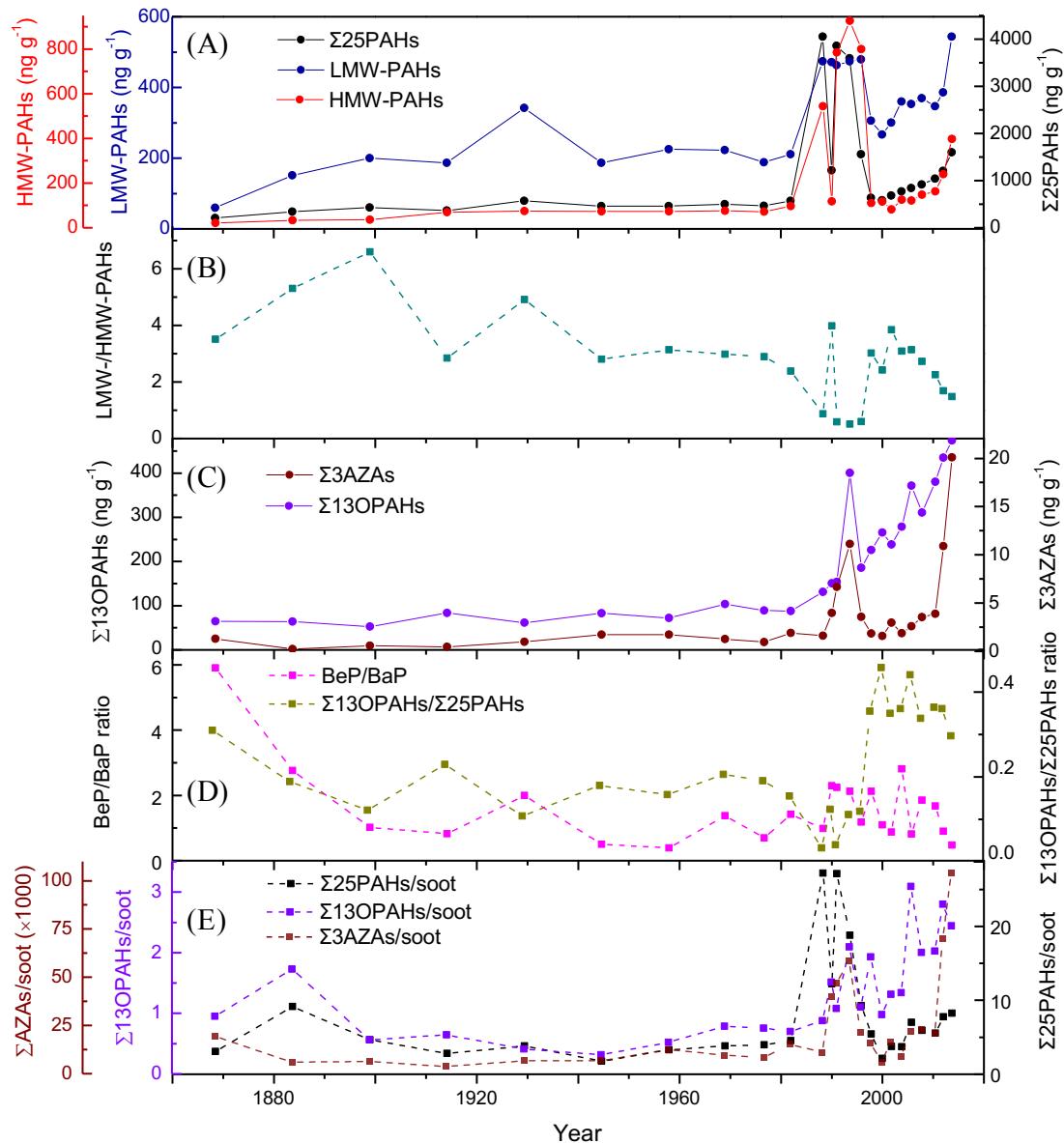


Figure 6.5. Historical variations of concentrations of polycyclic aromatic compounds (PACs) and their concentration ratios in Phayao Lake, northern Thailand

6.5. Reference

1. Goldberg, E. D., *Black carbon in the environment*. John Wiley & Sons, Inc.: New York, 1985; p 1-198.
2. Masiello, C. A., New directions in black carbon organic geochemistry. *Marine Chemistry* **2004**, 92, (1-4), 201-213.

3919 3. Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; DeAngelo, B. J.;
3920 Flanner, M. G.; Ghan, S.; Kaercher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim,
3921 M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.;
3922 Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.;
3923 Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S., Bounding the role of
3924 black carbon in the climate system: A scientific assessment. *Journal of Geophysical Research-
3925 Atmospheres* **2013**, 118, (11), 5380-5552.

3926 4. Ramanathan, V.; Carmichael, G., Global and regional climate changes due to black carbon.
3927 *Nature Geoscience* **2008**, 1, (4), 221-227.

3928 5. Andreae, M. O.; Gelencser, A., Black carbon or brown carbon? The nature of light-
3929 absorbing carbonaceous aerosols. *Atmospheric Chemistry and Physics* **2006**, 6, 3131-3148.

3930 6. Han, Y. M.; Cao, J. J.; Chow, J. C.; Watson, J. G.; An, Z. S.; Jin, Z. D.; Fung, K. C.; Liu,
3931 S. X., Evaluation of the thermal/optical reflectance method for discrimination between char- and
3932 soot-EC. *Chemosphere* **2007**, 69, 569-574.

3933 7. Chow, J. C.; Watson, J. G.; Pritchett, L. C.; Pierson, W. R.; Frazier, C. A.; Purcell, R. G.,
3934 The dri thermal/optical reflectance carbon analysis system: description, evaluation and
3935 applications in U.S. Air quality studies. *Atmospheric Environment. Part A. General Topics* **1993**,
3936 27, (8), 1185-1201.

3937 8. Hansen, A. D. A.; Novakov, T., Real-Time Measurements of the Size Fractionation of
3938 Ambient Black Carbon Aerosols at Elevated Humidities. *Aerosol Science and Technology* **1989**,
3939 10, (1), 106-110.

3940 9. Han, Y. M.; Han, Z. W.; Cao, J. J.; Chow, J. C.; Watson, J. G.; An, Z. S.; Liu, S. X.; Zhang,
3941 R. J., Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area,
3942 Northern China and its transport significance. *Atmospheric Environment* **2008**, 42, (10), 2405-
3943 2414.

3944 10. Han, Y. M.; Cao, J. J.; Lee, S. C.; Ho, K. F.; An, Z. S., Different characteristics of char and
3945 soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China.
3946 *Atmospheric Chemistry and Physics* **2010**, 10, (2), 595-607.

3947 11. McConnell, J. R.; Edwards, R.; Kok, G. L.; Flanner, M. G.; Zender, C. S.; Saltzman, E. S.;
3948 Banta, J. R.; Pasteris, D. R.; Carter, M. M.; Kahl, J. D. W., 20th-century industrial black carbon
3949 emissions altered arctic climate forcing. *Science* **2007**, 317, (5843), 1381-1384.

3950 12. Louchouarn, P.; Chillrud, S. N.; Houel, S.; Yan, B. Z.; Chaky, D.; Rumpel, C.; Largeau,
3951 C.; Bardoux, G.; Walsh, D.; Bopp, R. F., Elemental and molecular evidence of soot- and char-
3952 derived black carbon inputs to New York City's atmosphere during the 20th century.
3953 *Environmental Science & Technology* **2007**, 41, 82-87.

3954 13. Muri, G.; Wakeham, S. G.; Rose, N. L., Records of atmospheric delivery of pyrolysis-
3955 derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia).
3956 *Environmental Pollution* **2006**, 139, (3), 461-468.

3957 14. Husain, L.; Khan, A. J.; Ahmed, T.; Swami, K.; Bari, A.; Webber, J. S.; Li, J., Trends in
3958 atmospheric elemental carbon concentrations from 1835 to 2005. *Journal of Geophysical*
3959 *Research-Atmospheres* **2008**, 113, (D13), DOI:10.1029/2007JD009398.

3960 15. Han, Y. M.; Cao, J. J.; Yan, B. Z.; Kenna, T. C.; Jin, Z. D.; Cheng, Y.; An, Z. S., Comparison of elemental carbon in lake sediments measured by TOR, TOT and CTO methods and
3961 150-year pollution history in Eastern China. *Environmental Science & Technology* **2011**, 45, (12),
3962 5287-5293.

3964 16. Han, Y. M.; Wei, C.; Huang, R. J.; Bandowe, B. A. M.; Ho, S. S. H.; Cao, J. J.; Jin, Z. D.;
3965 Xu, B. Q.; Gao, S. P.; Tie, X. X.; An, Z. S.; Wilcke, W., Reconstruction of atmospheric soot history
3966 in inland regions from lake sediments over the past 150 years. *Scientific Reports* **2016**, 6.

3967 17. Cong, Z.; Kang, S.; Gao, S.; Zhang, Y.; Li, Q.; Kawamura, K., Historical trends of
3968 atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-Year lake sediment
3969 record. *Environmental Science & Technology* **2013**, 47, (6), 2579-2586.

3970 18. Ramanathan, V.; Chung, C.; Kim, D.; Bettge, T.; Buja, L.; Kiehl, J. T.; Washington, W.
3971 M.; Fu, Q.; Sikka, D. R.; Wild, M., Atmospheric brown clouds: Impacts on South Asian climate
3972 and hydrological cycle. *Proceedings of the National Academy of Sciences of the United States of
3973 America* **2005**, 102, (15), 5326-5333.

3974 19. Bond, T. C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S. K.; Roden, C.; Streets, D. G.;
3975 Trautmann, N. M., Historical emissions of black and organic carbon aerosol from energy-related
3976 combustion, 1850-2000. *Global Biogeochemical Cycles* **2007**, 21, (2).

3977 20. Engels, S.; Fong, L. S. R. Z.; Chen, Q.; Leng, M. J.; McGowan, S.; Idris, M.; Rose, N. L.;
3978 Ruslan, M. S.; Taylor, D.; Yang, H., Historical atmospheric pollution trends in Southeast Asia
3979 inferred from lake sediment records. *Environmental Pollution* **2018**, 235, 907-917.

3980 21. Kaewsri, K.; Traichaiyaporn, S., Monitoring on water quality and algae diversity of Kwan
3981 Phayao, Phayao Province, Thailand. *Journal of Agricultural Technology* **2012**, 8, 537-550.

3982 22. Jin, Z.; Han, Y.; Chen, L., Past atmospheric Pb deposition in Lake Qinghai, northeastern
3983 Tibetan Plateau. *Journal of Paleolimnology* **2010**, 43, (3), 551-563.

3984 23. Han, Y. M.; Cao, J. J.; Kenna, T. C.; Yan, B. Z.; Jin, Z. D.; Wu, F.; An, Z. S., Distribution
3985 and ecotoxicological significance of trace element contamination in a similar to 150 yr record of
3986 sediments in Lake Chaohu, Eastern China. *Journal of Environmental Monitoring* **2011**, 13, (3),
3987 743-752.

3988 24. Appleby, P. G., Three decades of dating recent sediments by fallout radionuclides: a
3989 review. *Holocene* **2008**, 18, (1), 83-93.

3990 25. von Gunten, L.; Grosjean, M.; Beer, J.; Grob, P.; Morales, A.; Urrutia, R., Age modeling
3991 of young non-varved lake sediments: methods and limits. Examples from two lakes in Central
3992 Chile. *Journal of Paleolimnology* **2009**, 42, (3), 401-412.

3993 26. Han, Y. M.; Wei, C.; Bandowe, B. A. M.; Wilcke, W.; Cao, J. J.; Xu, B. Q.; Gao, S. P.;
3994 Tie, X. X.; Li, G. H.; Jin, Z. D.; An, Z. S., Elemental Carbon and Polycyclic Aromatic Compounds

3995 in a 150-Year Sediment Core from Lake Qinghai, Tibetan Plateau, China: Influence of Regional
3996 and Local Sources and Transport Pathways. *Environmental Science & Technology* **2015**, *49*, (7),
3997 4176-4183.

3998 27. Han, Y. M.; Marlon, J.; Cao, J. J.; Jin, Z. D.; An, Z. S., Holocene linkages between char,
3999 soot, biomass burning and climate from Lake Daihai, China. *Global Biogeochemical Cycles* **2012**,
4000 26.

4001 28. Bandowe, B. A. M.; Shukurov, N.; Kersten, M.; Wilcke, W., Polycyclic aromatic
4002 hydrocarbons (PAHs) and their oxygen-containing derivatives (OPAHs) in soils from the Angren
4003 industrial area, Uzbekistan. *Environmental Pollution* **2010**, *158*, (9), 2888-2899.

4004 29. Cohen, Y. *Mae Moh : Coal Kills*; 2006.

4005 30. Jeong, C.-H.; Herod, D.; Dabek-Zlotorzynska, E.; Ding, L.; McGuire, M. L.; Evans, G.,
4006 Identification of the Sources and Geographic Origins of Black Carbon using Factor Analysis at
4007 Paired Rural and Urban sites. *Environmental Science & Technology* **2013**, *47*, (15), 8462-8470.

4008 31. Bond, T. C.; Streets, D. G.; Yarber, K. F.; Nelson, S. M.; Woo, J. H.; Klimont, Z., A
4009 technology-based global inventory of black and organic carbon emissions from combustion.
4010 *Journal of Geophysical Research-Atmospheres* **2004**, *109*, (D14), D14203.

4011 32. May, A. A.; McMeeking, G. R.; Lee, T.; Taylor, J. W.; Craven, J. S.; Burling, I.; Sullivan,
4012 A. P.; Akagi, S.; Collett, J. L., Jr.; Flynn, M.; Coe, H.; Urbanski, S. P.; Seinfeld, J. H.; Yokelson,
4013 R. J.; Kreidenweis, S. M., Aerosol emissions from prescribed fires in the United States: A synthesis
4014 of laboratory and aircraft measurements. *Journal of Geophysical Research-Atmospheres* **2014**,
4015 *119*, (20), 11826-11849.

4016 33. Han, Y. M.; Peteet, D. M.; Arimoto, R.; Cao, J. J.; An, Z. S.; Sritrairat, S.; Yan, B. Z.,
4017 Climate and Fuel Controls on North American Paleofires: Smoldering to Flaming in the Late-
4018 glacial-Holocene Transition. *Scientific Reports* **2016**, *6*.

4019 34. Mooney, S. D.; Harrison, S. P.; Bartlein, P. J.; Daniau, A. L.; Stevenson, J.; Brownlie, K.
4020 C.; Buckman, S.; Cupper, M.; Luly, J.; Black, M.; Colhoun, E.; D'Costa, D.; Dodson, J.; Haberle,
4021 S.; Hope, G. S.; Kershaw, P.; Kenyon, C.; McKenzie, M.; Williams, N., Late Quaternary fire
4022 regimes of Australasia. *Quaternary Science Reviews* **2011**, *30*, (1-2), 28-46.

4023 35. Power, M. J.; Marlon, J.; Ortiz, N.; Bartlein, P. J.; Harrison, S. P.; Mayle, F. E.; Ballouche,
4024 A.; Bradshaw, R. H. W.; Carcaillet, C.; Cordova, C.; Mooney, S.; Moreno, P. I.; Prentice, I. C.;
4025 Thonicke, K.; Tinner, W.; Whitlock, C.; Zhang, Y.; Zhao, Y.; Ali, A. A.; Anderson, R. S.; Beer,
4026 R.; Behling, H.; Briles, C.; Brown, K. J.; Brunelle, A.; Bush, M.; Camill, P.; Chu, G. Q.; Clark, J.;
4027 Colombaroli, D.; Connor, S.; Daniau, A. L.; Daniels, M.; Dodson, J.; Doughty, E.; Edwards, M.
4028 E.; Finsinger, W.; Foster, D.; Frechette, J.; Gaillard, M. J.; Gavin, D. G.; Gobet, E.; Haberle, S.;
4029 Hallett, D. J.; Higuera, P.; Hope, G.; Horn, S.; Inoue, J.; Kaltenrieder, P.; Kennedy, L.; Kong, Z.
4030 C.; Larsen, C.; Long, C. J.; Lynch, J.; Lynch, E. A.; McGlone, M.; Meeks, S.; Mensing, S.; Meyer,
4031 G.; Minckley, T.; Mohr, J.; Nelson, D. M.; New, J.; Newnham, R.; Noti, R.; Oswald, W.; Pierce,
4032 J.; Richard, P. J. H.; Rowe, C.; Goni, M. F. S.; Shuman, B. N.; Takahara, H.; Toney, J.; Turney,
4033 C.; Urrego-Sanchez, D. H.; Umbanhawar, C.; Vandergoes, M.; Vanniere, B.; Vescovi, E.; Walsh,
4034 M.; Wang, X.; Williams, N.; Wilmshurst, J.; Zhang, J. H., Changes in fire regimes since the Last

4035 Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data.
4036 *Climate Dynamics* **2008**, 30, (7-8), 887-907.

4037 36. van Leeuwen, T. T.; van der Werf, G. R., Spatial and temporal variability in the ratio of
4038 trace gases emitted from biomass burning. *Atmospheric Chemistry and Physics* **2011**, 11, (8),
4039 3611-3629.

4040 37. Sano, M.; Buckley, B. M.; Sweda, T., Tree-ring based hydroclimate reconstruction over
4041 northern Vietnam from *Fokienia hodginsii*: eighteenth century mega-drought and tropical Pacific
4042 influence. *Climate Dynamics* **2009**, 33, (2-3), 331-340.

4043 38. Cook, E. R.; Anchukaitis, K. J.; Buckley, B. M.; D'Arrigo, R. D.; Jacoby, G. C.; Wright,
4044 W. E., Asian monsoon failure and megadrought during the last millennium. *Science* **2010**, 328,
4045 (5977), 486-489.

4046 39. Buckley, B. M.; Palakit, K.; Duangsathaporn, K.; Sanguantham, P.; Prasomsin, P., Decadal
4047 scale droughts over northwestern Thailand over the past 448 years: links to the tropical Pacific and
4048 Indian Ocean sectors. *Climate Dynamics* **2007**, 29, (1), 63-71.

4049 40. Sano, M.; Xu, C.; Nakatsuka, T., A 300-year Vietnam hydroclimate and ENSO variability
4050 record reconstructed from tree ring delta O-18. *Journal of Geophysical Research-Atmospheres*
4051 **2012**, 117.

4052 41. van der Werf, G. R.; Randerson, J. T.; Collatz, G. J.; Giglio, L.; Kasibhatla, P. S.; Arellano,
4053 A. F.; Olsen, S. C.; Kasischke, E. S., Continental-scale partitioning of fire emissions during the
4054 1997 to 2001 El Nino/La Nina period. *Science* **2004**, 303, (5654), 73-76.

4055 42. Yunker, M. B.; Macdonald, R. W.; Vingarzan, R.; Mitchell, R. H.; Goyette, D.; Sylvestre,
4056 S., PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source
4057 and composition. *Organic Geochemistry* **2002**, 33, (4), 489-515.

4058 43. Tobiszewski, M.; Namiesnik, J., PAH diagnostic ratios for the identification of pollution
4059 emission sources. *Environmental Pollution* **2012**, 162, 110-119.

4060 44. Mansurov, Z. A., Soot formation in combustion processes (review). *Combustion Explosion*
4061 and Shock Waves **2005**, 41, (6), 727-744.

4062 45. Hamilton, J. F.; Webb, P. J.; Lewis, A. C.; Hopkins, J. R.; Smith, S.; Davy, P., Partially
4063 oxidised organic components in urban aerosol using GCXGC-TOF/MS. *Atmospheric Chemistry
4064 and Physics* **2004**, 4, 1279-1290.

4065 46. Kamens, R. M.; Guo, Z.; Fulcher, J. N.; Bell, D. A., INFLUENCE OF HUMIDITY,
4066 SUNLIGHT, AND TEMPERATURE ON THE DAYTIME DECAY OF POLYAROMATIC
4067 HYDROCARBONS ON ATMOSPHERIC SOOT PARTICLES. *Environmental Science &
4068 Technology* **1988**, 22, (1), 103-108.

4069 47. Wei, C.; Han, Y.; Bandowe, B. A. M.; Cao, J.; Huang, R.-J.; Ni, H.; Tian, J.; Wilcke, W.,
4070 Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons
4071 and their oxygen and nitrogen containing derivatives in Xi'an, central China. *Science of the Total
4072 Environment* **2015**, 505, 814-822.

4073 48. Meyers, P. A., Preservation of elemental and isotopic source identification of sedimentary
4074 organic matter. *Chemical Geology* **1994**, 114, (3-4), 289-302.

4075 49. Meyers, P. A.; Lallier-Verges, E., Lacustrine sedimentary organic matter records of Late
4076 Quaternary paleoclimates. *Journal of Paleolimnology* **1999**, 21, (3), 345-372.

4077 50. Lehmann, J.; Gaunt, J.; Rondon, M., Bio-char sequestration in terrestrial ecosystems - A
4078 review. *Mitigation and Adaptation Strategies for Global Change* **2006**, 11(2), 403-427.

4079 51. Carpenter, S. R.; Caraco, N. F.; Correll, D. L.; Howarth, R. W.; Sharpley, A. N.; Smith, V.
4080 H., Nonpoint pollution of surface waters with phosphorus and nitrogen. *Ecological Applications*
4081 **1998**, 8, (3), 559-568.

4082 52. Smith, V. H.; Tilman, G. D.; Nekola, J. C., Eutrophication: impacts of excess nutrient
4083 inputs on freshwater, marine, and terrestrial ecosystems. *Environmental Pollution* **1999**, 100, (1-
4084 3), 179-196.

4085 53. Han, Y.; Cao, J.; Jin, Z.; Liu, S.; An, Z.; And, T., Comparison of char and soot variations
4086 in sediments from lakes Daihai and Taihu. *Quaternary Sciences* **2010**, 30, (3), 550-558.

4087 54. Elmquist, M.; Zencak, Z.; Gustafsson, O., A 700 year sediment record of black carbon and
4088 polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden.
4089 *Environmental Science & Technology* **2007**, 41, 6926-6932.

4090 55. Elmquist, M.; Semiletov, I.; Guo, L. D.; Gustafsson, O., Pan-Arctic patterns in black
4091 carbon sources and fluvial discharges deduced from radiocarbon and PAH source apportionment
4092 markers in estuarine surface sediments. *Global Biogeochemical Cycles* **2008**, 22.

4093 56. Muri, G.; Cermelj, B.; Faganeli, J.; Brancelj, A., Black carbon in Slovenian alpine
4094 lacustrine sediments. *Chemosphere* **2002**, 46, (8), 1225-1234.

4095

4096

4097

100°

4000

Vertical Profile of Organic and Elemental Carbon in Sediments of Songkhla Lake, Thailand

4102

4103 Abstract

In this study, a historical record of atmospheric deposition in the sediment cores from Songkhla Lake, the second largest lake in Southeast Asia, located in the southern part of Thailand is reported. It is well known that lake sediments, including spheroidal carbonaceous particles generated by both anthropogenic and natural emissions, contain records of lake, catchment, and atmospheric deposition histories. Vertical profiles of these carbonaceous particles can be used to investigate enormously influential disturbances, particularly those triggered by extreme paleo events, over large spatial areas. In this study, organic carbon/elemental carbon (OC/EC) ratios displayed unusually high values of 3.07 and 4.02 for depths 240 and 340 mm, respectively. Previous studies have attributed remarkably high values of OC/EC ratios to both biomass burnings and volcanic eruptions. Although anthropogenic emissions (e.g. fossil fuel combustions) can be responsible for relatively high levels of contamination, as expected, the existence of relatively low OC/EC ratios (i.e. 1.43 ± 0.30) for all sediment samples (except those collected at 240 and 340 mm depths) suggests a tropical background of these particles.

4117

4118

4119

4120

4121 **7.1. Introduction**

4122
4123 Numerous studies have extensively investigated the physicochemical properties of organic carbon
4124 (OC) and elemental carbon (EC) in aerosols (Huang et al. 2013; Li et al. 2006; Pongpiachan et al.
4125 2013; Pongpiachan et al. 2014a, 2014b; Srivastava et al. 2014; Zhang et al. 2009, 2011), soils (Lal
4126 2006; Möller et al. 2005; Raich and Schlesinger 1992), and sediments (Gacia et al. 2003; Hung et
4127 al. 2006; McCourt et al. 1996) especially, in Asian countries over the past few years. Although
4128 previous reports have highlighted the importance of anthropogenic emissions of carbonaceous
4129 aerosols in different environmental compartments (Chen et al. 2005; Ito and Penner 2005), the
4130 influences of biomass burning, forest fires, and volcanic eruptions also play a major role in
4131 governing OC and EC contents (Birch and Cary 1996; Cachier et al. 1989; Ito and Penner 2005;
4132 Martinsson et al. 2009; Szidat et al. 2006). Recent studies suggest that there has been a tendency
4133 toward enhanced summer floods in south China, increased droughts in north China, and moderate
4134 cooling in China and India, despite the ambient air warming trends in other parts of the world
4135 (Menon et al. 2002; Ramanathan and Carmichael 2008; Yihui et al. 2007). Since heat-absorbing
4136 carbonaceous aerosols increase the air temperature and influence both regional atmospheric
4137 stability and vertical movements, the investigation of OC/EC ratios can assist the understanding
4138 of regional-scale circulation and hydrologic cycles with significant regional climate impacts for
4139 many reasons.

4140

4141 Firstly, OC/EC ratios have been used as chemical tracers for characterizing emission sources from
4142 vehicle exhausts. According to a busy roadway tunnel experiment in central Lisbon, OC/EC ratios
4143 in aerosol components were in the range of 0.3-0.4 (Pio et al., 2011). Similar OC/EC ratios were
4144 detected at the road side of Birmingham, UK (Pio et al., 2011). The average OC/EC ratios in PM_{10}

4145 (i.e. particulate matter less than 10 microns) collected from seven air quality observatory sites in
4146 heavily polluted road sides of Bangkok was 0.99 ± 0.63 , indicating that traffic emissions responsible
4147 for relatively low OC/EC ratios (Pongpiachan et al., 2014b). Secondly, biomass and agricultural
4148 waste combustions play a crucial role in elevating the OC/EC ratios as earlier discussed in
4149 numerous studies (Cao et al., 2007; Gonçalves et al., 2011; Pongpiachan et al., 2009). For instance,
4150 the generated smoke aerosols were characterized by relatively high OC/EC ratios detected from
4151 controlled field burning of rice straw (10) and wood combustions (7.8) (Engling et al., 2009; Ram
4152 and Sarin, 2010). Since OC/EC and Char/Soot ratios provide valuable insights for source
4153 identifications, many scientific reports have focussed on the chemical characterisation of
4154 carbonaceous compounds, particularly in lake sediments, which is exceedingly advantageous for
4155 deciphering historical trends related with biomass burnings/forest fires (Cong et al., 2013; Han et
4156 al., 2011). During the El Niño-Southern Oscillation (ENSO) year, severe droughts provoke forest
4157 leaf-shedding and greater flammability and thus forests became vulnerable to fire. Since numerous
4158 studies underline the strong correlation between the frequency of forest fires and ENSO (Nepstad
4159 et al., 1999; Schoennagel et al., 2005; Siegert et al., 2001), it appears reasonable to apply OC/EC
4160 ratios for reconstructing historical trends of forest fires in Southeast Asian regions.

4161

4162 A previous study also highlighted the importance of dissolved organic carbon (DOC) (i.e. water
4163 soluble organic carbon in aquatic ecosystem) as a key indicator for predicting and understanding
4164 the response of lake ecosystems to multiple threats such as acid rain, toxic heavy metal and
4165 hazardous persistent organic pollutants, enhancement in UV radiation, and climate change
4166 (Williamson et al., 1999). As a consequence of 20 year global warming, drought and enhanced
4167 biomass burnings between 1970 and 1990 appears to be responsible for the DOC reduction by 15-

4168 25% in lakes of North-western Ontario, Canada (Schindler et al., 1997). It is also crucial to note
4169 that DOC is deeply connected with microbial metabolism, light climate, acidity, and primary
4170 production in lakes (Sobek et al., 2007). While the altitude, mean annual runoff, and precipitation
4171 were negatively correlated with lake DOC, the conductivity, soil carbon density, and soil C:N ratio
4172 were positively associated with lake DOC (Sobek et al., 2007). It has been suggested that
4173 increasing trends in DOC in the surface waters of glaciated landscapes across eastern North
4174 America and northern and central Europe between 1990 and 2004 can be briefly described by an
4175 elementary simulation based solely on variations in atmospheric deposition chemistry and
4176 catchment acid-sensitivity (Monteith et al., 2007). A similar rising trend of DOC contents in
4177 streams and lakes of UK within a range of 8 to 42 years was also detected with the average annual
4178 enhancement in DOC content of $0.17 \text{ mg C l}^{-1} \text{ year}^{-1}$ (Worrall et al., 2004). Overall, it appears
4179 reasonable to assume that carbonaceous aerosols are deeply connected with those of DOC contents
4180 in lakes and reservoirs and thus underlining the impacts of particulate OC-EC on numerous
4181 stressors over aquatic ecosystems.

4182

4183 Despite a large number of research studies focusing on the computation of emission factors
4184 of carbonaceous particles released from different fuel and vehicle types (Alves et al. 2015; Shen
4185 et al. 2014; Wei et al. 2014), little is known about their past records in tropical sediments. To the
4186 best of our knowledge, there is no information available on the vertical profile of OC/EC ratio
4187 distributions in the lake sediments of Thailand. Overall, the main objectives of this study are to (i)
4188 generate novel insights into the nature of complex climate systems in Southeast Asian countries
4189 with some assistances from OC/EC ratio data; (ii) obtain a vertical profile of total carbon (TC),

4190 OC, and EC for the Songkhla Lake sediments; and (iii) quantify the OC/EC ratios and compare
4191 their values with previous combustion source studies.

4192

4193 **7.2. Materials & methods**

4194

4195 **7.2.1. Study site**

4196

4197 The Thale Noi Lake (TNL) is located at $7^{\circ} 46' 00''$ N $100^{\circ} 09' 11''$ E, which is the largest lagoon
4198 lake in Thailand, is a protected freshwater wetland situated in Phatthalung Province and covers an
4199 area of over 460 km^2 . TNL became regionally acknowledged as an ecosystem dynamic hotspot in
4200 1975 when the Ministry of National Resources and Environment and in conjunction with the
4201 International Union for Conservation of Nature (IUCN) declared it a Protected Area Category III
4202 (Natural Monuments). TNL can be further separated into four subareas namely Melaleuca forests
4203 (170 km^2), Rice Paddies (153 km^2), Swamp (109 km^2), and Open Water (28 km^2). It is also
4204 important to highlight that TNL is positioned in the northern part of Thale Luang, Thale Sap, and
4205 Songkhla Lake. The area around the lake consists of farmland, forests, and swamps. There is no
4206 main river flowing through this area, but sediment loads from many small man-made canals as
4207 well as run-off water from the high steep mountains is observed (VKI, 1997). The sediment core
4208 samples of TNL were collected from three sites (Fig. S1 and Table S1) and Fig. S2 shows the
4209 sampling method and collected sediment cores.

4210

4211 **7.2.2. Sediment collection**

4212

4213 Three uninterrupted sediment cores were obtained from the northern, central, and southern parts
4214 of the TNL in August 2017 when the water level ranged between 150 and 170 cm (see Fig. S1–
4215 S2). A gravity corer was lowered from a speedboat equipped with a transparent PVC plastic tube
12 cm in diameter 1.2 m in length. All materials used for core sectioning were washed carefully

4216 with detergent and water, and rinsed successively with methanol and dichloromethane prior to
4217 removing the frozen core from the freezer. The putty knife and spatulas were properly cleaned
4218 with tap water, methanol, and then dichloromethane. More information associated with QA/QC
4219 considerations were strictly followed the standard operating procedure for the USGS Reston,
4220 Virginia Environmental Organic Geochemistry Laboratory Appendix 3
4221 (https://water.usgs.gov/nrp/biogeochemical-processes-in-groundwater/forms/SOP_LMWOA_05272015_FINAL_Website.pdf).
4222

4223
4224 For this study, as displayed in Fig. S1, only No. 1 sediment core was selected for the chemical
4225 analysis of OC/EC ratios. The retrieved sediment columns were subsequently maintained in the
4226 vertical position to avoid disturbance or damage to sediments during transport to the laboratory.
4227 In this study, no physical evidence of bioturbation was detected in the retrieved sediment columns,
4228 indicating biological limitations in the TNL. In this project, the No.1 sediment core (580 mm) was
4229 precisely subdivided into a series of slices in 20 mm intervals. The 29 sediment sections (i.e.
4230 580/20) were subsequently freeze-dried in order to remove the water content without greatly
4231 altering the physicochemical properties of the lake sediment. The samples were then passed
4232 through a 0.15 mm mesh sieve and kept in a refrigerator at - 20 °C in labelled zip lock bags for
4233 further OC/EC ratio analysis.

4234

4235 **7.2.3. Analysis of OC & EC**

4236 The dried sediment samples were ground and homogenised with an agate mortar and sieved though
4237 a 200-mesh sieve. The sample pre-treatment procedure has been clearly described in previous
4238 studies (Han et al. 2007a, 2007b) and will not be discussed here (see Table S2 for more details).
4239 Entire sediment samples were quantitatively identified employing a DRI Model 2001

4240 Thermal/Optical Carbon Analyser (Desert Research Institute, Division of Atmospheric Sciences
4241 2215 Raggio Parkway Reno, NV 89506) (Chow et al. 1993, 2001). The employment of an
4242 analytical instrument is depended on the advantageous oxidation of OC and EC components at
4243 various heating conditions. Its operation depends on the truth that OC can be evaporated from the
4244 filter in a non-oxidising helium (He) atmosphere while EC has to be ignited by an oxidiser. The
4245 degree of decomposition brought by high temperature can be calculated by repeatedly observing
4246 the filter reflectance and/or transmittance throughout an analysis cycle. The reflectance and
4247 transmittance, mainly occupied by the existence of light absorbing EC, reduces as pyrolysis occur
4248 and enhance as light-absorbing carbon is liberated over the subsequent process of the
4249 determination. By observing the amount of light transmitted by a sample (i.e. transmittance) and
4250 the amount of light that reflects from the surface of a sample (i.e. reflectance), the EC peak area is
4251 theoretically positively correlated with pyrolysed OC, which can be precisely converted to the OC
4252 fraction. The computation for the charring conversion of OC to EC is important for eliminating
4253 the bias in the detection of carbon components (Johnson et al. 1981). The charring corrections of
4254 thermal optical reflectance (TOR) and thermal optical transmittance (TOT) are not essentially
4255 identical, owing to charring of organic vapours adsorbed within the quartz fibre filter (Chow et al.
4256 2004; Chen et al. 2004). All samples were analysed by a DRI Model 2001 Thermal/Optical Carbon
4257 Analyser (Atmoslytic Inc. Calabasas, CA). The operation of the DRI Model 2001 Thermal/Optical
4258 Carbon Analyser is based on the preferential oxidation of OC compounds and EC at different
4259 temperatures. Its function relies on the fact that organic compounds can be volatilised from the
4260 sample deposit in a non-oxidising He atmosphere while EC must be combusted by an oxidiser.

4261

4262 **7.2.4. Probability distribution function (PDF) of carbonaceous sediments**

4263 The PDF was applied to TC, OC, and EC of sediments collected at the TNL. Normally, a PDF is
4264 an equation that explains the relative probability of a random parameter to take a given value. The
4265 probability for the random parameter to fall within a specific area is given by the Gaussian
4266 distribution, which can be described as follows:

4267

4268

$$y = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right) \quad (1)$$

4269

4270 Where y , σ , σ^2 , μ and x symbolise PDF, standard deviation, variance, arithmetic mean, and
4271 contents of carbonaceous compositions in lake sediments, respectively. In addition, Statistical
4272 Program for Social Sciences (SPSS) version 13 was used for simple linear regression analysis
4273 (SLRA), analysis of variance (ANOVA), and Pearson correlation analysis.

4274 **7.2.5. Estimation of secondary organic carbon (SOC) in PM₁₀ collected at Hat-Yai City**
4275 Since numerous constraints can cause comparatively high OC/EC ratios in atmospheric deposits,
4276 it is important to perform further evaluation of SOC, which is generally related to the atmospheric
4277 long-range transportation (ALRT) process (Wang et al. 2012; Zhou et al. 2012). Secondary
4278 Organic Carbons (SOCs) are carbonaceous pollutants released from both natural and
4279 anthropogenic sources. SOCs are formed through a complex interaction of photo-oxidation,
4280 aqueous phase reaction, biogenic volatile organic compounds (BVOCs) from forests, plants,
4281 vehicles or imperfect combustions from industrial activities, and other particulate pollutants
4282 (Bessagnet et al., 2008; Claeys et al., 2004; Sartelet et al., 2018; Zhang et al., 2018). It is well
4283 known that SOCs can play a major role in governing gas-particle partitioning of persistent organic
4284 pollutants (POPs), which has been detected to cause lung cancers, respiratory problems and other

4285 adverse health impacts (Cocker et al., 2001; Odum et al., 1996; Pongpiachan et al., 2009, 2013).
4286 In this study, particulate carbonaceous contents were cited from a previous study that collected
4287 PM_{10} at two air quality observatory stations, namely Novotel Centara Hat-Yai Hotel ($7^{\circ}00'20.65''$
4288 N $100^{\circ}28'15.65''$ E) and Lee Gardens Plaza Hotel ($7^{\circ}00'21.39''$ N $100^{\circ}28'15.94''$ E), which were
4289 situated at the centre of Hat-Yai city, Songkla province (Pongpiachan et al., 2014a). The
4290 computation of SOC was conducted by applying the protocol proposed by Na et al. (2004). This
4291 method is based on the hypothesis that atmospheric deposits possessing the smallest OC/EC ratios
4292 constitute essentially primary carbonaceous compositions (Castro et al. 1999). For the atmospheric
4293 deposits observed at Hat-Yai city, the arithmetic mean of the three lowest OC/EC ratios was 8.47
4294 and hence, these could be employed for the calculation of the SOC. It is also crucial to highlight
4295 that the three lowest OC/EC ratios were assumed to have solely primary OC and the impacts of
4296 small proportions of SOC was ignored. The content of SOC was estimated as follows:

$$4297 \quad OC_{sec} = OC_{tot} - EC \times (OC / EC)_{primary} \quad (2)$$

4299 Where OC_{sec} , OC_{tot} , and $(OC/EC)_{primary}$ are SOC, TOC, and the arithmetic mean of the three
4300 lowest OC/EC ratios, respectively.

4301

4302 **7.3. Results & Discussion**

4303 Statistical descriptions of TC, OC, EC, and SOC detected during the sampling interval in the TNL
4304 are shown in [Table 7.1](#). The arithmetic mean contents of TC, OC, EC, and SOC ranged from 178
4305 to $1,136 \text{ mg g}^{-1}$, 142 to 636 mg g^{-1} , 35 to 555 mg g^{-1} , and 27 to 520 mg g^{-1} , respectively. For percent
4306 contributions relative to TC mass, OC varied from 51 to 80 % with an arithmetic mean of $60 \pm$
4307 6.9 %, whilst EC ranged from 20 to 49 % with an arithmetic mean of $40 \pm 6.9 \%$. SOC differed

4308 from 15 to 46 % contributing on average of $37 \pm 7.3 \%$. In addition, the ANOVA test revealed a
4309 statistical difference between the mean values of OC ($396 \pm 126 \text{ mg g}^{-1}$) and EC ($284 \pm 125 \text{ mg g}^{-1}$).
4310 These results indicate that OC is the major chemical composition of the TC mass concentration.
4311 It is worth mentioning that three main features for the vertical profile of OC/EC ratio in the
4312 sediment core were observed. Firstly, three maximum peaks of TC were observed at sediment
4313 layer depths of 160–180 mm, 260–300 mm, and 500–520 mm, which were in good agreement with
4314 those of OC (see Fig. 7.1). Secondly, two maximum peaks of EC and SOC were detected at the
4315 same sediment layer depths of 480–500 mm and 500–520 mm. Thirdly, two maximum peaks of
4316 OC/EC ratios were measured at sediment layer depths of 320–340 mm and 220–240 mm.

4317 **7.3.1. OC/EC ratios and estimation of SOC**

4318 In this study, TC, OC and EC contents are assumed to be random parameters and remain
4319 unchanged during early diagenesis in sediments for numerous reasons. Diagenesis is the alteration
4320 of deposits or existing sedimentary rocks into a various sedimentary rock in the middle and after
4321 rock formation (i.e. lithification), at temperatures and pressures less than that necessary for the
4322 creation of metamorphic rocks (Berner, 1980). Since there are no hydrothermal vent and/or hot
4323 springs exist in the study sites, it appears reasonable to consider that diagenesis can take place at
4324 Songkla Lake sediments. However, it is crucial to note that diagenesis excludes surface alteration
4325 and metamorphism. In other words, diagenesis does not include any changes from physical,
4326 chemical and biological weathering. As a consequence, it seems rationale to conclude that
4327 diagenesis plays a minor role in governing physicochemical properties of Songkla lake deposits
4328 and thus TC, OC and EC concentrations should theoretically remain unchanged at the early stage
4329 of diagenesis in lacustrine deposits. One of the major factors associated with variations of
4330 carbonaceous contents in sediments is simply the chemical compositions of TC, OC, and EC

4332 contents originally contained in aerosols prior to its wet and/or dry depositions into Songkla Lake.
4333 In spite of the possible impacts of atmospheric depositions, biota living in the lake and in its
4334 watershed can be considered as the crucial sources of the organic compounds initially contributed
4335 to the lake system. Microbial reprocessing in the middle of sinking and early sedimentation
4336 noticeably reduce the total amount of organic matter while substituting many of the primary
4337 organic matters with secondary ones (Meyers and Ishiwatari, 1993). Therefore, much of the
4338 organic matter content of lacustrine sediments is the product of this microbiological
4339 decomposition. Numerous carbonaceous compounds of lake sediments still reserve source
4340 information and by that assist for better understanding of regional paleolimnological conditions.

4341

4342 Over the last few years, OC/EC ratios have been comprehensively employed for interpreting the
4343 photo-oxidation process of carbonaceous compositions, formation of secondary organic aerosols
4344 (SOA), and quantification of its potential sources (Gray 1986; Turpin and Huntzicker 1995;
4345 Strader et al. 1999). In this study, as displayed in [Table 7.1](#) and Fig. 3, OC/EC ratios ranged from
4346 1.02 to 4.02 with an arithmetic mean of 1.59 ± 0.65 . In order to categorise any plausible
4347 contributors of carbonaceous compositions, the average OC/EC ratio in the sediment core of the
4348 TNL was compared with a previous study on emission sources of carbonaceous aerosols as
4349 illustrated in [Fig. 7.3](#) (Pongpiachan et al. 2013). It should be noted that the average OC/EC ratio
4350 of the TNL sediments was similar to those of Rubber Factory and Traffic Emissions (see [Table 7.2](#)
4351 and [Fig. 7.3](#)), but lower than those of PM_{2.5} collected at Chaumont, Switzerland (2.8), Guangzhou,
4352 China (2.8 ± 2.8), and Xi'an, China (2.9 ± 2.7) (Cao et al. 2003, 2005; Hueglin et al. 2005). The
4353 comparatively low average OC/EC ratio observed in the sediment core of the TNL reflects the
4354 impacts of agricultural waste burnings coupled with local vehicle releases in this area.

4355

4356 However, it is crucial to note that two maximum peaks of OC/EC ratios, detected at 320 ~
4357 340 mm and 220 ~ 240 mm sediment layers, were 4.02 and 3.07, respectively. The relatively high
4358 OC/EC ratios measured at these two peaks could be attributed to numerous causes. First, earlier
4359 investigations underline the significance of the generation of SOC via ALRT (Wang et al. 2012;
4360 Zhou et al. 2012). For example, the considerably high PM_{2.5}-bound OC/EC ratios (range: 1.6–10.4;
4361 average: 5.2 ± 1.8) detected at Mount Heng, China were attributed to in-cloud SOA creation
4362 coupled with ALRT (Zhou et al. 2012). Second, both heterogeneous and homogeneous
4363 photochemical reactions of carbonaceous particles enhance dramatically during spring and
4364 summer, which were responsible for the comparatively high OC/EC ratios observed in the North
4365 China Plain (Wang et al. 2012). Since the TNL is located adjacent to the equator, it is reasonable
4366 to assume that the seasonal effect over the fluctuations of OC/EC ratios is of minor importance.
4367 Third, the unusually high OC/EC ratios can be ascribed as to extremely low EC value during the
4368 observatory period. Unfortunately, this interpretation cannot be used to explain the relatively low
4369 OC/EC ratios (i.e. comparatively high EC) found in other sediment layers.

4370

4371 Further investigations on the formation of SOC were conducted by applying the Eq. 2.
4372 OC_{sec} concentrations and its percentage contributions of PM₁₀ collected at the Hat-Yai city, the
4373 nearest city to sediment sampling sites, were detected as $3.96 \pm 2.18 \mu\text{g m}^{-3}$ and $63 \pm 25 \%$,
4374 respectively. This arithmetic mean percentage contribution is considerably higher than that of
4375 Kaohsiung (40.0 %, Lin and Tai 2001) and almost 3.7 times higher than that of Birmingham,
4376 United Kingdom (17 %, Castro et al. 1999). This underlines the considerable impacts of
4377 atmospheric depositions from Hat-Yai city as the potential mechanism responsible for relatively

4378 high OC/EC ratios observed in the sediment layers at 320–340 mm and 220–240 mm depths. In
4379 spite of the overwhelming impacts from Hat-Yai city, it is also crucial to underline other plausible
4380 influences such as local biomass burnings and ALRT as alternative causes for comparatively high
4381 OC/EC ratios detected in the lake deposits. A previous study detected the radioactivity of isotope
4382 ^{137}Cs using gamma-ray spectrometer in the Songkhla Lake sediments (Chitrakarn et al. 1996).
4383 Results of the analysis for ^{137}Cs in all 20 sediment cores show that the average sedimentation rate
4384 in Songkhla Lake, determined from each core, ranged from 0.0 to 8.7 mm y^{-1} with an arithmetic
4385 mean of $5.4 \pm 0.2 \text{ mm y}^{-1}$. By using this sedimentation rate, the age of the two maximum peaks of
4386 OC/EC ratios could be indirectly quantified as 59–63 y and 41–44 y for the sediment layers at
4387 320–340 mm and 220–240 mm depths, respectively.

4388

4389 **7.3.2. SLRA**

4390 As described in section 3.1, the relatively high OC/EC ratios observed for the sediment layer
4391 depths of 320–340 mm and 220–240 mm are probably related to high OC rather than low EC
4392 values. There are three possible causes for this, i.e. human activities (e.g. traffic releases and
4393 factory emissions), biogenic emissions (e.g. forest fires, agricultural waste burnings, and plant
4394 wax), and ALRT of carbonaceous particles from outside of the TNL. Relative contribution of
4395 ALRT and local biogenic emissions can be evaluated by applying the SLRA for OC and EC
4396 concentrations in the lake sediments. If a larger part of OC in the atmospheric deposits of the TNL
4397 sediments were governed by local biomass burnings, the R-value of OC and EC should be low
4398 since EC is principally emitted from vehicular exhausts. On the contrary, if R-values of OC and
4399 EC are high, it appears reasonable to assume that both were released instantly from a single source,
4400 namely traffic emissions (Chen et al. 2012).

4401 In order to test this hypothesis and to evaluate the influence of ALRT on maximum peaks
4402 of OC/EC ratios observed in the TNL, linear regression between OC and EC concentrations in
4403 each sediment layer was performed. As indicated in [Figs. 7.4–7.6](#), the SLRA of TC vs. OC, TC
4404 vs. EC, and OC vs. EC were plotted along with their respective slopes and intercepts. Generally, a
4405 comparatively high R-value ($R = 0.81$) coupled with a lower p-value ($p < 0.0001$) was detected in
4406 the SLRA of OC vs. EC in all sediment layers indicating a single dominant contributor (plausibly
4407 traffic-associated emissions). On the contrary, the lowest R-value ($R = 0.79, p < 0.0001$) was
4408 observed in the SLRA of TC vs. OC while the highest R-value ($R = 0.95, p < 0.0001$) was detected
4409 in the SLRA of TC vs. EC. These findings highlight the importance of vehicular exhausts, which
4410 are predominantly connected with EC emissions, as one of the main contributors of carbonaceous
4411 particles in the TNL sediments. These results also indicate that the unusually high OC/EC ratios
4412 measured at sediment layer depths of 320–340 mm and 220–240 mm are probably associated with
4413 non-traffic emissions, namely ALRT, rather than the impacts of local biomass burnings.

4414

4415 **7.3.3. PDF**

4416 The PDF was applied to all TC, OC, and EC contents at 29 sediment sections as explained in
4417 section [7.2.2](#). PDF is a function that describes the relative probability for a random parameter to
4418 assume a given value. The probability for the random variable to fall within a particular region is
4419 given by the Gaussian distribution as explained by Eq. 1. PDF will give an idea of vertical spatial
4420 distribution pattern of target compounds. It is important to underline that “vertical spatial
4421 distribution” indicates the distribution of target compounds along with numerous sediment depths
4422 not in the sense of distribution among several sampling sites. For instance, if PDF is normally
4423 distributed, this indicates an homogeneous distribution of chemical substances in Songkla Lake
4424 sediments. In the case of right skewness, this implies comparatively high inputs of chemical

4425 species in the study area. On the contrary, if PDF is left skewness, this underlines potential
4426 decaying mechanism (e.g. micro-biodegradation) of chemical species in the observatory site. As
4427 shown in [Figs. 7.7–7.9](#), symmetrical bell-shape curves were observed for all carbonaceous
4428 compositions. Since the detected values of the PDF are more concentrated in the middle than in
4429 the tails, it seems rational to attribute it to moderately homogeneous spatial distribution of
4430 carbonaceous compositions in the background lake sediments that were less likely to be influenced
4431 by extreme events (e.g. forest fires and volcanic eruptions). Previous studies have highlighted the
4432 significance of large scale of forest fires and volcanic eruptions on fluctuations of carbonaceous
4433 compositions in atmospheric deposits (Bhugwant et al. 2000; Cachier et al. 1989; Lavoué et al.
4434 2000; Martinsson et al. 2009; Pio et al. 2008). A previous study suggested that volcanic eruptions
4435 (Piton de la Fournaise, 2632 m above sea level) do not emit EC directly and during the air quality
4436 observation period from 10 to 28 March 1998, no significant vegetation fires ignited by the lava
4437 were observed (Bhugwant et al. 2000). The exceedingly high OC/EC ratio of 5.08 was also
4438 observed during the intense forest fire episode that occurred during the summer of 2003 in the
4439 Aveiro region, Portugal (Pio et al. 2003). Since no asymmetrical distribution curves for the
4440 carbonaceous compositions were observed in the sediment cores of the TNL, it appears reasonable
4441 to assume that atmospheric deposits in the TNL were mainly released from a single dominant
4442 source, probably vehicular exhaust. Nevertheless, it is safe to mention that the exceedingly high
4443 OC/EC ratios detected at the sediment layer depths of 320–340 mm and 220–240 mm are plausibly
4444 related to some extreme episodes such as forest fires and/or volcanic eruptions.

4445

4446

4447

4448 **7.4. Reference**

4449

4450 Alves CA, Gomes J, Nunes T, Duarte M, Calvo A, Custódio D, Pio C, Karanasiou A, Querol X
4451 (2015) Size-segregated particulate matter and gaseous emissions from motor vehicles in a road
4452 tunnel. *Atmos Res* 153: 134-144

4453

4454 Berner, R. A. (1980). Early diagenesis: a theoretical approach (No. 1). Princeton University Press.

4455

4456 Bessagnet, B., Menut, L., Curci, G., Hodzic, A., Guillaume, B., Liousse, C., ... & Schulz, M.
4457 (2008). Regional modeling of carbonaceous aerosols over Europe—focus on secondary organic
4458 aerosols. *Journal of Atmospheric Chemistry*, 61(3), 175-202

4459

4460 Bhuwant C, Cachier H, Bessafi M, Leveau J (2000) Impact of traffic on black carbon aerosol
4461 concentration at la Reunion Island (Southern Indian Ocean). *Atmos Environ* 34: 3463-3473

4462

4463 Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational
4464 exposures to particulate diesel exhaust. *Aerosol Sci Technol* 25: 221-241

4465

4466 Cachier H, Brémond MP, Buat-Ménard P (1989) Carbonaceous aerosols from different tropical
4467 biomass burning sources. *Nature* 340: 371-373.

4468

4469 Cao JJ, Lee SC, Ho KF, Zhang XY, Zou SC, Fung KK, Chow JC, Watson JG (2003)
4470 Characteristics of carbonaceous aerosol in Pearl River Delta region, China during 2001 winter
4471 period. *Atmos Environ* 37: 1451-1460

4472

4473 Cao JJ, Wu F, Chow JC, Lee SC, Li Y, Chen SW, An ZS, Fung KK, Watson JG, Zhu CS, Liu SX
4474 (2005) Characterization and source apportionment of atmospheric organic and elemental carbon
4475 during fall and winter of 2003 in Xi'an, China. *Atmos Chem Phys* 5: 3127-3137

4476

4477 Cao, J.J., Lee, S.C., Chow, J.C., Watson, J.G., Ho, K.F., Zhang, R.J., Jin, Z.D., Shen, Z.X., Chen,
4478 G.C., Kang, Y.M., Zou, S.C., Zhang, L.Z., Qi, S.H., Dai, M.H., Cheng, Y & Hu, K., 2007. Spatial
4479 and seasonal distributions of carbonaceous aerosols over China. *Journal of Geophysical Research*
4480 112, D22S11. doi:10.1029/2006JD008205

4481

4482 Castro ML, Pio AC, Harrison MR, Smith TJD (1999) Carbonaceous aerosols in urban and rural
4483 European atmospheres: estimation of secondary organic carbon concentrations. *Atmos Environ*
4484 33: 2771-2781

4485

4486 Chen L-WA, Chow JC, Watson JG, Moosmüller H, Arnott WP (2004) Modeling reflectance and
4487 transmittance of quartz-fiber filter samples containing elemental carbon particles: implications for
4488 thermal/optical analysis. *J Aerosol Sci* 35: 765-780

4489

4490 Chen Y, Sheng G, Bi X, Feng Y, Mai B, Fu J (2005) Emission factors for carbonaceous particles
4491 and polycyclic aromatic hydrocarbons from residential coal combustion in China. *Environ Sci
4492 Technol* 39: 1861-1867

4493
4494 Chen B, Du K, Wang Y, Chen J, Zhao J, Wang K, Zhang F, Xu L (2012) Emission and transport
4495 of carbonaceous aerosols in urbanized coastal areas in China. *Aerosol Air Qual Res* 12: 371-378
4496
4497 Chittrakarn T, Bhongsuwan T, Nunnin P, Thong-jerm T (1996) The determination of
4498 sedimentation rate in Songkhla Lake using isotopic technique. Physics Department, Faculty of
4499 Science, Prince of Songkla University
4500
4501 Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG (1993) The dri
4502 Thermal/Optical Reflectance carbon analysis system: description, evaluation and applications in
4503 U.S. air quality studies. *Atmos Environ* 27A: 1185-1201
4504
4505 Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield TM (2001) Comparison of IMPROVE
4506 and NIOSH carbon measurements. *Aerosol Sci Technol* 34(1): 23-34
4507
4508 Chow JC, Watson JG, Chen L-WA, Arnott WP, Moosmüller H, Fung KK (2004) Equivalence of
4509 elemental carbon by thermal/optical reflectance and transmittance with different temperature
4510 protocols. *Environ Sci Technol* 38: 4414-4422
4511
4512 Chow JC, Watson JG, Chen L-WA, Chang MC, Paredes-Miranda G (2005) Comparison of the
4513 DRI/OGC and Model 2001 Thermal/Optical carbon analyzers. Prepared for the IMPROVE
4514 Steering Committee, Fort Collins, CO, by Desert Research Institute, Reno, NV
4515
4516 Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., ... & Maenhaut, W.
4517 (2004). Formation of secondary organic aerosols through photooxidation of isoprene. *Science*,
4518 303(5661), 1173-1176
4519
4520 Cocker III, D. R., Mader, B. T., Kalberer, M., Flagan, R. C., & Seinfeld, J. H. (2001). The effect
4521 of water on gas-particle partitioning of secondary organic aerosol: II. m-xylene and 1, 3, 5-
4522 trimethylbenzene photooxidation systems. *Atmospheric Environment*, 35(35), 6073-6085
4523
4524 Cong, Z., Kang, S., Gao, S., Zhang, Y., Li, Q., & Kawamura, K. (2013). Historical trends of
4525 atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment
4526 record. *Environmental science & technology*, 47(6), 2579-2586
4527
4528 Engling, G., Lee, J. J., Tsai, Y. W., Lung, S. C. C., Chou, C. C. K., & Chan, C. Y. (2009). Size-
4529 resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw.
4530 *Aerosol Science and Technology*, 43(7), 662-672
4531
4532 Gacia E, Duarte CM, Marba N, Terrados J, Kennedy H, Fortes MD, Tri NH (2003) Sediment
4533 deposition and production in SE-Asia seagrass meadows. *Estuar Coast Shelf Sci* 56: 909-919
4534
4535 Gray HA, Cass GR, Huntzicker JJ, Heyerdahl EK, Rau JA (1986) Characteristics of atmospheric
4536 organic and elemental carbon particle concentrations in Los Angeles. *Environ Sci Technol* 20:
4537 580-589
4538

4539 Gonçalves, C., Evtyugina, M., Alves, C., Monteiro, M., Pio, C & Tomé, M., 2011. Organic
4540 particulate emissions from field burning of garden and agriculture residues. *Atmospheric Research*
4541 101, 666-680

4542

4543 Han Y, Cao J Chow JC, Watson JG, An Z, Jin Z, Fung K, Liu S (2007a) Evaluation of the
4544 thermal/optical reflectance method for discrimination between char-and soot-EC. *Chemosphere*
4545 69: 569-574

4546

4547 Han Y, Cao J, An Z, Chow JC, Watson JG, Jin Z, Fung K, Liu S (2007b) Evaluation of the
4548 thermal/optical reflectance method for quantification of elemental carbon in sediments.
4549 *Chemosphere* 69: 526-533.

4550

4551 Han, Y. M., Cao, J. J., Yan, B. Z., Kenna, T. C., Jin, Z. D., Cheng, Y., ... & An, Z. S. (2011).
4552 Comparison of elemental carbon in lake sediments measured by three different methods and 150-
4553 year pollution history in eastern China. *Environmental science & technology*, 45(12), 5287-5293

4554

4555 Huang XF, Xue L, Tian XD, Shao WW, Sun TL, Gong ZH, Ju WW, Jiang B, Hu M, He LY (2013)
4556 Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China:
4557 composition, mixing state and secondary formation. *Atmos Environ* 64: 200-207

4558

4559 Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical
4560 characterisation of PM_{2.5}, PM₁₀ and coarse particles at urban, near-city and rural sites in
4561 Switzerland. *Atmos Environ* 39: 637-651

4562

4563 Hung CC, Gong GC, Jiann KT, Yeager KM, Santschi PH, Wade TL, Sericano JL, Hsieh HL (2006)
4564 Relationship between carbonaceous materials and polychlorinated biphenyls (PCBs) in the
4565 sediments of the Danshui River and adjacent coastal areas, Taiwan. *Chemosphere* 65: 1452-1461

4566

4567 Ito A, Penner JE (2005) Historical emissions of carbonaceous aerosols from biomass and fossil
4568 fuel burning for the period 1870–2000. *Glob Biogeochem Cycles* 19: GB2028

4569

4570 Johnson RL, Shah JJ, Cary RA, Huntzicker JJ (1981) An automated thermal-optical method for
4571 the analysis of carbonaceous aerosol. In Macias ES, Hopke PK (eds) *Atmospheric Aerosol: Source/Air Quality Relationships*. American Chemical Society, Washington, DC, pp 223-233

4573

4574 Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil
4575 organic carbon pool in agricultural lands. *Land Degrad Dev* 17: 197-209

4576

4577 Lavoué D, Lioussé C, Cachier H, Stocks BJ, Goldammer JG (2000) Modeling of carbonaceous
4578 particles emitted by boreal and temperate wildfires at northern latitudes. *J Geophys Res Atmos*
4579 105: 26871-2689

4580

4581 Li X, Shen Z, Cao J, Liu S, Zhu C, Zhang T (2006) Distribution of carbonaceous aerosol during
4582 spring 2005 over the horqin sandland in northeastern China. *China Particuology* 4: 316-322

4583

4584 Lin JJ, Tai SH (2001) Concentrations and distributions of carbonaceous species in ambient
4585 particles in Kaohsiung City, Taiwan. *Atmos Environ* 35: 2627-2636

4586

4587 Martinsson BG, Brenninkmeijer CAM, Carn SA, Hermann M, Heue KP, Van Velthoven PFJ, Zahn
4588 A (2009) Influence of the 2008 Kasatochi volcanic eruption on sulfurous and carbonaceous aerosol
4589 constituents in the lower stratosphere. *Geophys Res Lett* 36: L12813

4590

4591 McCourt WJ, Crow MJ, Cobbing EJ, Amin TC (1996) Mesozoic and Cenozoic plutonic evolution
4592 of SE Asia: evidence from Sumatra, Indonesia. *Geological Society, London, Special Publications*,
4593 106(1), pp.321-335

4594

4595 Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China
4596 and India. *Science* 297: 2250-2253

4597

4598 Meyers, P. A., & Ishiwatari, R. (1993). Lacustrine organic geochemistry—an overview of
4599 indicators of organic matter sources and diagenesis in lake sediments. *Organic geochemistry*,
4600 20(7), 867-900

4601

4602 Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit, H. A., Forsius, M., Høgåsen, T., ... & Keller,
4603 B. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition
4604 chemistry. *Nature*, 450(7169), 537.

4605

4606 Möller A, Kaiser K, Guggenberger G (2005) Dissolved organic carbon and nitrogen in
4607 precipitation, throughfall, soil solution, and stream water of the tropical highlands in northern
4608 Thailand. *J Plant Nutr Soil Sci* 168: 649-659

4609

4610 Na K, Sawant AA, Song C, Cocker III DR (2004) Primary and secondary carbonaceous species in
4611 the atmosphere of western riverside county, California. *Atmos Environ* 38: 1345–1355

4612

4613 Nepstad, D. C., Verssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., ... & Cochrane, M.
4614 (1999). Large-scale impoverishment of Amazonian forests by logging and fire. *Nature*, 398(6727),
4615 505

4616

4617 Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., & Seinfeld, J. H. (1996).
4618 Gas/particle partitioning and secondary organic aerosol yields. *Environmental Science &*
4619 *Technology*, 30(8), 2580-2585

4620

4621 Pio CA, Legrand M, Alves CA, Oliveira T, Afonso J, Caseiro A, Puxbaum H, Sánchez-Ochoa A,
4622 Gelencsér A (2008) Chemical composition of atmospheric aerosols during the 2003 summer
4623 intense forest fire period. *Atmos Environ* 42: 7530-7543

4624

4625 Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., ... & Matos, M. (2011).
4626 OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary
4627 and secondary organic carbon. *Atmospheric Environment*, 45(34), 6121-6132

4628

4629 Pongpiachan S., Thamanu K., Ho K.F., Lee S.C & Sompongchaiyakul P., 2009. Predictions of
4630 gas-particle partitioning coefficients (K_p) of polycyclic aromatic hydrocarbons at various
4631 occupational environments of Songkhla province, Thailand. The Southeast Asian Journal of
4632 Tropical Medicine and Public Health 40 (6), 1377-1394

4633

4634 Pongpiachan S, Ho KF, Cao J (2013) Estimation of gas-particle partitioning coefficients (K_p) of
4635 carcinogenic polycyclic aromatic hydrocarbons by carbonaceous aerosols collected at Chiang-
4636 Mai, Bangkok and Hat-Yai, Thailand. Asian Pac J Cancer Prev 14: 2461-2476

4637

4638 Pongpiachan S, Ho KF, Cao J (2014a) Effects of biomass and agricultural waste burnings on
4639 diurnal variation and vertical distribution of OC/EC in Hat-Yai City, Thailand. Asian J Appl Sci
4640 7: 360-374

4641

4642 Pongpiachan S, Kudo S, Sekiguchi K (2014b) Chemical characterization of carbonaceous PM₁₀ in
4643 Bangkok, Thailand. Asian J of Appl Sci 7: 325-342

4644

4645 Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its
4646 relationship to vegetation and climate. Tellus Ser B Ser Chem Phys Meteorol 44: 81-99

4647

4648 Ram, K., & Sarin, M. M. (2010). Spatio-temporal variability in atmospheric abundances of EC,
4649 OC and WSOC over Northern India. Journal of Aerosol Science, 41(1), 88-98

4650

4651 Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon.
4652 Nat Geosci 1: 221-227

4653

4654 Sartelet, K., Zhu, S., Moukhtar, S., André, M., André, J. M., Gros, V., ... & Redaelli, M. (2018).
4655 Emission of intermediate, semi and low volatile organic compounds from traffic and their impact
4656 on secondary organic aerosol concentrations over Greater Paris. Atmospheric Environment, 180,
4657 126-137.

4658

4659 Schindler, D. W., Curtis, P. J., Bayley, S. E., Parker, B. R., Beaty, K. G., & Stainton, M. P. (1997).
4660 Climate-induced changes in the dissolved organic carbon budgets of boreal lakes.
4661 Biogeochemistry, 36(1), 9-28

4662

4663 Schoennagel, T., Veblen, T. T., Romme, W. H., Sibold, J. S., & Cook, E. R. (2005). ENSO and
4664 PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests.
4665 Ecological Applications, 15(6), 2000-2014

4666

4667 Shen G, Xue M, Chen Y, Yang C, Li W, Shen H, Huang Y, Zhang Y, Chen H, Zhu Y, Wu H, Ding
4668 A, Tao S (2014) Comparison of carbonaceous particulate matter emission factors among different
4669 solid fuels burned in residential stoves. Atmos Environ 89: 337-45

4670

4671 Siegert, F., Ruecker, G., Hinrichs, A., & Hoffmann, A. A. (2001). Increased damage from fires in
4672 logged forests during droughts caused by El Nino. Nature, 414(6862), 437.

4673

4674 Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., & Cole, J. J. (2007). Patterns and
4675 regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. *Limnology*
4676 and *Oceanography*, 52(3), 1208-1219

4677

4678 Srivastava AK, Bisht DS, Ram K, Tiwari S, Srivastava MK (2014) Characterization of
4679 carbonaceous aerosols over Delhi in Ganga basin: seasonal variability and possible sources.
4680 *Environ Sci Pollut Res Int* 21: 8610-8619

4681

4682 Strader R, Lurmann F, Pandis S (1999) Evaluation of secondary organic aerosol formation in
4683 winter. *Atmos Environ.* 33: 4849-4863

4684

4685 Szidat S, Jenk TM, Synal HA, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U
4686 (2006) Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous
4687 aerosols in Zurich as traced by ^{14}C . *J Geophys Res* 111: 2156-2202

4688

4689 Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and
4690 quantitation of primary and secondary organic aerosol concentrations during SCAQS. *Atmos*
4691 *Environ* 29: 3527-3544

4692

4693 VKI, 1997. The Emsong roject: Environmental Management in the Songkhla Lake Basin. VKI,
4694 Institute for the Water Environment, Danish Hydraulic Institute, PEM consult A/S, COWI A/S,
4695 CORIN Prince of Songkhla University, Satec International Ltd. Inception Report, Vols. II/III, Parts
4696 4 and 7. Ministry of Science, Technology and Environment, Thailand

4697

4698 Wang Z, Wang T, Guo J, Gao R, Xue L, Zhang J, Zhou Y, Zhou X, Zhang Q, Wang W (2012)
4699 Formation of secondary organic carbon and cloud impact on carbonaceous aerosols at Mount Tai,
4700 North China. *Atmos Environ* 46: 516-527

4701

4702 Wei S, Shen G, Zhang Y, Xue M, Xie H, Lin P, Chen Y, Wang X, Tao S (2014) Field measurement
4703 on the emissions of PM, OC, EC and PAHs from indoor crop straw burning in rural China. *Environ*
4704 *Pollut* 184: 18-24

4705

4706 Williamson, C. E., Morris, D. P., Pace, M. L., & Olson, O. G. (1999). Dissolved organic carbon
4707 and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm.
4708 *Limnology and Oceanography*, 44(3part2), 795-803

4709

4710 Worrall, F., Harriman, R., Evans, C. D., Watts, C. D., Adamson, J., Neal, C., ... & Naden, P. S.
4711 (2004). Trends in dissolved organic carbon in UK rivers and lakes. *Biogeochemistry*, 70(3), 369-
4712 402

4713

4714 Yihui D, Guoyu R, Guangyu S, Peng G, Xunhua Z, Panmao Z, De'er Z, Zongci Z, Shaowu W,
4715 Huijun W, Yong L (2007) China's national assessment report on climate change (I): climate
4716 change in China and the future trend. *Adv Clim Change Res* 3(Suppl): 1-5

4717

4718 Zhang R, Ho KF, Cao J, Han Z, Zhang M, Cheng Y, Lee SC (2009) Organic carbon and elemental
4719 carbon associated with PM₁₀ in Beijing during spring time. *J Hazard Mater* 172: 970-977

4720

4721 Zhang F, Zhao J, Chen J, Xu Y, Xu L (2011) Pollution characteristics of organic and elemental
4722 carbon in PM2.5 in Xiamen, China. *J Environ Sci* 23: 1342-1349

4723

4724 Zhang, C., Lu, X., Zhai, J., Chen, H., Yang, X., Zhang, Q., ... & Jin, J. (2018). Insights into the
4725 formation of secondary organic carbon in the summertime in urban Shanghai. *Journal of
4726 Environmental Sciences*

4727

4728 Zhou S, Wang Z, Gao R, Xue L, Yuan C, Wang T, Gao X, Wang X, Nie W, Xu Z, Zhang Q, Wang
4729 W (2012) Formation of secondary organic carbon and long-range transport of carbonaceous
4730 aerosols at Mount Heng in South China. *Atmos Environ* 63: 203-212.

4731

4732

4733 **Table 7.1 Statistical descriptions of TC, OC, EC, SOC, and OC/EC ratios in sediment samples
4734 collected from the TNL**

4735

	TC [mg g ⁻¹]	OC [mg g ⁻¹]	EC [mg g ⁻¹]	SOC [mg g ⁻¹]	OC/EC
Aver	679	396	284	260	1.59
Stdev	245	126	125	118	0.65
Min	178	142	35	27	1.02
Max	1136	636	555	520	4.02

4736

4737 **Table 7.2 Statistical descriptions of TC, OC, EC, and OC/EC ratios in PM₁₀ samples collected
4738 from various emission sources (Pongpiachan et al. 2013)**

4739

	PM ₁₀ [$\mu\text{g m}^{-3}$]	TC [$\mu\text{g m}^{-3}$]	OC [$\mu\text{g m}^{-3}$]	EC [$\mu\text{g m}^{-3}$]	OC/EC
PSU	35.7 \pm 10.3	6.671 \pm	4.838 \pm	1.833 \pm	2.639
Campus1		8.391	5.650	0.856	
PSU	27.9 \pm 8.7	4.897 \pm	3.573 \pm	1.324 \pm	2.699
Campus2		3.640	1.937	0.673	
Traffic	46.9 \pm 30.6	14.831 \pm	8.572 \pm	6.259 \pm	1.370
Intersection		37.439	10.572	13.786	
Corpse	35.9 \pm 28.7	7.485 \pm	5.230 \pm	2.254 \pm	2.320
Incinerator		15.925	5.854	4.079	
CPF	24.5 \pm 5.4	7.385 \pm	5.168 \pm	2.217 \pm	2.331
		15.428	4.448	4.221	
Songkla	13.8 \pm 2.9	4.296 \pm	3.063 \pm	1.232 \pm	2.486
Lake1		2.000	1.426	0.268	
Songkla	11.6 \pm 3.7	0.977 \pm	0.757 \pm	0.221 \pm	3.425
Lake2		1.849	0.397	0.401	
Rubber	34.4 \pm 8.6	15.829 \pm	10.852 \pm	4.977 \pm	2.180
Factory1		31.658	17.158	6.096	

Rubber Factory2	36.7 \pm 15.7	11.022 \pm 24.784	6.922 \pm 10.449	4.100 \pm 6.833	1.688
Bus terminal	42.8 \pm 24.9	14.112 \pm 29.391	8.062 \pm 8.154	6.050 \pm 11.015	1.333
Garbage burner	86.6 \pm 65.4	24.449 \pm 64.879	5.427 \pm 11.266	19.023 \pm 31.442	0.286
Barbeque Festival	30.2 \pm 14.1	6.280 \pm 8.799	4.850 \pm 2.611	1.430 \pm 1.849	3.392
Petkrasem Road	25.1 \pm 9.2	9.650 \pm 22.896	5.438 \pm 8.693	4.212 \pm 7.385	1.291
Kor Hong Mountain	9.6 \pm 4.0	1.850 \pm 1.224	1.352 \pm 0.894	0.499 \pm 0.055	2.709
Straw Burning	217.8 \pm 96.1	80.362 \pm 91.936	64.992 \pm 51.974	15.370 \pm 12.574	4.229
Bush Burning	25.5 \pm 2.3	11.106 \pm 10.069	7.980 \pm 2.234	3.126 \pm 2.696	2.553
Para Rubber Tree	83.7 \pm 23.2	48.390 \pm 66.486	38.578 \pm 35.154	9.812 \pm 10.090	3.931
Burning					

4740

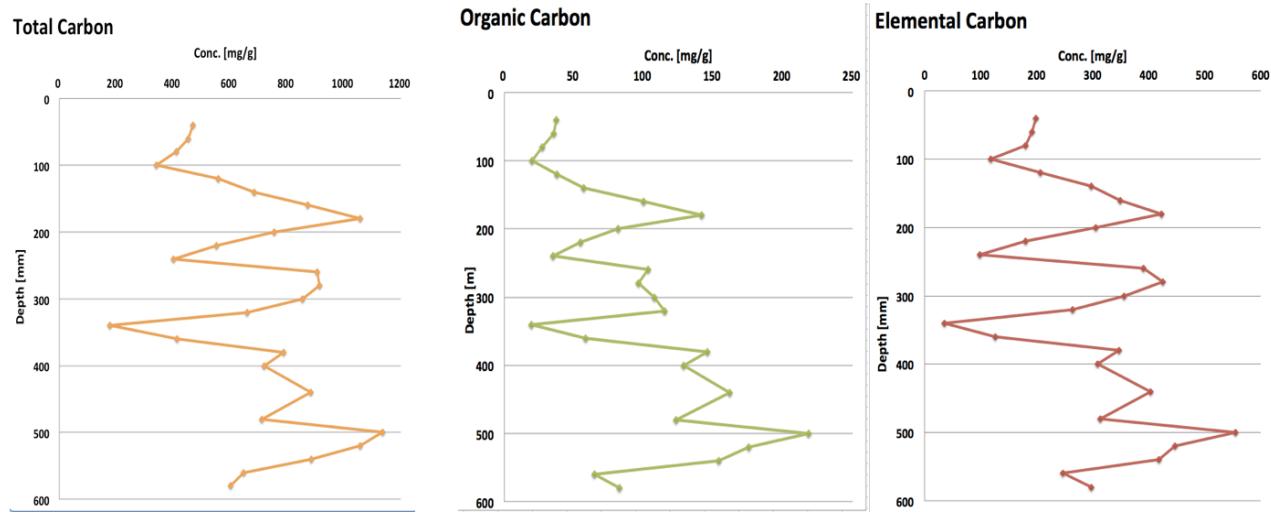
4741 *Prince of Songkla University (PSU)*: The sampling station is positioned at approximately 3 m
 4742 above the basement of the Faculty of Environmental Management, Prince of Songkla University.
 4743 This location is about 3 km far from city centre and thus can be acknowledged as an urban
 4744 residential zone.

4745 *Traffic Intersection (TI)*: This monitoring site is situated at the traffic intersection adjacent to
 4746 Tesco Lotus department store in Hat-Yai city. TI can be considered as a representative of vehicular
 4747 exhausts.

4748 *Corpse Incinerator (CI)*: The monitoring site is located at crematory of Kor-Hong Buddhist
 4749 monastery adjacent to PSU and approximately 1.5 km away from TI. CI can be considered as a
 4750 representative of both timber and tire-combustions.

4751 *Charoen Phokphand Factory (CPF)*: CPF is located inside the facility of fish can producing
 4752 factory owned by Charoen Phokphand group. This site can be considered as a representative of
 4753 crude oil combustion.

4754 *Songkhla Lake (SL)*: SL is positioned at the coastal area of Songkhla Lake and is roughly 13 km
 4755 away from Hat-Yai city. SL is also located approximately 14 km away from the western side of
 4756 the Gulf of Thailand. This sampling site can be acknowledged as a representative of rural
 4757 background monitoring site.

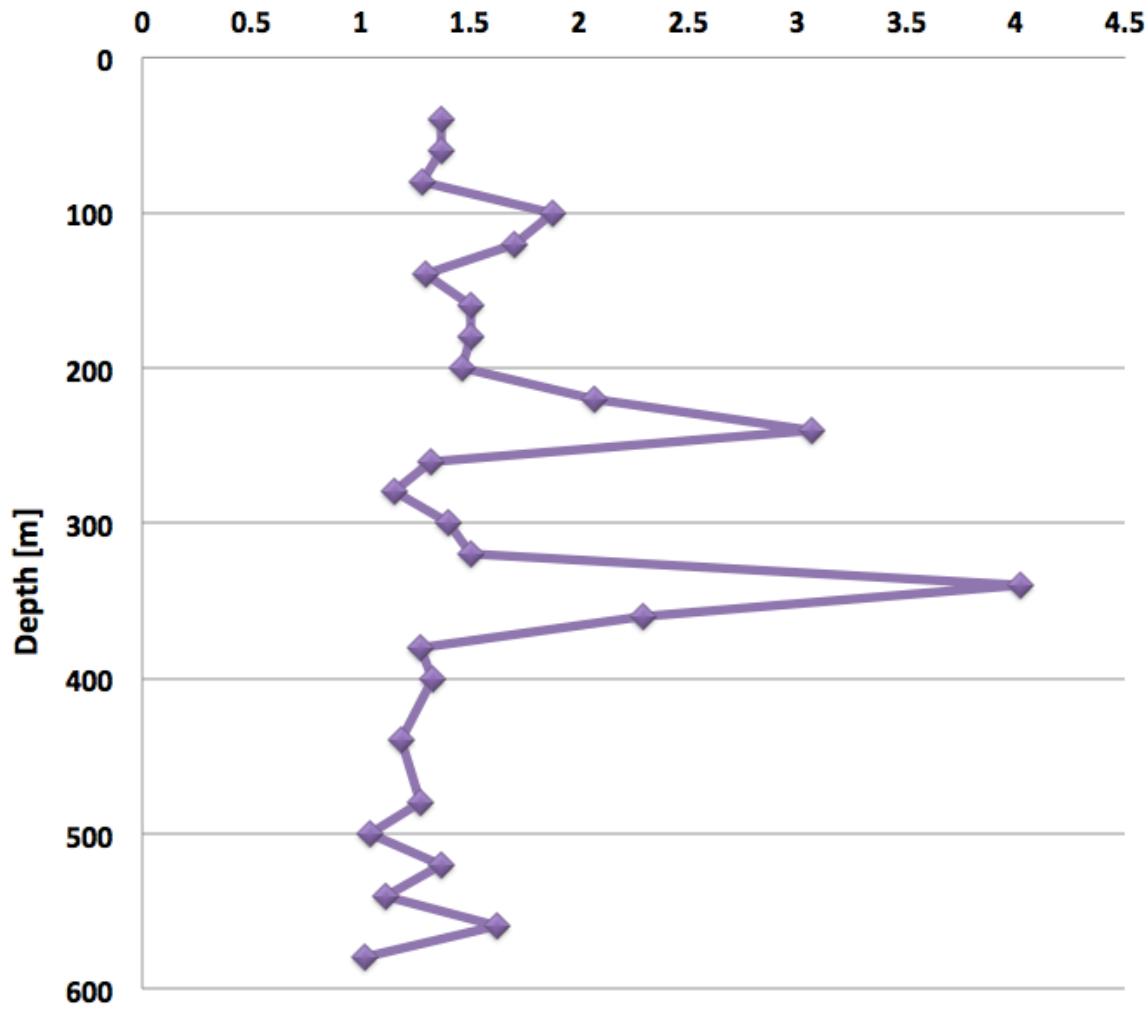

4758 *Rubber Sheet Manufacturing Factory 1 (RMF1)*: RMF1 can be considered as a mixture of Para
 4759 rubber trees combustions coupled with emissions of latex fragments and sulphuric acid particles.
 4760 This sampling stations is situated at Tumbol Tungwan, Hat-Yai district, Songkla province.

4761 *Rubber Sheet Manufacturing Factory 2 (RMF2)*: RMF2 can be considered as a mixture of Para
 4762 rubber trees combustions coupled with emissions of latex fragments and sulphuric acid particles.
 4763 This sampling stations is situated at Tumbol Tachang, Banglum district, Songkla province.

4764 *Bus Terminal (BT)*: This monitoring site is positioned at bus terminal about 1.4 km away from
 4765 PSU. BT was carefully chosen as a representative of diesel emissions since most of the buses are
 4766 diesel-fuelled.

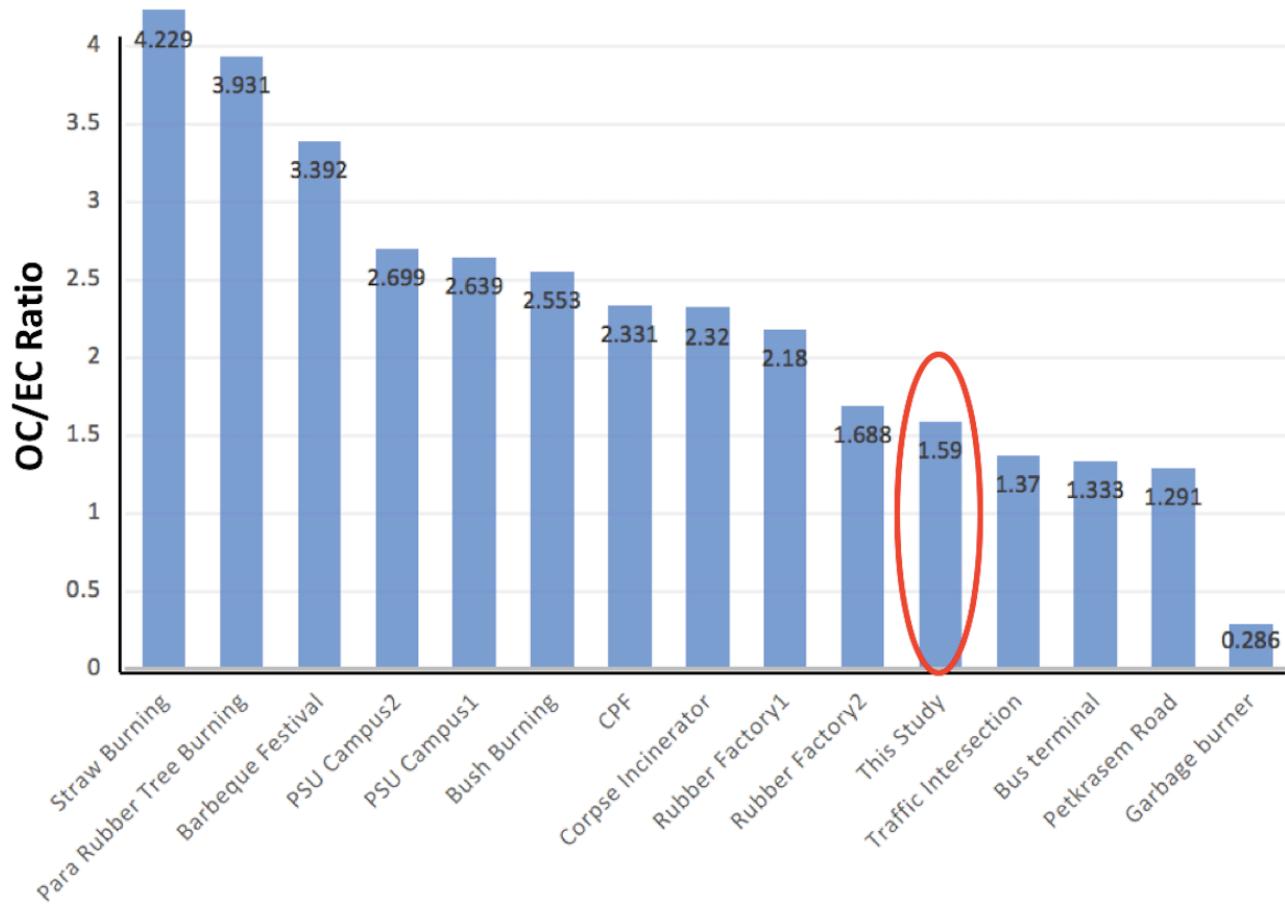
4767 **Waste Incinerator (WI):** WI is a facility which is a part of the municipality of Hat-Yai city. This
 4768 sampling station can be acknowledged as a mixture of solid wastes and diesel oil combustions.
 4769 **Barbeque Festival (BF):** BF is positioned at the centre of PSU campus on the rooftop of Faculty
 4770 of Natural Resources. PM₁₀ samples was collected during the barbecue festival which is an annual
 4771 tradition normally occurred in the second week of August. BF can be acknowledged as an
 4772 representative of charcoal combustion.
 4773 **Petkrasem Road (PR):** PR is situated close to Petkrasem Road at the city centre of Hat-Yai. This
 4774 site can be considered as the most congested area of Songkla province. As a consequence, PR can
 4775 be considered as a representative of a mixture of diesel and benzene combustions.
 4776 **Kor-Hong Hill (KHH):** KHH is located on the top of Kor-Hong hill with a height of 356 m. KHH
 4777 can be regarded as a mixture of anthropogenic emissions from Hat-Yai city.
 4778 **Rice Straw Burning (RSB):** RSB can be regarded as a representative of rice straw combustion.
 4779 This sampling site is positioned at rice paddy field in Satingpra district, Songkla province.
 4780 **Biomass Burning (BB):** BB can be considered as a mixture of agricultural waste burnings at the
 4781 planting areas of Namon district, Songkhla province.
 4782 **Para Rubber Tree Burning (PTB):** PTB can be regarded as an emission source of Para rubber tree
 4783 combustion.

4784
 4785
 4786
 4787
 4788
 4789
 4790

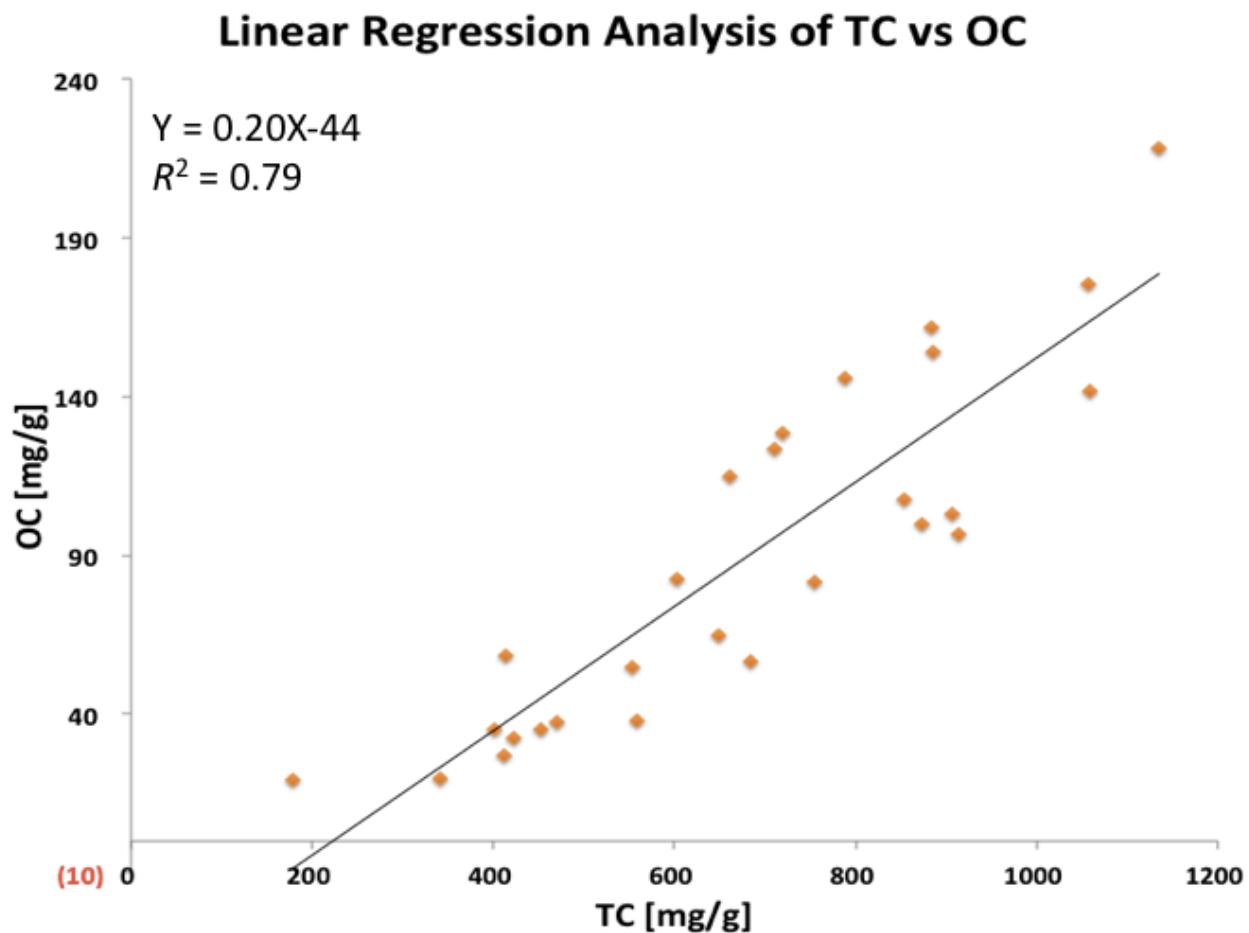


4791
 4792
 4793 **Figure 7.1. Vertical profile of TC, OC, and EC in sediments collected from the TNL**
 4794
 4795
 4796
 4797
 4798
 4799

4800
4801
4802
4803
4804

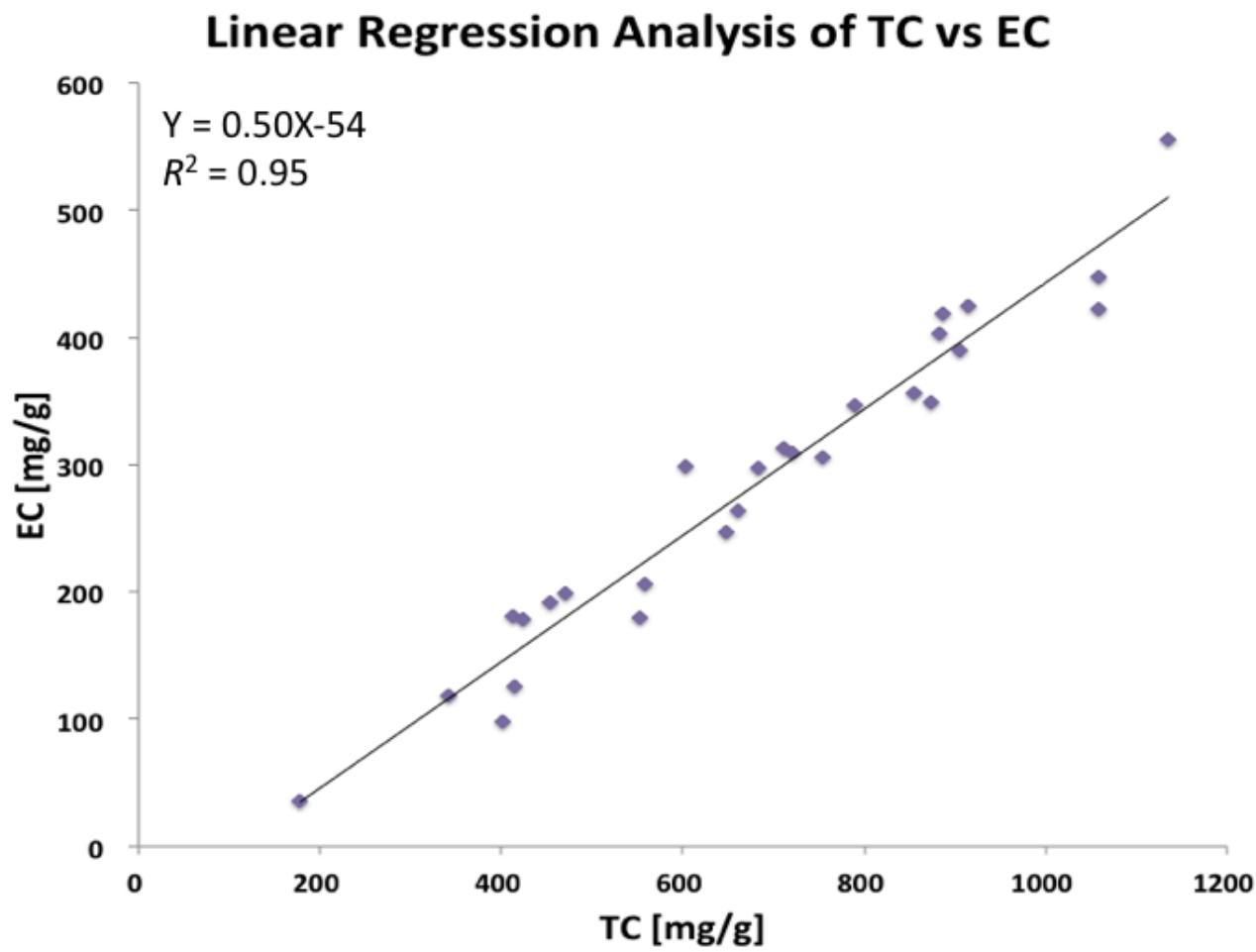

OC/EC Binary Ratio

OC/EC



4805
4806
4807
4808
4809
4810
4811
4812

Figure 7.2. Vertical profile of OC/EC ratios in sediments collected from the TNL



4813
4814
4815 **Figure 7.3. OC/EC ratios in sediments collected from the TNL in comparison with those of various**
4816 **emission sources**

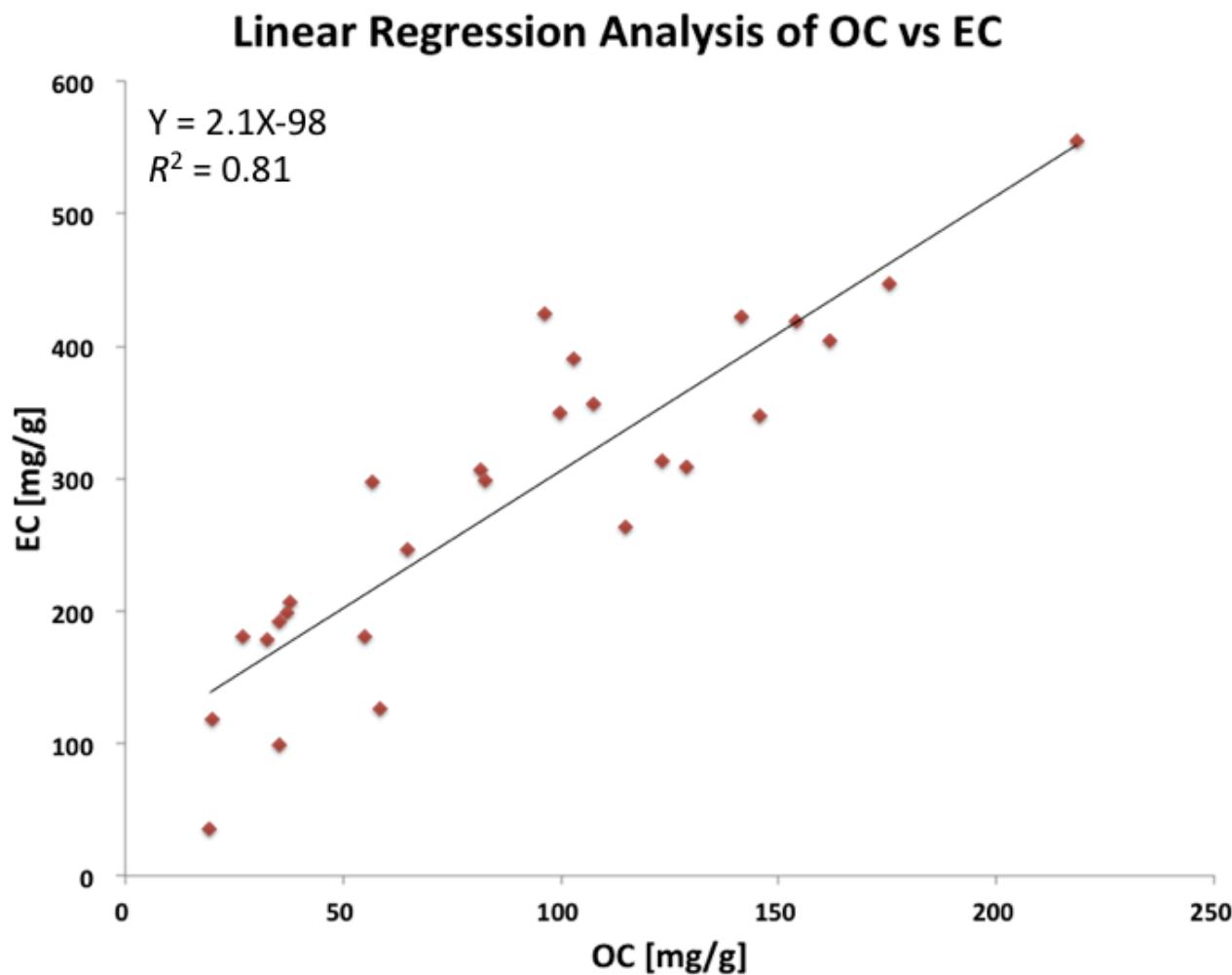

4821
4822
4823

Figure 7.4. Linear regression analysis of TC vs. OC in sediments collected from the TNL

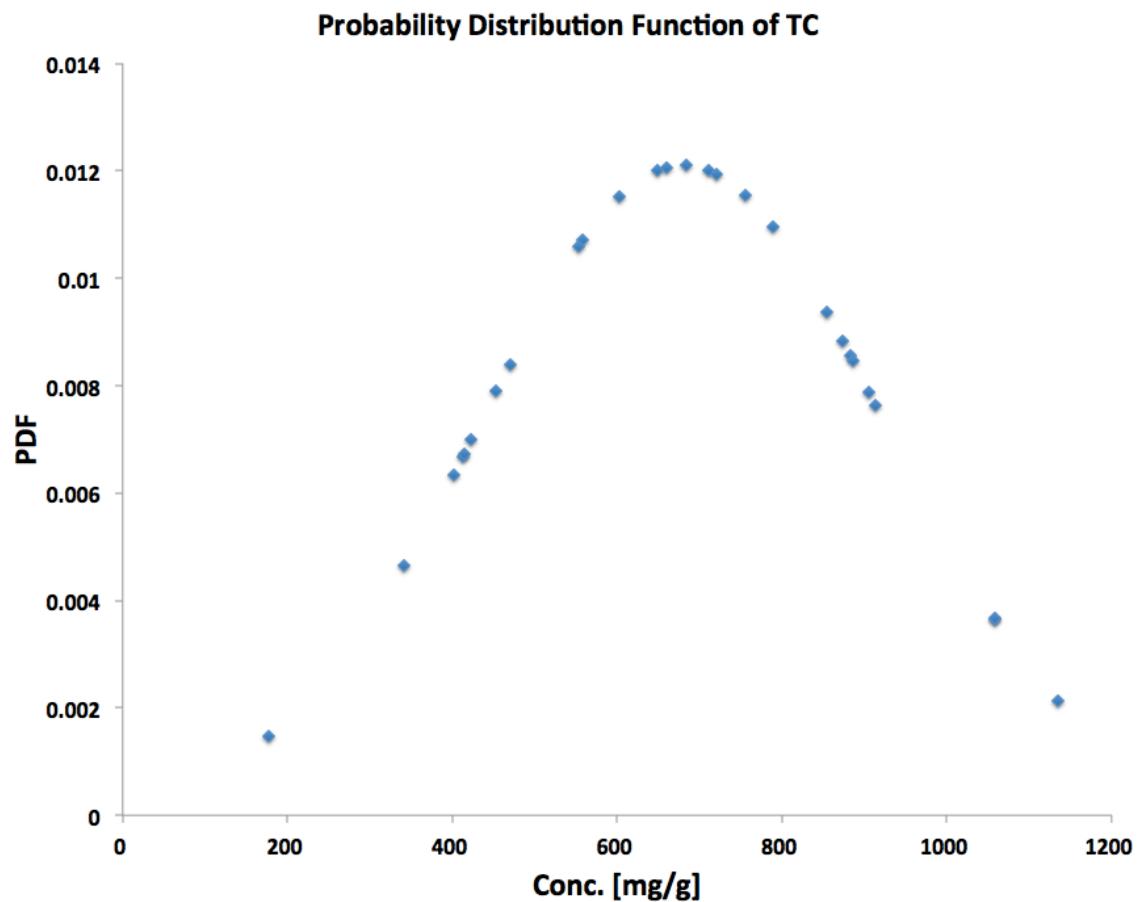
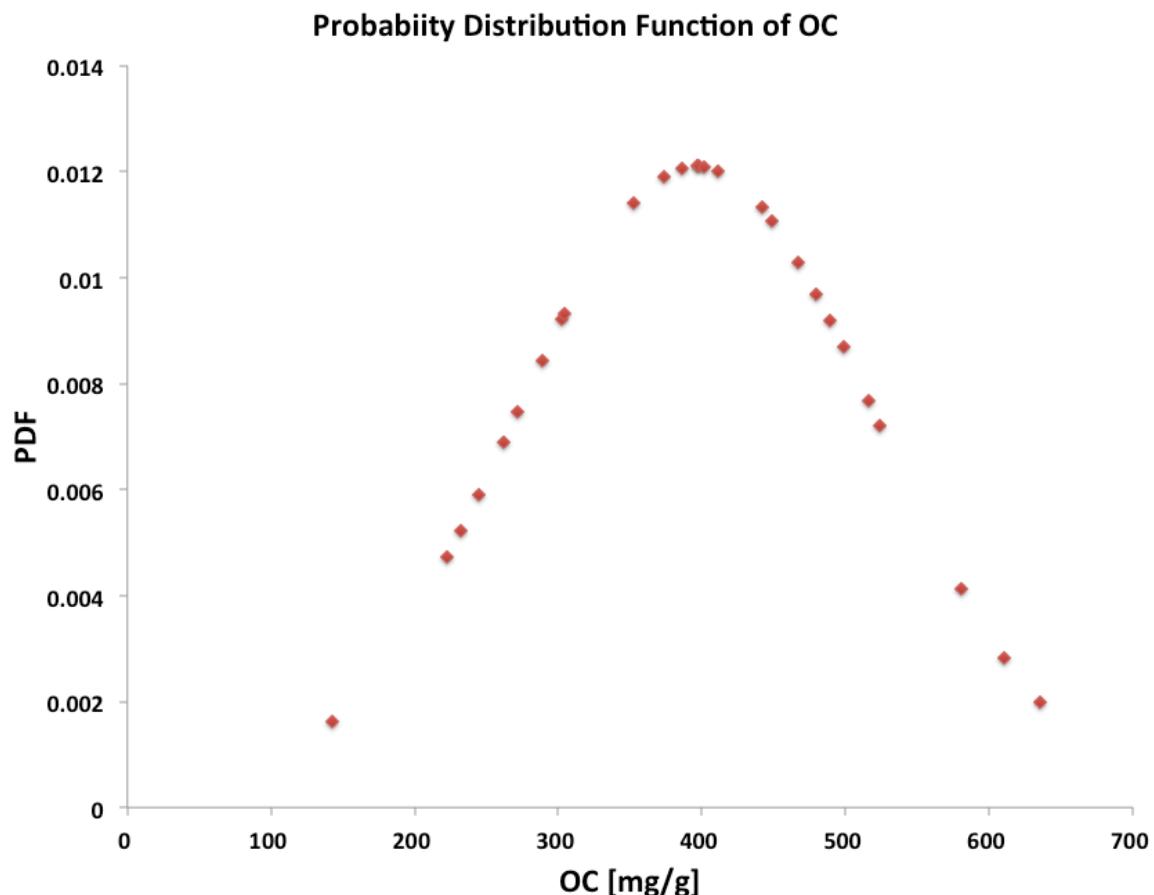
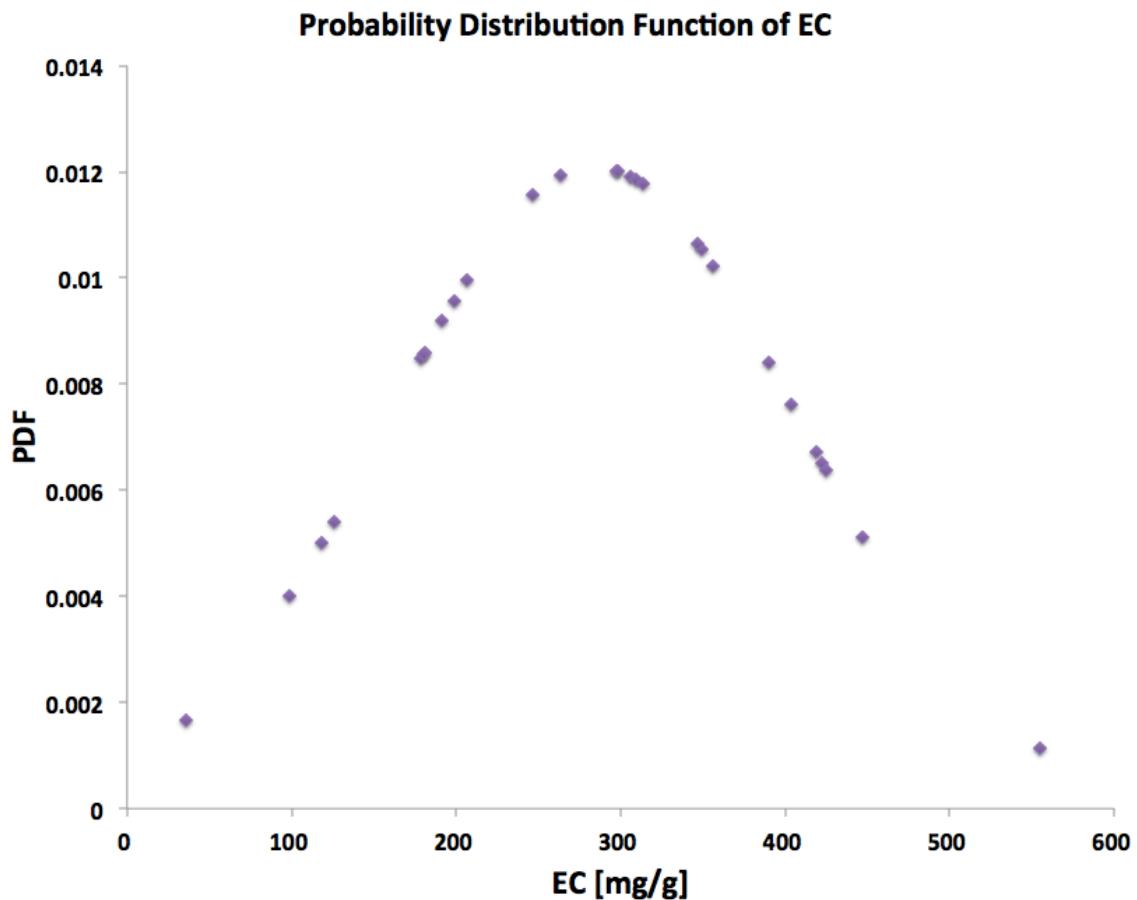

4824
4825
4826
4827
4828

Figure 7.5. Linear regression analysis of TC vs. EC in sediments collected from the TNL

4829
4830
4831
4832
4833
4834
4835
4836
4837
4838


Figure 7.6. Linear regression analysis of OC vs. EC in sediments collected from the TNL

4839
4840


Figure 7.7. PDF of TC in sediments collected from the TNL

4841
4842
4843
4844
4845
4846
4847

4848
4849
4850
4851
4852
4853
4854
4855
4856
4857

Figure 7.8. PDF of OC in sediments collected from the TNL

4858
4859 Figure 7.9. PDF of EC in sediments collected from the TNL
4860
4861
4862
4863
4864
4865
4866

4867
4868 Figure S1 Sampling site locations at the TNL
4869
4870
4871
4872
4873
4874
4875
4876
4877

4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889

Figure S2. Sampling method and sediment cores at the TNL

Table S1. Locations of sediment cores sampled from the TNL

Sample	Location		Sub-sample (2 cm)	Site-Description
	lat	long		
1	7.7703	100.1436	29 samples	Up-stream mud / black Thale Noi is a protected fresh water wetland situated in Phatthalung province,

				southern part of Thailand. Covering an area of 460 km ² , the wetlands are positioned roughly 20 km inland from the east coast peninsula of the Gulf of Thailand and 115 km north of the Malaysian border in Satun province. Thale Noi Non-Hunting Area is one of the largest natural freshwater lakes in South East Asia. It is the smallest, northernmost basin in the chain of lagoons that form Songkhla Lake, spreading across three provincial boundaries into Nakhon Si Thammarat, Phatthalung and Songkhla provinces and is home to the critically endangered Irrawaddy dolphin (<i>Orcaella brevirostris</i>)
--	--	--	--	---

4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906

Chapter-VIII

Conclusions & Future Works & National Policy

Conclusion 8.1

4911 The results of the one-year monitoring campaign highlight the importance of biomass burning as
4912 one of the main contributors of carbonaceous particles in the ambient air of Chiang-Mai, Thailand.
4913 The comparatively high OC/EC ratios (e.g. 6.8 ± 3.0), coupled with the high SOC contents (e.g.,
4914 $8.12 \pm 0.26 \mu\text{g m}^{-3}$) detected at Chiang-Mai, emphasize the dominant effects of biomass/agricultural
4915 waste burning in northern Thailand. HCA illustrates that mixtures of biomass burning, fossil fuel,
4916 coal combustion, and industrial emissions are major sources of $\text{PM}_{2.5}$. It is also interesting to note that
4917 PCA successfully identified five major sources of $\text{PM}_{2.5}$, namely, vehicular exhaust,
4918 biomass burning, diesel emissions, sea-salt aerosols and agricultural emissions, which accounted
4919 for 51.6%, 16.2%, 10.6%, 5.20% and 3.70%, respectively. Overall, this study provides compelling
4920 evidence for adopting a zero-burning farming policy as a priority for national clean air act policies,
4921 strategies and plans.

Conclusion 8.2

4924 In this project, the result presents the mean of $\text{PM}_{2.5}$ was three times higher than the annual average
4925 concentration of Thai National Ambient standard ($25 \mu\text{g m}^{-3}$) as well as USEPA standard. The
4926 OC/EC ratios suggested that the source was gasoline and LPG exhausts, while the comparatively
4927 high Char-EC/Soot-EC ratio coupled with a strong correlation between K^+ with OC ($r=0.86$) and
4928 Char-EC ($r=0.82$), respectively, so it guided that the ambient aerosol was emerging from biomass
4929 burning activity. Interestingly, a strong correlation between K^+ with NO_3^- ($r=0.81$) was also found
4930 in Bangkok area, as the major source of NO_3^- is originated from incomplete combustion, including
4931 traffic emissions and industrial emission. Thus, the result underlined that vehicular exhausts and
4932 biomass burning played a significant role in the Bangkok's atmosphere.

4933 HCA indicated that the main source was mixture from combustion activities (e.g. biomass
4934 burning, vehicular exhausts, fossil fuel, coal and industrial). It is remarkable to notice that PCA
4935 efficiently separated five important sources of PM_{2.5} samples, including vehicular exhaust, biomass
4936 burning, sea salt aerosols, power plants and industrial emission, which clarified for 43.7%, 24.0%,

4937 10.5%, 6.48% and 4.46%, respectively. Overall, the results from this study emphasized that the
4938 effect of both local (vehicular exhausts) and regional (biomass burning) sources on the level of
4939 $\text{PM}_{2.5}$. Hence this data can be significance for potential manage plans for decreasing exposure at
4940 Bangkok's atmosphere such as policy as a priority for national clean air act.

4941

4942 **Conclusion 8.3**

4943 This study investigated the carbonaceous aerosol compositions (OC, EC, WSIS, and PAHs) of
4944 $\text{PM}_{2.5}$ samples obtained in Phuket during March 2017 to February 2018. The main findings are as
4945 follows. The average $\text{PM}_{2.5}$ concentration was $42.26 \pm 13.45 \mu\text{g m}^{-3}$. Of the OC fraction, OC3 was
4946 the highest, followed in descending order by OC4, OC2, and OC1. Of the EC fraction, EC1 was
4947 the highest, followed by EC2 and EC3. Despite the relatively high OC/EC ratio (6.05 ± 2.70), the
4948 SOC content ($1.30 \pm 1.63 \mu\text{g m}^{-3}$) was relatively low, reflecting the comparatively low EC content
4949 in marine aerosols. Strong correlation ($r = 0.80$) was found between nss- K^+ and OC, which was
4950 also shown to be affected significantly by long-range atmospheric transport of organic aerosols
4951 associated with BB. The concentrations in the $\text{PM}_{2.5}$ samples of 10 selected WSIS, i.e., SO_4^{2-} , Na^+ ,
4952 Ca^{2+} , Cl^- , NO_3^- , NO_2^- , NH_4^+ , K^+ , Mg^{2+} , and F^- accounted for 34%, 21%, 14%, 8%, 8%, 4%, 4%,
4953 4%, 2%, and 1% of the total mass of ions, respectively. The average SO_4^{2-} concentration in Phuket
4954 was the highest throughout the entire study period ($2.33 \pm 1.73 \mu\text{g m}^{-3}$). The average contribution
4955 of SO_4^{2-} to the major ionic component was 34%. It was surprising that NO_3^- and NH_4^+ had
4956 relatively low concentrations, i.e., 0.53 ± 0.21 and $0.29 \pm 0.32 \mu\text{g m}^{-3}$, respectively. The mean
4957 $[\text{NO}_3^-]/[\text{SO}_4^{2-}]$ ratio found during this study was 0.33 ± 0.24 . The concentration of individual
4958 PAHs in the $\text{PM}_{2.5}$ samples decreased in the following order: $\text{B}[g,h,i]\text{P} > \text{Ind} > \text{Phe} > \text{B}[a]\text{A} > \text{Cor}$
4959 $> \text{B}[b]\text{F} > \text{B}[k]\text{F} > \text{B}[a]\text{P} > \text{B}[e]\text{P} > \text{Ace} > \text{D}[a,h]\text{A} > \text{Fluo} > \text{Fl} > \text{Pyr} > \text{D}[a,e]\text{P} > \text{Chry} > \text{Ant} >$
4960 $\text{Per} > \text{B}[a]\text{F}$. In this study, relatively high abundances of $\text{B}[g,h,i]\text{P}$ and Ind were detected,
4961 indicating that motor vehicles, petroleum/oil combustion, and industrial waste burning are
4962 emission sources of the PAHs found in the ambient air of Phuket. Source identification of the
4963 chemical species by PCA revealed that five sources of carbonaceous composition observed in the
4964 $\text{PM}_{2.5}$ samples of ambient air in Phuket explained 82.8% of the total variance. The highlight
4965 showed that vehicular exhausts, BB, diesel emissions, sea salt aerosols, and industrial emissions
4966 accounted for 55.5%, 10.9%, 6.1%, 5.20%, and 5.1% of the total variance, respectively.
4967 Interestingly, the PCA result showed vehicular exhausts as the main source. However, the

4968 contributions of both marine aerosols and BB to SOC also played a major role. Overall, 17.2% of
4969 the variance could not be attributed to the five primary local and/or regional sources; this
4970 proportion was considered to originate from other combustion activities such as incinerators,
4971 incense burning, and cooking.

4972

4973 **Conclusion 8.4**

4974 Long-term pollutants history from pre-industrial to industrial period would tell us the interactions
4975 between natural processes and human activities, advancing our prediction of future climate and
4976 environment. Previous studies emphasized more about human influences on pollutions, while less
4977 discussed about the natural impact. It is still unknown that in the less industrialized regions of
4978 southeastern Asia, human emissions or natural processes, which, play a key role in the emissions
4979 of light-absorbing carbon fractions of black carbon (BC), char, and soot. In this study, we
4980 determined historical variations of organic carbon (OC), total nitrogen (TN), BC, char, soot, and
4981 polycyclic aromatic compounds (PACs including 26 PAHs, 13 OPAHs, and 3 azaarenes) over the
4982 past 150 years from sediments of Phayao Lake, northern Thailand. We observed a clear transition
4983 from pre-industrial to industrial processes occurring at ~1980. However, the mass accumulation
4984 rates (MARs) of soot, the key atmospheric light-absorbing aerosol, after 1980 did not fully exceed
4985 their pre-industrial period, indicating that in rural and remote regions natural biomass burning
4986 emission is still a main contributor for soot. Well correlations of BC, char, and soot MARs with
4987 the reconstructed regional Palmer Drought Severity Index (PDSI) were observed for the pre-
4988 industrial period, suggesting that drought is the dominant factor controlling biomass burning.
4989 PACs source identification indicates two sub-stages of the industrial period: the transition from
4990 coal burning to vehicle emissions since ~2000. From natural processes to industrial activities, the
4991 surrounding soil and the lake water quality have been impacted, and notably more in-lake
4992 production associated with the eutrophication occurred during the industrial period.

4993 **Conclusion 8.5**

4994 The analyses of OC/EC ratios, OC_{soc}, SLRA, and PDF reveal that traffic emissions are the most
4995 influential factor controlling the atmospheric deposits of carbonaceous compositions observed in
4996 the TNL core sediments. Although vehicular exhausts play an important role in governing
4997 carbonaceous compositions of most sedimentary samples, multiple types of extreme events,

4998 including the ALRT of forest fire particulate matter and smoke from volcanic eruptions, seem to
4999 be the principal contributors detected at 320–340 mm and 220–240 mm sediment layers. By
5000 applying a sedimentation rate of $5.4 \pm 0.2 \text{ mm y}^{-1}$, the age of the two extreme events could be
5001 roughly estimated as 59–63 y and 41–44 y, respectively. Irrespective of some degree of uncertainty
5002 resulting from sediment age dating techniques, the overwhelming contribution of traffic releases
5003 to carbonaceous deposits is unquestionably evident. These findings also provide evidence for
5004 considerable concerns regarding ecotoxicology and environmental safety of communities
5005 surrounding the Songkhla Lake and thus, are likely to encourage policy makers to develop realistic
5006 plans for the reduction of traffic related pollutants, especially under the context of sustainable
5007 development.

5008

5009 **Futureworks**

5010 In the interest of public health, the risks *vs.* benefits of the possible alternatives must be carefully
5011 considered. For instance, it might well be that the traffic emissions result in a certain number of
5012 patients suffering from lung cancer per year. However, this risk must be balanced against the
5013 available alternatives of no vehicles or even no long distance transportation. Unless or until the
5014 creativity and technological developments offer superior methods for trapping those carcinogens,
5015 the policy makers have to make decision based on risk assessment. Since PAHs are continuously
5016 released into the atmosphere, raising concerns over the safety of urban residents and those who are
5017 living at countryside, it is therefore crucial to continue monitoring PAHs at the three air quality
5018 observatory sites. This will expand the database, and thus amend the scope of long term temporal
5019 trend analysis of PAHs in both urban and rural atmosphere.

5020 Moreover, one should keep in mind that air quality compliance measurements should be conducted
5021 at multiple monitoring sites within the city. Therefore, a more comprehensive air monitoring
5022 network requires to be developed in order to provide a more precise risk assessment of human
5023 exposures in cities of Thailand. The combination of PAHs, WSIS, and OC/EC provides useful
5024 information to enable better source characterisation. However, the greater difficulty lies in proper
5025 source identification during the agricultural waste burning episodes (e.g. sugar cane burnings).
5026 Therefore, future work and sampling efforts should focus on finding key PAH source markers that
5027 will improve the ability to separate wood combustion originated PAHs from those generated by

5028 anthropogenic sources. The lack of insight of finger prints from various emission sources leads to
5029 inadequate description of the source identification of PM_{2.5}. Therefore, it becomes essential to have
5030 a more comprehensive knowledge of the source fingerprints of chemicals in PM_{2.5}. There are
5031 uncertainties in the estimation of source contribution by using PCA and diagnostic binary ratios.
5032 Further source apportionment techniques such as a positive matrix factorisation (PMF) and a
5033 chemical mass balance (CMB) model should be conducted to increase the reliability of source
5034 contributions.

5035

5036

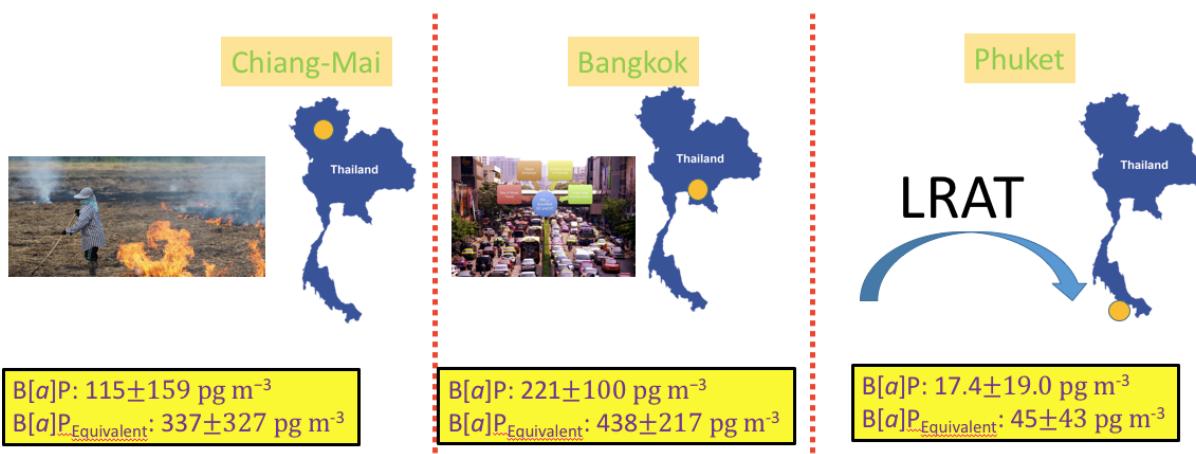
5037 **National Policy for Controlling PAH Concentrations in Ambient Air of Thailand**

5038 Polycyclic Aromatic Hydrocarbons (PAHs) constitutes a large group of chemically related
5039 substances many of which are recognized as carcinogenic substances. To minimise human
5040 exposure there are already numerous regulations which limit their existence in ambient air. There
5041 are currently no EU Directives or other guidance to member states, which bear directly on either
5042 emissions or air quality objectives of PAH. PAH are, however, covered by the Persistent Organic
5043 Pollutant (POP's) -Protocol under the United Nations Economic Commission for Europe's
5044 Convention on Long Range Transboundary Air Pollution [UN ECE CLRTAP]; under the Protocol,
5045 emissions of four PAH compounds have to be reported annually; in addition, emissions of PAH in
5046 2010 may not exceed the levels of 1990 (or any other base year between 1985 and 1995). The
5047 Protocol will enter into force after 16 ratifications, which is expected between 2001 and 2002. The

5048 European Community is a party to the Convention and will therefore have to fulfil the obligations
5049 of the Protocol after ratification. Of the EU member states currently only Italy has legally
5050 enforceable ambient air standards for PAH but five others have sufficient concern that they have
5051 issued guidance for planning and policy purposes. All have used B[a]P as a marker for PAH and
5052 one (Sweden) has gone further and set a value for Fluo as well. As illustrated in Table 8.1, the
5053 average concentrations of B[a]P in PM_{2.5} collected from Chiang-Mai, Bangkok and Phuket were
5054 clearly illustrated. The statistical descriptions of particulate B[a]P collected at Chinag-Mai,

5055 Bangkok and Phuket were 115 ± 159 pg m⁻³, 221 ± 100 pg m⁻³ and 17.4 ± 19.0 pg m⁻³, respectively
5056 (see Fig. 8.1).

5057 Table 8.1. Statistical descriptions of PAH contents in PM_{2.5} collected at Chiang-Mai, Bangkok and
5058 Phuket


Conc. [pg/m ³]	Nisbet and LaCoy (1992) TEF	Chiangmai		Bangkok		Phuket	
		Aver	Stdev	Aver	Stdev	Aver	Stdev
acenaphthene	0.001	34.7	37.9	27.9	13.8	14.0	9.63
fluorene	0.001	29.3	34.1	33.3	18.9	11.2	7.95
phenanthrene	0.001	112	177	123	36.9	40.9	41.1
anthracene	0.010	17.9	20.2	21.1	6.8	6.68	4.54
fluoranthene	0.001	50.8	43.7	79.1	38.7	12.0	12.0
pyrene	0.001	52.8	46.7	98.1	43.9	11.0	12.7
benzo[a]anthracene	0.100	109	86.6	116	41.1	34.0	16.3
chrysene	0.010	49.4	47.2	96.3	47.4	6.70	7.02
benzo[b]fluoranthene	0.100	166	161	261	115	23.9	22.0
benzo[k]fluoranthene	0.100	183	190	289	148	23.8	22.9
benzo[a]fluoranthene		24.6	24.8	32.8	15.4	3.17	3.00
benzo[e]pyrene		91.1	84.0	159	70.4	14.4	13.4
benzo[a]pyrene	1.000	155	159	221	100	17.4	19.0
perylene		17.5	16.6	24.0	11.2	4.83	5.79
indeno[1,2,3-cd]pyrene	0.100	410	369	439	224	50.7	50.0
benzo[ghi]perylene	0.010	384	370	669	394	57.5	59.0
dibenzo[a,h]anthracene	1.000	90.1	83.0	98.6	59.4	13.3	11.8
coronene		132	119	178	129	23.9	20.8
dibenzo(a,e)pyrene		48.6	52.7	75.8	63.9	8.54	9.08

5059 5060 It is worth mentioning that the annual concentration of B[a]P collected at Chiang-Mai, Bangkok
5061 and Phuket were 6.5 times, 4.5 times and 57 times lower than WHO guideline, which is 1,000 pg
5062 m⁻³. It is also interesting to note that the annual concentration of B[a]P collected at Chiang-Mai,
5063 Bangkok and Phuket were 33 times, 23 times and 285 times lower than India guideline, which is
5064 5,000 pg m⁻³. Although the annual concentration of B[a]P collected from the tree cities are
5065 generally lower than the majority of international guideline, there are some international standards
5066 that have very strict regulations. Croatia and Sweden limit B[a]P content in ambient air not to
5067 exceed 100 pg m⁻³. In the case of adopting Croatia and Sweden's regulation, the annual
5068 concentration of B[a]P collected at Chiang-Mai and Bangkok will exceed the guideline (Table
5069 8.2).

5070 5071 Table 8.2. International guideline of B[a]P in comparison with those annual concentration
collected at Chiang-Mai, Bangkok, and Phuket

International Standard	Chiang-Mai	Bangkok	Phuket
Belgium (500 pg m^{-3})	✓	✓	✓
Croatia (100 pg m^{-3})	✗	✗	✓
France (700 pg m^{-3})	✓	✓	✓
Germany (1,300 pg m^{-3})	✓	✓	✓
Italy (1,000 pg m^{-3})	✓	✓	✓
Netherland (500 pg m^{-3})	✓	✓	✓
Sweden (100 pg m^{-3})	✗	✗	✓
U.K. (250 pg m^{-3})	✓	✓	✓
Australia (1,000 pg m^{-3})	✓	✓	✓
WHO (1,000 pg m^{-3})	✓	✓	✓
India (5,000 pg m^{-3})	✓	✓	✓
U.S.A. (1,000 pg m^{-3})	✓	✓	✓

5072

5074 Figure 8.1. Annual concentration of $\text{PM}_{2.5}$ bounded $\text{B}[\text{a}]P$ collected at Chiang-Mai, Bangkok and
5075 Phuket

5076 As a consequence, it appears rationale to adopt the WHO, Italy, Australia and US EPA guideline,
5077 which regulate $\text{B}[\text{a}]P$ content not to exceed 1 ng m^{-3} or $1,000 \text{ ng m}^{-3}$ in 24 h of monitoring period.
5078 By applying these four guideline, the annual concentration of $\text{B}[\text{a}]P$ will fall in acceptable level
5079 and this will allow the government to implement other policies for enhancing air quality level to
5080 meet U.K., Croatia and Sweden's guideline.

5081 Acknowledgement

5082 We would like to thank the Thailand Research Fund (TRF) for financial support and special thanks
5083 are extended to the Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth
5084 Environment, Chinese Academy of Science (IEECAS) for providing the necessary research
5085 equipment and sample analysis. We would like to also express our sincere gratitude to the research
5086 staffs of National Astronomical Research Institute of Thailand (NARIT), Prince of Songkla
5087 University and Rajchbat ValaiAlongkorn University for their kind assistances on field samplings.

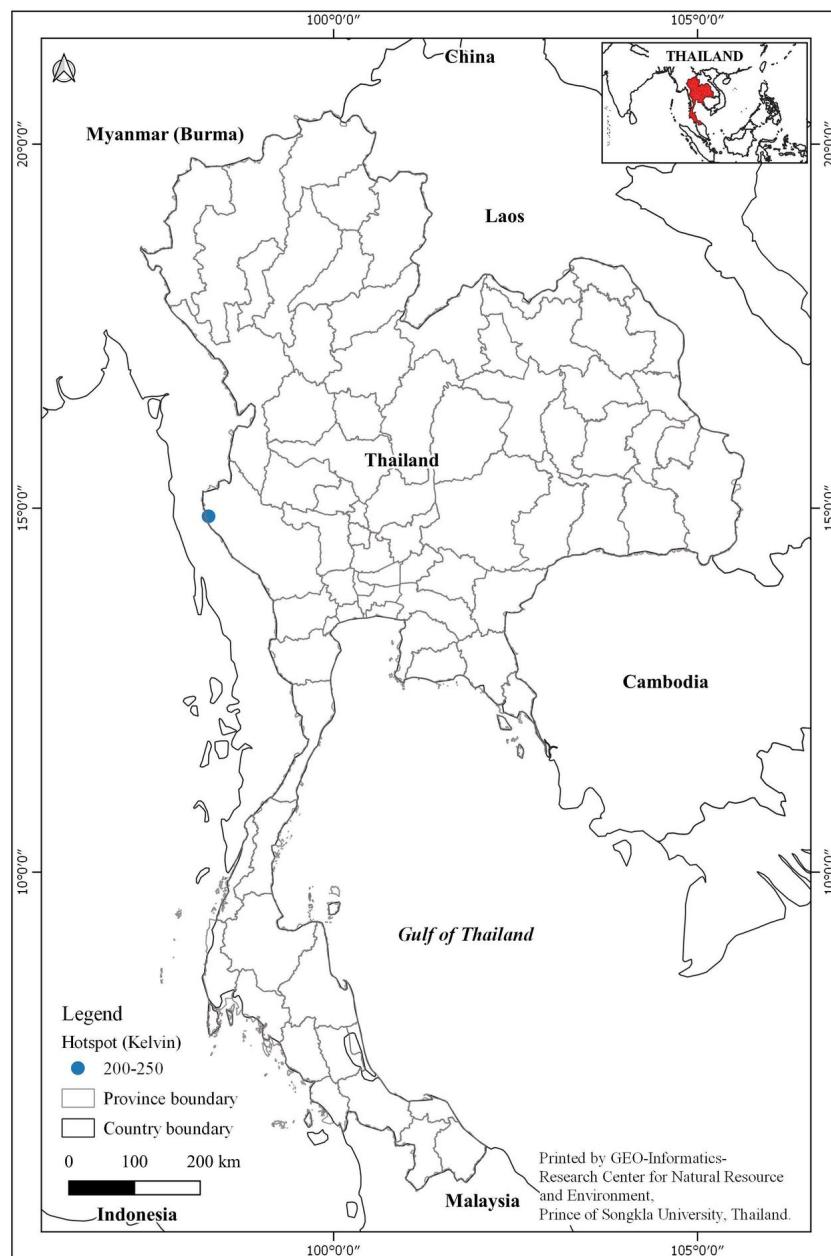
5088

5089 I would also like to express my sincere gratitude to Prof. Dr .Junji Cao and Prof. Dr. Yongming
5090 Han for supervising Dr. Danai Tipmanee and Ms. Chormsri Choochuay for learning DRI standard
5091 operating procedure (i.e. DRI Model 2001 Thermal/Optical Carbon Analysis (TOR/TOT) of
5092 Aerosol Filter Samples-Method IMPROVE_A) which was developed by Desert Research
5093 Institute, Division of Atmospheric Sciences 2214 Raggio Parkway Reno, NV 89506. We were
5094 fortunate enough to learn the technique of combustion chamber experiment (i.e. 8 cubic meter
5095 cavity container) coupled with a dilution sampler (Model 18, Baldwin Environmental Inc. Reno,
5096 NV, USA) as well as the concept of modified combustion efficiency (MCE), calculation of AAE
5097 and quantification of Brown Carbon absorption, and computation of absorption emission factor
5098 from Dr. Qiyuan Wang. It was so generous of Dr. Qiyuan to transfer the knowledge of
5099 quantification of Black Carbon mass, size and mixing state and light absorption measurements for
5100 the combustion chamber experiment.

5101

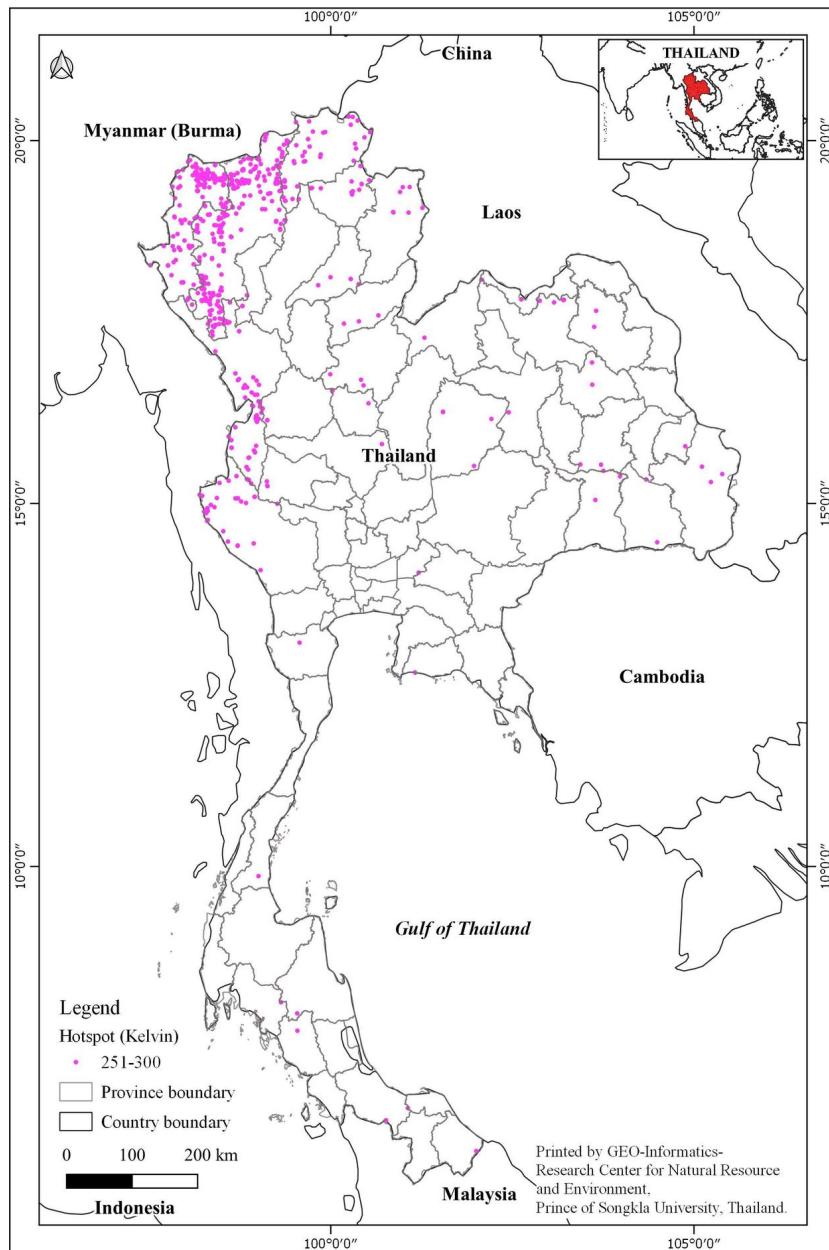
5102 Dr. Li Xing and Dr. Guohui Li, two experts of the Weather Research and Forecasting Model
5103 coupled with Chemistry (WRF-Chem) have also transferred some insights associated with using
5104 this physico-chemical model to simulate elemental carbon concentrations in Thailand in 2017. The
5105 goals were to quantify the respective contributions of local emissions and regional transport
5106 outside Thailand to EC pollution in Thailand, and to identify the most effective emission control
5107 strategy for decreasing EC pollution. The simulated EC concentrations in Chiang Mai, Bangkok,
5108 and Phuket were comparable with the observation data.

5109


5110 Last but not least after more than three years of research collaboration with IEECAS, we have
5111 learned a lot of "the frontier spirit" for pioneering works in atmospheric and sedimentology
5112 research from our Chinese friends. As Mr. Xi Jinping had clearly stated in the 19th National
5113 Congress of the Communist Party of China, which was successfully held in Beijing , that "we
5114 would complete the building of a moderately prosperous society in all respects by 2020, basically
5115 realise socialist modernisation by 2035, and develop China into a great modern socialist country
5116 that is prosperous, strong, democratic, culturally advanced, harmonious, and beautiful by the
5117 middle of the century". China and Thailand are major Asia-Pacific countries, which are, at the
5118 same time, close neighbours and friends. The 19th National Congress will also provide China-
5119 Thailand relations with new opportunities. Without any doubt, this bilateral "Shino-Thai Research
5120 Collaboration" does not only influence the research movement activities under the context of
5121 climate change but also highly impact the long-term cultural and socio-economic prosperity for
5122 both countries.

5123

5124 **Appendix**

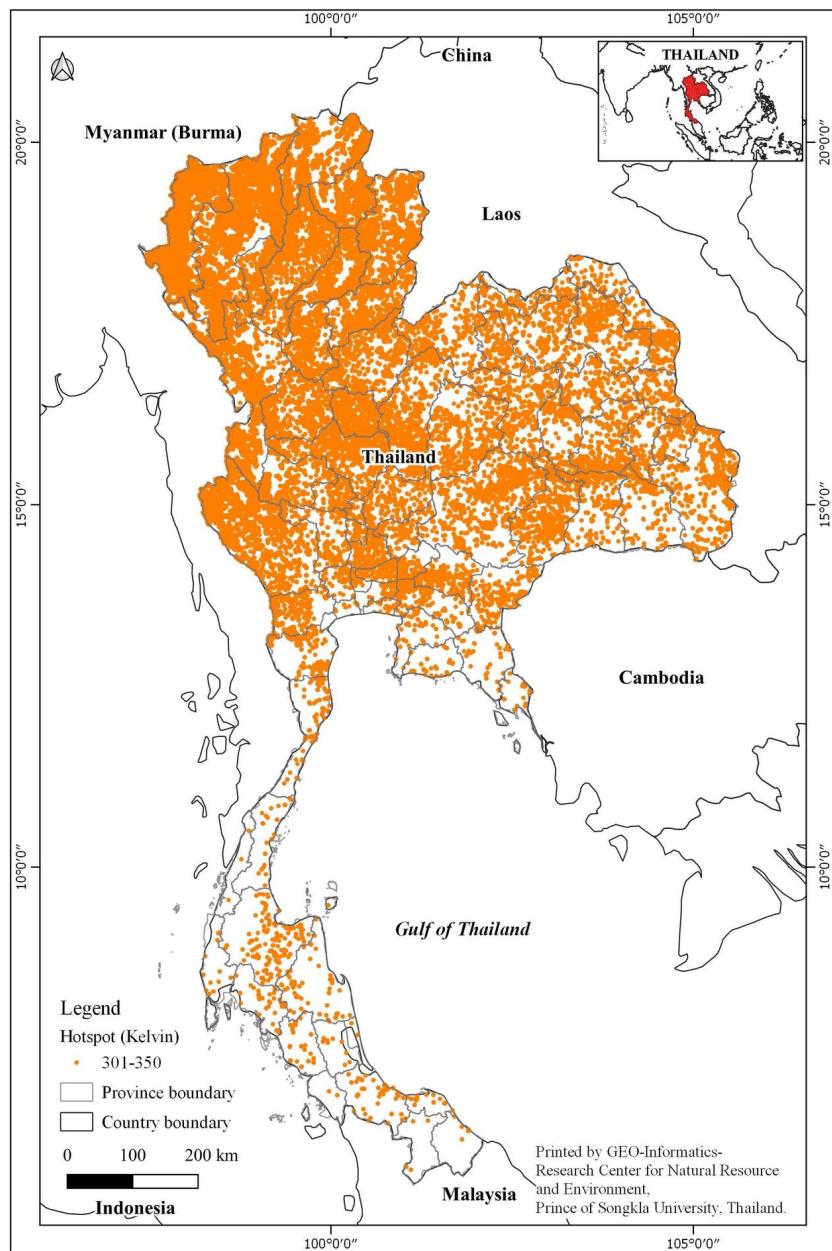

5125 **Appendix 1. Hot spot distribution (200~250 °K) in Thailand in March 2020**

5126

5127

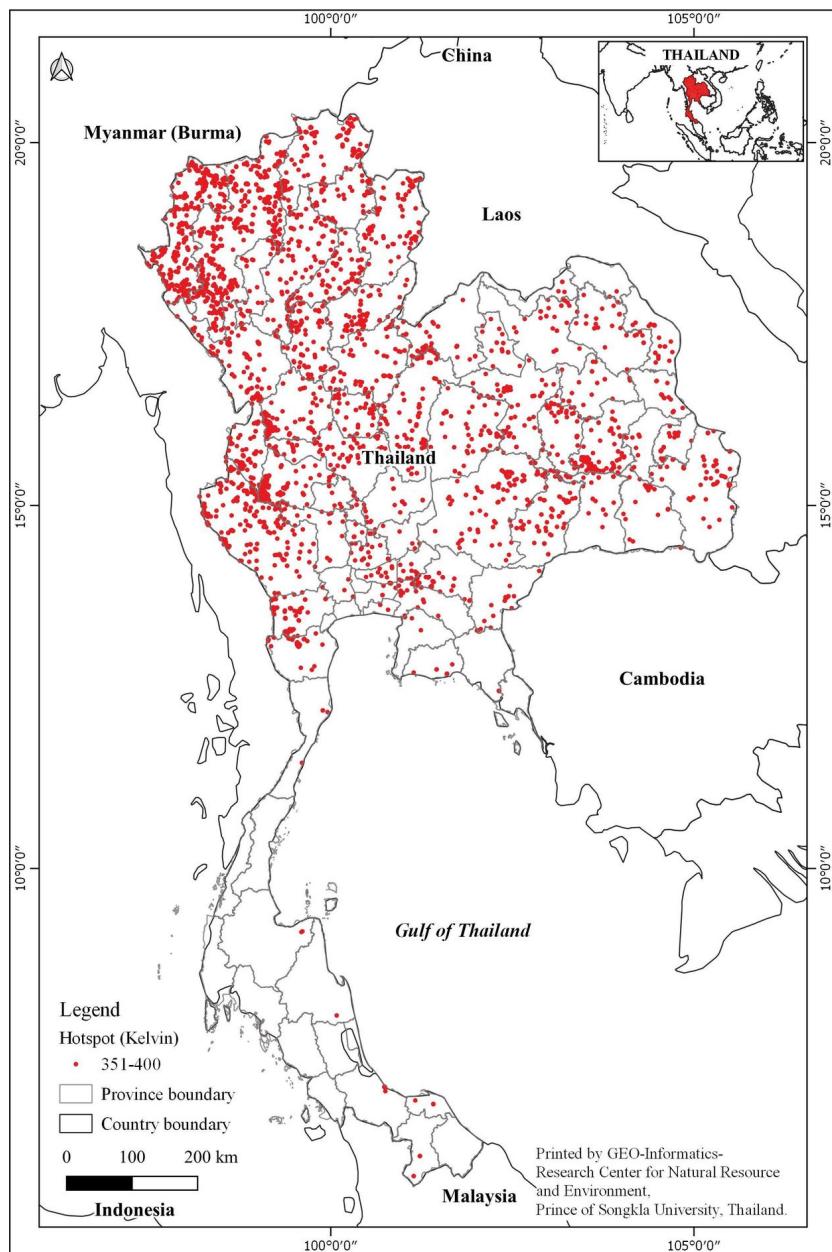
5128 Appendix 2. Hot spot distribution (251~300 °K) in Thailand in March 2020

5129


5130

5131

5132 Appendix 3. Hot spot distribution (301~350 °K) in Thailand in March 2020


5133

5134

5135

5136 Appendix 4. Hot spot distribution (351~400 °K) in Thailand in March 2020

5137

5138

5139

5140 Appendix 5. Analytical results of NIST SRM1941b

ข้อมูล SRM

SRM	CODE	ค่าที่กำกับมา (นนก./ก.นน.)	ค่าที่วิเคราะห์ได้ (นนก./ก.นน.)	%Accuracy
		แท้	ก.นน.แท้	
Phenanthrene	Phe	406±44	464±16	86±4
Fluoranthene	Fluo	651±50	721±45	88±7
Pyrene	Pyr	581±39	538±34	106±7
Chrysene	Chry	291±31	336±25	83±8
Benzo[a]anthracene	B[a]A	335±25	289±26	114±8
Benzo[b]fluoranthene	B[b]F	453±21	480±25	94±6
Benzo[k]fluoranthene	B[k]F	225±18	229±19	100±8
Benzo[e]pyrene	B[e]P	325±25	321±10	101±3
Indeno[1,2,3-cd]pyrene	Ind	341±57	291±14	115±4
Benzo[g,h,i]perylene	B[g,h,i]P	307±45	267±17	113±6

5141

5142

5143

5144

5145

5146

5147

5148

5149

5150 Appendix 6. Analytical results of PAHs (ng Kg⁻¹ dry weight) in Songkla Lake sediments

CORE 1

SL114	Phe	An	Fluo	Pyr	11H-B[a]F	11H-B[b]F	B[a]A	Chry	B[b]F	B[k]F	B[e]P	B[a]P	Ind	D[a,h]A	B[g,h,i]P	Σ PAHs
SL101	11.89	1.97	13.73	16.96	1.91	3.27	2.71	3.91	17.86	2.44	6.58	31.4	34.2	1.11	19.41	169.37
SL102	15.14	2.61	21.17	36.96	2.56	4.64	3.17	4.68	24.6	2.56	10.19	49.38	51.44	0.91	49.19	279.2
SL103	18.2	2.9	25.1	29.53	4.16	7.52	5.08	7.47	20.69	2.72	7.43	35.66	39.2	1.17	20.85	227.67
SL104	16.54	2.75	21.66	25.17	3.68	6.3	3.55	5.73	25.02	2.85	8.24	41.22	39.22	1.07	24.37	227.36
SL105	27.09	4.68	65.93	197.31	4.73	6.69	3.51	7.47	69.04	16.07	7.12	143.76	239.17	1.09	424.01	1217.67
SL106	18.06	2.93	33.88	32.71	10.09	14.41	6.16	15.41	27.79	3.44	9.37	58.69	39.42	1.46	19.98	293.81
SL107	13.7	2.25	32.54	26.98	11.89	16.16	5.28	18.59	11.82	2.59	7.25	38.46	27.99	1.15	11.08	227.72
SL108	18.14	3.22	37.67	35.04	12.32	17.03	5.2	33.43	20.65	2.21	6.63	45.54	25.82	0.96	13.18	277.04
SL109	24.22	3.97	43.44	42.69	14.42	21.03	4.83	52.93	19.27	2.2	5.37	55.32	23.74	1.32	11.75	326.49
SL110	31.3	5.5	38.89	49.18	23.12	36.49	10.74	45.87	24.83	3.04	4.23	90.54	26.82	0.82	8.51	399.88
SL111	43.51	7.19	33.39	41.74	13.66	19.38	3.55	94.75	7.5	2.14	1.35	65.07	13.41	0.38	4.87	351.89
SL112	21.27	5.99	37.06	47.42	21.91	30.78	7.7	121.31	9.01	3.19	2.2	68.95	11.69	0.84	5.55	394.9
SL113	25.65	7.39	33.66	41.48	16.43	25.2	5.56	125.29	13.17	2.56	1.92	124.27	16.31	1.95	7.37	448.2
SL114	30.11	6.32	24.17	29.03	18.01	22.74	5.82	81.45	6.01	2.07	1.05	78.46	10.94	0.75	4.02	320.93
SL115	63.7	7.97	31.92	40.81	14.75	20.91	5.16	96.36	2.55	1	1.2	44.81	10.84	1.12	4.36	347.48
SL116	49.9	8.61	38.06	46.94	25.1	33.63	8.94	89.5	3.74	1.36	1.48	60.25	13.71	0.95	2.64	384.81
SL117	32.12	5.38	23.2	27.33	14.24	20.22	4.56	68.18	2.16	1.63	1.15	61.04	9.5	1.4	2.58	274.69
SL118	17.75	4.96	24.53	27.84	18.44	24.73	6.52	74.69	2.07	1.2	0.83	63.79	11.15	0.94	2.83	282.27
SL119	19.99	4.4	26.18	29.83	23.08	25.92	8.71	71.74	3.71	1.28	0.94	43.51	11.34	0.21	2.57	273.4
SL120	20.24	4.66	31.66	35.24	29.23	31.37	9.51	75.38	4.39	1.71	1.38	66.01	12.92	0.99	2.97	327.66
SL121	19.3	5.45	32.46	40.21	31.64	31.35	10.85	54.64	8.05	2.75	2.96	131.42	22.08	1.38	5.6	400.14
SL122	18.12	4.3	36.02	43.51	31.32	33.3	11.87	37.73	8.21	2.55	2.66	50.68	15.3	0.54	2.34	298.43
SL123	16.03	5.34	35.92	46.95	37.08	43.51	15.76	37.52	11.41	4.11	3.37	93.95	20.03	0.84	4.02	375.84
SL124	24.19	5.73	36.93	66.67	30.04	42.82	7.05	20.2	17.24	4.19	4.84	125.72	21.97	0.58	3.17	411.32
SL125	22.25	4.54	34.32	49.98	21.54	36.63	8.53	16.11	20.66	5.71	7.86	158.22	15.06	0.86	5.62	407.9
SL126	16.81	2.93	15.89	24.35	14.56	23.62	3.55	10.97	11.21	3.65	3.04	77.2	32.86	0.42	3.01	244.07

SL127	11.91	2.97	18.37	23.77	23.35	30.39	15.44	11.57	10.92	4.17	2.63	60.26	28.84	0.83	4.79	250.21
SL128	14.03	3.3	20.11	26.21	33.81	64.24	8.09	22.26	7.54	3.71	4.9	156.45	15.16	1.38	4.83	386.01
SL129	12.85	2.01	12.01	14.78	13.04	22.02	6.48	14.68	4.44	1.67	1.68	53.59	12.65	0.39	2.07	174.35
Average	23.24	4.56	30.34	41.26	17.93	24.7	7.03	45.51	14.33	3.13	4.13	74.95	29.41	0.96	23.36	344.85
S.D.	11.79	1.82	10.75	32.06	9.83	13.34	3.42	37.1	13.14	2.71	2.88	37.38	41.81	0.38	77.7	296.1

CORE 2

α ₀₁₁₄	Phe	An	Fluo	Pyr	11H-B[a]F	11H-B[b]F	B[a]A	Chry	B[b]F	B[k]F	B[e]P	B[a]P	Ind	D[a,h]A	B[g,h,i]P	ΣPAHs
SL201	6.34	1.27	11.22	16.06	7.1	6.77	3.8	6.35	11.15	2.15	5.95	21.17	23.21	0.99	6.71	130.24
SL202	5.56	1.13	14.25	23.78	9.97	9.74	5.89	8.9	16.43	3.24	6.97	22.41	24.2	1.47	6.68	160.62
SL203	5.13	0.84	12.81	18.11	6.92	8.85	3.19	7.33	10.09	2.59	5.04	18.44	20.42	0.55	6.81	127.12
SL204	7.19	0.93	15.58	16.66	18.78	9.65	2.82	7.91	7.02	1.54	3.49	17.8	15.18	0.41	5.07	130.03
SL205	6.33	1.35	17.05	13.77	22.74	10.95	3.23	8.6	7.09	2.44	4.42	33.08	19.44	0.47	6.9	157.86
SL206	5.72	0.73	10	6.23	12.74	5.16	1.85	5.47	8.16	2.26	4.49	26.25	19.65	0.63	6.32	115.66
SL207	5.33	0.82	8.89	4.52	11.48	5.11	1.88	5.08	7.37	1.97	3.63	18.62	16.12	0.85	4.91	96.58
SL208	4.19	0.64	9.04	4.7	11.93	5.77	2.06	5.08	7.26	2.07	3.39	16.33	14.75	0.44	4.22	91.87
SL209	4.93	1.35	14.43	7.16	20.8	10.65	4.3	7.51	14.89	4.16	6.22	33.86	29.2	1.03	8.81	169.3
SL210	2.77	0.39	3.56	2.3	3.86	1.96	0.95	2.16	3.84	1.13	1.57	8.49	8.39	0.22	2.98	44.57
SL211	3.11	0.26	2.13	2.75	1.19	0.54	0.34	0.85	1.69	0.48	0.74	3.49	5.49	0.18	2.86	26.1
SL212	2.08	0.21	1.49	1.23	1.39	0.54	0.39	1.16	1.63	0.38	0.5	2.95	4.16	0.12	1.78	20.01
SL213	3.66	0.23	1.82	1.53	1.18	0.51	0.45	1.15	1.64	0.44	0.55	2.8	4.06	0.11	1.62	21.75
SL214	1.97	0.19	1.81	2.74	1.13	0.55	0.32	0.77	1.47	0.46	0.71	3.25	5.17	0.16	2.89	23.59
SL215	3.78	0.21	2.66	4.79	1.19	0.54	0.37	1.12	1.49	0.42	0.92	3.28	4.58	0.08	3.81	29.24
SL216	1.84	0.19	1.83	3.28	1.2	0.54	0.41	1.01	1.56	0.44	0.74	3.37	5.3	0.17	3.38	25.26
Average	4.37	0.67	8.04	8.1	8.35	4.86	2.02	4.4	6.42	1.64	3.08	14.72	13.71	0.49	4.73	85.61
S.D.	1.7	0.44	5.77	7.11	7.5	4.15	1.72	3.15	4.9	1.16	2.28	11	8.44	0.41	2.12	61.86

CORE 3 (ng kg⁻¹ dry weight)

α ₀₁₁₄	Phe	An	Fluo	Pyr	11H-B[a]F	11H-B[b]F	B[a]A	Chry	B[b]F	B[k]F	B[e]P	B[a]P	Ind	D[a,h]A	B[g,h,i]P	ΣPAHs
-------------------	-----	----	------	-----	-----------	-----------	-------	------	-------	-------	-------	-------	-----	---------	-----------	-------

SL301	7.53	1.31	19.53	16.05	9.92	11.91	4.01	9.22	11.62	2.52	5.76	30.61	24.48	2.01	8.43	164.91
SL302	5.85	1.28	18.18	18.91	11.76	12.16	4.73	9.7	13.44	2.87	6.51	28.65	23.06	1.75	8.33	167.18
SL303	5.59	1.34	17.76	18.66	13.06	13.14	5.78	10.94	14.95	2.76	6.54	23.89	24.82	1.5	6.89	167.62
SL304	5.97	1.45	15.51	16.24	12.35	11.43	5	9.41	15.04	2.99	6.47	21.27	23.15	1.53	6.88	154.69
SL305	5.12	1.19	13.08	13.4	8.79	8.49	4.71	7.86	12.05	2.5	5.2	16.9	19.72	1.36	5.53	125.9
SL306	12.24	0.97	11.68	12.17	6.17	6.08	3.38	6.21	8.27	1.69	3.41	11.46	13.92	0.56	5.4	103.61
SL307	10.8	0.67	9.6	8.93	4.75	4.89	2.53	5.05	8.92	1.65	3.5	11.88	13.28	0.7	4.27	91.42
SL308	4.99	0.72	8.99	8.31	4.5	5.35	2.57	5.69	7.28	1.46	2.9	10.27	11.97	0.68	3.65	79.33
SL309	6.02	0.76	8.3	7.75	4.6	4.69	2.41	5.33	7.44	1.42	2.71	10	11.76	0.68	3.58	77.45
SL310	4.8	0.53	6.05	5.57	2.68	3.01	1.63	3.86	5.69	1.17	2	7.46	9.51	0.7	3.03	57.69
SL311	9.32	0.57	5.63	5.51	2.06	2.25	1.09	3.2	3.94	0.98	1.56	6.13	8.06	0.3	2.87	53.47
SL312	6.54	0.4	4.28	4.08	1.51	1.74	0.81	2.6	4.03	0.85	1.24	5.09	6.48	0.35	2.5	42.5
SL313	7.18	0.27	2.48	2.68	1.56	0.68	0.38	1.69	2.2	0.49	0.69	3.04	4.69	0.2	1.76	29.99
SL314	6.76	0.31	2.49	2.38	1.78	0.88	0.36	1.76	3.08	0.73	0.84	4.54	5.75	0.18	2.17	34.01
SL315	5.44	0.17	1.95	2.21	1.45	0.66	0.3	1.78	2.32	0.56	0.59	3.74	4.55	0.17	2.02	27.91
SL316	6.19	0.32	2.26	2.2	1.24	0.51	0.31	1.09	1.95	0.47	0.51	4.34	4.02	0.12	1.32	26.85
SL317	5.35	0.34	2.15	2.18	1.43	0.64	0.35	1.26	1.88	0.48	0.5	2.66	4.2	0.18	1.53	25.13
SL318	6.89	0.28	2.36	2.18	1.53	0.55	0.33	1.4	1.91	0.43	0.47	2.08	4	0.22	1.15	25.78
SL319	5.08	0.23	1.99	2.14	1.29	0.47	0.33	1.63	2.2	0.58	0.61	2.71	4.92	0.12	1.7	26
SL320	3.86	0.26	2.06	2	1.6	0.58	0.34	1.54	2.04	0.44	0.55	2.31	3.86	0.09	1.59	23.12
SL321	4.08	0.24	1.61	1.62	1.23	0.39	0.24	0.99	1.81	0.41	0.47	2.13	3.69	0.2	1.46	20.57
SL322	5.62	0.26	1.84	1.7	1.19	0.42	0.3	0.97	1.68	0.47	0.45	2.23	3.9	0.16	1.56	22.75
SL323	6.23	0.3	1.98	1.87	1.08	0.36	0.31	0.99	1.91	0.44	0.43	2.07	4.4	0.07	1.5	23.94
SL324	5.21	0.24	1.92	2.01	1.07	0.4	0.3	1.01	1.92	0.42	0.51	2.39	5.08	0.13	1.58	24.19
SL325	2.37	0.21	1.5	1.6	1.14	0.35	0.32	1.17	1.88	0.43	0.47	2.07	4.3	0.16	1.41	19.38
SL326	6.05	0.23	2.45	2.53	1.09	0.47	0.42	1.25	1.64	0.37	0.44	1.98	4.12	0.15	1.62	24.81
SL327	6.58	0.24	2.08	1.98	1	0.34	0.25	0.9	1.43	0.3	0.47	1.78	3.86	0.16	1.34	22.71
SL328	5.14	0.33	2.04	1.96	1.09	0.36	0.34	1.02	1.68	0.35	0.43	1.82	4.3	0.12	1.43	22.41
Average	6.17	0.55	6.13	6.03	3.68	3.33	1.57	3.55	5.15	1.08	2.01	8.05	9.28	0.52	3.09	60.19
S.D.	1.98	0.41	5.84	5.76	3.86	4.25	1.79	3.22	4.52	0.88	2.16	8.54	7.24	0.57	2.25	51.33

5151 Appendix 7. Analytical results of PAHs (ng Kg⁻¹ dry weight) in Nonghan Lake sediments

Core 1

ລວມ	Phe	An	Fluo	Pyr	1H-B[a]F	1H-B[b]F	B[a]A	Chry	B[b]F	B[k]F	B[e]P	B[a]P	Ind	D[a,h]A	B[g,h,i]P	ΣPAHs
HK101	52.31	8.24	42.78	37.01	7.91	11.52	7	13.11	32.5	5.2	12.84	36.51	47.36	1.97	17.5	333.76
HK102	42.05	6.4	38.55	34.33	9.26	12.53	6.09	13.07	33.13	5.6	13.55	44.21	43.6	1.56	15.68	319.61
HK103	44.73	7.71	41.69	34.55	9.63	13.93	7.97	14.8	40.63	7.03	15.83	38.81	54.23	1.81	19.85	353.2
HK104	52.55	7.92	50.14	41.95	10.94	16.15	8.63	17.79	37.63	6.69	15.72	49.71	51.03	1.7	18.6	387.15
HK105	41.11	7.67	40.86	32.92	10.07	14.34	7.25	15.2	39.18	6.59	14.97	42.6	48.7	1.9	17.38	340.74
HK106	46.56	8.29	46.83	41.63	10.79	16.54	8.66	17.81	38.5	6.83	14.85	48.98	49.69	2.27	17.45	375.68
HK107	42.16	7.02	44.49	40.27	14.49	21.49	10.75	21.52	46.77	7.07	17.05	52.02	51.37	2.9	17.78	397.15
HK108	26.3	4.77	39.25	35.76	13.92	22.38	9.16	22.24	45.32	6.5	15.78	46.91	42.53	1.71	14.43	346.96
HK109	30.69	4.27	35.48	34.05	13.34	17.33	6.03	15.84	40.09	6	15.78	83.27	35.84	1.12	13.14	352.27
HK110	20.57	4.4	33.75	29.48	14.04	19.81	8	18.31	39.33	5.48	13.51	44.21	33.03	2.28	11.69	297.89
HK111	19.06	3.69	28.3	25.04	121.03	16.2	5.5	12.83	34.39	4.1	10.29	30.57	23.98	2.37	7.43	344.78
HK112	16.82	4.18	30.86	30.84	15.94	20.12	8.86	16.74	38.96	5.77	11.99	33.84	34.31	2.44	10.22	281.89
HK113	16.42	3.47	25.53	26.51	15.19	16.66	9.13	15.48	40.03	6.28	12.65	37.01	39.96	2.42	11.71	278.45
HK114	13.26	3.47	25	25.21	13.42	16.89	7.31	14.19	36.18	5.28	11.77	27.68	31.59	1.98	8.82	242.05
HK115	12.5	3.21	21.46	24.99	13.55	16.64	8.74	16.88	54.62	7.91	15.83	21.05	38.24	1.49	9.54	266.65
HK116	11.43	3.24	19.9	24.59	12.51	16.76	8.8	18	61.26	6.88	17.73	22.26	41.46	1.45	9.34	275.61
HK117	10.24	2.94	17.28	22.04	11.52	16.27	9.08	20.33	65.82	8.87	20.51	17.25	42.29	1.47	8.77	274.68
HK118	12.74	3.17	18.24	22.84	12.02	17.04	8.93	21.66	86.03	9.64	24.78	20.5	55.02	1.96	12.09	326.66
HK119	14.89	3.7	20.74	26.02	14.77	21.19	11.79	30.53	109.44	14.18	31.63	24.37	62.31	2.05	11.62	399.23
HK120	10.33	3.58	20.16	25.88	15.18	22.52	12.03	30.98	120.05	15.39	32.62	23.41	63.4	2.23	11.78	409.54
HK121	13.84	4.84	29.45	40.86	25.68	36.47	22.39	63.46	203.18	25.89	54.07	30.88	100.99	3.7	16.84	672.54
HK122	18.26	4.2	26.04	36.83	22.92	31.32	17.51	52.6	194.65	20.73	51.83	29.71	76.31	3.07	13.18	599.16
HK123	17.9	4.59	27.14	40.51	26.94	34.43	18.65	54.75	192.1	23.35	51.71	29.83	97.45	2.93	17.81	640.09
HK124	15.49	4.92	30.78	47.83	29.02	41.14	24.97	73.2	274.03	37.04	73.47	38.48	135.59	4.35	23.47	853.78
HK125	21.23	5.78	35.17	62.07	42.12	58.3	34.97	99.7	382.79	42.83	93.67	42.41	159.7	5.74	25.16	1111.64
HK126	24.14	6.02	38.85	64.66	39.08	55.5	32.19	98.17	355.13	43.53	84.5	43.37	128.79	4.25	20.17	1038.35

Average	24.91	5.07	31.87	34.95	20.97	23.21	12.32	31.12	101.61	13.1	28.81	36.92	61.11	2.43	14.67	443.06
S.D.	14.03	1.77	9.52	10.92	22.23	12.39	7.97	25.91	102.27	11.87	24.08	13.77	34.93	1.06	4.69	297.42

Core 2

ລາຍການ	Phe	An	Fluo	Pyr	11H-B[a]F	11H-B[b]F	B[a]A	Chry	B[b]F	B[k]F	B[e]P	B[a]P	Ind	D[a,b]A	B[g,h,i]P	ΣPAHs
HK201	37.12	6.49	36.79	36.79	12.57	16.21	6.77	13.45	32.72	5.28	12.7	29.75	50.18	1.04	17.11	314.97
HK202	38.12	6.89	41.1	42.7	16.39	20.84	8.14	16.71	31.26	5.02	12.84	27.12	48.09	1.33	16.16	332.71
HK203	37.86	6.43	36.04	37.28	10.53	14.43	7.16	13.47	24.87	4.22	10.54	23.34	43.23	2.03	15.31	286.74
HK204	36.31	6.56	37.6	43.29	19.59	25.01	8.81	18.98	35.78	5.62	12.53	29.79	45.91	1.47	15.07	342.32
HK205	19.12	5.2	36.68	43.45	26.56	31.99	8.14	20.19	36.87	4.51	10.8	38.24	37.12	2.42	10.42	331.71
HK206	22.74	5.41	43.94	42.5	24.5	29.4	8.22	16.18	35.95	5.17	10.44	48.7	40.23	1.64	13.17	348.19
HK207	22.92	5.77	44.02	42.02	22.08	29.39	9.2	17.01	45.18	3.95	12.37	47.35	43.97	0.88	12.39	358.5
HK208	26.72	6.33	43.45	43.28	18.66	25.76	9.41	17.75	47.61	6.21	16.68	56.55	52.34	2.5	14.07	387.32
HK209	34.35	5.72	45.81	45.25	18.51	26.13	9.63	20.19	55.02	5.95	16.88	28.13	46.11	2.35	11.82	371.85
HK210	26.05	6.73	41.21	38.38	15.96	26.2	10.1	20.58	66.26	7.71	22.34	38.72	57.72	2.6	13.77	394.33
HK211	17.95	3.93	26.01	22.57	9.26	15.21	4.45	13.01	36.86	4.95	13.46	16.06	32.11	0.75	7.71	224.29
HK212	17.81	4.1	28.03	22.54	9.89	18.46	6.84	15.54	50.86	6.66	16.74	24.72	40.5	0.84	10.43	273.96
HK213	16.97	3.2	21.53	18.92	9.82	14.52	5.01	14.61	42.75	5.57	15.63	18.81	37.46	2.25	8.36	235.41
HK214	11.98	2.87	18.67	17.1	9.25	13.32	4.95	14.72	38.79	6.31	15.46	17.02	36.45	1.03	7.57	215.49
HK215	15.03	1.75	12.35	12.55	7.08	8.54	3.78	11.91	38.35	5.05	13.39	12.43	29.55	0.87	5.46	178.09
HK216	17.22	1.54	12.51	12.94	5.42	8.82	4.48	12.31	36.46	4.15	12.79	12.51	23.98	0.56	4.75	170.44
Average	24.89	4.93	32.86	32.6	14.75	20.26	7.19	16.04	40.97	5.4	14.1	29.33	41.56	1.54	11.47	297.9
S.D.	9.1	1.8	11.44	12.34	6.44	7.55	2.09	2.89	10.13	1.01	3.08	13.36	8.76	0.72	3.83	94.54

Core 3

ອອການ	Phe	An	Fluo	Pyr	11H-B[a]F	11H-B[b]F	B[a]A	Chry	B[b]F	B[k]F	B[e]P	B[a]P	Ind	D[a,h]A	B[g,h,j]P	ΣPAHs
HK301	26.98	3.86	27.09	24.83	7.05	12.13	5.86	13.32	19.14	3.79	8.13	14.16	24.43	1.6	10.36	202.73
HK302	26.13	3.72	23.35	20.7	3.61	9.22	3.5	4.38	12.27	3.18	7.53	13.52	24.94	1.61	11.38	169.04
HK303	35	5	29.63	26.3	2.6	4.76	3.57	4.03	13.17	3.58	7.8	15.92	37	1.5	14.84	204.7

HK304	27.07	3.15	24.32	20.25	2.25	3.88	3.14	2.32	9.46	2.7	5.64	13.98	27.89	1.42	12.58	160.05
HK305	21.84	2.84	19.54	15.5	1.91	3.01	2.38	5.82	9.9	2.51	5.26	12.62	24.03	2.06	10.5	139.72
HK306	17.54	2.29	15.06	12.61	1.68	2.6	1.93	4.26	8.15	1.83	4.65	9.48	19	1.18	8.72	110.98
HK307	18.95	2.75	16.42	15.04	2.64	4.43	2.88	5.52	7.77	1.75	4.68	10.75	19.3	1.29	7.92	122.09
HK308	20.58	3.24	16.7	14.51	4.17	6.47	3.09	2.37	11.22	1.94	4.71	12.02	17.41	1.78	6.83	127.04
HK309	22.04	1.36	18.04	14.15	3.99	6.19	2.39	7.19	13.96	2.01	6.32	9.56	17.25	4.47	6.93	135.85
HK310	17.65	2.47	16.5	10.67	3.42	5.13	2.69	7.31	13.48	2.15	4.86	21.3	18.27	1.3	5.66	132.86
HK311	15.28	2.35	20.17	10.84	4.35	6.3	2.53	3.38	14.38	2.5	4.61	23.86	16.46	2.05	5.32	134.38
HK312	14.89	2.61	25.28	13.7	4.86	6.9	2.84	8.61	12.22	2.07	4.09	23.96	16.74	1.47	5.77	146.01
HK313	13.06	3.1	29.55	16.87	6.41	9.63	3.32	8.7	14.33	2.14	4.76	24.11	18.57	1.81	6.88	163.24
HK314	21.09	5.75	51.73	34.12	16.51	20.13	6	14.79	26.39	3.37	7.86	38.18	26.96	1.12	8.75	282.75
HK315	18.13	5.23	29.14	21.58	10.61	13.48	3.85	7.96	51	5.96	13.34	23.33	36.1	1.72	9.77	251.2
HK316	17.56	6.75	39.37	34.74	21.85	28.29	10.49	19.54	55.25	6.37	16.83	25.09	39.4	1.75	9.82	333.1
HK317	23.06	9.75	56.85	51.44	39.31	49.53	18.22	33.58	82.78	10.17	26.63	26.61	63.12	1.66	13.57	506.28
HK318	26.46	13.32	68.71	55.31	45.22	56.93	24.73	41.86	113.42	14.16	34.05	33.28	80.1	2.5	16.31	626.36
HK319	19.21	7.52	52.57	37.13	32.3	44.39	17.75	41.4	127.85	15.68	35.7	26.75	77.85	2.86	14.03	552.99
HK320	19.9	9.23	55.6	40.89	38.77	48.77	21.45	44.84	147.86	17.73	39.61	40.2	105.14	2.59	17.5	650.08
Average	21.12	4.81	31.78	24.56	12.68	17.11	7.13	14.06	38.2	5.28	12.35	20.93	35.5	1.89	10.17	257.57
S.D.	5.21	3.09	16.39	13.41	14.51	18.02	7.25	14.3	44.22	5.02	11.73	9.25	25.55	0.77	3.64	192.37

5152

5153

5154

5155

5156

5157

5158

5159

5160 Appendix 8. Analytical results of PAHs (ng Kg⁻¹ dry weight) in Phayao Lake sediments

CORE 1

ລະຫັດ	Phe	An	Fluo	Pyr	1IH-B[a]F	1IH-B[b]F	B[a]A	Chry	B[b]F	B[k]F	B[e]P	B[a]P	Ind	D[a,h]A	B[g,h,i]P	Σ PAHs
PY101	2.18	0.16	0.99	0.63	0.16	0.10	0.09	0.39	0.00	0.88	0.00	0.00	0.00	0.00	0.05	5.63
PY102	1.78	0.13	0.83	0.76	0.14	0.05	0.08	0.23	0.02	0.11	0.02	0.02	0.02	0.01	0.03	4.20
PY103	1.83	0.14	0.85	0.78	0.14	0.05	0.08	0.24	0.02	0.11	0.02	0.02	0.02	0.01	0.03	4.32
PY104	1.54	0.10	0.69	0.70	0.11	0.05	0.05	0.14	0.02	0.05	0.00	0.00	0.02	0.00	0.02	3.47
PY105	1.45	0.10	0.55	0.60	0.10	0.03	0.05	0.14	0.01	0.05	0.00	0.00	0.02	0.00	0.02	3.11
PY106	2.38	0.18	1.23	1.32	0.27	0.08	0.19	0.47	0.02	0.13	0.01	0.01	0.01	0.00	0.02	6.30
PY107	1.72	0.09	0.78	0.84	0.15	0.03	0.12	0.35	0.02	0.08	0.01	0.01	0.01	0.00	0.01	4.23
PY108	2.58	0.20	1.34	1.23	0.23	0.10	0.09	0.27	0.04	0.17	0.02	0.02	0.02	0.02	0.04	6.37
PY109	2.95	0.18	1.66	1.61	0.31	0.13	0.17	0.53	0.03	0.21	0.02	0.01	0.02	0.01	0.03	7.86
PY110	2.03	0.14	1.13	1.10	0.21	0.10	0.13	0.40	0.04	0.29	0.02	0.01	0.02	0.01	0.04	5.69
PY111	3.47	0.16	2.73	2.47	0.57	0.24	0.39	1.29	0.04	0.21	0.02	0.00	0.02	0.00	0.03	11.65
PY112	2.71	0.27	1.79	1.46	0.44	0.44	0.41	0.69	0.07	0.23	0.06	0.06	0.56	0.91	0.49	10.58
PY113	4.90	0.41	3.33	3.26	0.91	0.44	0.74	1.95	0.04	0.37	0.02	0.01	0.02	0.03	0.03	16.47
PY114	4.77	0.41	2.30	1.99	0.46	0.27	0.30	0.75	0.04	0.17	0.02	0.01	0.01	0.00	0.03	11.53
PY115	4.38	0.36	2.17	1.95	0.41	0.22	0.33	0.82	0.03	0.27	0.02	0.01	0.00	0.00	0.02	10.99
PY116	1.09	0.12	0.65	0.71	0.19	0.11	0.20	0.39	0.05	0.14	0.03	0.02	0.02	0.01	0.03	3.76
PY117	5.04	0.36	2.73	2.53	0.55	0.29	0.58	1.03	0.04	0.97	0.02	0.01	0.02	0.00	0.03	14.18
PY118	4.75	0.40	3.41	3.21	0.75	0.40	0.60	1.61	0.04	0.24	0.02	0.01	0.02	0.00	0.03	15.50
PY119	4.21	0.36	3.21	3.24	0.80	0.39	0.66	1.73	0.04	0.22	0.02	0.01	0.02	0.00	0.03	14.95
PY120	4.15	0.39	3.14	3.07	0.71	0.40	0.62	1.55	0.04	0.23	0.02	0.01	0.02	0.00	0.03	14.37
PY121	4.18	0.38	3.21	2.96	0.71	0.34	0.50	1.30	0.03	0.16	0.02	0.01	0.02	0.00	0.03	13.85
PY122	4.19	0.40	2.98	3.41	1.01	0.39	0.58	1.45	0.02	0.09	0.01	0.01	0.00	0.00	0.02	14.55
Average	3.10	0.25	1.89	1.81	0.42	0.21	0.32	0.80	0.03	0.24	0.02	0.01	0.04	0.05	0.05	9.25
S.D.	1.32	0.12	1.04	1.03	0.29	0.15	0.23	0.58	0.02	0.23	0.01	0.01	0.12	0.19	0.10	4.68

CORE 2

Sample	Phe	An	Fluo	Pyr	11H-B[a]F	11H-B[b]F	B[a]A	Chry	B[b]F	B[k]F	B[e]P	B[a]P	Ind	D[a,h]A	B[g,h,i]P	Σ PAHs
PY201	1.38	0.13	0.49	0.35	0.42	0.14	0.29	0.45	0.00	0.56	0.05	0.14	0.05	0.00	0.06	4.51
PY202	1.15	0.10	0.41	0.26	0.08	0.06	0.18	0.20	0.07	0.23	0.10	0.06	0.09	0.00	0.12	3.11
PY203	1.15	0.10	0.41	0.26	0.08	0.06	0.18	0.20	0.07	0.23	0.10	0.06	0.09	0.00	0.12	3.11
PY204	1.73	0.20	0.83	0.60	0.18	0.08	0.19	0.31	1.82	0.00	0.30	0.19	0.47	0.00	0.79	7.68
PY205	3.00	0.23	1.55	1.07	0.29	0.23	0.28	0.56	0.03	0.08	0.02	0.01	0.03	0.00	0.05	7.43
PY206	3.40	0.23	1.86	1.24	0.34	0.24	0.30	0.69	0.02	0.10	0.02	0.01	0.04	0.00	0.06	8.56
PY207	2.14	0.15	1.00	0.68	0.19	0.16	0.23	0.38	0.16	0.42	0.14	0.04	0.18	0.00	0.24	6.10
PY208	2.75	0.21	1.68	1.31	0.39	0.27	0.37	0.72	0.18	0.15	0.02	0.01	0.04	0.00	0.05	8.15
PY209	2.95	0.24	1.54	1.12	0.31	0.22	0.34	0.63	0.03	0.06	0.02	0.01	0.04	0.00	0.05	7.56
PY210	3.24	0.28	1.59	1.13	0.05	0.26	0.32	0.80	0.02	0.00	0.00	0.04	0.04	0.00	0.06	7.82
PY211	2.12	0.16	0.82	0.68	0.04	0.09	0.12	0.30	0.03	0.08	0.00	0.00	0.00	0.00	0.06	4.50
PY212	1.82	0.33	1.16	1.13	0.00	0.24	0.27	0.00	0.03	0.00	0.02	0.01	0.04	0.00	0.05	5.09
PY213	2.32	0.20	1.27	1.25	0.38	0.25	0.32	0.67	0.03	0.10	0.02	0.02	0.04	0.00	0.05	6.91
PY214	2.77	0.28	1.29	1.33	0.40	0.29	0.46	0.78	0.03	0.07	0.02	0.01	0.03	0.00	0.04	7.79
PY215	4.05	0.41	2.63	2.86	0.99	0.60	0.86	1.65	0.03	0.08	0.02	0.01	0.03	0.00	0.05	14.27
PY216	1.77	0.17	0.71	0.73	0.26	0.16	0.17	0.39	0.02	0.00	0.02	0.01	0.04	0.00	0.04	4.51
PY217	2.47	0.22	0.99	1.11	0.34	0.25	0.31	0.00	0.03	0.00	0.02	0.04	0.04	0.00	0.05	5.85
PY218	1.85	0.20	0.95	1.05	0.39	0.28	0.00	0.55	0.02	0.07	0.02	0.01	0.02	0.00	0.04	5.45
PY219	2.14	0.33	1.02	1.04	0.40	0.29	0.26	0.65	0.03	0.07	0.02	0.01	0.03	0.00	0.03	6.32
PY220	1.86	0.29	0.74	0.75	0.21	0.19	0.15	0.24	0.03	0.08	0.00	0.00	0.00	0.00	0.00	4.53
PY221	3.55	0.33	1.56	1.51	0.46	0.36	0.35	0.76	0.02	0.07	0.02	0.01	0.03	0.00	0.04	9.08
PY222	3.52	0.34	1.29	1.21	0.38	0.25	0.24	0.52	0.02	0.10	0.00	0.00	0.03	0.00	0.00	7.89
PY223	3.07	0.29	1.94	2.59	0.97	0.31	0.89	1.61	0.06	0.14	0.04	0.04	0.07	0.00	0.09	12.12
PY224	3.07	0.29	1.94	2.59	0.97	0.31	0.89	1.61	0.06	0.14	0.04	0.04	0.07	0.00	0.09	12.12
PY225	3.22	0.24	1.02	1.07	0.26	0.26	0.15	0.43	0.03	0.00	0.00	0.00	0.00	0.00	0.08	6.75
PY226	2.53	0.16	0.52	0.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.70
PY227	1.23	0.10	0.68	0.73	0.27	0.22	0.27	0.50	0.02	0.14	0.00	0.08	0.03	0.00	0.03	4.29
PY228	3.81	0.26	2.25	2.31	0.81	0.61	0.44	1.01	0.03	0.11	0.00	0.00	0.04	0.00	0.05	11.75
PY229	1.85	0.25	0.90	0.91	0.28	0.24	0.23	0.34	0.13	0.33	0.00	0.00	0.00	0.00	0.00	5.47
PY230	3.04	0.32	1.68	1.82	0.56	0.45	0.25	0.51	0.03	0.05	0.00	0.00	0.00	0.00	0.00	8.69
PY231	0.77	0.07	0.78	0.79	0.34	0.26	0.12	0.36	0.02	0.05	0.00	0.00	0.00	0.00	0.00	3.56
PY232	0.77	0.06	0.76	0.80	0.38	0.23	0.12	0.30	0.00	0.06	0.00	0.00	0.00	0.00	0.00	3.48
PY233	0.59	0.09	0.56	0.72	0.28	0.24	0.33	0.54	0.00	0.15	0.02	0.01	0.02	0.01	0.00	3.55
PY234	0.77	0.08	0.53	0.70	0.23	0.19	0.21	0.39	0.02	0.03	0.01	0.01	0.02	0.00	0.02	3.22
PY235	1.44	0.14	1.06	1.41	0.47	0.38	0.38	0.76	0.02	0.04	0.01	0.01	0.00	0.00	0.00	6.12
PY236	2.28	0.25	1.63	2.37	0.77	0.59	0.51	1.05	0.02	0.07	0.01	0.01	0.02	0.01	0.04	9.63
PY237	1.49	0.15	1.01	1.41	0.47	0.34	0.28	0.66	0.03	0.07	0.02	0.01	0.02	0.00	0.03	6.00

PY238	2.53	0.26	0.69	0.87	0.22	0.15	0.09	0.20	0.05	0.08	0.02	0.02	0.03	0.00	0.05	5.25
PY239	1.26	0.12	0.60	0.82	0.28	0.22	0.19	0.43	0.03	0.07	0.02	0.01	0.02	0.00	0.04	4.12
PY240	2.22	0.21	1.03	1.47	0.47	0.34	0.29	0.64	0.03	0.09	0.02	0.01	0.03	0.01	0.04	6.91
PY241	1.47	0.13	0.42	0.52	0.15	0.09	0.06	0.11	0.03	0.10	0.03	0.02	0.05	0.00	0.04	3.22
PY242	0.43	0.02	0.22	0.34	0.12	0.09	0.08	0.18	0.03	0.08	0.03	0.02	0.03	0.00	0.05	1.73
PY243	3.30	0.31	0.99	1.57	0.37	0.26	0.24	0.52	0.03	0.06	0.02	0.02	0.04	0.00	0.05	7.77
PY244	0.01	0.07	0.16	0.04	0.03	0.02	0.05	0.05	0.08	0.00	0.00	0.02	0.00	0.06	0.34	0.93
PY245	0.02	0.02	0.18	0.03	0.04	0.04	0.08	0.13	0.09	0.02	0.01	0.02	0.00	0.03	0.33	1.03
Average	2.10	0.20	1.05	1.09	0.34	0.24	0.27	0.53	0.08	0.10	0.03	0.02	0.04	0.00	0.08	6.17
S.D.	1.03	0.10	0.57	0.66	0.25	0.14	0.20	0.39	0.27	0.11	0.05	0.04	0.07	0.01	0.13	2.94

5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

Appendix 9. Raw data of chemical species in PM_{2.5} Collected at Chiang-Mai

No	Sample ID	m ³	hours	TC ug/m ³	OC ug/m ³	EC ug/m ³	OC/EC	OC1 ug/m ³	OC2 ug/m ³	OC3 ug/m ³	OC4 ug/m ³	EC1 ug/m ³	EC2 ug/m ³	EC3 ug/m ³	OP2 ug/m ³	OP5 ug/m ³	EC1-OP2	F- ug/m ³	Cl- ug/m ³	NO2- ug/m ³	NO3- ug/m ³	NO42- ug/m ³	Ns+ ug/m ³	NH4+ ug/m ³	K+ ug/m ³	Mg2+ ug/m ³	Cs2+ ug/m ³	
1	CM 1	21.60	72.00	21.46	16.51	4.95	3.33	0.21	2.52	6.62	7.16	4.70	0.22	0.03	0.00	2.62	4.70	0.14	0.38	0.00	0.98	10.31	1.70	0.19	1.05	0.09	1.45	
2	CM 2	21.60	72.00	20.23	17.06	3.17	5.38	0.19	2.30	6.81	5.50	4.98	0.28	0.17	0.26	2.76	2.72	0.12	0.34	0.00	0.00	5.97	1.75	0.19	0.84	0.07	1.43	
3	CM 3	21.60	72.00	32.81	26.82	5.99	4.48	0.30	4.69	11.37	10.46	5.42	0.33	0.24	0.00	2.83	5.42	0.14	0.34	0.27	1.51	5.21	1.79	1.59	1.90	0.13	1.44	
4	CM 4	21.60	72.00	5.97	5.38	0.59	9.17	0.09	0.83	2.16	1.25	1.54	0.10	0.00	1.05	1.09	0.48	0.09	0.35	0.26	0.77	3.07	1.44	0.70	0.45	0.10	0.87	
5	CM 5	21.60	72.00	17.36	15.44	1.92	8.02	0.18	2.23	5.77	5.26	3.61	0.22	0.09	1.99	1.59	1.62	0.11	0.30	0.34	1.08	10.75	1.59	2.83	1.38	0.13	1.23	
6	CM 6	21.60	72.00	19.47	16.16	3.27	4.94	0.24	2.38	5.96	4.59	4.99	0.20	0.00	1.83	3.17	3.17	0.11	0.30	0.22	1.08	10.68	3.61	1.38	0.14	1.39		
7	CM 7	21.60	72.00	20.84	18.24	2.44	12.04	0.20	8.53	0.03	4.45	3.97	3.29	0.13	0.00	1.52	1.40	1.77	0.18	0.34	0.01	4.53	1.65	1.06	0.99	0.11	1.21	
8	CM 8	21.60	72.00	32.56	28.30	7.26	3.48	0.29	4.59	11.38	8.75	7.10	0.34	0.20	0.00	3.40	5.72	6.70	0.10	0.30	0.29	0.90	6.53	1.66	1.87	0.13	1.57	
9	CM 9	21.60	72.00	15.98	12.98	3.00	4.33	0.20	1.86	5.01	3.97	4.77	0.17	0.01	1.95	2.65	2.83	0.08	0.30	0.26	0.60	8.34	1.81	1.86	1.14	0.13	1.44	
10	CM 10	21.60	72.00	15.18	12.18	3.00	4.06	0.12	1.66	4.87	4.47	3.88	0.17	0.01	1.06	2.54	2.82	0.11	0.32	0.26	0.55	8.47	1.65	2.26	1.07	0.11	1.16	
11	CM 11	21.60	72.00	13.66	11.65	2.01	5.79	0.15	1.69	4.55	3.58	3.55	0.15	0.01	1.70	2.33	1.85	0.11	0.40	0.24	0.73	6.50	1.52	1.58	0.97	0.11	1.09	
12	CM 12	21.60	72.00	15.12	12.68	2.48	5.12	0.15	1.83	5.22	4.03	3.77	0.17	0.00	1.47	1.90	2.31	0.12	0.30	0.30	0.74	5.56	1.48	1.53	0.97	0.10	1.26	
13	CM 13	21.60	72.00	19.43	16.03	3.40	4.71	0.19	2.23	6.59	4.65	5.56	0.20	0.01	2.36	2.74	3.20	0.11	0.31	0.00	0.95	4.77	1.71	0.98	1.14	0.13	1.35	
14	CM 14	14.40	48.00	15.43	13.12	2.31	5.68	0.09	1.88	4.72	3.86	4.67	0.21	0.00	2.56	2.35	2.10	0.15	0.58	0.44	1.23	8.58	2.26	2.05	1.07	0.15	1.47	
15	CM 15	21.60	72.00	26.22	20.52	5.74	3.98	0.23	3.16	8.83	8.34	5.47	0.20	0.00	1.00	2.76	5.48	0.14	0.33	0.26	1.41	1.61	2.44	1.37	0.12	1.44		
16	CM 16	21.60	72.00	15.88	11.56	2.53	5.14	0.18	2.42	2.27	2.20	1.13	0.00	0.00	1.07	1.00	1.00	0.06	0.26	0.26	0.55	1.29	1.28	0.24	0.16	0.89		
17	CM 17	21.60	72.00	18.32	15.40	2.92	5.26	0.15	2.19	6.52	4.23	4.99	0.24	0.00	2.31	2.39	2.68	0.10	0.32	0.31	0.79	5.07	1.58	0.86	1.14	0.11	1.35	
18	CM 18	21.60	72.00	13.70	11.14	2.56	4.34	0.06	1.49	4.34	3.40	4.22	0.19	0.00	1.84	1.84	2.38	0.10	0.44	0.42	0.54	10.77	1.88	2.37	1.02	0.13	1.29	
19	CM 19	21.60	72.00	6.97	5.97	0.00	5.97	0.12	1.05	2.54	1.42	1.66	0.19	0.00	0.85	1.11	0.81	0.09	0.35	0.55	0.71	3.00	1.50	0.69	0.49	0.10	1.01	
20	CM 20	21.60	72.00	5.83	5.00	0.83	0.60	0.01	0.78	1.99	1.36	1.52	0.16	0.00	0.85	0.81	0.66	0.08	0.37	0.53	0.66	7.22	1.22	1.77	0.56	0.11	0.93	
21	CM 21	21.60	72.00	6.88	6.00	0.85	7.12	0.00	0.79	3.08	3.13	1.44	0.18	0.00	0.77	0.77	0.67	0.11	0.46	0.33	0.54	1.45	1.05	0.26	0.20	0.07	0.92	
22	CM 22	21.60	72.00	3.65	3.31	0.38	9.81	0.10	0.53	1.97	0.62	0.37	0.05	0.00	0.08	0.17	0.29	0.07	0.85	0.34	0.56	0.65	1.31	0.24	0.29	0.13	0.10	1.01
23	CM 23	21.60	72.00	3.43	2.91	0.52	5.63	0.05	0.51	1.36	0.70	0.66	0.15	0.00	0.29	0.33	0.37	0.08	0.38	0.00	0.40	1.42	1.20	0.20	0.15	0.10	0.71	
24	CM 24	21.60	72.00	26.22	20.52	5.74	3.98	0.24	3.16	8.83	8.34	5.47	0.20	0.00	1.00	2.76	5.48	0.14	0.33	0.26	1.41	1.61	2.44	1.37	0.12	1.44		
25	CM 25	21.60	72.00	17.04	14.00	2.92	5.06	0.06	0.55	4.53	3.50	3.89	0.09	0.00	1.19	1.41	1.95	0.06	0.31	0.30	0.41	8.87	1.36	1.37	1.17	0.13	1.75	
26	CM 26	21.60	72.00	13.60	11.95	2.04	5.06	0.06	1.92	2.05	2.05	1.92	0.00	0.00	1.19	1.22	1.68	0.06	0.26	0.26	0.49	1.38	1.22	1.28	0.27	0.17	1.75	
27	CM 27	21.60	72.00	3.58	3.31	0.27	12.37	0.01	0.51	1.86	0.67	0.34	0.06	0.00	0.13	0.22	0.21	0.08	0.58	0.46	0.43	0.69	1.07	0.21	0.22	0.15	0.16	1.50
28	CM 28	21.60	72.00	3.11	2.70	0.41	6.54	0.00	0.46	1.40	0.62	0.52	0.12	0.00	0.22	0.28	0.30	0.08	0.43	0.31	0.45	0.57	0.73	0.25	0.17	0.10	0.95	
29	CM 29	21.60	72.00	2.95	2.59	0.38	7.19	0.00	0.40	1.37	0.57	0.48	0.13	0.00	0.26	0.27	0.23	0.10	0.37	0.43	0.48	1.06	1.05	0.26	0.17	0.10	0.92	
30	CM 30	21.60	72.00	3.86	3.49	0.37	9.52	0.05	0.38	2.25	0.58	0.49	0.10	0.00	0.23	0.24	0.26	0.09	0.37	0.40	0.45	0.76	1.02	0.25	0.16	0.13	0.88	
31	CM 31	21.60	72.00	4.05	3.54	0.51	6.91	0.08	0.50	1.73	0.77	0.83	0.14	0.00	0.45	0.44	0.37	0.10	0.37	0.44	0.96	1.01	0.20	0.16	0.09	0.85		
32	CM 32	21.60	72.00	5.59	4.80	0.80	6.02	0.08	0.56	2.26	1.23	1.31	0.15	0.00	0.67	0.74	0.65	0.08	0.31	0.48	0.49	2.63	1.20	0.44	0.23	0.10	0.91	
33	CM 33	43.20	144.00	0.74	0.67	0.07	10.00	0.03	0.16	0.00	0.00	0.00	0.01	0.01	0.05	0.01	0.05	0.08	0.19	0.18	0.45	0.00	0.00	0.03	0.27			
34	CM 34	21.60	72.00	2.05	2.05	0.38	5.42	0.04	0.34	1.14	0.10	0.14	0.01	0.00	0.15	0.22	0.23	0.10	0.52	0.38	0.49	0.06	0.47	0.21	0.19	0.11	0.72	
35	CM 35	21.60	72.00	3.37	2.95	0.24	7.01	0.10	0.44	2.05	0.35	0.34	0.09	0.00	0.06	0.13	0.14	0.05	0.49	0.45	0.55	1.22	0.28	0.28	0.05	0.17	1.75	
36	CM 36	21.60	72.00	2.02	1.69	0.33	5.09	0.00	0.30	1.09	0.30	0.26	0.08	0.00	0.00	0.23	0.26	0.09	0.38	0.35	0.45	1.94	1.10	0.21	0.16	0.11	0.76	
37	CM 37	21.60	72.00	2.52	2.20	0.32	6.87	0.06	0.43	1.12	0.45	0.36	0.09	0.00	0.13	0.17	0.23	0.09	0.39	0.64	0.56	1.47	1.17	0.25	0.17	0.10	0.87	
38	CM 38	21.60	72.00	2.01	1.62	0.38	4.23	0.01	0.31	0.97	0.34	0.26	0.12	0.00	0.06	0.16	0.26	0.08	0.42	0.30	0.37	0.56	0.55	0.26	0.20	0.08	0.71	
39	CM 39	28.80	96.00	1.18	1.08	0.18	5.61	0.01	0.25	0.59	0.15	0.11	0.07	0.00	0.11	0.11	0.06	0.29	0.23	0.26	1.03	0.86	0.15	0.12	0.08	0.53		
40	CM 40	21.60	72.00	4.86	4.59	0.27	17.15	0.30	1.10	2.48	0.52	0.33	0.13	0.00	0.20	0.25	0.13	0.12	0.38	0.00	0.48	0.97	1.					

20	Bkk 20	21.3	71	6.78	5.07	1.72	2.95	0.00	0.86	2.51	1.28	1.98	0.15	0.00	0.41
21	Bkk 21	21.6	72	5.03	3.81	1.22	3.12	0.00	0.63	1.81	0.94	1.38	0.27	0.00	0.44
22	Bkk 22	19.8	66	6.15	4.07	2.08	1.96	0.00	0.70	2.22	1.12	1.92	0.19	0.00	0.03
23	Bkk 23	15.21	50.7	8.48	6.77	1.71	3.96	1.17	1.40	2.67	1.19	1.70	0.35	0.00	0.34
24	Bkk 24	20.7	69	5.73	4.62	1.11	4.16	0.00	0.92	2.18	1.13	1.30	0.20	0.00	0.39
25	Bkk 25	21.6	72	5.81	4.74	1.06	4.46	0.09	0.87	2.15	1.05	1.51	0.13	0.00	0.58
26	Bkk 26	18	60	6.08	5.23	0.85	6.15	0.00	0.90	2.56	1.27	1.16	0.20	0.00	0.50
27	Bkk 27	21.6	72	6.93	5.26	1.67	3.14	0.00	0.99	2.38	1.31	2.02	0.22	0.00	0.56
28	Bkk 28	21.6	72	8.08	5.26	2.82	1.86	0.03	0.92	2.62	1.39	2.98	0.14	0.00	0.30
29	Bkk 29	11.55	38.5	8.35	6.79	1.57	4.33	0.00	1.09	3.44	1.56	1.95	0.33	0.00	0.71
30	Bkk 30	16.8	56	7.85	5.84	2.01	2.90	0.00	0.93	2.90	1.37	2.34	0.31	0.00	0.64
31	Bkk 31	17.55	58.5	7.12	5.80	1.32	4.38	0.00	0.82	2.98	1.35	1.69	0.29	0.00	0.65
32	Bkk 32	12.9	43	7.82	6.45	1.37	4.70	0.00	1.24	3.24	1.39	1.64	0.31	0.00	0.57
33	Bkk 33	20.4	68	7.07	5.05	2.03	2.49	0.00	0.83	2.46	1.20	2.38	0.21	0.00	0.56
34	Bkk 34	11.28	37.6	9.16	7.26	1.90	3.81	0.00	1.14	3.69	1.65	2.36	0.33	0.00	0.79
35	Bkk 35	10.62	35.4	11.68	8.91	2.78	3.20	0.00	1.58	4.39	2.11	3.19	0.41	0.00	0.83
36	Bkk 36	15.24	50.8	12.43	9.75	2.68	3.64	0.00	1.49	4.30	2.70	3.60	0.33	0.00	1.25
37	Bkk 37	17.73	59.1	12.52	8.95	3.57	2.51	0.00	1.36	4.14	2.44	4.27	0.30	0.00	1.00
38	Bkk 38	21.69	72.3	3.58	2.79	0.79	3.52	0.00	0.47	1.53	0.59	0.80	0.19	0.00	0.20
39	Bkk 39	16.2	54	3.05	2.64	0.40	6.56	0.00	0.38	1.70	0.57	0.24	0.16	0.00	0.00
40	Bkk 40	21.72	72.4	3.48	2.84	0.64	4.42	0.00	0.49	1.56	0.58	0.65	0.21	0.00	0.21
41	Bkk 41	23.16	77.2	8.40	5.47	2.92	1.87	0.00	0.97	2.48	1.41	3.37	0.17	0.00	0.62
42	Bkk 42	21.66	72.2	7.00	4.82	2.17	2.22	0.00	0.85	2.20	1.21	2.57	0.17	0.00	0.57
43	Bkk 43	21.6	72	9.56	6.93	2.63	2.63	0.00	1.08	3.03	1.85	3.41	0.19	0.00	0.97
44	Bkk 44	21.6	72	5.30	4.25	1.05	4.04	0.00	0.69	2.05	0.98	1.44	0.15	0.00	0.54
45	Bkk 45	21.54	71.8	10.19	7.59	2.60	2.92	0.00	1.15	3.04	2.36	3.35	0.29	0.00	1.03
46	Bkk 46	18.15	60.5	8.66	6.94	1.72	4.04	0.02	1.07	2.86	1.96	2.48	0.27	0.00	1.04
47	Bkk 47	20.19	67.3	9.13	7.40	1.74	4.26	0.01	1.08	2.91	2.20	2.73	0.21	0.00	1.21
48	Bkk 48	21.66	72.2	7.39	5.49	1.91	2.88	0.00	0.94	2.41	1.43	2.46	0.16	0.00	0.71
49	Bkk 49	21.81	72.7	10.32	7.72	2.60	2.96	0.00	1.29	3.14	2.42	3.30	0.17	0.00	0.86
50	Bkk 50	21.72	72.4	7.59	5.74	1.85	3.10	0.00	0.98	2.63	1.48	2.37	0.14	0.00	0.66
51	Bkk 51	22.2	74	8.93	6.81	2.12	3.22	0.00	1.01	3.09	1.73	2.93	0.16	0.00	0.98
52	Bkk 52	16.86	56.2	8.59	6.70	1.88	3.56	0.13	1.22	3.23	1.31	2.43	0.28	0.00	0.82
53	Bkk 53	21.6	72	6.75	5.56	1.18	4.71	0.05	0.91	2.50	1.35	1.71	0.22	0.00	0.75
54	Bkk 54	20.58	68.6	7.48	5.93	1.55	3.83	0.06	0.92	2.56	1.53	2.22	0.18	0.00	0.85
55	Bkk 55	18.09	60.3	10.91	8.55	2.37	3.61	0.08	1.39	3.72	2.21	3.24	0.28	0.00	1.15
56	Bkk 56	21.66	72.2	8.25	6.40	1.85	3.46	0.04	0.94	2.92	1.65	2.55	0.14	0.00	0.85
57	Bkk 57	21.69	72.3	7.89	6.65	1.24	5.37	0.04	0.95	2.67	2.06	2.02	0.16	0.00	0.93
58	Bkk 58	21.9	73	9.10	7.61	1.49	5.12	0.06	1.12	3.22	2.20	2.34	0.17	0.00	1.02
59	Bkk 59	21.6	72	2.99	2.72	0.27	9.96	0.00	0.51	1.58	0.46	0.30	0.15	0.00	0.17
60	Bkk 60	21.6	72	15.32	10.59	4.73	2.24	0.13	1.66	5.20	3.59	4.51	0.22	0.00	0.00
61	Bkk 61	21.87	72.9	29.06	22.75	6.31	3.60	0.29	3.57	10.73	8.16	5.88	0.29	0.14	0.00

62	Bkk 62	21.18	70.6	25.95	19.52	6.43	3.04	0.30	3.18	8.88	7.16	6.25	0.18	0.00	0.00
63	Bkk 63	21.63	72.1	17.70	13.21	4.49	2.94	0.22	2.07	5.71	5.21	4.22	0.19	0.08	0.00
64	Bkk 64	21.66	72.2	12.99	8.61	4.39	1.96	0.17	1.60	3.68	3.16	4.20	0.19	0.00	0.00
65	Bkk 65	21.51	71.7	15.37	10.74	4.62	2.32	0.24	1.84	4.86	3.81	4.42	0.20	0.00	0.00
66	Bkk 66	21.84	72.8	14.96	10.73	4.24	2.53	0.15	1.81	4.88	3.89	4.03	0.21	0.00	0.00
67	Bkk 67	21.69	72.3	10.20	7.17	3.03	2.36	0.10	1.28	3.02	2.04	3.55	0.21	0.00	0.72
68	Bkk 68	21.63	72.1	11.52	7.72	3.80	2.03	0.10	1.47	3.36	2.75	3.62	0.21	0.00	0.03
69	Bkk 69	21.84	72.8	14.87	10.57	4.30	2.46	0.13	1.75	5.01	3.67	4.11	0.18	0.01	0.00
70	Bkk 70	21.78	72.6	17.43	13.48	3.96	3.41	0.12	2.06	6.93	4.37	3.74	0.21	0.00	0.00
71	Bkk 71	21.63	72.1	12.07	8.75	3.32	2.63	0.16	1.43	3.45	2.53	4.31	0.19	0.00	1.18
72	Bkk 72	21.63	72.1	8.72	6.90	1.82	3.78	0.23	1.32	2.79	1.66	2.48	0.25	0.00	0.91
73	Bkk 73	21.6	72	19.30	14.70	4.60	3.20	0.19	2.41	7.04	5.05	4.35	0.23	0.02	0.00

5180

5181 Appendix 11. Raw data of chemical species in PM_{2.5} Collected at Phuket

N o	Sampl e ID	TC m 3	OC ho urs	EC ug/ m3	OC/ EC ug/ m3	OC 1 m3	OC 2 m3	OC 3 m3	EC 1 m3	EC 2 m3	EC 3 m3	OP 5 m3	OP 5 m3	ECI- OP2 F- Cl- NO 2- 3- ug/ m3	NO 2- 3- ug/ m3	NO 42- ug/ m3	SO 4- ug/ m3	Na + ug/ m3	NH 4+ ug/ m3	K+ 2+ ug/ m3	Mg + ug/ m3	Ca2 + ug/ m3					
1	1	21	72	3.78	3.24	0.53	6.07	0.03	0.57	1.74	0.67	0.62	0.15	0.00	0.23	0.46	0.38	0.09	0.35	0.00	0.32	2.18	1.12	0.21	0.19	0.11	0.88
2	2	21	72	3.80	3.20	0.60	5.29	0.01	0.61	1.57	0.71	0.76	0.15	0.00	0.30	0.50	0.46	0.09	0.41	0.30	0.58	2.35	1.40	0.22	0.29	0.11	0.92
3	3	21	72	4.06	3.48	0.58	5.98	0.00	0.66	1.78	0.70	0.76	0.16	0.00	0.34	0.51	0.42	0.09	0.46	0.33	0.76	1.38	1.22	0.30	0.25	0.10	0.75
4	4	21	72	3.63	3.13	0.49	6.34	0.00	0.59	1.61	0.64	0.65	0.14	0.00	0.30	0.44	0.35	0.10	0.46	0.29	0.57	1.08	1.22	0.20	0.29	0.10	0.89
5	5	21	72	3.06	2.54	0.52	4.84	0.00	0.51	1.35	0.51	0.54	0.15	0.00	0.16	0.35	0.38	0.09	0.48	0.34	0.61	1.08	1.13	0.21	0.26	0.10	0.84
6	6	21	72	4.12	3.46	0.66	5.22	0.07	0.60	1.70	0.81	0.80	0.14	0.00	0.27	0.56	0.52	0.07	0.35	0.26	0.64	3.79	1.47	0.30	0.51	0.11	1.20
7	7	21	72	3.61	2.87	0.74	3.89	0.00	0.69	1.19	0.70	0.80	0.23	0.00	0.29	0.47	0.51	0.09	0.45	0.00	0.67	5.41	1.40	0.82	0.33	0.12	1.04
8	8	21	72	3.09	2.49	0.60	4.12	0.05	0.48	1.21	0.55	0.64	0.16	0.00	0.20	0.38	0.44	0.09	0.50	0.29	0.53	3.62	1.57	0.31	0.26	0.11	0.85
9	9	21	72	3.17	2.31	0.86	2.69	0.00	0.47	1.26	0.59	0.68	0.18	0.00	0.00	0.25	0.68	0.08	0.44	0.27	0.55	5.36	1.90	0.40	0.39	0.14	1.26
10	10	21	72	4.28	3.27	1.01	3.23	0.00	0.56	1.77	0.93	0.83	0.18	0.00	0.00	1.01	0.83	0.09	0.38	0.62	0.69	3.93	1.57	0.43	0.33	0.12	1.13
11	11	21	72	3.63	3.01	0.62	4.83	0.03	0.57	1.51	0.66	0.70	0.15	0.00	0.23	0.44	0.47	0.09	0.38	0.26	0.41	1.01	0.72	0.20	0.20	0.06	0.75
12	12	21	72	3.26	2.84	0.42	6.78	0.10	0.56	1.54	0.49	0.44	0.13	0.00	0.16	0.36	0.28	0.10	0.45	0.52	0.61	1.35	1.31	0.24	0.18	0.11	0.86
13	13	21	72	2.81	2.24	0.58	3.89	0.03	0.44	1.24	0.53	0.45	0.13	0.00	0.00	0.26	0.45	0.09	0.48	0.51	0.49	1.54	1.22	0.20	0.17	0.11	1.01
14	14	21	72	2.11	1.83	0.28	6.41	0.00	0.45	0.96	0.34	0.26	0.09	0.00	0.07	0.26	0.19	0.08	0.38	0.32	0.40	0.84	0.65	0.23	0.17	0.08	1.03
15	15	21	72	2.44	2.06	0.38	5.36	0.00	0.41	1.25	0.37	0.34	0.07	0.00	0.03	0.41	0.31	0.11	0.78	0.38	0.57	1.73	1.95	0.00	0.17	0.18	1.03
16	16	21	72	2.84	2.28	0.56	4.04	0.01	0.52	1.22	0.52	0.44	0.13	0.00	0.00	0.41	0.44	0.08	0.47	0.00	0.53	3.49	1.98	0.00	0.22	0.16	1.03
17	17	21	72	2.93	2.49	0.44	5.72	0.13	0.52	1.24	0.52	0.39	0.13	0.00	0.08	0.39	0.31	0.09	0.69	0.26	0.61	2.31	1.72	0.00	0.18	0.14	0.90
18	18	21	72	6.35	5.48	0.87	6.28	0.00	0.82	2.90	0.95	1.59	0.09	0.00	0.81	1.68	0.79	0.09	0.50	0.57	0.50	0.50	1.40	0.21	0.19	0.11	0.97
19	19	21	72	2.48	2.14	0.34	6.24	0.02	0.51	1.03	0.44	0.35	0.13	0.00	0.15	0.31	0.21	0.08	0.66	0.26	0.67	4.45	2.29	0.21	0.23	0.23	1.11
20	20	21	72	2.77	2.36	0.41	5.72	0.03	0.48	1.17	0.52	0.46	0.12	0.00	0.16	0.33	0.30	0.10	0.42	0.57	0.60	1.51	1.03	0.23	0.19	0.10	0.97
21	21	21	72	1.97	1.63	0.34	4.75	0.00	0.44	0.83	0.31	0.27	0.12	0.00	0.05	0.24	0.22	0.08	0.64	0.33	0.56	2.19	1.35	0.22	0.21	0.14	0.90
22	22	21	72	2.17	1.75	0.42	4.18	0.00	0.40	0.98	0.31	0.37	0.10	0.00	0.05	0.32	0.31	0.10	0.58	0.40	0.57	1.31	1.25	0.21	0.17	0.12	0.95
23	23	21	72	1.62	1.45	0.17	8.30	0.01	0.31	0.94	0.19	0.14	0.03	0.00	0.00	0.18	0.14	0.12	0.40	0.73	0.53	0.39	1.04	0.21	0.18	0.11	0.94

5182

5183