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Preface

I was delighted to respond to an invitation from Prof. Dr. Junji Cao, a deputy director of
Institute of Earth Environment, Chinese Academy of Sciences (IEECAS) to join an
international project funded by National Natural Scineces Foundation of China (NSFC)
and Thailand Research Fund (TRF) under the topic of Climate Change & Climate
Variability Research in Monsoon Asia. It is a topic well enough investigated by Western
researchers in the past, but has become increasingly important during these early years
of the 21t Century in Asian countries. I believe therefore that there is a place for a
geochemist like me and that notwithstanding the immense activity in the research area
the report will have a reasonable shelf life. This is because it constantly connects the
argumentation to the fundamentals of physics and chemistry associated with aerosols and
other environmental compartments, and these do not change with time.

To have appreciated each and every one of the previous studies I have drawn on would
not only have lengthened the report to no real purpose but, more seriously, might even
have been a distraction to a reader. I wish that this appreciation in the preface of such
sources will suffice.

I am hopeful that graduate students will benefit from the report as well as those already
professionally involved with atmospheric pollution, climate sciences, atmospheric
chemistry, paleoclimate and limnology. I am very much hoping that it will of use to those
involved in argumentation of such matters in the media. I shall be delighted to hear from
readers who have comments or suggestions to make.

Prof. Dr. Siwatt Pongpiachan
School of Social & Environmental Development (SSED)

National Institute of Development Administration (NIDA)
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Chapter I

Introduction

1.1 Research Background

Biomass burning (BB) has been a pollution source for over 300 million years in
history. It plays a role of ‘catalyst’ affecting the whole ecosystem on earth. BB emitting
large amounts of trace gases and aerosol particles that play important roles in atmospheric
chemistry and climate (1). Carbonaceous aerosol (including organic carbon/OC and black
carbon/BC) is the major pollutant produced by BB, accounting for 60-80% of the total

pollutants.

BC affect the Earth's temperature and climate by altering the radiative properties of
the atmosphere. The magnitude of the direct radiative forcing from black carbon itself
exceeds that due to CH4, suggesting that black carbon may be the second most important
component of global warming after CO2 in terms of direct forcing [Jacobson, 2001].
Estimates of the direct radiative effect of BC complied by Bond et al. [2013] range between
0.1 and 1.63 W/m2. Besides, BC mixed with other aerosol components can serve as cloud
condensation nuclei. These particles may thus substantially influence cloud microphysical
and optical properties. An effect that could have repercussions for the radiation budget and
the hydrological cycle in the tropics. However, OC is often held responsible for light
scattering effect which can lead to global cooling. Thus, a number of researches indicate
that the OC/EC ratio can be used as an index for the aerosol radiation effect. In addition,
brown carbon, the absorbing component of OC associated with biomass burning absorbs
light primarily at the low visible wavelengths and the near ultraviolet range of the
spectrum; therefore, BrC also has significant radiative forcing impacts on the Earth’s

atmospheric energy balance and even climate change (2, 3).
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Although BC is a minor component of aerosol (usually it only accounts for a few
to ten percent), due to its unique physical and chemical properties as well as the synergy
with other aerosol, it still have significant impacts on air quality and global climate system.
The different percentage of BC from aerosol mass showed geographical divergence,
closely related to the emission source (4). Tropical Southeast (SE) Asia is an active
biomass-burning region as a result of the increasing deforestation and agricultural activities
[Stott, 1988; Christopher and Kimberly, 1996]. BB serves to clear land for shifting
cultivation, to convert forests to agricultural and pastoral lands, and to remove dry
vegetation in order to promote agricultural productivity and the growth of higher yield
grasses, with the characteristics of large-emission, high-diversity, and relative
concentration of burning time in the region. Christopher and Kimberly [1996] have
identified east-central India and the region containing Thailand, Laos, Cambodia and
Vietnam as the two major areas of biomass burning in India and SE Asia (5). The BC
emission from SE Asia could be transferred to the downwind areas (including the east coast
of China and even high-altitude region) under the guidance of the monsoon (see Fig. 1.1),
and its impact is a key concern. In recent years, scientific attention has shifted from the
role of black carbon as a pollutant to its importance as a driver of climate change in SE
Asia. For instance, Lau, Kim and Kim (6) suggest that increased dust loading coupled with
black carbon emission from local sources in northern India during late spring may lead to
an advance of the rainy periods and subsequently an intensification of the Indian summer
monsoon. The enhanced rainfall over India is associated with the development of an
aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia
(Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the

adjacent oceanic regions; thinning of glaciers over the Himalayas caused by BC deposition

(.



111

112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

esterlies

S L

-
-*

U{I:'nl'lml ‘
LU
Convergent Flow
ortheast” ~
Monsoon

Figure. 1.1. Conceptual model for climatological circulation pattern in March for high-
altitude and low-level transport pathways by westerly and northeast monsoon flows (8)

Although earth’s atmospheric energy balance owing to BC has been recognized
widely, great uncertainty still exists in assessing the climate change effects of BB emitting
BC in SE Asia region; the main bottleneck are that 1) no sufficiently long-term and targeted
ground-based observations in Southeast Asia; 2) the lack of assessment in different
combustion ways; 3) the climate effects of black carbon and homology pollutants from BB
are still controversial. Firstly, most researches of BC and its climate effects are conducted
in South Asia (mostly in Indo-Gangetic plain), but rarely in SE Asia. Secondly, two
different combustion ways (flaming combustion and smoldering combustion) have been
found having divergent results of emission. Flaming combustion has been found having
more BC while the smoldering has more OC. Moreover, as to PAHs, flaming contributes
more than smoldering does. This divergence causes different effects on radiation, climate
as well as monsoon precipitation. Finally, biomass burning in SE Asia is an important
source of BC and other homologous contaminants (organic carbon, sulfates, and gas
precursors) in this region. Climate effects of BC and homologous pollutants shows not only
opposing effects but also regional differences, such as, positive radiative forcing from BC
but negative from other homologous aerosols. And aerosol demonstrates a stronger effect
on continents than marine, on high latitude than low one, on East Asia than other regions

at the same latitude.



133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

At present, the urgent need for understand BC and its climate change effects have
been recognized by scientists as well as governments, and research projects has been taken
in SE Asia gradually. For example, BASE-ASIA (Biomass-burning Aerosols in South-East
Asia: Smoke Impact Assessment) and the 7-SEAS (7-South-East Asian Studies)/Dongsha
Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA,
respectively, to characterize the chemical, physical, and radiative properties of biomass-
burning emissions near the source regions, and assess their effects. Chuang, Chou,
Sopajaree, Lin, Wang, Sheu, Chang and Lee (9) is the first study to characterize the
chemistry of biomass-burning aerosols near the source region in the northern SEA, i.e.,
border of Thailand and Myanmar (at Doi Suthep, near Chiang Mai city) where highly
intense fires happen nearby. Their results suggest the biomass-burning aerosols are mainly
produced by smoldering softwood. The biomass-burning plume from northern SEA was
sampled at several locations along the transport pathway. Plume signatures were observed
at LABS in central Taiwan (10), above boundary layer over Hong Kong (5, 11), and
possibly even near the surface in the southern Taiwan (12). These studies provide the first
relatively complete dataset of aerosol chemistry and physical observations conducted in
the source/sink region in the northern SE Asia, with particular emphasis on the marine
boundary layer and lower free troposphere. However, reviewing these researches, most of
them are short-term observations and lacking of specificity (e.g. feedback mechanisms
between BC and Asian monsoon cycle, etc.), which impedes further discussions on

characteristics and the impact of BC producing from biomass burning in SE Asia.

For a better understanding of direct and indirect climate effects from biomass
combustion BC, and improve the accuracy of model simulation in predicting future climate
change trends, it’s necessary to explore the history of biomass burning through BC in
sediment. Before the industrialization, biomass combustion was the only source of BC in
atmosphere. Therefore, to study the history of biomass combustion can facilitate us to
understand the effect of BC exerted on climate; also assist us to predict the future climate
change and biomass combustion trend. In Asia however, on one hand we lack the history
log of the long-term biomass burning, on the other, the majority of previous biomass

combustion history were restructured through charcoal, so the divergence of combustion
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methods were never considered by any researchers before. Hence, researches on the

connection between climate change and carbonaceous aerosol emission are limited.

Recently, the applicant reconstructed the combustion history of flaming
combustion and smoldering combustion in North America via experiments with different
types of char-soot (13). Soot is a common residue of smoldering combustion, which
reserves the features of the original organic substance. Char, by contrast, can be found rich
after flaming combustion. Although in previous researches most of them claim that char
is the primary form of BC while the sediments and soil researches emphasize on soot, in
fact, whatever aerosol or sediments, those two forms of carbon compounds are ubiquitous.
However, due to the difference in physi-chemical characteristics, the transport trajectories
are different. To be more specific, the transport of char often occurs in a relatively short
distance in regions, while the soot always travels far across continents. Furthermore, our
research will involve the verification on the hypothesis that soot in sediments are from
atmosphere. Also because of the divergence of OC/EC between char and soot, we
reconstruct atmospheric soot concentration history through that in sediments. This serves
as a new approach of predicting the long-term OC/EC ratios and also makes it possible for
understanding and quantifying the interactive effect between carbonaceous aerosol and
climate change. In addition, the applicants also found that flaming combustion often
occurred in dry area, smoldering by contrast often happened in wet area. Therefore, we
generated a hypothesis that more flaming wildfires occurring in dry regions, more
smoldering wildfires in wet regions. They have different OC and BC emissions, especially,
higher OC/BC in wet regions and lower OC/BC in dry regions. Thus, OC/BC ratios, which
are the key factor influencing on climatic effects of carbonaceous aerosols (14), can be
evaluated, and this can be used in modeling studies. What we want to do is to confirm this
hypothesis through the comparison of wildfire history (the Holocene), smoldering and
flaming, in both wet, say Thailand, and dry regions, say western China. The comparison of
carbonaceous aerosol compositions will be also conducted to support our hypothesis. In
addition, biomass burning source emissions will be tested in different fuels and different

loading (wet and dry).
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In spite of various studies associated with OC/EC in atmospheric particles around
the world, the number of publications related with carbonaceous aerosols in Thailand is
strictly limited. In 2013, Pongpiachan et al (2013) reported the estimation of gas-particle
partitioning coefficients (Kp) of carcinogenic polycyclic aromatic hydrocarbons in
carbonaceous aerosols collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand by using
Dachs-Eisenreich model (15). This is the first study to assess the diurnal variation of
OC/EC in PMI10 collected at three different altitudes in urban atmosphere of Southeast
Asian cities. Dachs-Eisenreich model highlights the crucial role of adsorption in gas-
particle partitioning of low molecular weight PAHs, whereas both absorption and
adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in
urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor
role in gas-particle partitioning of PAHs in Chiang-Mai, Bangkok and Hat-Yai. Recently,
Pongpiachan et al (2015) published the study of effects of day-of-week trends and vehicle
types on PM2.5-bounded carbonaceous compositions in Science of the Total Environment
(16). The application of diagnostic binary ratios of OC/EC and estimations of secondary
organic carbon (SOC) coupled with autocorrelation plots (Box and Jenkins) highlight the
enhanced impacts of traffic emissions, especially from diesel vehicles, on PM2.5-bound
carbonaceous compositions on weekdays relative to weekends. Hierarchical cluster
analysis (HCA) coupled with principal component analysis (PCA) underline the
importance of diesel emissions as the primary contributors of carbonaceous aerosols,
particularly during weekdays. The spatial and temporal distribution of carbonaceous PM10
was assessed in eight air quality observatory sites in Bangkok from February to December
2007 (17). The relatively low OC/EC ratios observed in Bangkok highlight the influence
of transportation sector in governing carbonaceous aerosols, particularly in heavy traffic
congestion area. Three-dimensional plots of principal components (PCs) successfully
discriminate “traffic emission” group from those of “urban residential background” group.
Over the past decades, there are many studies analyze OC/EC coupled with PAHs in core
sediments in different locations around the world. Since PAHs are widely considered as a
consequence of imperfect combustions of hydrocarbon, various investigations have been
attempted to connect PAHs with historical trends of atmospheric black carbon in lake

sediment record (18-20). Despite the countless number of publications associated with
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PAHs in various environmental compartments in different countries, there are only a few

studies related with this topic in Thailand (21-26).

Above all, the impact of black carbon aerosols on climate has become one of the
hot topics in the international atmospheric research field. However, the divergent regional
climate effects are generated by such a large amount of biomass combustion in SE Asia,
especially the medium-term and long-term effects on regional climate exerted by different
combustion modes are still poorly understood. Therefore, it is urgent for us to carry out a
more systemic and in-depth research in this field. This will provide scientific basis for
China and SE Asia in sustainable social and economic development and ecological
management. On the other hand the severe particulate air pollution from BB in SE Asia,
provides a unique platform for scientists worldwide to obtain new insights into many
aspects of atmospheric chemistry and physics and its climate effects. This calls for

international collaboration.

This proposed project is based on the collaborative research project "Climate
Change (Climate Change & Climate Variability Research in Monsoon Asia)" of National
Natural Science Foundation of China (NSFC) and Thailand Research Foundation (TRF) in
2016. And the proposed topic is in line with ‘2.2 Land surface, their impacts and

interactions with climate’ application requirements in the guide of TRF.

This project is proposed by Siwatt Pongpiachanof the School of Social and
Environmental Development, National Institute of Development Administration (NIDA),
Thailand, and Yongming Han, a professor from the Institute of Earth Environment, Chinese
Academy of Science. The applicant, Siwatt Pongpiachan, has devoted himself to the study
on air quality in Thailand, especially the environmental and health effects of VOCs in
carbonaceous aerosols, since he worked in the School of Social and Environmental
Development, National Institute of Development Administration (NIDA). Thanks to his
diverse abroad study experience, his group established a good cooperative relationship with
world-famous scientific institutions in Japan, England and China (Hongkong included),

and became one of the best groups on aerosol study in Thailand. The Chinese partner, the
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Key Laboratory of Aerosol Chemistry and Physics (KLACP) at the Institute of Earth
Environment, Chinese Academy of Sciences (IEECAS), focuses on chemical nature and
sources of particulate matter as well as model studies of air pollution in China. With over
50 publications per year and around 2000 citations of their work per year, the KLACP is
recognized as one of the world-leading groups in the characterization of chemical and
physical properties of aerosol particles and their sources in urban, rural, mountain, desert,
and pristine Tibet-Qinghai regions, as well as modelling studies of air pollution with
regional and global models e.g., WRF-CHEM, CMAQ, MOZART. Since 1980’s, KLACP
has accomplished aseries of aerosol observation campaigns around China. Tens of
representative urban and rural sites were established, among which 10 are for continuous
observations, including Sanya and Yulong Mountain sites in this project. Over the past 10
years, the KLACP has coordinated several large field measurement campaigns with world-
leading groups including the Desert Research Institute, University of Minnesota,
University of Washington, NOAA, PSI and the Polytechnic University of Hong Kong. The
KLACP was also the first laboratory established in China for carbonaceous aerosol studies.
The KLACP pioneered the first nationwide summertime and wintertime carbonaceous
aerosol studies in China (14 cities) in 2003, leading to the first picture of particulate air
pollution in China (Cao et al., 2007) (27). Multi-discipline techniques, including systematic
observation, analytical method development, record re-construction, and numeral
simulation, were integrated in this lab to enrich the fundamental understanding of black

carbon climatology.

Since 2010, when Siwatt Pongpiachan began his post-doctoral research in KLACP,
a strong collaboration has successfully been established between his group and the KLACP
at CAS. In January 2015, the President of NIDA, Assoc. Prof. Pradit Wanarat visited the
KLACP and signed a Memorandum Of Understanding (MOU) with IEECAS, reaching a
consensus about all-dimensional cooperation in the exchange of faculty members and
students, joint research activity, organization seminars, etc. With the support of this
agreement, a PhD candidate in the KLACP, Wei Chong, firstly conducted an aerosol
observation experiment for a month from March to May 2015 in Thailand. Recently, Prof.

Cao Junji in the KLACP was invited to attend the first International Conference on Disaster

10
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Management: From the Polar Regions to the Local Communities and give a plenary
presentation. During the conference, Prof. Cao discussed the joint project in depth with
Assoc. Prof. Dr. Siwatt Pongpiachan, which further strengthened the collaboration between

these two groups and will be a perfect basis for a successful joint Chinese-Thailand project.

1.2 Objectives

In this study, we will do researches on three subjects. The first one focuses on the
history of biomass burning in the past 2000 years from lake sediments, its emissions, and
their relations with climate change, which will provide a understanding of the mechanical
relationship between biomass burning and climate change. The second one is the
distribution and physicochemical characteristics of black carbon by aerosol observations,
which will provide the key parameters for radiative forcing simulations and will test the
hypothesis in paleo-wildfire study. The last one is the impacts of biomass burning on the
radiation and monsoon precipitation in Asia from model simulations. Thus, this research

has three objectives listed below:

1) We will collect 6 lake sediment cores in different climatic zones and
reconstruct the wildfire history including both flaming and smoldering
combustion in the Asia in the middle- and low-latitude Asian regions covering
the past 2000 years. The relationship among the climatic zones, vegetation
types, the combustion types, and carbonaceous aerosol emissions from
biomass burning will be put forward.

2) We will find out the transport and evolution characteristics of black carbon;
obtain the particle size distribution, mixing state, optical property, and
hygroscopic characteristics of black carbon at a high time resolution scale; and
establish the connection between aerosol radioactive forcing and these
characteristics of black carbon mentioned above.

3) Using the WRF-Chem model, we will find out the radiative effects of
carbonaceous aerosol emitted from biomass burning in the middle- and low-

latitude Asian regions; discuss its influence on monsoon precipitation, and

11
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forecast the trend of biomass burning, its emissions and their direct and

indirect climate effects in the next 30 years.

1.3 Expected Outcomes

1y
2)

3)
4)
5)
6)
7)
8)
9)

The variations of wildfires overview map or based historical map

The intrinsic mechanism of the occurrences of biomass burning with climate
change

WRF-Chem dynamical and chemical transport model

Biomass burning distribution maps

Impacts of carbonaceous aerosols

Decision making guidelines for local government

2-4 international high-quality papers

Corroborations between Thailand and China.

Capacity building; research assistants, student

10) Websites

12
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357 This study was composed with three phases. Firstly, the history of biomass burning and

358  atmospheric soot was carefully studied by the collection of lake sediment cores. Paleoclimate
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parameters such as *C, 2!°Pb and '*’Cs coupled with OC/EC were deliberately characterized and
statistically analyzed. Secondly, the chemical characterization of PMa.s were conducted by using
GC-MS/MS and DRI Model 2001 Thermal/Optical Carbon Analysis (TOR/TOT). All
physicochemical properties (e.g. hygroscopic, CCN, optical property, mixing states, and size
distribution) were monitored online. Thirdly, the climatic simulation of biomass burning influence
was assessed by using WRF-CHEM model, which is composed of photochemical module,
microphysics and radiative module. In addition, the schematic diagram of research methodology

was clear illustrated in Fig. 2.1.

2.1.1 History of biomass burning in the past 2000 years, its emissions,

and their relations with climate change

12 sediment cores covering the past ~2,000 years will be collected from 6 lakes
(three from Tailand, namely, Phayao Lake, Bueng Ken Lake, and Songkhla Lake; and three
from China, namely, Qinghai Lake, Lugu Lake, and Tengchong Maar Lake) with different
climatic zones and different annual precipitation rates using a kind of gravity core. Two
parallel cores will be collected from each lakes. Sampling slices will be done in the field
works at 0.5-3 c¢m intervals with approximately time resolutions of ~3-20 years. '“C
(radiocarbon) analysis from selected charcoal materials of sediment cores will be used for
chronology reconstruction. ¥’Cs and 2!°Pb analysis will be conducted to date the

chronology of the different sediment cores for the past ~150 years.

Black carbon (BC), char, and soot concentrations will be measured using the
thermal-optical method, which will be used for the historical reconstruction of wildfires,
flaming and smoldering combustion, and atmospheric soot concentrations in the past 2,000
years. 13C stable isotope and pollen will be quantified to reconstruct the paleo-climate
variations. PAHs, and OPAHs will be analyzed for recent sediments covering the past
~150 years to compare with the BC, char and soot results to test the effectiveness of our
reconstruction of the wildfire history since both BC and PAHs originate mainly from
burning. The relative contributions of flaming and smoldering combustion will be found
out by the char/soot ratios in sediment cores. Meanwhile, the relative emissions of

carbonaceous aerosol (organic and black carbon) from biomass burning will be evaluated

14
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from the relative contributions of flaming to smoldering fires in the past 2,000 years. The
comparison of wildfire history including both flaming and smoldering combustion with
paleo-climate (wet and dry) parameters indicated by pollen and !*C data in different zones

will give us the mechanism understanding the relationship between will fire and climate.

2.1.2 Distribution and physicochemical characteristics of black carbon
In this subject, we plan to take one year-round PMz s samples simultaneously at low
latitude area of Asian, Phuket, Thailand, as well as Sanya, Sansha, and Mt. Yulong, China.
The concentrations of black carbon will be quantified to investigate their temporal and
spatial distribution. The ME-2 receptor model will be used to study the contributions of
different sources on black carbon mass, while the regional atmospheric chemistry model
will be used to quantify the contributions from local and regional transport. The regional
atmospheric chemistry model will also be used to understand the evolution characteristics
of black carbon during monsoon and non-monsoon. The intrinsic relationship between the
physical and chemical properties of black carbon aerosol and the aerosol radiative forcing

will be investigated to improve the key parameters in the radiative transfer model.

2.1.3 Impacts of biomass burning on the radiation and monsoon
precipitation in Asia

We will apply the state-of-art regional WRF-Chem dynamical and chemical
transport model and emission inventories of biomass burning estimated by MODIS
monitoring to assess the impacts of biomass burning in Southeast Asia on Asian climate.
In order to better separate the direct and indirect climate effects of biomass burning on the
radiation and monsoon precipitation in Asia, an aerosol-radiation module, photochemistry
module and a new activation algorithm for cloud condensation nuclei (CCN)/ ice nuclei
(IN) are developed in WRF-Chem model. In this proposal, we will also evaluate the
potential impacts of biomass burning on Asian climate due to the activity data and emission

control in the next decades.

2.2 Chemical analysis of PAHs
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2.2.1 General information of PAHs

PAHs are a class of very stable organic molecules made up of only carbon and hydrogen
and contain two to eight fused aromatic rings. PAHs are formed during incomplete
combustion of organic materials such as fossil fuels, coke and wood. These molecules
were oriented horizontal to the surface, with each carbon having three neighboring atoms
much like graphite. The structures of a variety of representative PAHs can be seen in Table
2.1. Epidemiological evidence suggests that human exposures to PAHs, especially B[a]P
are high risk factors for carcinogenic and mutagenic effects. There are hundreds of PAH
compounds in the environment, but only 16 of them are included in the priority pollutants
list of US EPA. Many PAHs have also been identified as cancer-inducing chemicals for
animals and/or humans. In 1775, the British surgeon, Percival Pott, was the first to
consider PAHs as toxic chemicals with the high incidence of scrotal cancer in chimney
sweep apprentices. Occupational exposure of workers by inhalation of PAHs-both volatile
and bound to respirable particulate matter- and by dermal contact with PAHs-containing
materials, occurs at high levels during coke production, coal gasification, and iron and
steel founding. Coke oven workers have a 3- to 7- fold risk increase for developing lung

cancer.

For this reason, the monitoring of PAHs in environmental media is a reasonable approach
to assess the risk for adverse health effects. Since the fate of PAHs in the natural
environment is mainly governed by its physiochemical properties, the study of general
properties of the compounds is of great concern. It is well known that aqueous solubility,
volatility (e.g. Henry’s law constant of air/water partition coefficient, octanol/air partition
coefficient), hydrophobicity or lipophilicity (e.g., n-octanol/water partition coefficient) of
PAHs vary widely (Mackay and Callcot, 1998), the differences among their distribution
in aquatic systems, the atmosphere, and the soil are significant. Molecular weight and

chemical structure influence physical and chemical properties between individual PAHs.
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The vapour pressure and water solubility basically decrease with the increasing molecular
weight. The fate of PAHs in the environment is largely determined by physiochemical
property, as a result, high mobility of low molecular weight species can be expected. On
the other hand, PAHs are also quite involatile, and have relatively low vapour pressure
and resistance to chemical reactions. As a consequence PAHs are persistent in the
environment and demonstrate a tendency to accumulate in biota, soils, sediments, and are

also highly dispersed by the atmosphere. Furthermore, PAHs become more resistant to

biotic and abiotic degradation as the number of benzene rings increase.

Table 2.1. Chemical structures of PAHs.

Congener | Abbreviation | M.W. [g] Chemical Structure
Acenaphthylene Ac 152 a
Acenaphthene Ace 154 /U\
= | AN
\/\/
Fluorene F1 166 Y% | PN |/\
NS =
Phenanthrene Ph 178 6
Anthracene An 178
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3-Methyl Phenanthrene 3-MePh 192 6
CH3
9-Methyl Phenanthrene 9-MePh 192 CH3
1-Methyl Phenanthrene 1-MePh 192 6 CH3
2-Methyl Phenanthrene 2-MePh 192 6
G-
1-methyl-7-isopropyl Ret 234 | H,C
phenanthrene (Retene) OO CH;
CH,
Fluoranthene Fluo 202 O
Pyrene Py 202 I [
Benz[a]anthracene Bla]A 228 l
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Chrysene Chry 228 'l 'l
Triphenylene Tri 228 ‘igl
! | X
\/
Benzo[b]fluoranthene B[b]F 252 PN
‘ ;/
Benzo[j]fluoranthene B[/IF 252 i
Benzo[k]fluoranthene B[k]F 252 O
Benzo[e]pyrene B[e]P 252 I !
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Benzo[a]pyrene

B[a]P

252

2

Perylene

Per

252

Indenol[/,2,3-cd]pyrene

Ind

276

Benzo[g,h,i]perylene

Blg,h,i]P

276

Anthanthrene

Ant

276

Dibenzo[a, h]anthracene

D[a,h]A

278

Coronene

Cor

300
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2.2.2 Chemical extraction of PAHs

2.2.2.1 Materials
All solvents are HPLC grade, will be purchased from Fisher Scientific. The EPA 16 PAH

surrogate cocktail in methanol (100 ug ml') which will be used as internal standard will
be obtained from Greyhound/Chemserve. Silica gel (0.040—0.063 mm) will be purchased
from Merck. Soxhlet thimbles and glass fiber filters will be obtained from Whatman
(Maidstone, UK). All materials used (silica gel, glass and cotton wool, GFFs etc.) were
Soxhlet extracted with DCM for 24 h, and kept dry (in desiccator) until use. Quartz fibre
filters will be cleaned by baking at 550 °C overnight. All glassware will be cleaned by
washing with decanted water before drying at 55 °C, and rinsed with DCM just before

use.

2.3.2 Sampling Extraction

The extraction of PAHs will be conducted using 250 ml of Soxhlet extractors. After PMz 5
determination, the QMFs will be divided in to two parts using stainless scissors. After
that, the Soxhlet extraction of PM s filter samples and PM s filter blanks will be placed
inside the Soxhlets, spiked with a known amount of internal standard (deuterated PAHs),
and extracted with DCM for 24 h.

2.3.3 Fractionation/cleanup and Blow-down Process

The fractionation/cleanup process followed the method reported by Gogou et al (1996).
After the extraction, the DCM solvent will be concentrated to dryness by a combination
of rotary evaporation and blowing under a gentle nitrogen stream (see Fig. 2.2). The
concentrated extract is then diluted in 10 ml of n-hexane before application to the top of

a disposable silica gel column. The extract is then fractionated into individual compound
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classes by flash chromatography on silica gel as follows: The concentrate will be applied
to the top of a 30 x 0.7 cm diameter column, containing 1.5 g of silica gel (activated at
150 °C for 3 h). Nitrogen pressure will be used to in order to obtain a flow of 1.4 ml min
I at the bottom of the column. The following solvents will be used to elute the different
compound classes: (1) 15 ml n-hexane (fraction 1, light molecular weight PAHs); (2) 15
ml toluene-n-hexane (5.6:9.4) (fraction 2, middle and heavy molecular weight PAHs). In
consideration of the toxicity of the solvent and the solubility of PAHs, toluene will be
selected for the study. After the fractionation, the eluates will be concentrated by using
rotary evaporator followed by the evaporation under a gentle nitrogen stream (set flow
rate at 1.0 mbar). Because of the low dissipation capability of toluene, a percentage (5-
25%) of acetone will be added to increase the volatility. The sample will be further
reduced to incipient prior to being made up to volume with cyclohexane prior to GC/MS

analysis.
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Figure 2.2. A flowchart of chemical analysis of PAHs
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2.2.3 Water Soluble Ionic Species (WSIS) Analysis

All filter samples were stored in a refrigerator at about 4 °C as soon as possible after sampling was
completed. This was necessary to prevent any negative artifacts caused by losses of semi-volatile.
Also field blank filters were collected to subtract the positive artifacts due to adsorption of gas
phase organic compounds onto the filter during and/or after sampling. The analysis of water
soluble particulate anion species including Cl-, NO3™ and SO4*1ion was performed by using an ion
chromatography (Dionex DX-100) equipped with an lonPac AS4A-SC 4mm (10-32 P/N 43174)
anion specific column, an AG4A-SC 4 mm (10-32 P/N 43175) guard column and a 25 ul sample
loop (Msibi, 1992). Filters were cut, placed in a polyethylene vial (20 ml), and extracted with 10
ml of deionized water for 30 min. The extract was filtered through 0.2 pm pore size Millipore
Teflon filters for cleanup. The GP40 gradient pump was used to set the ratio of two eluents (i.e.
distilled water (mobile phase A) and NaOH solutions (mobile phase B)) pumped through the
column at rate of 2 ml min'!. The nitrogen gas was applied for generating the flow rate and set at
2 PSI. The mixture of standard solutions was made up by dissolving NaCl (1.646 g), NaNOs
(1.373g) and (NH4)2SO4 (1.376 g) into 1L of distilled water (1000 ppm). In addition, all the WSIS
analysis had been conducted at the Key Laboratory of Aerosol Chemistry and Physics, Institute of
Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, People Republic of China
(PRO).

2.2.4 OC/EC Analysis

Carbon analysis was carried out at the Key Laboratory of Aerosol Chemistry and Physics,
IEECAS, Xi’an, PRC. The calibrations and QA/QC of the measurements were conducted by Dr.
Wang Qiyuan, a research scientist at the IEECAS. The samples were analyzed for OC and EC
using DRI Model 2001 (Thermal/Optical Carbon Analyzer) with the IMPROVE thermal/optical
reflectance (TOR) protocol. The protocol heats a 0.526 cm? punch aliquot of a sample quartz filter
stepwise at temperatures of 120 °C (OC1), 250 °C (OC2), 450 °C (OC3), and 550 °C (OC4) in a
non-oxidising helium atmosphere, and 550 °C (EC1), 700 °C (EC2), and 800 °C (EC3) in an
oxidising atmosphere of 2% oxygen in a balance of helium. When oxygen is added, the original

and pyrolised black carbon burnt and the reflectance increase. The amount of carbon measured
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after oxygen is added until the reflectance achieves its original value is reported as optically-

detected pyrolised carbon (OP).
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Chapter-I11
Results & Discussion

Effects of Agricultural Waste Burning on PM;s-Bound
Polycyclic Aromatic Hydrocarbons, Carbonaceous
Compositions, and Water-Soluble Ionic Species in the
Ambient Air of Chiang-Mai, Thailand

ABSTRACT

PM:s is widely regarded as a major air pollutant due to its adverse health impacts and
intimate relationship with the climate system. This study aims to characterize the chemical
components (e.g., organic carbon (OC), elemental carbon (EC), water soluble ionic species (WSIS)
and polycyclic aromatic hydrocarbons (PAHs)) in PM 5 collected at Doi—Inthanon in Chiang-Mai,
Thailand, the highest mountain in Thailand. All samples (n=50) were collected by MiniVolTM
portable air samplers from March 2017 to March 2018. The OC/EC ratio from this study was
6.8+3.0, and the decreasing order of the WSIS concentrations was SO4>>Na*>Ca?">NH4">NOs"
>K">CI>NO>>Mg**> F-. The concentration of total PAHs was 2,360 + 2,154 pg m?. Principal
component analysis (PCA) highlights the importance of vehicular exhaust, biomass burning, diesel
emissions, sea-salt aerosols and volatilization from fertilizers as the five dominant potential
sources that accounted for 51.6%, 16.2%, 10.6%, 5.20% and 3.70% of the total, respectively. The
rest of the 12.7% variance probably is associated with unidentified local and regional sources such
as incinerators, joss paper/incense burning, and domestic cooking. Interestingly, the results from
the source estimations from the PCA underlined the importance of vehicular exhaust as the major
contributor to the PM» 5 concentrations in the ambient air of Chiang-Mai. However, it is crucial to

emphasize that the impacts of agricultural waste burning, fossil fuel combustion, coal combustion
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and forest fires on the variations of OC, EC and WSIS contents were not negligible. This study not
only enhances the knowledge of aerosol chemical characterizations but also provides information
for health risk assessments of inhalation exposure to PAHs in the context of the local inhabitants
of northern Thailand.

Keywords: PM, s, PAHs, Carbonaceous Compositions, Water Soluble Ionic Species, Biomass

Burning

3.1 INTRODUCTION

Particulate matter (PM) or aerosols are defined as very small diameter solids or liquids that remain
suspended in the atmosphere (Cooper, 2002), and they are a significant worldwide environmental
issue, are well known as public health and climate hazards (Harrison and Yin, 2000; Metzger et
al., 2004; Dai et al., 2013; Pani et al., 2016a, 2016b; Tsay et al., 2016; Chen et al., 2017; Pani et
al., 2018) and cause visibility degradation (Tao et al., 2009). Over the past decades, international
attention has been paid to fine particles discharged as a consequence of open biomass burning.
Agricultural waste burning has usually operated to clean land before the next crop cycle
(Pongpiachan et al., 2017). Biomass burning (BB) is reported almost every year with varying
intensities during the dry season in northern Thailand and in neighbouring countries, such as
Myanmar, Laos, Cambodia and Vietnam, due to agricultural waste burning (Tsay et al., 2016;
Pongpiachan et al., 2017; Pani et al., 2018), and emits substantial amounts of PM» s and trace
gaseous species into the atmosphere (Chantara et al., 2012; Wiriya et al., 2013; Tsay et al., 2016;
Pani et al., 2018; Punsompong and Chantara, 2018; Thepnuan et al., 2019). BB emits substantial

amounts of trace gaseous species and PM into the atmosphere (Jian and Fu, 2014) and its
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contribution to carbonaceous aerosols at urban sites (Fine et al., 2001; Lanz et al., 2008) has been
identified to be significant.

BB emissions contain significant amounts of water-soluble ionic species (WSIS), such as NH4",
K*, and NOs~ (Ryu et al., 2007, Mkoma et al., 2013; Lee et al., 2016; Khamkaew et al., 2016; Pani
et al., 2018). Chemical analyses of smoke aerosols during forest fires have shown that potassium
(K*) and ammonium ions (NH4") are the dominant cations and that sulphate ions (SO4*") are the
most abundant anions (Pio et al., 2008). It is also crucial to highlight that biomass burning is the
major source of OC, EC, NOs~, NHs*, SO4* and K* (Niemi et al., 2004). Multiple studies have
confirmed the role of K* as a biosmoke tracer (Duan et al., 2004; Zhang et al., 2010; Lee et al.,
2011; Cheng et al., 2013).

In recent years, scientists around the world have paid more attention to carbonaceous particulates
because they influence global warming, cloud microphysics (Seinfeld and Pandis, 1998; Lyamani
et al., 2006), global climate change (Hitzenberger et al., 1999; Dan et al., 2004) and have adverse
effects on human health (Na et al., 2004). Moreover, cardiovascular mortality and morbidity rates
are associated with increased levels of urban carbonaceous particulate matter (Ito et al., 2011).
Furthermore, several organic compounds such as PAHs and PCBs are found in OC mixtures,
which possess carcinogenic and mutagenic effects (WHO, 2013). Currently, most studies have
highlighted the behaviour of particulate PAHs in tropical countries and in northern Thailand
(Bourotte et al., 2005; Boonyatumanond et al., 2007; Vasconcellos et al., 2010; Pongpiachan,
2013a,b, 2015; Pongpiachan et al., 2013a,b, Pongpiachan et al., 2015a). Despite countless
measurements of PAH compositions in coarse and fine particles around the world, there is
inadequate information focusing on the characterization of particulate PAHs in tropical

atmospheres. Most studies have targeted estimations of source apportionment (Wan et al., 2006;
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Gupta et al., 2011; Dvorska et al., 2012; Hu et al., 2012; Pongpiachan et al., 2009). Unfortunately,
there is limited information associated with PM» s-bound OC, EC, WSIS and PAHs in northern
Thailand.

Chiang-Mai is the third-largest province in Thailand, covering an area of 20,107 square kilometres.
It is the second-largest province in the country in terms of population and also attracts many
millions of visitors each year. Due to its mountainous geographical features, Chiang-Mai has
suffered from poor air quality, especially during the dry season, for decades. Previous studies have
indicated that biomass burning, vehicular emissions, industrial emissions, and anthropogenic
activities are the main contributors for air pollutants (Tsai et al., 2013; Janta and Chantara, 2017;
Pani et al., 2018; Thepnuan et al., 2019). The understanding of atmospheric aerosol compositions
and their major sources is undoubtedly essential for reducing ambient PM levels and improving
air quality. This study was carried out to evaluate the emission sources and chemical characteristics
of the OC, EC, WSIS and PAHs components in PM; 5. Overall, the main objectives of this study
are to (i) characterize the chemical compounds (e.g. OC, EC, OC/EC, WSIS, and PAHs) from
PM, 5 samples collected in Chiang-Mai; (i7) statistically analyse the chemical composition of PM; 5
and its relationships to source identification; and (iii) perform source apportionment of the
chemical composition of PM; 5 using hierarchical cluster (HCA) and principal component analysis

(PCA).

3.2. MATERIALS & METHODS

3.2.1. Sampling site
The air quality observatory site is located at the National Astronomical Research Institute

of Thailand (NARIT) at the summit of Doi—Inthanon, Chiang-Mai province (see Fig. 3.1). It is
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important to mention that Doi-Inthanon is the highest mountain in Thailand. The sampling location
is at 18 54°40.5”N and 99 13°01.4”E. Chiang-Mai is the third-largest province in Thailand,
covering an area of 20,107 square kilometres. It is the second-largest in the country in terms of
population, with 1,746,840 people currently residing in Chiang-Mai. The city is a popular
destination among travellers. Chiang-Mai has relatively cool weather throughout the year. There
has been an increasing number of articles related to air quality in northern Thailand (Wiwatanadate
and Liwsrisakun, 2011; Pongpiachan S, 2013b). These can be correlated with the PMa s levels,
which are caused by large-scale ‘hot spot’ locations. The pollutant sources can be identified, for

example, pollutants from forest fires, burning of agriculture waste, and trans-boundary haze

pollution.
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Figure 3.1. Map of the Air Quality Observatory Sites in this Study
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All samples (n=50) were collected on quartz-fibre filters using MiniVolTM portable air samplers
(Airmetrics) through 47 mm filters at flow rates of 5 L min'!. All samples were collected over a
period of 72 h, and then, sample collections were halted for 24 h and were then followed by another
collection session of 72 h; this pattern was repeated throughout the study period. After the sample
collections, the filters were carefully kept in Petri slide dishes that were individually wrapped in
aluminium foil to avoid any loss from photodegradation and were stored in a freezer at 4°C to
maintain their chemical stability until subsequent analysis. The quartz-fibre filter samples were
divided into two segments. One of the filters was analysed for OC/EC, and the other one was
analysed for PAHs and WSIS. This monitoring campaign was conducted from March 2017 to

March 2018.

3.2.2. Carbonaceous aerosol analyses: Thermal analysis protocols

The carbonaceous aerosol components, OC and EC, were quantified using a Desert
Research Institute (DRI) Model 2001 carbon analyser (Atmoslytic Inc., Calabasas, CA, USA). The
IMPROVE A thermal/optical reflectance (TOR) protocol was used for the analyses (Chow et al.,
2007a). The thermal/optical carbon analyser bases its analysis on the oxidation of organic carbon
(OC) compounds and of elemental carbon (EC) at different temperatures.
Carbonate carbon is determined by estimating the CO: acidification from organic sample that
punches before the normal carbon analysis procedure. This protocol uses seven temperature
programmes for seven different fractions. The temperature protocol is applied for separating OC
and EC. It is the same as that for the TOR and TOT burning correction. This protocol includes

total OC, total EC, and total carbon, which are monitored by both reflectance (OPR) and
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transmittance (OPT). This protocol is dependent on the thermal/optical analysis that is applied for
quantification of the thermally derived sub-fractions of OC and EC.

Thermal analysis using heat (thermal/optical carbon analyser) follows the IMPROVE
protocol (Interagency Monitoring of Protected Visual Environments) using the thermal/optical
reflectance (TOR) method. There are eight types of carbonaceous compounds that are
differentiated by their combustion temperatures, namely, OC1, OC2, OC3, OC4, EC1, EC2, EC3
and OP. Total OC was defined as the sum of four OC fractions (OC1-OC4) plus OP, whereas the
total EC was technically defined as the sum of three EC fractions (EC1-EC3) minus OP. In this
study, TD-GC/MS was employed for both qualitative and quantitative analyses of PAHs. Injection
port thermal desorption (TD), coupled with gas chromatography/mass spectrometry (GC/MS), was
applied to quantify the non-polar organic compounds in the PMzs samples. The details of the
analytical procedures have been provided in previous publications and will not be further

mentioned here (Ho and Yu, 2004; Chow et al., 2007b; Ho et al., 2008).

3.2.3. Statistical analysis

Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used for the
classification and source apportionments of OC, EC, WSIS and PAHs using the Statistical Package
for Social Sciences (SPSS) version 13 software. Data preprocessing consisted first of subjecting
all data to a logarithmic transformation. This technique is the most common approach for
transforming environmental data, as it is robust for non-normal data distributions (Field et al.,
1982). PCA enables multivariate data reduction by transforming the data into orthogonal
components that are linear combinations of the original variables. Therefore, PCA reduces

multidimensional data to fewer dimensions. Hence, this method is used to identify trends and
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clusters within the data. In addition, the correlation coefficients of OC, EC and WSIS are regularly
used to identify the relationships between aerosol components (Kocak et al., 2004 and Hegde et
al., 2007) and are used in this study to observe these relationships and to identify the sources of

OC, EC and WSIS.

3.3. RESULTS & DISCUSSION

3.3.1. Mass concentrations of carbonaceous compounds (OC and EC)

The average mass concentrations of atmospheric PM» s and its carbonaceous chemical components
(OC and EC) in Chiang-Mai were collected from March 2017 to March 2018. The concentrations
of the average compositions of each carbon fraction relative to the total carbon (TC), OC and EC
levels in Chiang-Mai are summarized in Table 3.1. The average concentrations of the
carbonaceous chemical components are 9.98+8.00, 8.38+6.41, 1.60£1.65, 0.10+£0.08, 1.26=1.02,
3.60+2.54, 2.5742.49, 2.28+1.95, 0.16+0.07 and 0.02+0.05 ug m™ for TC, OC, EC, OC1, OC2,
0C3, OC4, EC1, EC2 and EC3, respectively.

Table 3.1. Summary of the concentrations of TC, OC and EC in Chiang-Mai, Thailand

Species  Unit Mean 5D Minimum Maximum
(n=50)
TC pugm>  9.98+8.00 0.74 32.81
oC ugm3  8.38+6.41 0.67 26.82
EC pugm=>  1.60+1.65 0.07 7.26
OCl pgm3 0.10£0.08 0.00 0.30
OC2 pupugm? 1.26+1.02 0.16 4.69
OC3 upugm3 3.60+2.54 0.40 11.37
OC4 ugm? 2.5742.49 0.08 10.46
ECl pgm? 228+1.95 0.01 7.10
EC2 ugm3 0.16£0.07 0.05 0.34
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EC3 pgm> 0.02%0.05 0.00 0.24

In Chiang-Mai, Pani et al (2019) presented the concentrations of carbonaceous compounds in
PM; 5 at Doi Ang Khang (DAK) and at Chiang Mai University (CMU) during the dry season of
2015. The TC mass concentrations were 54.9 & 15.8 and 56.0 = 22.4 pg m= at DAK and at CMU,
respectively. The percentage contributions from OC were 87% and 83% at DAK and CMU,
respectively. In addition, the percentage contribution of OC obtained from this study was 84%.
This result is consistent with previous studies indicating that BB might have been the principal
source of carbonaceous substances (Khamkaew et al., 2016; Pani et al., 2018; Thepnuan et al.,
2019). In contrast, the EC fractions were regarded as being relatively lower than the OC fractions.
Since EC has a chemical structure similar to impure graphite, it appears reasonable to assume that
vehicle exhaust is the major source of EC. As a consequence, the most important sources of EC
are fossil fuel combustion and biomass burning (Gelencsér, 2004).

OC can either be directly emitted into the atmosphere from the incomplete combustion of organic
compounds or can form by the condensation of compounds produced by atmospheric
photooxidation and polymerization of organic species (Jimenez et al., 2008), including thousands
of organic compounds (e.g., aromatic compounds, carboxylic compounds with polar substituents
and aliphatic compounds) with a variety of physical and chemical properties. OC may be emitted
directly from sources such as industrial processes and by natural occurrences (e.g. primary OC) or
can form in the atmosphere due to gas-to-particle conversion of semi- and low-volatility organic
compounds (e.g., secondary OC). Quantification of the contributions of primary and secondary
organic carbon is quite difficult to determine through direct chemical analysis, since OC contains
a complex mixture of many compounds. Particles containing OC might show a significant risk to

human health, as well (Mauderly and Chow, 2008). The carbonaceous compounds or total carbon
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(TC) in the atmosphere represent one of the main components of the total mass of suspended fine
particles. They are composed of organic carbon (OC) with a contribution of 70-80% (Seinfeld and
Pandis, 2006).

In the case of four OC fractions, OC3 was the most abundant (3.60+2.54 pg m), followed
by OC4 (2.57+2.49 ug m3), OC2 (1.26+1.02 pg m) and OC1 (0.10+0.08 pg m™). Additionally,
EC1 was the major fraction (2.28+1.95 pg m) in the EC. Chuang et al (2013b) reported that OC3
can be used as a biomass burning tracer adjacent to emission sources, while OC2 is the most
abundant fraction of OC released from coal combustion (Chow et al., 2004) and motor vehicle
exhaust (Cheng et al., 2015). Biomass burning combustion sources are considered to be the greatest
contributors to primary carbonaceous particle levels in the atmosphere (Zheng et al., 2005; Cao et
al., 2005; Cheng et al., 2013; Chen et al., 2017) and many studies have used their fractions for
source apportionment of biomass burning (Chow et al., 2004; Cao et al., 2005; Han et al., 2007,

2009b, 2010).

3.3.2. The OC/EC ratios, Atmospheric Concentrations of Water-Soluble lonic Species
(WSIS) and PAHSs in PM3 .
3.3.2.1. OC/EC ratios

The ratio of OC to EC (OC/EC) is often used to obtain information on emission sources

(Chow et al., 2004; Dan et al., 2004; Cao et al., 2005; Han et al., 2007, 2009). Table 3.2 shows the
literature values of particulate OC/EC ratios reported for different emission sources. The average
OC/EC ratio from this study was 6.843.0 (Table 2).

Table 3.2. The binary ratios of OC to EC for different emission sources.

Emission source EC oC ocC/ EC References
ratio
Ambient PM, 5* 21410 108+49 52427  KwangsamNaet

al., 2004
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Light-duty gasoline

Hildemann et al.,

vehicles? 226 >0.1 2.20 1991
Light-duty gasoline Watson et al.,
vehicles® 13.548.02 30.1£12.3 2.20 1994
Heavy-duty diesel Hildemann et al.,
vehicles? 405 326 0.80 1991
Gillies et al.,
Tunnels® 25.544.90 19.248.46 0.76 2001
Tunnels® 16.9 16.8 N.A. Pant et al., 2016
Pavedroad dust® 1126030 1474200  13.1 Watson etal.
Residential wood Watson et al.,
combustion® 12.3+4.20 51.3+11.7 4.15 2001
Meat charbroiling® ~ 0.0:0.5  33.84820  N.A. SChafggget al,
Naturalh gas home 6.70 R4.9 127 Hildemann et al.,
appliances® 1991
Forest fires® 3234180 46.8:156  14.51 Watson tal.
Ambient PM2.5° 1.60£1.65 8.38+6.41 6.843.0 This study
Note: N.A.=not applicable.
aMass % of fine particle mass.
®Mass concentration.
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Figure 3.2. Temporal variations in the OC/EC ratios for 50 samples from Chiang-Mai from March

2017 to March 2018

OC/EC ratios can be used to classify the main sources of air pollutants (Wang et al., 2015).

Some studies have reported that OC/EC ratios greater than two indicate SOC formation (Chow et

al., 1996; Chow et al., 2004). Table 3.3 shows that the OC/EC ratios from both vehicle exhaust

and biomass burning range from 4.0 to 60 (Pio et al., 2008; Zhang., 2008, Chuang et al., 2013;
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Chuang et al., 2014; Chuang et al., 2016; Ferek et al., 1998; Lee et al., 2016; Andreae and Merlet,
2001; Cachier et al., 1989; Mazurek et al., 1991; Ward et al., 1992; Cao et al., 2005), the ratios for
motor vehicles (diesel and gasoline) range from 0.02 to 4.0 (Dallmann et al., 2014; Kwangsam Na
et al., 2004; Turpin and Huntzicker, 1995; Schauer et al., 2001; Kirchstetter et al., 2001,2004;
Cadle et al., 1999), the ratios for fossil fuel combustion range from 1.1 to 4.1 (Watson et al., 2001;
Koch, 2001; Cao et al., 2005), the ratios for coal combustion range from 2.7 to 12.0 (Watson et
al., 2001 and Cao et al., 2005), the ratios for forest fires show a range of 14.51- 16.0 (Watson et
al., 2001), the ratios secondary organic carbon show a range of 3.3-33 (Saarikoski et al., 2008;
Boreddy et al., 2018b), the ratios for long-range transport show a range of 3.01-12 (Pani et al.,
2017; Saarikoski et al., 2008) and cooking emissions ratios show a range of 4.3—7.7 (See and
Balasubramanian, 2008). It is important to emphasize that the PM 2. s-bound OC/EC ratios collected
during the dry season at Doi Ang Khang and at Chiang Mai University were 6.8+0.6 and 5.2+1.3,
respectively (Pani et al., 2019). As a consequence, the OC/EC ratio obtained from this study (e.g.,
6.8£3.0) is surprisingly consistent with the results of Pani et al (2019), thus emphasizing that

biomass burning is the major source of carbonaceous compounds in this region.
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893  Table 3.3 The literature values of the OC to EC (OC/EC) ratios for different emission sources

Emission sources OC/EC References
5.1 Pio et al., 2008
4.0-8.0 Zhang., 2007
5.7 Chuang et al., 2013
6.7 Ferek et al., 1998
6.8 Leeetal., 2016
) ) 5-8 Andreae and Merlet., 2001
Biomass burning
9 Cachier et al., 1989
10 Mazurek et al., 1991
12 Ward et al., 1992
12.3 Cao et al., 2005
16.7 Ward et al., 1992
60.3 Cao et al., 2005
1.1 Watson et al., 2001
Fossil fuel combustion 4 Koch., 2001
4.1 Cao et al., 2005
Coal busti 2.7 Watson et al., 2001
oal combustion 3.0 and 12.0 Cao et al., 2005
Forest fires ~16.0 Watson et al., 2001
14.51 Watson et al., 2001
0.06 Dallmann et al., 2014
0.8 Kwangsam Na et al., 2004
0.3 Turpin and Huntzicker., 1995
0.8 Hildemann et al., 1991
Vehicle exhaust 0.02 Dallmann et al., 2014
1.0-4.0 Schauer et al., 1999,2002
0.9 Kirchstetter et al., 2004
2.2 Kwangsam Na et al., 2004
2.05-2.36 Cadle et al., 1999
Secondary organic carbon 33 Saarikoski et al., 2008
21-33 Boreddy et al., 2018b
Long-range transport 3.01 and 3.58 P?lni et.al., 2017
12 Saarikoski et al., 2008
Traffic 0.7 Saarikoski et al., 2008
Cooking emissions 4.3-7.7 See and Balasubramanian., 2008
894
895
896
897
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3.3.2.2. Secondary Organic Carbon (SOC) Contributions
Carbonaceous aerosols with OC/EC values greater than two can be considered to contain
significant quantities of SOC (Chow et al., 1996; Gray et al., 1986). According to Castro et al.
(1999), the SOC contribution can be estimated by calculating the minimum values of the OC/EC
ratios in all samples. The SOC was computed from equation 1:
SOC = OCotal - EC X (OC/EC)min
Equation 1

where SOC is the secondary OC, OCia denotes the total OC, and (OC/EC)min is the average of
the three minimum OC/EC ratios. Ji et al. (2016) described the formation and influencing factors
of SOC, which show that photochemical oxidation and atmospheric temperatures play important
roles in the formation of SOCs. SOCs are distributed in a particle phase after the oxidation of
volatile organic carbon (VOC) by active radicals in the atmosphere (Li et al., 2018). Chemical
reactions involving gas—particle conversion occur during long-distance transport of aerosol
particles (Zhang et al., 2012).

In this study, there was a high correlation between OC-EC and K*. Normally, OC, EC and
K* are generated from biomass burning and from in PM; 5. It is crucial to note that the high OC/EC
ratios (6.8+3.0), coupled with the high SOC contents (8.12+0.26 pg m™) detected at Chiang-Mai,
highlight the dominant effects of biomass/agricultural waste burning in northern Thailand. These
findings are consistent with the comparatively high SO4%, NH4", K* levels observed at Chiang-
Mai. Strong positive correlations of OC vs. K* (»=0.95)and EC vs. K" (+=0.90) were also detected
(see Fig. 3.4). BB is another possible means for forming SOC (Mancilla et al., 2015) and it has

been common in Chiang-Mai to burn biomass for farming preparation.
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3.3.2.3. Water Soluble Ionic Species (WSIS)

WSIS dominate major portions of atmospheric particles (Harrison et al., 2004; Querol et al., 2001)
and they may be harmful to human health as they can easily enter human lungs and trigger
respiratory diseases (Adamson, 1999). For this particular reason, chemical characterizations of
WSIS have been conducted worldwide by many researchers using various types of analytical
techniques (Morales et al., 1998; Wang and Shooter, 2001; Lin, 2002; Chandra Moulj, et al., 2003).
Most of these studies have investigated the major ions, such as NH4*, Ca?*, K*, Na*, Mg**, CI',
NOs', and SO4*. Tt is well known that BB emissions are responsible for relatively large amounts
of WSIS in atmospheric particles (Chuang et al., 2013; Lee et al., 2016; Pani et al., 2018). Since
BB releases great amounts of carbonaceous aerosols, coupled with WSIS, into the atmosphere
(Cao et al., 2005; Lee et al., 2011; Chuang et al., 2013; Mkoma et al., 2013), the assessment of
WSIS, OC, and EC can provide valuable information regarding their formation, characteristics,
and potential emission sources.

As previously mentioned, the most dominant species in this study was SO4>~

, which mainly
converts SO; gaseous precursors into particles. Fig. 3.3 presents the concentrations of ten WSIS
species in PMzs. The results showed that SO4>-, Na*, Ca?*, NH4", NOs", K*, CI', NO»", Mg?** and
F- were the dominant WSIS species, which accounted for 44%, 14%, 11%, 10%, 6%, 6%, 4%, 3%,
1% and 1% of the total mass of ions, respectively. Secondary inorganic aerosols (SIA), including
SO4%, NH4*, and NO3", were the major ions found in this study. This finding suggests that STA are

mainly present in fine particles, which is in good agreement with previous studies (Kong et al.,

2010; Long et al., 2014; Pani, et al., 2019). It is also crucial to note that Na*, Ca**, Mg?* and F-
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can be used as geochemical tracers representing maritime aerosols (Chan et al. 1997; Wang and

Shooter, 2001).

Percentage contributions of WSIS collected from
Chiang-Mai.

F .
1% NO,

3%

Figure 3.3. Percentage contributions of WSIS collected from Chiang-Mai
For this study, the individual WSIS concentrations of the PMas samples in Chiang-Mai during
March 2017 to March 2018 were in a decreasing order of SO4*>Na*>Ca**>NH;">NO3;>K"> CI
>NO>>Mg>>F". These data indicate that traffic (e.g., SO4>") and long-range atmospheric transport
of maritime aerosols (e.g., Na*) are the two major contributors to WSIS in PM>s. SO4*, and NO5
and NH4" mainly form in the atmosphere by gas-to-particle conversion from their precursor gases
(e.g., SOz, NOyx and NH3). Although the major source of NOy is traffic emissions, in particular,
incomplete combustion of fossil fuels from diesel engines and cement kiln manufacturing can be
another major source of NOx emissions (Mousavi et al., 2014). Kalaboukas et al. (1999) and Yao
et al. (2016) reported that SO4> is normally created mainly from fossil fuel combustion by the
photochemical formation of SO, from traffic and industrial activity. In contrast, Pengchai et al.

(2009) indicated that vehicle exhaust and biomass burning were two major sources of SO4>” in the
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ambient air of northern Thailand. Consequently, it seems reasonable to conclude that the PMa s-

bound SO4* obtained in this study could be derived from mixed sources between biomass burning

and fossil fuel combustion.

3.3.2.4. Pearson correlation analysis of OC-EC and WSIS

The Pearson correlations of OC, EC and WSIS in PM; 5 were investigated and the results

are shown in Fig 3.4. The OC concentrations were strongly correlated with EC (#=0.95). The SO4*

concentrations were greatly correlated with NH4" (7=0.91). The K* concentrations were positively

correlated with OC (7=0.95) and EC (»=0.89). Pani et al (2019) reported that strong correlations

were also found between SO4* and NH4" (r =0.95) from studies in Chiang-Mai during the dry

period. The result of this study also demonstrated the similar patterns observed in previous

investigations conducted in Chiang-Mai province.

ocC EC F cr NO, NO; SO Na* NH,* Kt MgZ*
EC | .953%*
F 630%%  621%x
cr | -0.261 -.291%  -0.034
NO, | -.297* -.288* -0.099 0.216
NO; | .685%* .639%* .615%* -0.016 0
S0,% | .656%* .584**  307*  -0.259 -0.183 .536**
Na* | .689%* .618** 611** 0.085 -0.014 .606** .606**
NH,* | .608** 515%% 0256 -0.219 -0.047 .612%* ,909%*  531%*
Kt | .952%x .897%x 534%xx 0278 -0.209 .717*%* ,785%% ,706** .769**
Mg** | .317%  0.26  0.222  .429%*  0.261 .563**  .339%  603%* .448%*k  406%*
Ca’* [.721%% .679%*  .439%%  0.024  -0.044 .549%* .537%* .634%* 460%* .693%* 532kx
Bold: R > 0.7

Figure 3.4. Pearson correlation analysis of OC, EC and WSIS in PM2 5

3.3.2.5. Concentrations of PAHs

The concentrations of PAHs are summarized in Table 3.4 for the concentrations of Y PAHs (e.g.,

the sum of 19 PAH contents) for the annual averages, the standard deviations (SD) and the ranges

for 19 PAHs examined in this study. The concentration of total PAHs was 2,360+2,154 pg m™.

The values in this study were lower than those measured in other areas such as Beijing and
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Guangzhou, which are often known as heavily polluted areas in China (Zhou et al., 2012; Wang

et al., 2016).

Table 3.4. Summary of PAHs concentrations in Chiang-Mai, Thailand

PAHs (pgm?®) Mean S.D. Min. Max.

Ace 39.6 418 52 225
Fl 324 378 7.6 219
Phe 125 199 21.7 1038
Ant 19.9 223 60 121
Fluo 53.8 460 82 205
Pyr 542 478 59 183
B[a]A 122 91.8 188 470
Chry 5.6 489 22 180
B[b]F 176 167 58 732
B[k]F 203 202 13 929
B[a]F 276 264 1.7 117
B[e]P 96.0 844 4.8 381
B[a]P 169 167 88 703
Per 192 17.1 13 766
Ind 467 380 3.8 1712
B[g,h,i]P 398 321 4.4 1403
D[a,h]A 103 865 15 405
Cor 144 108 12 467
DJ[a,e]P 548 555 0.7 273

>PAHs* 2360 2154
*Note that ZPAHs is the sum of Ace, Fl, Phe, Ant, Fluo, Pyr, B[a]A, Chry, B[b]F, B[k]F, B[a]F,
B[e]P, B[a]P, Per, Ind, B[g,h,i]P, D[a,h]A, Cor, and DJ[a,e]P.

Over the past few decades, numerous studies concerned with source identifications, quantitative
source apportionments, and ecological risk assessments of PAHs in the ambient air of Thailand
have conducted intensive investigations (Pongpiachan, 2013a,b, 2014, 2015 a,b). In the northern
part of Thailand, agricultural waste and biomass burning during cold periods have released large
amounts of particulate matter, especially ultra-fine particles, including PMz s-bound PAHs, into
the atmosphere. There are a number of recent studies that use PAHs data to obtain inferences of

particulate pollution sources (Yunker et al., 2002; Marchand et al., 2004; Bourette et al., 2005;
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Akyuz and Cabuk, 2008). Nine of the 16 USEPA priority PAHs are related to combustion
processes such as those of coal, petroleum and diesel. These PAHs are known as combustion PAHs
(CPAH), namely, Flu, Pry, B[a]A, Chry, B[b]F, B[k]F, B[a]P, B[g,h,i]P and Ind (Ravindra et al.,
2008). The ratios of the concentrations of these CPAHs have been used in many studies to identify
potential sources of PAHs in aerosols (Manoli et al., 2004). In this study, relatively high
abundances of Ind and B[g,h,i]P were detected, indicating that traffic emissions, petroleum
combustion and industrial waste burning can be considered as the emission sources of PAHs for

the ambient air of Chiang-Mai (Zhou et al., 1999; Ravindra et al. 2008).

3.3.3. Source identification and pattern recognition

To identify the potential sources of the OC, EC, WSIS and PAHs, two multivariate statistical
analyses are introduced in this section. In section 3.2.4, the relatively high correlation coefficients
of K" vs. OC and K* vs. EC indicate that biomass burning is the main contributor to carbonaceous
aerosols. Furthermore, the relatively high abundance of Ind and B[g,h,i]P suggests that motor
vehicle exhaust can be considered as one of the major emission sources of PAHs in this region. In
this section, source identification, coupled with quantitative source apportionment of targeted
chemical species, is investigated by using two multivariate statistical analyses, namely,

hierarchical cluster analysis (HCA) and principal component analysis (PCA).

3.3.3.1. Classification of Chemical Compounds by Hierarchical Cluster Analysis (HCA)
HCA was performed to identify the homogeneous groups of carbonaceous aerosol components,
including OC, EC, WSIS and 19 individual PAHs in PM; 5. The hierarchical dendrogram is shown

in Fig 3.5. Three major groups of carbonaceous aerosol components were clearly distinguished.
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The first group contains F-, Mg?*, Cl', NO2", NOs, K*, Na*, Ca?*, NH4*, EC, SO4*, TC, OC, B[a]F,
Per, Ace, Ant, FL, Fluo, Pyr, Chry, D[a,e]P, all OCs, EC and WSIS. This indicates that the major
sources are mixtures of biomass burning, fossil fuel, coal combustion, and industrial emissions
(Kongetal., 2010; Long et al., 2014; Pani, et al., 2019). In addition, the pyrogenic sources, namely,
the motor vehicle emissions from both gasoline and diesel emissions and the leakage of used oil
and road dust have been previously identified as the original sources of this group (Dahle et al.,
2003; Fang et al., 2009; Liu et al., 2009). In accordance with previous literature reports, 3—4 ring
PAHs have been found in the road dust in urban cities (Zakaria et al., 2002; Boonyatumanond et
al.,2007). The second group consists of B[b]F, B[a]P, B[k]F, B[e]P, D[a,h]A, Cor, B[a]A and Phe,
which are the high-molecular-weight PAHs with 5-6 rings. This group usually originates from
road-paving asphalt, crude oil, bitumen (Ahrens and Depree, 2010) and road dust (Larsen and
Baker, 2003). The last group consists of Ind and B[g,h,i]P, which are the anthropogenic PAHs
from the use of petroleum products, motor vehicles, oil combustion and industrial waste

incinerators (Zhou et al., 1999; Ravindra et al. 2008).
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Figure 3.5. Hierarchical Cluster Analysis (HCA) of carbonaceous compounds, water soluble
ionic species and 19 individual PAHs in PM2.5 at Chiang-Mai, Thailand.

3.3.3.2. Source estimations from PCA

As is widely known, PCA is a multivariate technique. PCA achieves multivariate data reduction
by transforming the data into orthogonal components that are linear combinations of the original
variables. Hence, PCA reduces multidimensional data into fewer dimensions. (Wold et al, 1987).
In this study, the concentrations of OC-EC, WSIS and 19 individual PAHs from 50 samples were
selected as the active variables. The majority of the variance (87.3%) of the scaled data was
explained by five eigenvectors/principal components. The first principal component (PCI1)

explains 51.6% of the total variance, while the second principal component (PC2) accounts for
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1042 16.2% of the total variance. Interestingly, PC3, PC4, and PC5 describe 10.6%, 5.20%, and 3.70%
1043 of the total variance, respectively (see Table 3.5).
1044

1045  Table 3.5. Rotated Component Matrix* of carbonaceous compounds, water soluble ionic species
1046  and 19 individual PAHs in PMy 5 at Chiang-Mai, Thailand

Composition Principal components (PC)

s PC1 PC2 PC3 PC4 PCS
TC 303 .836 284 -.219 104
oC 310 834 296 -.205 115
EC 265 812 227 -.266 .054

F- 102 742 156 -.057 -.395
CI -.186 .002 -.105 740 -.329

NOy .070 -.164 -.195 .656 078
NOs- .039 818 .060 131 A11
SO4* 239 .602 127 -.100 .643
Na* 061 830 116 220 078
NH4" 161 .606 -.028 -.018 J11
K* 263 827 251 -.145 340
Mg? -.059 570 -.058 .684 210
Ca? 303 .697 200 218 116
Ace 118 204 944 -.123 -.003
Fl .092 .060 817 013 283
Phe 116 286 918 -117 -.103
Ant 182 219 915 -.126 -.090
Fluo .566 538 501 -.143 -.013
Pyr 673 .543 350 -.139 -.009
B[a]A .508 409 .658 -.204 -.023
Chry 770 520 -.004 -215 .048
B[b]F 914 352 .008 -.087 .058
B[k]F 925 304 .008 -.063 .070
B[a]F 946 288 .007 -.075 .037
B[e]P 929 286 179 -.074 .043
B[a]P 924 332 -.075 -.096 052
Per 947 277 .056 -.071 .063
Ind 960 016 .149 017 .063
B[g,h,i]P 919 .055 327 -.001 018
D[a,h]A 972 .047 .149 .007 .045
Cor .882 -.076 296 .056 .050
DJ[a,e]P .861 -.094 203 115 .069
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1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

1068

Variance

(%] 51.6 16.2 10.6 5.20 3.70
Estimated  Vehicular Biomass Diesel Sea-Salt  Agricultural
source Exhaust Burning Emissions  Aerosols Emissions

a Rotation Method: Varimax with Kaiser Normalization.
b Bold loading > 0.70

PC1 represents high loading factors of Chry, B[b]F, B[k]F, B[a]F, B[e]P, B[a]P, Per, Ind,
B[g,h,i]P, D[a,h]A, Cor and D[a,e]P, which can be described as the high molecular weight 4-6 ring
PAHs. Since these congeners are deeply connected with vehicle exhaust, it is reasonable to
conclude that traffic emissions explain 51.6% of the total variance. It is also worth mentioning that
B[k]F and B[g,h,i]P have been used as tracers of vehicle emissions (Miguel and Pereira, 1989;
Harrison et al., 1996). While B[g,h,i]P and Cor are related to gasoline vehicles (Khalili et al., 1995;
Schauer et al., 2002), B[a]P, B[k]F and B[g,h,i]P are identified as tracers of diesel/gasoline
emissions (Teixeira et al., 2013). Chry and B[k]F can be considered as geochemical markers for
identifying coal combustion (Smith and Harrison, 1998; Ravindra et al., 2008). While B[b]F and
Ind can be used as biomarkers for oil combustion, D[a,h]A, Per, B[a]P and B[e]P are widely
considered as tracers for discriminating the air pollutants released from industrial stacks (Ravindra
et al., 2008).

PC2 is related to biomass burning, accounting for 16.2% of the total variance, with a high
loading factor for OC, EC and WSIS. This PC is believed to be the biomass burning source of
carbonaceous compositions. OC, EC and K" are generated from biomass burning. BB emissions
contain a significant amount of WSIS, such as NH4", K*, and NO3™~ (Chuang et al., 2013; Mkoma

et al., 2013; Lee et al., 2016; Pani et al., 2018). Moreover, BB also emits significant amounts of
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carbonaceous aerosols that are composed of both OC and EC into the atmosphere (Cao et al., 2005;
Chuang et al., 2013; Mkoma et al., 2013).

PC3 accounts for 10.6% of the total variance and has high loading factors for Ace, Fl, Phe
and Ant. Several studies have reported that the most significant PAH compound from diesel engine
exhaust was Phe (Nelsen, 1989; Lim et al., 2005; Szewczynska et al., 2017). As a consequence,
PC3 can be attributed to vehicle exhaust, particularly diesel emissions. This interpretation is
consistent with the fact that Pyr and Fluo can also be considered as chemical tracers of vehicle
emissions (Szewczynska et al., 2017).

PC4, which explains 5.20% of the total variance, is associated with sea-salt aerosols
because of relatively high loading factors of CI. The results suggest a strong influence from
maritime aerosols in PM; 5. This explanation is in good agreement with previous studies conducted
in Brisbane, Australia and in Auckland, New Zealand, highlighting CI" as a chemical tracer of
maritime aerosols (Chan et al., 1997; Wang and Shooter, 2000).

The last group, PCS5, shows a relatively high loading factor from NH4". It is the only WSIS
that possesses a high correlation coefficient (»=0.71) with PC5. It is well known that volatilization
from fertilizer is the main source of NH4" in particulate matter (Lee and Hopke, 2006; Sheppard
et al., 2010). Thepnuan et al. (2019) reported the photochemical formation of SO from both
traffic/industrial activities and biomass burning because of the high affinity of SO4+*~ for NH4".
SO4%, NOs™ and NH4" mainly form in the atmosphere by gas-to-particle conversion from their

precursor trace gaseous species (e.g. SOz, NOx and NH3) (Mousavi et al., 2014).
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Chapter-1V

Results & Discussion

Impacts of Vehicular Exhausts on Variations of Particulate
Chemical Compounds in Ambient Air of Bangkok, Thailand

Abstract

In this study, a chemical characterization of PMz s-bounded carbonaceous compositions
(OC, EC), water-soluble ionic species (WSIS), and polycyclic aromatic hydrocarbons (PAHs) in
the ambient air of Bangkok was carefully investigated. The arithmetic mean of PM2 s concentration
was 77.0+£21.2 pg m=. The average concentrations of TC, OC and EC were 10.65+5.39, 8.034+4.02
and 2.62+1.49 pg m3, respectively. The comparatively high OC/EC ratio (i.e. 3.52+1.41) coupled
with strong positive correlation between K* and other carbonaceous compositions (i.e. K™ vs. OC
(=0.86), K" vs. EC (»=0.87), K" vs. Char-EC (r=0.82)) suggest that biomass burnings are one of
the major contributors in sampling area. The Y PAHs concentrations (e.g. the sum of 19 PAH
profiles) was 2.78+1.48 ug m>, which the highest concentration of B[g,h,i]P and Ind were
determined as 0.516+0.271 pg m™ and 0.404+0.221 pg m3, respectively.

Hierarchical cluster analysis (HCA) indicated that the main source was a mixture from
numerous combustion activities (e.g. biomass burning, vehicular exhausts, fossil fuel, coal and
industrial). It is also remarkable to underline that Principal Component Analysis (PCA)
successfully classified five principal sources of PMas samples, including vehicular exhaust,
biomass burning, sea salt aerosols, power plants and industrial emission, which clarified for
43.7%, 24.0%, 10.5%, 6.48% and 4.46%, respectively. As a consequence, the results indicated

that the effects of both local (e.g. vehicular exhausts) and regional (e.g. agricultural waste

66



1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

burnings) sources play an important role in governing the level of PMz 5 in Bangkok’s atmosphere.
In addition, policy markers can benefit tremendously from this study to launch an effective air
quality control strategy based on the source apportionment analysis.

Keywords: PM>s, PAHs, Carbonaceous Compositions, WSIS, Backward Trajectories, HCA,
PCA

4.1. Introduction

Over the past decades, it has been acknowledged that air pollution is one of significant
environmental problems because of emissions from energy use (World Energy Council, 2013;
Arbabi and Mayfield, 2016) and biomass burning (Guofeng et al., 2012; Pongpiachan et al., 2017a)
in urban and rural areas. In general, the main sources of air pollutants were activities that required
energy consumption, such as land transportation (Silva, 2005), electricity generation (Dung, 1996;
Akunne et al., 2006) and industry (Gocht et al., 2001), especially in the mega cities, including
Bangkok (Vichit-Vadakan and Vajanapoom, 2011; Guo et al., 2014, Pongpiachan et al., 2017b).

It is well known that the air quality problem in Bangkok’s atmosphere is caused by high
traffic emissions which greatly affects people’s health (Muttamara and Leong, 2000; Pongpiachan
et al., 2014a; 2015). Besides the emissions from biomass burning, particularly during the burned
sugar cane period is also significant environmental problems (Junpen et al. 2018; Kim Oanh, et
al., 2018). During dry seasons, Bangkok is affected by the plumes of smoke originating from long-
range transport from surrounding provinces. The biomass burning and traffic emissions release
large amounts of particulate matters, including PAHs, OC-EC and WSIS (e.g. NH4", K" and NOs )
that may lead to an increased the environmental effects as well as the heath impact (Dan et al.,
2004; Harrison and Yin, 2008; Zhao et al., 2013; Pongpiachan et al., 2014a; Irei et al., 2016; Tsay

et al., 2016; Chen et al., 2017; Pani et al., 2018).
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Atmospheric PM;s-bound carbonaceous aerosol compositions have been intensively
studied in several previous and comprehensively considered as persistent organic pollutants
(POPs) (Jones and Voogt, 1999; Dachs and Eisenreich, 2000). Several reports highlight the
adverse health impacts of PAHs as carcinogenic and/or mutagenic substances (e.g. chronic
respiratory diseases, lower respiratory diseases and allergic reaction in skin, as well as skin, lung,
bladder and gastrointestinal cancers) (Bach et al., 2003; Unwin et al., 2006; Campo et al., 2010;
Diggs et al., 2011). PAHs have been widely used as geochemical tracers to identify potential
sources of PM; 5 based on the concept of receptor model (Boonyatumanond et al., 2007; Dvorska
et al., 2012; Hu et al., 2012; Pongpiachan, et al., 2013a,b, 2015; Choochuay et al., 2020).

Over the past few decades, it is also worth mentioning that PMzs-bound carbonaceous
aerosol compositions have been extensively evaluated in the northern and central parts of Thailand
(Pongpiachan et al., 2017a; Pani et al., 2018; Thepnuan et al., 2019; Choochuay et al., 2020). A
previous study reported that the annual mean concentrations of OC and EC at numerous PCD air
quality observatory sites located in Bangkok were 18.8 + 9.18 (n=94) and 6.65 + 2.94 ug m?
(n=94), respectively (Pongpiachan et al., 2015). Some previous studies have also investigated the
annual mean of PM; s-bound carbonaceous aerosol compositions in Bangkok (Pongpiachan et al.,
2014a; Phairuang et al. 2019). It is emphasized that biomass burning is also the main source of
OC-EC and WSIS (e.g. K", NH4+",SO4?~ and NO3") , which K* is widely used as a biomass marker
(Chuang et al., 2013; Lee et al., 2016; Khamkaew et al., 2016; Pani et al., 2018; Choochuay et al.,
2020).

Therefore, the atmospheric behavior of PMa s-bounded chemical compositions and their
potential sources is definitely important for decreasing PM levels and improving air quality in

ambient air of Bangkok. Overall, the main principles of this research are to (i) quantitatively
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characterize the carbonaceous compositions, PAHs, and WSIS in PM, s; (i7) apply the diagnostic
binary ratios of PAHs for potential source classification; and (iii) employ HCA and PCA for
execute the source apportionment of PM> 5 in Bangkok.

4.2. Materials and Methods

4.2.1. Air Quality Observatory Area

The Aerosol sampling at Bangkok was located at ValayaAlongkorn Rajabhat University.
The mini-vol air sampler is settled up at the rooftop of Science Center Building (5% Floor). The
latitude of Bangkok sampling area is 14.13383 and the longitude is 100.61604. It located in the
central of Thailand that is roughly 1,500 km?, which on the riverside of Chao Phraya and close to
the Gulf of Thailand, as well as its low-lying geography of approximately 1.5 meters average
elevation upper mean sea level. It has a tropical atmosphere under the effect of the South Asian
monsoon regularity which has three seasons, namely, summer, rainy, and winter, although

weathers are rather hot year-round.
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1772 Figure 4.1. Description of air sample observatory area in Bangkok

1773 PM, 5 samples (n=43) were conducted from Bangkok, which described in Fig. 4.1. All

1774  PMas samples were conducted on a 47 mm Whatman quartz fiber-filter, each quartz fiber-filter
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were pre-heated in a furnace at 550 °C for 6 hours before sampling to eliminate the residual carbon.
In sampling process, we used a MiniVol portable air sampler with a flow rate of five lite per minute
for 72 consecutive hours. Each PM» s sample was reserved in petri slide dish and stored them in a
refrigerator till the next step of analysis. After the sample preservation, all PMz s samples have
been analyzed for PAHs, OC-EC and WSIS.

4.2.2. Measurement data in Bangkok

4.2.2.1. The measurement of OC-EC

For each sample was clarified for carbonaceous aerosol concentrations, following the
thermal/optical reflectance procedure and applied a Desert Research Institute Model 2001 carbon
analyzer (Chow et al., 1993). Eight carbonaceous fractions, including four organic carbons (OC1-
OC4), a pyrolyzed carbon fraction (OP), and three elemental carbons (EC1-EC3) were formed
from the carbon analyzer (Chow et al., 2007a).

The quality control and quality assurance (QA/QC) procedures for the OC and EC
measurements that were followed previous studies (Cao et al., 2003). Concisely, methane with
known quantity was used every day for calibration of analyzer. One of ten samples used for
replicate measurements and the variation was below 5% for TC (total carbon) and 10% for OC
and EC.
4.2.2.2. The measurement of WSIS

Each PM> s sample was identified for WSIS, five cations including Na*, NH4", K*, Mg?*
and Ca" and five anions including Cl , F, NO, , NO; and SO4? . The extraction of each PM s
filter was used the ion chromatography (IC) that contains with a separation column for measure
the concentration of WSIS in all PM; s samples. The quality assurance/quality control (QA/QC)

for this measurement, following the previous studies (Wang et al., 2005). Briefly, all solvents that
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applied for identification process were pesticide residue grade. All glassware that used in the
process was rinsed by an ultrasonic and incubated at 450 degrees in furnace for six hours.
4.2.2.3. The measurement of PAHs

The PM2.s sample was clarified for PAHs concentration by TD-GC/MS, following the in-
injection port thermal desorption (TD) coupled with gas chromatography/mass spectrometry
(GC/MS) which applied for quantify of non-polar organic compounds as a concentration of PAHs.
The quality assurance/quality control (QA/QC) for this measurement, following the previous
studies (Chow et al., 2007b). Shortly, injection port thermal desorption (TD) coupled with gas
chromatography/mass spectrometry (GC/MS), was applied to quantify 19 PAH profiles in the
PM:s samples. It responds as well as an alternative procedure of ancient solvent extraction
performed by GC/MS analysis.
4.2.3. Statistical analysis

This study, statistical analysis was using SPSS system for windows version 22 (SPSS Inc.,
USA), including the minimum, maximum, mean, and standard deviations for the concentrations
of OC, EC, WSIS and PAHs. The identify source appointment was applied by HCA and PCA,
following the previous studies (Larsen and Baker, 2003; Hegde et al., 2007). Approximately, HCA
was applied to cluster chemicals according to the coherent source of PM, 5 samples in Bangkok.
Whilst PCA was a statistics curtailment procedure helpful for outline or explain the transition in a
batch of variant into less magnitude than there are variants in that data set.

4.3. Results and Discussion

4.3.1. Mass concentrations of PM,s TC, OC and EC
The mass concentrations of PM s, OC and EC are shown in Table 4.1. During the study

period the concentrations of PM» s mass varied from 34.8 to 143.5 ug m with a mean of 77.0+21.2
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ug m>, highlighting that the mean of PMus levels is much higher than the annual mean

concentration of Thai National Ambient standard (25 pg m™) as well as USEPA standard. The

average concentrations of TC, OC and EC were 10.65+5.39, 8.03+4.02 and 2.62+1.49 pg m™,

respectively. While the mean mass concentrations of each carbon fraction including OC1, OC2,

OC3, OC4, EC1, EC2 and EC3 were 0.07+0.09, 1.31+0.64, 3.67+1.88, 2.41+1.64, 2.97+1.32,

0.22+0.06 and 0.01+0.02 pg m3, respectively.

Table 4.1. The concentrations of TC, OC and EC in Bangkok

Minimum Maximum Mean £+ SD

SPeies  (ugm?)  (ugm?)  (n=43)
0OCl1 N.D. 0.30 0.07+0.09
0C2 0.38 3.57 1.31+0.64
0C3 1.53 10.73 3.67+1.88
OC4 0.46 8.16 2.41+1.64
EC1 0.24 6.25 2.97+1.32
EC2 0.14 0.41 0.22+0.06
EC3 N.D. 0.14 0.01+£0.02
oC 2.64 22.75 8.03+4.02
EC 0.27 6.43 2.62+1.49
TC 2.99 29.06 10.65+5.39

PM> s 34.8 143.5 77.0+£21.2

For OC fractions, OC3 was found the most (3.67+1.88 pg m), followed by OC4

(2.41+£1.64 pg m3), OC2 (1.31+0.64 pg m>) and OC1 (0.07+0.09 pg m™*).While EC fractions,

ECI was found the most (2.97+1.32 ug m?), followed by EC2 (0.224+0.06 pg m=) and EC3

(0.014+0.02 pg m), respectively. Several studies applied OC and EC to estimated emission sources

from local and regional transport such as anthropogenic emissions and burning of biomass

(Chuang et al., 2013; Cheng et al., 2015; Li et al., 2018). Previous studies reported that OC3 was

a good relationship with gasoline emission (Cao et al., 2006) and burning of biomass (Chuang et

al., 2013), while OC2 was a marker of vehicular exhausts (Cheng et al., 2015). Form the result of
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EC fractions, EC1 was a strong correlation with vehicular exhausts (Cao et al., 2005) and EC2 was
a good relationship with diesel emissions (Cao et al., 2006).

Several studies showed the result that agricultural burning such as rice straw and sugar
cane in central and northeastern part of Thailand was creating the higher value of black carbon and
organic carbon to the Bangkok area (Junpen et al. 2018; Kim Oanh, et al., 2018). Hence, the results
of this study shows the higher level of PM2 s concentration might be came from the agricultural
burning activities from another province nearby this area, which areas around 250 kilometers far
from Bangkok. Thus, it is much more enough time to enrich the level of organic carbon and PMz s,
which lifetime of black carbon was taking the atmospheric about one week (Cape et al., 2012)

OC can be released straight from various sources, including the man-made processes and
natural germinations (e.g. primary OC) and/or also can produce in the ambience air because of
gas-to-particle exchanging (e.g. secondary OC) (Mauderly and Chow, 2008). While, EC is released
from incomplete combustion processes (e.g. the combustion biomass, the combustion of fossil
fuels and biofuels) and usually applied as a marker of primary organic carbon (Turpin and
Huntzicker, 1995).Generally EC is sub-divided into char and soot. Char-EC was consisted of
submicron particles produced from low temperature combustion of biomass and Soot-EC was
composed from aggregation of gas-phase precursors released from high temperature (>600 °C) of
fossil fuel combustion, which depend on the type of fuel and condition of combustion (Han et al.,
2007, 2009a; Keiluweit et al., 2010). Hence, the ratio of OC/EC and Char-EC/Soot-EC can explain
their environmental (Han et al., 2009a) and benefit in source estimation.

4.3.2. Distribution of OC/EC ratios and Char-EC/Soot-EC Ratios
Carbonaceous compounds are essential fraction of atmospheric aerosols (Putaud et al.,

2004). The ratio of OC/EC and Char-EC/Soot-EC were applied to predicate the source of
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carbonaceous aerosols (Han et al., 2007, 2009b), as showed in Table 4.2. In this study the result
showed that the OC/EC ratios ranged from 1.87 to 9.96 with an average value of 3.52+1.41,
indicating that the source was gasoline and LPG exhausts (Chow et al., 2004), which the OC to
EC ratio higher than two points that the secondary organic carbon has a significant to organic
carbon (Turpin and Huntzicker, 1995).While the Char-EC/Soot-EC ranged from N.D. to 17.93
with a mean value of 6.94+3.70. Char-EC/Soot-EC ratio is cogitated a good marker of biomass
burning more than OC/EC ratio because the primary emission sources can be effected to OC/EC
ratio (Kumar and Attri, 2016). A high Char-EC/Soot-EC ratio represents the function of biomass
burning participated Char-EC rising to total EC, on the other hand, the ratio less than one will
intimates that Soot-EC from fossil fuel combustion outstandingly encourage to total EC. The result
presented the high ratio of Char-EC/Soot-EC guided that the ambient aerosol was emerging from

biomass burning activity in Bangkok area.

4001 A F= 0.96 50 B F= 0.27

3.004 0 40

Char-EC (ug m3)
g
1

Soot-EC (ug m3)

1.00

00 00 109

00 200 400 600 00 200 4.00 6.00
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Figure 4.2. The correlation of Char-EC with total EC (A) and the correlation of Soot-EC with total
EC (B) in PM2 5 conducted at Bangkok
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A strong correlation was found between Char-EC and total-EC (r = 0.96), while the
correlation of Soot-EC with total-EC was weak (» = 0.27), correlation is significant at the 0.01
level (see in Fig. 4.2 (A) and (B)). This recommended that prominent raisings of Char-EC came
from biomass burning to total-EC of the Bangkok’s atmosphere. The correlations of this study
were agreement with previous studies from China and India (Han et al., 2009; Kumar and Attri,
2016).

Table 4.2. Carbon composition and the average ratios of OC/EC, Char-EC/Soot-EC, OC, EC, and
TC to particulate matter in Bangkok

Mean = SD
Species Minimum Maximum (n=43)
OC/EC 1.87 9.96 3.52+1.41
Char-EC/Soot-EC N.D. 17.93 6.94+3.70
OC/ PM 5 0.03 0.25 0.11+0.05
EC/PM2.5 N.D. 0.08 0.04+0.02
TC/ PMy 5 0.03 0.33 0.15+0.07

For the result of OC/PMa 5, EC/ PM2s and TC/ PM; s ratios were 0.11+0.05, 0.04+0.02 and
0.15+0.07, respectively. The ratios of OC/PM; s and EC/PM; 5 were closer to the resulted value of
biomass burning that reported by previous studies from Mumbai, Beijing and Delhi (e.g. Zhang et
al., 2013; Sharma et al., 2014a, b; Kumar and Attri, 2016). Noticeably, during the observation
period were closer to the reported values of emission source from biomass burning.

4.3.3. Distribution of Secondary Organic Carbon (SOC)

The OC/EC ratio in section 3.2 was higher than two its points that the secondary organic
carbon has a significant to organic carbon. Therefore, SOC was used to calculate by the minimum
of OC/EC ratios, while EC is used as a primary organic carbon (POC) (Chow et al., 1996; Castro
et al. 1999). It was followed from the equation 1:

SOC = OCrotal - EC X (OC/EC)pi (1)
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Where, OCiotal presents the value of total OC and (OC/EC)yyi is the mean value of the three lowest
OC/EC ratios

The average values of the three minimum OC/EC ratios (1.95) have been used in the
equation for measure the SOC content of PM2s. The mean value of SOC in this study was
2.92+1.93 ug m3. The percentage contribution of SOC to OCioal was found 36.3%. This value is
2.3 times (84%) lower than the value that conducted in Milan, Italy (Lonati et al., 2007) and 1.6
times (59%) lower than the value that conducted in Birmingham (Harrison and Yin, 2008) and
Beijing urban site (Dan et al., 2004). But it is higher 2.4 times (15.4%) than the value that
conducted from southern Taiwan (Shen et al., 2020). However this value is close to the value that
observed from roadside area in Hanoi, Vietnam (36.0%) (Thuy et al., 2018). Normally, the SOC
content decreases in urban area and it increases in outlying areas (70—80% in Finokalia) (Shamjad
et al., 2015). The result presented the ratio of SOC to OC at Bangkok had been contributed during
the study period, where the high value maybe effected from the conversion of VOCs, which
released from the traffic exhausts. (Sato et al. 2010).
4.3.4. Distribution of WSIS

The concentrations of WSIS in PMz s are summarized in Table 4.3, which have been widely
studied in different areas. Previous studies reported that SO4* and CI~ are mainly from marine
aerosols, whereas NH4" and K* are mainly from burning of biomass (Andreae, 1983; Kocaka et
al., 2007; Park and Cho, 2011; Pongpiachan et al., 2014b). In this study we found the individual
of WSIS concentrations were in a decreasing order of SO4> >NO; >Na™ Ca?" >NHs™>K"
>Cl >NO, >Mg?">F . The mean concentration of total ten ions was 12.7+10.6 ug m . By SO4>~

(4.81+3.81 pug m?) was highest found in PM> s mass, followed by NOs (1.85+1.04 ug m™) and
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followed closely by Na* (1.78+0.59 pg m™3), as 38%, 14% and 14% of the total measured ions,
respectively.

Table 4.3. The concentrations of WSIS conducted in PM> s at Bangkok

Ton Species Min. Max. Mean % mass of
(ngm?) (ugm3) (ugm-3) total ion content

F 0.06 0.22  0.10+0.03 1%

Cr 0.28 6.86  0.59+0.99 5%
NO2- N.D. .16  0.40%0.18 3%
NOs- 0.59 6.18 1.85+1.04 14%
SO4* 0.80 21.40  4.81+3.81 38%
Na* 1.10 4.51 1.78+0.59 14%
NH4" 0.20 3.61 0.97+0.85 8%

K* N.D. 1.60  0.65+0.41 5%
Mg?* 0.08 2.53 0.18+0.37 1%
Ca?* 0.60 16.20 1.36+2.33 11%
Total - - 12.7+10.6 100%

The higher value concentrations of SO4?> and NOs that have found in this study could be
related with high oxidation rates of SO; and NO: for the ambient air of Bangkok. Previous studies
recommended that the aquatic phase oxidation of SO» by the catalysis of the transfer metals is
probably a big role of SO4? origination during the study period (Sun et al., 2013; Zhao et al., 2013;
Park et al., 2016). While NO; is generally produced through gas phase oxidation procedure of
NO; and OH (Smith et al., 1995; Park et al.,2005; Park et al., 2016).

Several previous studies presented that K* and NH4" are the major contributors of particles
initiated from burning of biomass and agricultural waste, (Kocaka et al., 2007; Kundu et al., 2010;
Park and Cho, 2011). At Bangkok, the result showed that the K was a high relationship with OC
(=0.86), EC (=0.87) and Char-EC (+=0.82), respectively. However K" was weakly related with
those marine species (i.e., Na*, CI , Mg?" and Ca?"), indicating that K* mostly initiated from
combustion activities that led to K* conjunction, so in this study K" was applied as a marker of

biomass burning. Interestingly, a strong correlation between K* with NO; (7=0.81) was also found
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in Bangkok area, as the major source of NOs is originated from incomplete combustion, including
traffic emissions and industrial emission (Mousavi et al., 2017). Thus, the result suggested that the
combustion sources (e.g. biomass burning and vehicular exhausts) might be played a significant
role in the higher organic carbon in PM 5 at Bangkok.
4.3.5. Distribution of PAHs

The statistical distributions of individual PAH obtained in Bangkok are plotted in panel as
box and whisker plots were shown in Fig.4.3. In this study we found the individual concentrations
of PAH that analyzed from PM> s samples were in a decreasing order of B[g,h,i]P> Ind> B[k]F>
B[b]F> B[a]P> B[e]P> Cor> Phe> B[a]A> Pyr> Chry> D[a,h]A> Fluo> D[a,e]P> B[a]F> FI>
Ace> Per> Ant. The Y PAHs concentration (the sum of 19 PAH profiles) was 2.78+1.48 ug m,
which the highest concentration of B[g,h,i]P (0.516+0.271 pg m™), followed by Ind (0.404+0.221
ng m) have been found in the PM, s sample.

Previous studies in Bangkok reported that the dominant PAHs in ambient air were
B[g,h,i]P, B[e]P, B[a]P, B[k]F, Pyr and Cor (Panther et al., 1999), and in the suburban Bangkok

area, the significant PAHs were B[e]P, B[g,h,i]P, Ace, Acy (Kim Oanh et al., 2000).
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Figure. 4.3. Box-plot of individual concentration of 19 PAHs conducted in PM; 5

In this study, B[g,h,i]P and Ind were presented the highest concentration, indicating that
vehicular exhausts, industrial combustion and burning of waste might be reflected as the release
sources of PAHs for the Bangkok's atmosphere (Zhou et al., 1999; Ravindra et al. 2008).

Several previous restudies have recommended the use of PAHs as markers to estimate the
pollution sources. Those findings found B[g,h,i]P, Ind, B[a]P, B[b]F, B[k]F were the major PAHs,
whereas smaller portions of B[a]A, Phe, Ant, Pyr, Fluo and Chry were found in the softwood
burning emissions (Freeman and Cattel, 1990; Bari et al., 2010). Likewise, B[a]P have been used

as a marker of biomass burning, while B[g,h,i]P and Ind used as tracers of vehicular exhaust
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(Kulkarni and Venkataraman, 2000; Chuesaard et al., 2014). In addition, the high molecular weight
PAH congeners (HMW-PAHSs) (e.g. B[a]P and D[a,h]A) have been applied for the dominant
emissions occurring from gasoline vehicles. Whilst other HMW-PAHSs (e.g. B[a]P, B[g,h,i]P, Ind
and D[a,h]A) released from diesel trucks at higher concentrations than duty vehicles (Miguel et
al., 1989). Moreover, B[g,h,i]P also represented as a specific indicator for gasoline vehicles
(Bostrom et al., 2002).
4.3.5.1. Diagnostic Ratios Analysis

Some PAH ratios have been applied as a descriptor to feature and separate the emission
source (Yunker et al., 2002; Brown and Peake, 2006; Feng et al., 2006; Zhang et al., 2008) such
as Ant/(Ant+Phe), Fluo/(Fluo+Pyr), B[a]A/(B[a]A+Chry) and Ind/(Ind+B[g,h,i]P), as Ant/(Ant
+Phe) < 0.1 was suggest for petrogenic, or > 0.1 pyrogenic source. Fluo/(Fluo+Pyr) of 0.4-0.5
presented petroleum combustion (e.g. traffic emission and furnaces), > 0.5 combustion of biomass
(e.g. combustion of grasses, wood and/or coal) source. For B[a]A/(B[a]A+ Chry), > 0.35 was
indicated as the signal for pyrogenic source (e.g. combustion of biomass, coal, petroleum and
mixed petroleum). Ind/(Ind+B[g,h,i]P), < 0.2 was considered as a petrogenic source, 0.4-0.5 was
combustion of petroleum and > 0.5 related to the combustion of biomass. The diagnostic of the

four ratios during the study periods are shown in Fig. 4.4.
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Figure 4.4. The diagnostic ratios of: (A) Fluo/(Fluo+Pyr) vs. Ant/(Ant+Phe); (B)

B[a]A/(B[a]A+Chry) vs. Ind/(Ind+B[g,h,i]P) (C) Fluo/(Fluo+Pyr) vs. Ind/(Ind+B[g,h,i]P) and (D)
B[a]A/(B[a]A+Chry) vs. Fluo/(Fluo+Pyr); conducted in Bangkok

In this study, the ratio of Ant/(Ant+Phe) ranged from 0.10 to 0.17, which applied to
differentiate petrogenic (<0.1) and pyrogenic (>0.1). The plurality of portions accommodated a
ratio greater than 0.1 designated a pyrogenic source. The Fluo/(Fluo+Pyr) has a range of 0.40 to
0.61 with a mean of 0.46. Most of sections rations in between 0.4 to 0.5, indicating petroleum
combustion was a main source (e.g. combustion engines and furnaces). For B[a]A/(B[a]A+Chry)

ranged from 0.41 to 0.83 with a mean of 0.55. It showed that the major source was pyrogenic

(>0.35) (Dvorska et al. 2011), including coals, biomass, fossil and petrol fuels combustion. The
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Ind/(Ind+B[g,h,1]P) ranged from 0.31 to 0.50 and a mean of 0.44. The majority of portions
accommodated a ratio from 0.4 to 0.5, which indicates petroleum combustion was a major source.
Overall, the result of the binary ratios showed that petroleum combustion and biomass burning,
particularly vehicular exhausts and the effect of agricultural waste burning from another province
surrounding Bangkok was a major contributor in Bangkok's atmosphere.
4.3.6. Classification of Air Mass Back Trajectories during the Aerosol Sampling Period

In order to identify the potential pollution sources in the receptor site, we investigated the
air mass back trajectory using the Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model (Zhao et al., 2011; Stein et al., 2015; Kassambara, 2017; Moran et al., 2018).
The backward air mass trajectories arriving at Bangkok during the study period in August (Fig.
4.5 (A)) presented that the southwest trajectory patterns were those having the marine pathways
of air mass arriving the Bangkok area from over the sea. Thus, the marine air mass was initiated
from the Indian Ocean and Andaman Sea and had a long distant marine and entered inland at the
southern part of Myanmar and the western part of Thailand before arriving to Bangkok. These air
masses can be carried sea salt aerosols to the Bangkok area, which is also demonstrated in the
recreated mass produces. The majority backward air mass trajectories during October (Fig. 4.5
(B)) have passed over the northeastern trajectory (92% in total) and 8% from southwest trajectory
patterns. Hence, the mainly air masses can be took from the long rang transportation of the biomass
burning that initiated 48% in total from the northeastern regions of Thailand and 44% in total had
a long distant pathway through China and a marine pathway over the Gulf of Vietnam, and then
passing over Vietnam and Lao before arriving to Bangkok. During the study period in December
(Fig. 4.5 (C)), all clusters of the air masses trajectory patterns have passed from the northeastern.

Therefore, the essential sections of the air masses encouraged to the pollutants emitted from
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burning of biomass (e.g. agriculture waste, wood and/or grass) vehicles exhaust, combustion of
fossil fuel and coal which transferred from Lao, Vietnam and China.

Interestingly, during the sugarcane harvests season in central and northern part of Thailand
during November to February was related to high level of carbonaceous aerosols and air masses
trajectory patterns from this study in December. From the previous study reported that the owning
of five PAHs profile including B[a]A, B[b]F, B[k]F), B[a]P) and D[a,h]A in cachaga, Brazil which
indicating that the samples that conducted from burnt sugar cane fields had higher significant
PAHs levels more than those samples that conducted from non-burnt sugar cane fields (Tfouni et
al., 2007) and the enriched K* and C1~ were found the most abundant of WSIS in burnt sugar cane
period as well (Alvareza et al., 2018). All chemical level concentrations measured in this study,
including OC, EC, WSIS and PAHs are in a good agreement with the result which have been
reported in Brazil (Lara et al., 2005; Ivarez et al., 2016). The concentrations of TC, OC, EC, WSIS
and PAHs during burned and non-burnt sugar cane fields were statistically different for both
period, presenting statistical differences (p < 0.05) and (p < 0.10). Hence, it points that the burning
of sugarcane leaf for the harvest period had a significant in December which is agreement with the
high-level of chemical characterization of PMzs-bounded carbonaceous aerosols in the ambient

air of Bangkok.
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Figure 4.5. Air mass history during the aerosol sampling period at Bangkok; (A) August 2017,
(B) October 2017 and (C) December 2017
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4.3.7. Source identification and pattern recognition

4.3.7.1. HCA for Classification of Chemical Compounds during the Aerosol Sampling Period
The chemical components in PM» s samples were classified by cluster analysis of

carbonaceous compositions, WSIS and PAH profiles by the ward method with squared euclidean

distance (see Fig. 4.6).

Dendrogram using Ward Linkage
Rescaled Distance Cluster Combine
0 5 10 15 20 25
1 1

F-
NO, —
l\lgz* -
Cr |—
NH,;* —
K
NOs
Na*
EC | ]
Ca* |
SO —
TC
oc ||
Ant

Per |—
Ace —
Fl |
B[a]F |
Phe |—
B[aJA
Pyr |
Chry
Fluo —
D[a,h]A
D[a,e]P —
Ble]P |—
B[a]P —
Cor |—
B[b]F
BIKJF —I

Ind

BJ[g,h,i]P —l

e e e s e e s e s e s e e e e o — —— —(— —(— —(—— —— —(— — ——  —(————————— —— (———— —

Figure 4.6. Dendrogram of PM; s-bounded chemical compounds in the ambient air of Bangkok
HCA was applied to separate the homogeneous clusters of individual carbonaceous

component in PMz s samples. The results indicated that the main components are separated into
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four clusters from the 32 individuals. The first cluster consists of F , NO, , Mg?*, Cl , NH4", K",
NOs , Na*, OC, Ca*", EC, TC, SO4% , Ant, Per, Ace, Fl and B[a]F, which all OC, EC and WSIS
were in this cluster. It indicated that the main source was mixture from combustion activities (e.g.
biomass, fossil fuel, coal and industrial) (Long et al., 2014; Pani, et al., 2019).

The second cluster includes Phe, B[a]A, Pyr, Chry, Fluo, D[a,h]A, D[a,e]P, B[e]P, B[a]P
and Cor. This cluster ordinarily initiates from pyrogenic sources that emitted from vehicular
exhausts, diesel/gasoline engine, road carpeting asphalt, crude oil and tar (Ahrens and Depree,
2010) and dust from road site (Larsen and Baker, 2003). In agreement with previous studies
reported, 3—4 ring PAHs have been related with vehicular exhausts and road dust in urban cities
(Zakaria et al., 2002; Boonyatumanond et al., 2007).

The third cluster contains of B[b]F and B[k]F, which are the anthropogenic PAHs from
petroleum products, vehicular exhausts, oil combustion and waste incinerators from industrial
(Zhou et al., 1999; Ravindra et al. 2008). As B(k)F and B(b)F are classified as an indicator of fossil
fuels combustion (Park et al., 2002). In summary, this cluster was assumed as vehicular exhausts
contamination and petrogenic sources.

The last cluster encloses Ind and B[g,h,i]P, which are the anthropogenic PAHs from
vehicular exhausts, industrial combustion (e.g. petroleum, oil and/or waste incinerators) (Zhou et
al., 1999; Ravindra et al. 2008; Elghawi et al., 2010). A notable that Ind and B[g,h,i]P were found

from both diesel and gasoline fuelled engines (Elghawi et al., 2010; Birgiil et al., 2011).
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4.3.7.2. Source estimations from PCA

The contaminations of carbonaceous aerosol compositions in fine particles have been
analysed extensively in many countries (Lee et al., 2011). Thus, multivariate analysis including

correlation coefficients and PCA have been applied to associate the source of carbonaceous

compositions, WSIS and PAH profiles (Long et al., 2013).

Table 4.4. Rotated Component Matrix®* of PM» s-bounded chemical compounds during the aerosol

sampling period in Bangkok’s atmosphere.

Principal components (PC)

Compositions PC1 PC2 PC3 PC4 PC5
TC 0.12 0.97 N.D. 0.09 0.04
0C 0.12 0.96 -0.05 0.11 0.09
EC 0.12 0.93 0.13 0.02 20.09
F- 20.25 0.05 0.25 0.14 0.88
Crr N.D. 0.04 0.99 N.D. 0.08

NO» 20.02 20.12 0.06 -0.03 0.92
NO5" 0.13 0.70 0.60 0.09 0.09
SO 0.04 0.66 0.63 20.28 -0.04
Na* 20.18 0.52 0.74 0.01 0.23
NH.* 0.01 0.89 20.02 20.29 -0.03
K* 0.06 0.91 0.31 20.01 -0.03
Mg?* N.D. 0.11 0.99 -0.05 0.02
Ca2* 0.02 0.11 0.98 -0.04 0.07
Ace 0.14 -0.57 -0.24 0.11 0.25
Fl 0.60 -0.42 20.17 -0.04 0.23
Phe 0.97 20.02 20.02 0.04 0.01
Ant 0.96 0.01 N.D. 0.10 20.10
Fluo 0.88 0.19 20.02 20.08 -0.06
Pyr 0.97 0.16 0.01 N.D. 20.11
Bla]A 0.91 -0.04 0.05 0.21 0.11
Chry 0.98 0.04 N.D. 20.08 -0.05
B[b]F 0.92 0.13 0.04 0.21 20.11
B[k]F 0.94 0.08 20.07 0.26 -0.06
B[a]F 0.90 0.04 20.02 0.28 20.07
B[e]P 0.94 0.04 20.02 0.25 20.08
B[a]P 0.92 0.06 0.03 0.27 -0.06
Per 0.79 -0.03 0.03 0.43 0.08
Ind 0.74 0.01 -0.04 0.64 20.01
B[g,h,i]P 0.68 20.07 20.02 0.67 0.06
D[a,h]A 0.73 -0.04 -0.03 0.51 -0.07
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Cor 0.36 N.D. -0.04 0.89 0.06

D[a,e]P 0.53 -0.19 -0.15 0.59 0.10
Variance [%] 43.7 24.0 10.5 6.48 4.46
Estimated Vehicular Biomass Sea-salt Power Industrial
source Exhaust Burning Aerosols plants Emission
a Rotation Method: Varimax with Kaiser Normalization.
b Bold loading > 0.50

The concentrations of carbonaceous compositions, WSIS and PAH profiles were
performed as the active variables for PCA analysis (see Table 4.4). The result presented 89.1% for
the majority of the variance, which described by five principal components (PCs). The result
showed 43.7% for the total variance in the PC1. Whereas the PC2 clarified for 24.0% of the total
variance, followed by PC3, PC4, and PCS5 explain for 10.5%, 6.48%, and 4.46% of the total
variance, respectively.

PC1 contains high loading factors of Fl, Phe, Ant, Fluo, Pyr, B[a]A, Chry, B[b]F, B[k]F,
B[a]F, B[e]P, B[a]P, Per, Ind, B[g,h,i]P, D[a,h]A and D[a,e]P, which can be explained as the
results are correlated to the result that showed in the result of HCA. Therefore, the reasonable to
explain PC1 might be delegate of pyrogenic sources that discharged from vehicular exhausts,
diesel/gasoline engine, road carpeting asphalt, crude oil and tar (Smith and Harrison, 1998;
Ravindra et al., 2008; Ahrens and Depree, 2010). Due to those congeners are profoundly related
with vehicle exhaust, it is suitable to predicate that vehicle exhaust describe 43.7% of the total
variance. While, B[k]F and B[g,h,i]P use as a marker of vehicle emissions (Miguel and Pereira,
1989; Harrison et al., 1996). Whilst B[a]P, B[k]F and B[g,h,i]P are a marker of diesel/gasoline
emissions (Ravindra et al., 2008; Teixeira et al., 2013). In agreement with previous studies
reported, 3—4 ring PAHs have been related with vehicular exhausts and road dust in urban cities

(Zakaria et al., 2002; Boonyatumanond et al., 2007).
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PC2 (24.0% of the total variance) was characterized by high loading of TC, OC, NO; ,
SO+, Na", NH4" and K*. The result is related to biomass burning, which OC, EC and K" are
assumed to be a tracer for biomass burning, which contain a significant amount of WSIS, such as
NH4", K*, and NOs (Pani et al., 2018). This result is related to the previous studies that conducted
the particle in urban area and the major portion of OC released by biomass burning (de la Campa
et al., 2009; Pirovano et al., 2015; Pani et al., 2019).

PC3 presented for 10.5% of the total variance, which the high loading of C1, Na*, SO4? ,
NO; , Mg?" and Ca?". Thus, the significance of long-range transportation has been related to those
components (Chan et al., 1997; Wang and Shooter., 2001), which affected by the plumes of smoke
originating from long-range transport from surrounding provinces. This definition is in a good
compliance with previous studies that the major elements came from sea salt aerosol, including
Cl , Na*, Mg?", Ca*" and SO4> (Putaud et al., 2004; Radhi et al., 2010).

PC4 (6.48% of the total variance) displayed high loading values of Cor, B[g,h,i]P, Ind,
D[a,h]A and D[a,e]P, in which Cor was highest correlation for this component (r=0.89).
Accordingly, it seems suitable to conclude PC4 might be characteristic of the fuels combustion
from power plants because the provinces nearby Bangkok such as Nonthaburi, Chachoengsao,
Samut Prakan and Ayutthaya.

The last cluster PC5, (4.46% of the total variance) had high loading of F and NO» , which
showed a high correlation coefficient (=86) and (r=89), respectively. Several studies emphasized
that the importance of industrial activities as one of the major sources of F component in urban
atmosphere (Haidouti et al., 1993; Mukherjee et al., 2003). Furthermore, F and NO, are a typical

pollutant of atmospheric aerosol in Bangkok, which could be from electrolytic aluminum
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enterprise (Zhou et al., 2018) and waste incineration (Wang et al., 2015) in industrial estate nearby

the sampling area.
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Chapter-V

Results & Discussion

Long-Range Transboundary Atmospheric Transport of
Polycyclic Aromatic Hydrocarbons, Carbonaceous
Compositions, and Water-Soluble Ionic Species in Southern
Thailand

Abstract

This study investigated atmospheric particulate matter (PM) with an aerodynamic diameter
of <2.5 um (PM2s) observed at the Prince of Songkla University (Phuket Campus) in southern
Thailand. All samples (n = 75) were collected using MiniVol™ portable air samplers from March
2017 to February 2018. Carbonaceous aerosol compositions, i.e., organic carbon (OC) and
elemental carbon (EC), water-soluble ionic species, and polycyclic aromatic hydrocarbons (PAHs)
in the PM2 5 samples were identified and quantified. We found that the average PM> s concentration
was 42.26 + 13.45 pg m3, the OC/EC ratio was in the range of 2.69-16.9 (mean: 6.05 + 2.70),
and the average concentration of 10 selected ions was 6.91 + 3.54 pug m>. The average
concentration of SO42~ was the highest throughout the entire study period (2.33 + 1.73 pg m™>);
the average contribution of SO4>~ to the major ionic components was 34%. Surprisingly, the
average concentrations of NO3;~ and NH4* were relatively low. The mean ratio of [NO3 ]/[SO4>7]
was 0.33 £ 0.24. Strong positive correlation was found between K* and both OC and EC (r = 0.90
and r = 0.93, respectively). It is well known that K* is a marker of biomass burning (BB), whereas
EC is a marker of both BB and fossil fuel combustion. Results showed that BB episodes might
play a major role in producing the observed high levels of OC. The relatively high abundance of
both B[g,h,i]P and Ind suggests that motor vehicles, petroleum/oil combustion, and industrial

waste burning are the primary emission sources of PAHs in the ambient air of Phuket.
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Interestingly, principal component analysis (PCA) indicated vehicular exhausts are the main
source of carbonaceous aerosol compositions found in the ambient air of Phuket, whereas the
contributions of marine aerosols and BB to secondary OC were also important.

Keywords: PM, s, PAHs, Carbonaceous Compositions, Water Soluble Ionic Species, Biomass

Burning

5.1. Introduction

Although air pollution is primarily an urban phenomenon, it is an important problem
globally. In population centres such as Thailand, large quantities of fuel are consumed in various
economic sectors, for e.g., industry (Gocht et al., 2001), transportation (Silva, 2005), and
electricity generation (Dung, 1996). Combustion of fossil fuels such as coal and petroleum is
responsible for causing the majority of air pollution (Sookkai et al., 2000). Air pollution in the
form of dust, especially particulate matter (PM) with an aerodynamic diameter of <2.5 um (PM>.s),
is among the most dangerous. This is because it can affect the human respiratory system (Wheeler
et al., 2006), exacerbating conditions such as bronchitis, influenza, pneumonia, tuberculosis,
emphysema, and asthma, especially in children, the elderly, and people with underlying
cardiopulmonary/respiratory diseases (Jinsart et al., 2002).

Carbonaceous aerosols have been studied thoroughly over recent decades because they can
affect human health, ecosystems, and the climate system (Shih et al., 2008). Another major concern
is that they are persistent organic pollutants that can remain in the environment for long periods
(Jones and Voogt, 1999; Dachs and Eisenreich, 2000). Several studies have investigated the
presence of carcinogenic and/or mutagenic substances in the atmosphere, derived via gas—particle

partitioning, e.g., polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls, the
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origin of which is incomplete combustion attributable to both natural and anthropogenic sources.
These substances, which are classified as semi-volatile compounds, can be released as solid
material or vapour that can adhere to the surface of other particles (Smith and Harrison, 1998;
Jones and Voogt, 1999; Dachs and Eisenreich, 2000; Schummer et al., 2010). Thus, they can
spread from their source via many media, posing a danger to human health and the ecosystem.
Therefore, measurement of the concentration of these carbonaceous aerosols is highly important.

In Thailand, information on PAHs, carbonaceous compositions, i.e., organic carbon (OC)
and elemental carbon (EC), and water-soluble ionic species (WSIS) in the ambient air of southern
parts of the country is rare. Previous study of carbonaceous aerosols in the coastal city of Hat-Yai
(southern Thailand) found that aged marine aerosols from long-range transportation and/or
particles from biomass burning (BB) made a major contribution to the carbonaceous aerosols
measured at the top of a building in the study area (Pongpiachan et al., 2009, 2013b). Therefore,
this study selected an observation site at the Prince of Songkla University (Phuket Campus) in
southern Thailand to investigate atmospheric PMz 5. Phuket is the largest island in Thailand. It is
located in the south and encircled by the Andaman Sea. It has long slender shape with north—south
orientation. In addition, Phuket has several other large and small satellite islands. Approximately
70% of the land area is mountainous, while the remaining 30% comprises plains. The climate of
Phuket is warm and moist throughout the year.

The first unambiguous evidence that the air pollution seen frequently in fine atmospheric
particles is caused by human activities became available several decades ago. Comprehension of
the composition and major sources of carbonaceous aerosols is important for improving air quality.
Therefore, the objective of this study was to determine the characteristics of OC, EC, WSIS, and

PAHs in the PM; 5 samples obtained at the study site. The analysis focused primarily on the
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following: (i) characterization of the chemical compounds detected in the PM, s samples, (ii)
statistical analysis of the chemical composition and its relation to source identification, and (iii)

statistical source apportionment of the chemical composition, including OC, EC, WSIS, and PAHs.

5.2. Materials and Methods

5.2.1. Air Quality Observatory Sites

The aerosol sampling campaign was undertaken at Building 6 of the Prince of Songkla
University (Phuket Campus) in Thailand (Fig. 5.1). Phuket, the largest island in Thailand, is in the
south and surrounded by the Andaman Sea. The main island has long slender shape with north—
south orientation and it has several other large and small satellite islands. Around 70% of the land
area is mountainous, while the remaining 30% comprises plains. The climate of Phuket is warm
and moist throughout the year. The MiniVol™ air samplers were installed on the rooftop of
Building 6 (4" Floor): 7.89318°N, 98.35209°E (GPS coordinates: 7°53°35.5”N, 98°21°07.5”E).

The monitoring campaign was conducted from March 2017 to February 2018.
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Figure 5.1. Location of the sampling site used in this study

Samples of PMys (n = 75) were obtained using MiniVol™

portable air samplers
(Airmetrics, USA) with 47-mm quartz filters and a flow rate of 5 L min~!'. All samples were
collected over 72-h periods. All PMz s samples were stored carefully in individual petri slide dishes
and refrigerated to retain their chemical composition until required for further analysis. All PM s
filter samples were analysed for PAHs, OC, EC, and WSIS.
5.2.2. Chemical Analysis
Carbonaceous aerosol analyses: organic carbon (OC) and elemental carbon (EC)

The measurements of carbonaceous aerosol compositions including calibration and quality
assurance/quality control (QA/QC) processes were performed at the laboratory of the Institute of
Earth Environment, Chinese Academy of Science (Xian, China). The protocols adopted were the

same as reported previous by Chow et al. (2007a). Normally, the OC content was considered as

the sum of individual OC fractions (i.e., OC1 + OC2 + OC3 + OC4) and the EC content was
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considered as the sum of individual EC fractions (i.e., EC1 + EC2 + EC3 + OP), based on the
IMPROVE _A thermal optical reflectance protocol (Chow et al., 2007a; Fung et al., 2002).

Carbonate carbon was determined through assessment of CO; acidification from organic
samples prior to the normal carbon analysis procedure. Seven temperatures were used for different
fractions. The temperature protocol was applied to separate OC and EC in a process similar to the
thermal optical reflectance and thermal optical transmittance pyrolysis correction. This protocol
produces evaluations of total OC, total EC, and total carbon (TC), monitored by both reflectance
and transmittance. For the QA/QC procedures that have been described elsewhere (Cao et al.,
2003), the instrument was calibrated daily with known quantities of methane. Replicate analyses
were performed for each group for 10 samples and the relative deviation of the replicate analyses
was <5% for TC and <10% for both OC and EC.

Water-soluble ionic species (WSIS)

The concentrations of WSIS included five cations (i.e., Na*, NH4*, K, Mg?*, and Ca®")
and four anions (i.e., CI", F-, NO3~, and SO4?"). An ion chromatograph with a separation column
was used for the extraction from all PMzs samples. The QA/QC procedure for this analysis
required all glassware to undergo ultrasonic cleaning and oven drying at 450 °C for approximately
6 h. All solvents used in the analysis procedure were pesticide residue grade (Wang et al., 2005).
Polycyclic aromatic hydrocarbons (PAHs)

The concentrations of PAHs in the PM2 s samples were measured using in-injection port
thermal desorption coupled with gas chromatography/mass spectrometry, which quantified the
concentration of 19 PAHs as non-polar organic compounds. This analytical procedure is similar

to the alternative method of traditional solvent extraction followed by gas chromatography/mass
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spectrometry analysis. The analytical procedures have been described in previous studies (Ho and
Yu, 2004; Chow et al., 2007b).
5.2.3. Statistical Analysis

This study used the SPSS System for Windows Version 22 to produce descriptive statistics
(minimum, maximum, mean, and standard deviation) of the measured concentrations of PAHs,
carbonaceous compositions, and WSIS. We also used PCA for identification of source

appointment.

5.3. Results and Discussion
5.3.1. Concentrations of Total Carbon (TC), Organic Carbon (OC), and Elemental Carbon
(EC)

The average concentrations of each carbon fraction for OC, EC, TC, and PMas in the
samples from Phuket are presented in Table 5.1, and the concentrations of OC and EC in each

individual sample are shown in Fig. 5.2.

Table 5.1. Concentrations of OC, EC, TC, and PM> s samples from Phuket, Thailand

Minimum Maximum Mean £+ SD

SPECIES iom)  (ugm)  (n="75)
OCl1 0.00 0.22 0.04 £ 0.05
oC2 0.22 1.56 0.53+0.23
0C3 0.73 5.34 1.57+0.75
ocC4 0.12 3.37 0.71 £0.62
oC 1.08 10.90 3.05+1.70
ECI1 0.10 3.74 0.70 £ 0.64
EC2 0.00 0.28 0.13 +£0.06
EC3 0.00 0.00 0.00 £ 0.00
EC 0.09 3.90 0.63 +£0.58
TC 1.17 14.80 3.67 £2.25
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PMas 20.07 91.02 42.26 + 13.45

Seinfeld and Pandis (2006) reported that the highest carbonaceous fraction of fine
atmospheric PM is OC at 70-80%, followed by EC and inorganic carbon at 5%. The average
concentrations of carbonaceous chemical components found in our samples are listed in Table 1.
It can be seen that of the OC fractions, OC3 was the highest, followed in descending order by OC4,
OC2, and OCI. For the EC fractions, EC1 was the highest, followed by EC2 and EC3. In
characterizing the chemical composition of aerosols in northern Indochina in March and April
2010, Chuang et al. (2013) found OC3 to be a reasonable tracer of BB, whereas OC2 is known as

a tracer of both coal combustion (Chow et al., 2004) and vehicular exhausts (Cheng et al., 2015).

110



2793
2794

2795
2796

2797

oC
Mean 3.05+1.70 pg m3
L 4
10 -
4
a8
=
)
E
-’
g
g 6
&
=
-5}
[}
g
S 4
U )
=)
2 4
L 4
0
135 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75
PM, 5 (n=75)
4.5 -
EC
Mean 0.63+0.58 pg m3
4 -
L 4
3.5
L 4
3
€
0o
2 25
c
.0
®T 2
E
L
c
g
c 1.5 -
o
(8}
g 1
>
0.5 )
4

1 3 57 91113151719 2123252729 3133 3537 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

PM, 5 (n=75)
Figure 5.2. Concentrations of organic carbon (OC) and elemental carbon (EC) in individual

PM:.5s samples collected in Phuket during March 2017 to February 2018

In observations of ambient air throughout an entire year in Phuket, the OC fraction was

found to be the major component because it is released directly into the ambient air following
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incomplete combustion of organic compounds (Jimenez et al., 2008). It can be emitted directly
from various sources such as industrial processes and natural occurrences, e.g., BB (primary OC)
or it can be formed from gas—particle partitioning in the air (secondary OC: SOC). It is well known
that OC can have substantial impact on human health (Mauderly and Chow, 2008). Conversely,
the EC fraction was found to be much lower than the OC fraction. As the chemical structure of EC
is similar to that of impure graphite, it appears reasonable to assume that vehicular exhausts are a
major source of EC. Consequently, the most important sources of EC are fossil fuel combustion
and/or BB (Gelencsér, 2004).

The mean values of OC and EC in the PM> s samples of this study were 3.05 + 1.70 and
0.63 + 0.58 ug m3, respectively. These values are much smaller in comparison with those from
other areas. However, the average mean concentrations of OC and EC determined in this study are
similar to those reported in autumn and winter in Cape Hedo, Okinawa (Kunwar and Kawamura,
2014). Generally, EC is released from any combustion source and it is usually used as a tracer of
primary OC (Turpin and Huntzicker, 1995). Hence, the relationship between OC and EC can be
used to estimate the source of carbonaceous particles. The relationship between OC and EC in the
PM: s samples obtained in Phuket in this study is illustrated in Fig. 5.3. The very strong correlation
between OC and EC (r = 0.93) indicates they have similar sources in winter and spring, as reported

by Kunwar and Kawamura (2014).
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Figure 5.3. Correlation between organic carbon (OC) and elemental carbon (EC) in the PM2 5

samples collected in Phuket during March 2017 to February 2018
5.3.2. OC/EC Ratios and Secondary Organic Carbon (SOC) Contributions

OC/EC ratios

Carbonaceous compounds represent a significant fraction of atmospheric aerosols,
accounting for 20-35% of PMio and 20-45% of PM> 5 (Yttri et al., 2007; Putaud et al., 2010). The
OC/EC ratio is applied frequently to explain the emission sources of carbonaceous aerosol

compounds (Han et al., 2007, 2009b). The OC/EC ratios determined in this study were in the range

of 2.69-16.9 with a mean value of 6.05 +2.70 (Fig. 5.4).
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Figure 5.4. The OC/EC ratios of the 75 samples obtained in Phuket (Thailand) during March
2017 to February 2018
The value of the OC/EC ratio can indicate the primary source of pollution (Wang et al.,

2015). Several previous studies have investigated carbonaceous PM in northern and central parts
of Thailand ( Chaiyo etal., 2011,13; Duangkaew et al., 2013; Pongpiachan et al., 2013a,b; 2014a,b;
2017; Tsai et al., 2013; Chaiyo and Garivait, 2014; Janta and Chantara, 2017; Pani et al., 2018;
Thepnuan et al., 2019). However, the availability of data from southern Thailand is limited,
especially from Phuket. This knowledge gap is of concern because Phuket is an important
economic area; therefore, it is vital that the regional air pollution be investigated for PMio, PM2 s,
and PM> s-bound carbonaceous compounds and PAHs.

The chemical characteristics of carbonaceous aerosols and PAHs of PM in the city of
Hat-Yai in southern Thailand have been studied by Pongpiachan et al. (2014). Their study
suggested that the persistence of high OC/EC ratios in December 2007 could have been attributable

to contributions from marine aerosols, BB, and/or long-range transportation. The OC/EC ratio can
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be used to estimate the primary sources of pollution. Several studies on carbonaceous PM in
different parts of the world have reported that high OC/EC ratios are related to SOC (Chow et al.,
1993; Turpin and Huntzicker, 1995; Wang et al., 2015). Carbonaceous aerosols with OC/EC values
>2 can be considered to contain significant quantities of SOC. In this study, the range of OC/EC
ratios was 2.69—16.9 (mean: 6.05 + 2.70). However, a high value of the OC/EC ratio (12) was
reported by Cao et al. (2005) in aerosols derived from residential coal combustion. Therefore, the
wide range of OC/EC ratios found in this study indicates that the emission sources of the PM, 5 in
the samples from Phuket were disparate in comparison with previous studies. The types of major
pollution were found attributable to compound pollution under the combined effects of BB (Lee
et al., 2016), SOC (Boreddy et al., 2018b), and cooking emissions (See and Balasubramanian.
2008). However, the concentrations of carbonaceous compounds vary inter-regionally in relation
to local emissions and weather (Heald et al., 2008).
Secondary organic carbon (SOC) contributions

The measurement of SOC is moderately difficult because it does not have a direct
analytical method. Many studies have used a widely accepted EC tracer method to measure SOC.
Using this method, the contribution of SOC can be calculated based on the minimum values of
OC/EC ratios, where EC is used as a measure of primary OC (Castro et al., 1999). In this study,
SOC was estimated using the following equation:

SOC = OCiotal = EC x (OC/EC)pi (1)

where OCiotal represents the total OC and (OC/EC)yyi is the mean of the three lowest OC/EC ratios.

The mean of the three lowest OC/EC ratios (2.79) was applied in this study to estimate the
SOC content of the PM2 5 samples from Phuket. Based on this technique, it was determined that

the annual mean value of SOC was 1.30 + 1.63 ug m > and the highest value was 2.82 ug m>. The

115



2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884
2885

percentage contribution of SOC to OCioal Was 42.6% in this study. This value is 1.4 times lower
than the value (59.2%) detected in Okinawa, Japan (Kunwar and Kawamura, 2014) and 1.5 times
lower than both the value (67.8%) reported for Hat-Yai, Thailand (Pongpiachan et al., 2014) and
the value (65%) found in Claremont, USA (Na et al., 2004). Conversely, our value is 2.5 times
higher than that observed in Birmingham, United Kingdom (Castro et al., 1999). Our result is close
to that found by Li et al. (2009) in their study conducted at a coastal site (37.7%), and similar to
values observed in northeastern China (42%) by Zhang et al. (2012) and in Kaohsiung in Taiwan
(40%) by Lin and Tai (2001). Despite the relatively high OC/EC ratio (6.05 + 2.70) observed in
our study in Phuket, the SOC content (1.30 + 1.63 pg m) is relatively low, which indicates that
marine aerosols in the Phuket region have comparatively low EC content.
5.3.3. Atmospheric Concentrations of Water-Soluble Ionic Species (WSIS) and PAHs in
PM: s

Given that Phuket is the largest island in Thailand, it was considered important to examine
the impact of marine aerosols on the characterization of carbonaceous compositions. The chemical
characteristics of WSIS have been studied thoroughly in different areas of the world. Several
studies have reported that SO4* and CI- are the main contributors to WSIS found in marine
aerosols, whereas NH4" and K" are the main contributors to WSIS in aerosols attributable to BB
(Kocaka et al., 2007; Park and Cho, 2011).

The individual and average concentrations of 10 selected ions (SO4>~, Na*, Ca**, Cl", NOs",
NO: ", NH4*, K*, Mg?* and F") considered in this study are presented in Table 5.2.

Table 5.2. Concentrations of water-soluble ionic species (WSIS) observed in the PM» s samples
from Phuket, Thailand

Tonic Species Mean Min. Max. % mass of
P (ug m3) (ug m3) (ug m3) total ion content
F 0.09 £ 0.01 0.07 0.12 1

ClI 0.53 +£0.28 0.32 2.47 8
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NO2~ 0.30+0.19 0.00 0.73 4

NOs~ 0.53+0.21 0.00 1.62 8
S04~ 233+1.73 0.33 9.21 3
Na* 1.47 £0.39 0.65 3.04 21
NH4* 0.29 £0.32 0.00 2.38

K* 0.28 +£0.24 0.00 1.58 4
Mg?* 0.13+0.03 0.06 0.24 2
Ca** 0.96 £0.14 0.66 1.37 14
Total 6.91 £3.54 - - -

Several previous studies have used diagnostic ratios to analyse the sources of marine
aerosols and non-marine aerosols or non-sea-salt for WSIS (Karthikeyan and Balasubramanian,
2006). Such work has determined that the sources of K*, SO4*", and Ca?* are not solely from
marine aerosols (Wang et al., 2001). Therefore, the contribution of each of these ions from non-

sea-salt sources was calculated using the following equations (Hedge et al., 2007; George et al.,

2008):
nss-SO4> = (SO4%7) — 0.037*(Na*) (2)
nss-Ca’?" = (Ca*") — 0.038*(Na") 3)
nss-K* = (K*) — 0.25%(Na") (4)

*Note, nss-SO42", nss-Ca?’, and (nss-K* can be used in the formulas above, assuming that marine
aerosols are the same as sea-salt in terms of chemical composition. Meanwhile, Na* is used as a
marker element to determine whether oceanic or continental concentrations have been calculated
(George et al., 2008).

Based on the OC/EC ratios in this study, long-range atmospheric transport of BB plumes
from nearby countries could represent one source. In this region, BB is a widespread activity and
it is known that PM is transported from Indonesia (Southeast Asia) into southern Thailand

(Phairuang et al., 2020). The OC/EC ratios in this study were in the range of 2.69—16.88. Moreover,
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strong correlation (r = 0.80) was found between nss-K* and OC, which was found related to long-
range atmospheric transport and the influence of BB on organic aerosols during the study period.

Several studies have reported that CI” and SO4?~ are the main components of WSIS found
in marine aerosols, while K" and NH4" represent the major contributors to other particles derived
from BB and agricultural waste burning (Park and Cho, 2011; Pongpiachan et al., 2014).
Generally, NO3™ is considered a marker of particles derived from vehicular emissions and fossil
fuel combustion. Therefore, based on the binary ratios between marine and BB components of
WSIS and traffic emissions, NO3~ can be used to identify aerosol types.

Normally, SO4*", NOs~, and NH4" are the major fractions in the form of secondary
inorganic aerosols. In this study, they accounted for 46.0% of total ionic species concentrations.
The average SO4>~ concentration in Phuket was the highest throughout the entire study period
(2.33 £ 1.73 ug m3); surprisingly, the average concentrations of NOs~ and NH4" were relatively
low at 0.53 £ 0.21 and 0.29 + 0.32 ug m >, respectively.

For the classification, [NO3~]/[SO4> ] ratios were applied carefully to identify the incidence
of stationary sources (e.g., boilers) and mobile sources (e.g., vehicular exhausts) of nitrogen and
sulphur. They are generally formed via atmospheric reactions of their gaseous phase, e.g., NOx
and SO». Normally, SO is released via coal combustion, whilst NOx results from any type of
combustion, e.g., coal power plants and vehicular emissions (Liu et al., 2011; Mkoma et al., 2014).
Several previous studies have recommended the mass ratio of [NOs ]/[SO4>"] can be applied to
estimate the relative contribution of stationary sources (e.g., BB, coal combustion) versus mobile
sources (e.g., vehicular emissions) in aerosols (Javid et al., 2015; Park et al., 2015; Deng et al.,
2016; Huang et al., 2016). A high [NOs ]/[SO4* ] ratio was found in a region with high levels of

vehicular emissions (Li et al., 2009). The mean [NO3 ]/[SO4? ] ratio found during this study was
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0.33 £ 0.24. It is lower than that found in other areas in summer in China, e.g., Beijing (0.83),
Tianjin (0.71), and Shijiazhuan (0.56) (Dao et al., 2014) because Phuket is in a tropical region.
The high temperatures in Phuket modulate particulate nitrate into the gaseous phase, which reduces
the [NO37]/[SO4%7] ratio. However, the ratio of 0.3-0.5 found in this study is also lower than that
usually found in China because of the widespread use of sulphur-containing coal by the Chinese
(Yao et al., 2002).

The ions SO4?~ and NH4" are secondary ions that have a complex reaction in that NH4"
responds rapidly with SO4?" to the constant form of ammonium salts (Lai et al., 2007; Li et al.,
2012; Wang et al., 2013). The gas/aerosol distribution of precursor gases in terms of temperature
and humidity affect the reaction of NHs+" and NOs~ (Han et al., 2014). Generally, SO4* is
influenced by anthropogenic sources in industrial areas. The concentration of SOs* was
significantly higher than that of Na* and C1~, whereas nss-SO4*~ was the primary species for acid
replacement (Zhang et al., 2010). Similar to other ions with anthropogenic sources (e.g., NO3"),
the correlation with those of nss-SO4>~ was reasonable (Zhang et al., 2010).

In general, Na“ and CI™ are the sea salt ions that form the largest fractions in marine
aerosols. In this study, the highest concentrations of Na* and C1” were 1.47 £ 0.39 and 0.53 + 0.28
ug m—3, which accounted for 21.0% and 8.0% of the total ionic species, respectively. For marine
aerosols, Zhang et al. (2010) reported that sea salt aerosols (i.e., NaCl) can emit HCI via exchange
with sulphuric acid and nitric acid, which results in a shortage of CI relative to Na“. The annual
average equivalent ratios of C17/Na" in the aerosols from Phuket were 3.4 and 3.2 times lower than
those on Yongxing Island and those of seawater, respectively (see Table 5.3). This assumes that
CI" enrichment had a high-temperature pyrogenic source, e.g., vehicular exhausts, power plants,

and BB (Stogiannidis and Laane, 2015)
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Table 5.3. Comparison of equivalent ratios of ionic species in aerosols observed in Phuket, on
Yongxing Island (Xiao et al., 2017), and those in seawater (Keene et al., 1986)
Phuket Yongxing Seawater

Ton ratios Island Island
Cl/Na* 0.37 1.25 1.17
Mg2"/Na* 0.09 0.21 0.22
K*/Na* 0.19 0.048 0.021
Ca?*/Na* 0.68 0.62 0.044
SO4*/Na* 1.54 0.66 0.12
nss-SO4>/Na* 1.51 0.54 -
NO; /Na* 0.37 0.18 -
NH4"/Na* 0.20 0.022 -
NOs3 /nss-SO42~  0.35 0.34 -

NH4"/nss-Ca?* 0.33 0.038 -

Correlations of chemical composition of PM:s and its relation to source identification

Some ions in carbonaceous aerosol composition such as K*, SO4%7, and Ca?* have multiple
sources, €.g., ocean and land surfaces. Additionally, nss-SO4?~ in the atmosphere can be derived
from various sources. It originates from the combustion of fossil fuels such as coal, oil, and natural
gas (Kunwar and Kawamura, 2014). In Phuket, we found the highest concentrations of
carbonaceous aerosols found in OC and nss-SO4*~ were 3.05 and 2.28 pg m 3, respectively. Several
previous studies reported that SO4* and CI are the principal supporters of WSIS normally found
in marine aerosols, whereas K" and NH4" are the primary supporters of particles initiated from BB
and agricultural waste burning (Matsumoto et al., 1998; Kocaka et al., 2007; Park and Cho, 2011;
Pongpiachan et al., 2014).The correlations of OC, EC, and WSIS found in this study are shown in
Table 5.4. The results showed strong correlation between K* and both OC (r = 0.90) and EC (r =
0.93). It is well known that K* is a marker of BB (Kundu et al., 2010), whereas EC is a marker of
incomplete combustion of biomass and/or fossil fuel. We also found strong correlation between
nss-K* and both EC (r = 0.86) and OC (0.80); therefore, BB episodes might also play a major role

in generating the higher OC concentrations. Previous analysis of satellite imagery revealed

120



2968

2969

2970

2971
2972

2973
2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

evidence of frequent BB episodes in southern Thailand, e.g., in preparation for agriculture,

agricultural produce burning, and forest fires.

Table 5.4. Pearson correlation analysis of OC, EC, and WSIS in PM> s samples obtained from
Phuket during March 2017 to February 2018
Correlation coefficients (r) of Carbonaceous Compositions in PM, 5 from Phuket, Thailand.

F cI  No,y NO; SO Na* NHS K Mg¥ cCa* nss-S0,> nss-Ca®* nss-K* OC EC

F 1

cr 0.13 1

NO, 24" 0.003 1

NO; 017 015 51" 1

s0,% 016 -0.07 -002 55" 1

Na* 001 58" -005 4" 61" 1

NH,* 007 -011 02 67" 73" 27 1

K* 005 -008 014 50" 79" 397 81" 1

Mg** 013 33" 003 47" 46" 71" 377 327 1

ca® 0.001 015 002 34" 71" 80 527 65 50 1
nss-S0,~ -0.16 -008 -002 55 10" 617 .73 797 46" 711”7 1
nss-Ca?* 0.006 0.1 003 327 69" 53 537 65 45 10 697 1

nssK* 004 -035 017 377 58" -0.02 76" 917 003 44" 59" 47" 1

oc 007 -012 006 417 73" 40 72" 90" 27 59”7 73" 58" 80" 1

EC 004 -015 01 46" 777 36 78" 93" 25 58" a7 57" 86 .93 1

t test is < 0.01 for the correlation where r is is > 0.70

Among the major ions measured in marine aerosols in this study, the concentration of NH4"
was low. It might mean that little ammonia is transported to Phuket; however, surprisingly, NH4"
was strongly correlated with K* (r = 0.81). It is assumed that one effect of BB was significant
enrichment of OC in PM 5. Previous studies related that fertilizer use as well as agriculture waste
and related domestic activities are sources of gaseous ammonia emissions (Thepanondh et al.,
2005). Reasonable correlation was found between Mg?* and Na* (r = 0.71) in our Phuket samples.
Moreover, the ratio of Mg?* to Na* was 0.09, which is 2.3 and 2.4 times lower in comparison with
the values from Yongxing Island and of seawater, suggesting that the main source of Mg?" might
be airborne dust rather than sea salt aerosols (Goddard et al., 2007).

Air mass back trajectories
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To elucidate potential transport pathways and potential source regions of the aerosols
sampled in this study, we applied the Hybrid Single-Particle Lagrangian Integrated Trajectory
model of the Air Resources Laboratory of the National Oceanic and Atmospheric Administration.
This model has been used for similar purposes in many previous studies (Tiwari et al., 2010; Zhao
et al., 2011; Chen et al., 2015; Cong et al., 2015). The transport pathways of air masses reaching
Phuket are shown in Fig. 5.5. It can be seen that the majority of air masses during March—May
(Fig. 5.5A) and June—August (Fig. 5.5B) originate over the sea. Of the air masses that reach Phuket
during March—May, 10% pass over northern Sumatra. Hence, these air masses might carry aerosols
associated with BB, forest fires, and peat fires in Kalimantan and Sumatra in Indonesia (See et al.,
2007). During September—November (Fig. 5.5C), a significant proportion (33%) of air masses
originates from areas to the northeast of Phuket, e.g., Cambodia, Laos, and Vietnam. From
December 2017 to February 2018 (Fig. 5.5D), all the air masses that passed over Phuket also
passed over Cambodia, Laos, and China. Thus, these air masses might have contained pollutants

released through BB, agricultural waste burning, fossil fuel combustion, and vehicular exhausts.
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Figure 5.5. Air mass back trajectories during March 2017 to February 2018 in Phuket, Thailand:
(A) March—-May 2017, (B) June—August 2017, (C) September—November 2017, and (D) December

2017 to February 2018
Concentrations of polycyclic aromatic hydrocarbons (PAHs)

The concentrations of PAHs are summarized in Table 5.5. The total concentration of all 19
PAHs was 0.3780 + 0.3480 pg m>. The values determined in this study are lower than those

measured in other areas of Thailand such as Chiang-Mai and Bangkok, which are known as heavily

polluted areas (Pongpiachan, 2013a,b; Pongpiachan et al., 2014a,b).

123



3009

3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020

3021

3022

Table 5.5. Summary of PAH concentrations in Phuket, Thailand

PAH (ugm?® Mean SD Min. Max.

Ace 0.0140 0.0096 0.0015 0.0507
Fl 0.0112 0.0079 0.0082 0.0270
Phe 0.0409 0.0411 0.0261 0.0711
Ant 0.0067 0.0045 0.0059 0.0160
Fluo 0.0120 0.0120 0.0070 0.0221
Pyr 0.0110 0.0127 0.0062 0.0160
Bl[a]A 0.0340 0.0163 0.0206 0.0581
Chry 0.0067 0.0070 0.0028 0.0099

B[b]F 0.0239 0.0220 0.0228 0.0464
B[Kk]F 0.0238 0.0229 0.0086 0.0340
B[a]F 0.0032 0.0030 0.0025 0.0057
B[e]P 0.0144 0.0134 0.0056 0.0169
B[a]P 0.0174 0.0190 0.0072 0.0224
Per 0.0048 0.0058 0.0029 0.0061
Ind 0.0507 0.0500 0.0359 0.0652
B[g,h,i]P 0.0575 0.0590 0.0348 0.0709
D[a,h]A 0.0133 0.0118 0.0243 0.0032
Cor 0.0239 0.0208 0.0185 0.0356
DJ[a,e]P 0.0085 0.0091 0.0069 0.0129
YPAHs* 0.3780 0.3480 - -
*¥PAHs is the sum of Ace, Fl, Phe, Ant, Fluo, Pyr, B[a]A, Chry, B[b]F, B[k]F, B[a]F, B[e]P,
B[a]P, Per, Ind, B[g,h,i]P, D[a,h]A, Cor, and D[a,e]P
Several previous studies have investigated the environmental cycle of PAHs in different

environmental situations in Thailand (Pongpiachan, 2013a,b; Pongpiachan et al., 2014, 2015a). In
northern Thailand, BB, forest fires, and agricultural waste burning during winter emit large
quantities of PM into the atmosphere, especially ultra-fine particles that include PMz s-bound
PAHs. In central Thailand, vehicular emissions represent a major contributor to atmospheric PM.
However, in southern Thailand, especially Phuket, the limited availability of PAH data makes it
difficult to identify the sources of the pollution emitted into the atmosphere.

The concentrations of the individual PAHs in the PMz 5 samples obtained in Phuket during
March 2017 to February 2018 decreased in the following order: B[g,h,i]P > Ind > Phe > B[a]A >
Cor > B[b]F > B[k]F > B[a]P > B[e]P > Ace > D[a,h]A > Fluo > F1 > Pyr > DJ[a,e]P > Chry > Ant

> Per > BJ[a]F. Of the 16 priority PAHs identified by the United States Environmental Protection
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Agency, 9 are emitted via combustion processes such as those involving coal, diesel, and
petroleum. Ravindra et al. (2008) reported that Flu, Pry, B[a]A, Chry, B[b]F, B[k]F, B[a]P,
B[g,h,i]P, and Ind are combustion PAHs. The ratios of the concentrations of these combustion
PAHs have been analysed in many studies to identify the sources of the PAHs in aerosols (Manoli
et al., 2004). In this study, high abundances of B[g,h,i]P and Ind were detected, indicating that
motor vehicles, petroleum/oil combustion, and industrial waste burning are emission sources of
the PAHs found in the ambient air of Phuket (Zhou et al., 1999; Ravindra et al., 2008).

5.3.4. Principal Component Analysis (PCA)

We used PCA to identify potential sources of the carbonaceous aerosol compositions of
the PM> s samples (OC, EC, WSIS, and PAHs). The PCA method is a multivariate procedure that
links multivariate data reduction by transforming the data into rectangular components. Hence,
PCA reduces multidimensional data into smaller dimensions (Wold et al., 1987). The strong
correlation between nss-K™ and both OC and EC, discussed in section 3.3, demonstrates that BB
is the main contributor to carbonaceous aerosols. Moreover, the relatively high abundances of
B[g,h,i]P and Ind suggest that vehicular exhausts should be investigated as a potential major
emission source of PAHs in the southern region of Thailand. In this section, source identification
coupled with quantitative source apportionment of targeted chemical species is considered using
PCA.

In this study, the concentrations of OC, EC, WSIS, and 19 individual PAHs from 75
samples were collected as active variables. The majority of the variance (82.8%) of the scaled data
was explained by five eigenvectors/principal components (PCs) (Table 5.6). The first PC (PC1)

accounts for 55.5% of the total variance, while the second PC (PC2) explains 10.9% of the total
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variance, followed by PC3—-PC5 that describe 10.6%, 5.2%, and 3.7% of the total variance,

respectively.

Table 5.6. Rotated component matrix* of carbonaceous compounds, WSIS, and 19 individual
PAHSs in the PM> s samples from Phuket, Thailand

Principal Component (PC)

Compositions PCI1 PC2 PC3 PC4 PC5
TC 0.423 0.854 0.139 0.033 —0.005
ocC 0.441 0.824 0.157 0.041 —0.023
EC 0.345 0.895 0.080 0.007 0.050
F —0.225 —0.002 —0.038 0.052 0.618
CI —0.050 -0.218 —0.015 0.810 0.060

NO»- 0.229 —0.050 -0.014 —0.055 0.774
NO3- 0.191 0.387 0.215 0.284 0.694
SO4* 0.315 0.754 0.198 0.297 —0.020
Na* 0.155 0.308 0.101 0.883 —0.043
NH4* 0.312 0.734 0.265 0.022 0.345
K* 0.424 0.845 0.127 0.090 0.077
Mg?* -0.013 0.299 0.154 0.718 0.211
Ca** 0.130 0.625 0.291 0.452 —0.071
Ace 0.259 0.092 0.838 0.053 0.011
Fl1 0.119 0.486 0.663 0.017 0.287
Phe 0.408 0.478 0.614 0.075 0.212
Ant 0.623 0.336 0.595 0.079 0.069
Fluo 0.795 0.465 0.324 0.030 0.041
Pyr 0.850 0.436 0.218 0.014 0.046
B[a]A 0.257 0.187 0.780 0.178 -0.127
Chry 0.774 0.571 0.202 0.015 0.026
B[b]F 0.886 0.322 0.171 -0.013 0.014
B[k]F 0.835 0.379 0.176 0.018 —0.021
B[a]F 0.852 0.290 0.233 0.007 0.114
B[e]P 0.893 0.328 0.231 0.032 0.008
B[a]P 0.849 0.399 0.244 0.061 0.015
Per 0.373 —0.021 0.069 0.000 —0.208
Ind 0.936 0.255 0.133 0.047 —0.005
B[g,h,i]P 0.946 0.200 0.149 0.050 —0.005
D[a,h]A 0.874 0.109 0.069 0.057 0.031
Cor 0.938 0.163 0.090 0.037 0.018
D[a,e]P 0.761 0.095 0.045 0.099 —0.046

Variance [%] 55.5 10.9 6.1 5.2 5.1
Estimated source Vehicular Biomass Diesel Sea Salt  Industrial
Exhausts Burning Emissions Aerosols  Emissions
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aRotation Method: Varimax with Kaiser Normalization.
Bold: loading > 0.5

In accounting for 55.5% of the total variance, PC1 showed high loading of B[g,h,i]P, Cor,
Ind, B[e]P, B[b]F, D[a,h]A, B[a]F, Pyr, B[a]P, B[k]F, Fluo, Chry, D[a,e]P, and Ant with
corresponding correlation coefficients of 0.946, 0.938, 0.936, 0.893, 0.886, 0.874, 0.852, 0.850,
0.849, 0.835, 0.795, 0.774 0.761, and 0.623, respectively. Anthropogenic activity is concentrated
in urban areas; therefore, these positive loadings in PC1 could be attributed to anthropogenic
activities involving combustion of coal, diesel, and petroleum. In particular, the high levels of
molecular 4-6 ring PAHs found in PC1 could be related to vehicular exhausts (Miguel and Pereira,
1989; Harrison et al., 1996) and/or gasoline vehicles (Schauer et al., 2002, Teixeira et al., 2013).

Significant correlations of EC, TC, K*, OC, SO4>~, NH4*, Ca*", and Chry were found in
PC2 with correlation coefficients of 0.895, 0.854, 0.845, 0.824, 0.754, 0.734, 0.625, and 0.571,
respectively, accounting for 10.9% of the total variance. It is related to biomass burning coupled
with a high loading on OC, EC and WSIS which K" is a marker of biomass burning which
generated from biomass burning (Lee et al., 2016; Pani et al., 2018). However, OC and EC can be
related to biomass burning as well (Mkoma et al., 2013).

As illustrated in Table 5.6, PC3 represented 6.1% of the total variance. Several studies
reported that Phe and Ant could be used as geochemical tracers of PM released from diesel engine
exhausts and coal combustion (Fang et al., 2006). Findings of a previous study that analysed air
samples collected at the Central Bus Station of Londrina (Brazil) suggested that PAH congeners
with two and three rings were responsible by 90.2% of the total PAHs (Tavares Jr. et al., 2004). In
this study, Phe exhibited the highest atmospheric concentrations with an average value of 0.0409

+0.0411 pg m3.
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PC4 represented 5.2% of the total variance. The comparatively high loadings of Na* (r =
0.883), CI” (r = 0.810), and Mg?* (r = 0.718) underline the importance of marine aerosols, which
can be attributed to long-range transportation across the ocean from nearby countries (Chan et al.,
1997; Wang and Shooter, 2001).

PCS5 represented 5.1% of the total variance. Moderately high loadings of NO;™ (r = 0.774)
and NO;™ (r = 0.694) were detected together with F~ (r = 0.618). Over recent decades, numerous
studies have underlined the importance of industrial activities as one of the major sources of
particulate F~ in the urban atmosphere (Haidouti et al., 1993; Lovelock, 1971; Mukherjee et al.,
2003). For instance, hydrofluoric acid is used widely in the manufacture of chemicals and plastics
and in laundries (WHO, 2000). The relatively low percentage contribution of industrial emissions
was found in reasonable accord with the fact that the factories in Phuket account for only 0.31%
of total number of factories in Thailand, based on a statistical survey conducted by the Department
of Industrial Works of the Ministry of Industry in 2019. Consequently, it appears plausible that

“industrial emissions” represented by PCS5 account for only 5.1% of the total variance.
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Chapter-VI1

Results & Discussion

Black carbon, char, soot and polycyclic aromatic compounds
records in northwestern Thailand: connections to climate
change and human activities

6.1. Introduction

Black carbon (BC) is a kind of particle with highly refractory characteristics uniquely
originating from incomplete combustion of biomass vegetations and fossil fuels !-2. It is ubiquitous
in the environment including the atmosphere, soil, sediments, ice cores, and waters due to the
transport by the atmosphere and riverine. BC has received extensive attentions in recent decades
because as a unique light-absorbing aerosol it has an important role in the Earth’s climate system
3.4 Especially, in atmosphere science BC is regarded as the specific part of aerosol with a strongly
visible light-absorbing property *, that is, soot, and for the weak light-absorbing part it is regarded
as brown carbon °. However, this was not supported by the present BC aerosol measurement ©
since the most popular methods such as the thermal optical 7 and optical * methods such as the
athelometer are not based on its strongly light absorbing characteristics at different visible
wavelengths. These methods very likely report BC concentrations far beyond the soot part but
including char part & °. Soil and sediment science that mainly focuses on the study of the
geochemical cycles of BC regards BC as the combustion continuum 2, ranging from slightly
charred, degradable biomass to highly condensed, refractory soot, and it is better to be regarded as

two subtypes, the combustion residues namely char and the combustion condensates namely soot

6,10
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BC has both biomass burning and fossil fuel combustion sources, and thus its climatic
properties can be impacted by the transition from the nature biofuel combustion processes to the
human industrial activities. The study of the historical variations of the transition processes, such

as from the pre-industrial to industrial period, is thus meaningful. Previous studies focused mainly

11-14 15-17
b

on the developed countries and some quick developing countries such as in China and
found that BC, char, and soot records can varied with the different timing of industrialization and
a rapid increase in BC records occurred during the industrial periods. It seems that, from these
studies, human activities contributions to BC emissions have far surpassed those from natural
biomass burning. However, it is still unknown at the global scale whether this is true. Especially,
in the southeastern Asia, where the largest atmospheric brown clouds (ABCs) due to mixing of
human emissions such as fossil fuel sulfates, nitrates, BC, and fly ash, and natural emissions of
organic carbon and BC from biomass burning !® contributes to atmospheric solar heating and
global warming, whether the human emitted BC has far more than those from biomass burning. In
addition, when and how these processes happened are still unknown. These limit us understand
the relationship between BC records and natural climate processes and human emissions.

Some studies have used the statistic data of human energy usages and reconstructed BC
history over the past 150 years globally and in south Asia '°. However, these findings cannot
answer the variations of BC contributions from natural biomass burning. Lake sediments provide
an important medium to records both human emissions and natural inputs. But most of these
studies also emphasized the contributions of fossil fuel emissions to BC records '%2°, while seldom
studies investigated the relationship between BC emissions and climate change such as the

precipitation and temperature variations for the past several hundred years. Studies that

differentiate between the human contributions and natural processes are still sparse. The clear
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interpret of BC emissions from natural climate influence and human activities would help us
understand the processes that control BC emissions and facilitate our predictions on future
interactions among human emissions, climate change, biomass burning, and soil nutrients storage.

In this study, we selected the Phayao Lake of northwestern Thailand to investigate the BC,
char, and soot records over the past ~150 years. The objectives of this study are to: (1) reconstruct
the history of BC, char, and soot emissions; (2) identify the dominant factor that influences natural
biomass burning and BC, char, and soot emissions during the pre-industrial periods; (3) find out
the real industrialization time and the sources for BC, char, and soot using the variations of the
polycyclic aromatic compounds; (4) discuss the potential impact of human activities and biomass

burning on lake water and the surrounding soils.

6.2. Sampling and methodology

6.2.1. Study site and sampling

The Phayao Lake (N 19°09°-19°13°, E 99°51°-99°56’; Fig. 6.1), is located at the southern tips
of two mountains, Doi San Klang and Doi Huai Nam Khao, nourished by the Ing River, and it is
the third largest fresh water resource with a pan basin area of 20.5 km? 2!, It has an average depth
of 1.9 m, and consists of average water volume of 33.84 Mm? drained from 11 canals into the basin
21 Tt is the main water supply for the domestic and agricultural activities in this area, and the major
pollution of this lake is caused by the urban run-off and draining of the agricultural activities from

the surrounding area.
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Figure 6.1. Sample location of Phayao Lake in northeastern Thailand. (A) Phayao Lake in

southeastern Asia with climatic system in this region; (B) Sampling in Phayao Lake
The climate in the Phayao region is influenced by the south Asian monsoon system, the southwest

summer monsoon and the northeast winter monsoon. Three main seasons are identified: 1) summer

(March-May) with the maximum temperature of 39.5°C; 2) rainy (May-October) with the average

of 1,043.9 mm; and 3) winter (November-February) with the minimum temperature of 10.8 °C.
In March, 2016 two parallel sediment cores (PY-1 and PY-2) with lengths of 61 and 50 cm,

respectively, were taken from the centre of the Phayao Lake (Fig. 1) with a water depth of ~3 m
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using a gravity corer (Uwitec, Austria; Fig. S1C). Distinct water-sediment interface and discernible
laminations were observed, indicating a lack of post-depositional disturbance. The cores were
sliced on the site continuously at 0.5 cm intervals for the upper 20 cm and at 1 cm interval for the
lower part. All samples were taken back to the Institute of Earth Environment, Chinese Academy
of Science, and freeze-dried, agate mortar ground, and frozen at -20°C until further analysis. The
water content and dry density data were estimated from the mass of samples before and after
freeze-drying.
6.2.2. Chronology dating

The PY-2 sediment core was selected for chronology dating. The activities of *’Cs, 2!°Pb,
and *2°Ra were analyzed by direct gamma counting of 3-6 g of dried sediments using a multi-

) 2223, The constant rate of 2!°Pb supply

channel y-ray spectrometer (PerkinElmer, GWL-120-15
(CRS) model>*?6, which is not influenced by the sediment fluxes, was applied for chronology
reconstruction. The reconstructed dates and their corresponding mass accumulation rates (MARSs)
were presented in Fig. 6.2. 37Cs activities presented their values at depths of 9-29 cm,
corresponding the CRS ages of 2003.4-1976.8. However, all these '*’Cs activities are all lower
than 10 Bq kg'!, close to their limit of detection, and thus not used as the independent marker in
this study.
6.2.3. Carbon fractions and polycyclic aromatic compounds measurement

The sediment core of PY-1 was selected for chemical analyses. The OC and total nitrogen
(TN) concentrations were directly measured using a CHNOS elemental analyzer (Vario EL III,
Elementar Analysensysteme GmbH, Langenselbold, Germany). The comparison of with and

without acid pretreatments showed very similar OC and TN concentrations, which is in agreement

with the fact that the study site has very small influences from mineral dust. We also conducted
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duplicate analyses at the rate of one for each batch of 10 samples. The relative standard deviation
was less than 2% for OC and less than 3% for TN.

BC, char, and soot concentrations are determined using the IMPROVE (Interagency
Monitoring of Protected Visual Environments) method with a commercial DRI Thermal/Optical
Carbon Analyzer (Model 2001, Atmoslytic Inc. Calabasas, CA, USA) after chemical pretreatment.
The detailed method can be referred to Han et al. 1527,

PACs, including 26 parent- and alkyl-PAHs (3 26PAHs, and ) 25PAHs for those excluding
perylene, which is mainly of in-situ biogenic diagenesis origin 26), 13 oxygenated-PAHs
(3:130PAHSs) and 3 azaarenes (nitrogen heterocyclic polycyclic aromatic compounds, > 3AZAs)
were measured by 7890A gas chromatograph coupled to a 5975C mass spectrometer (GC/MS,
Agilent, Santa Clara, CA, U.S.A.), with extraction by accelerated solvent extractor (ASE 200:
Dionex, Sunnyvale, CA, USA) followed by clean-up/fractionation using column chromatography
(10 % deactivated silica gel). Detailed description of the method please refer to 1628,

Mass accumulation rates (MARs) of BC, char, and soot were calculated using the CRS-
reported MARs for each measured sample multiplied by the corresponding concentrations of BC,

char, and soot.
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Figure 6.2. Chronology reconstruction for sediment core PY-2 using the constant rate of supply
(CRS) 2'°Pb model. (A) Excess 2!°Pb activities against cumulative dry mass; (B) Chronology
reconstruction using the constant rate of supply (CRS) model (upper blue line with uncertainties)
and the calculated mass accumulation rates (MARs, magenta line with uncertainties)

6.3. Results
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Similar variations of OC and TN concentrations were observed, which showed an increasing
trend from 1868 to 1950 and fluctuations thereafter at relatively high values (Fig. 6.3). OC/TN
ratios presented two distinguish parts, with relatively high values before 1980 in spite of
fluctuation and low values after 1980.

BC and char concentrations, with similar variations, presented an overall decreasing trend
from 1868 to present. Highest concentrations of BC and char happened at the bottom of the
sediment core corresponding to 1868-1874. Also, distinct low BC and char concentrations
occurred since 1980. However, for soot, its concentrations presented an opposite trend to BC and
char and showed an roughly overall increasing trend in spite of fluctuations. Although post-1980
soot concentrations were not the highest, they have overall relatively high values than before. The
MARs of BC, char, and soot showed similar profiles with their corresponding concentrations.
Char/soot ratios presented an overall decreasing trend. Similarly, two distinct groups for char/soot
ratios were observed, with lower values (in general lower than 5.0) after 1980 and relatively higher
values (in general higher than 5.0 and highest value reaching over 40.0) before that time.

The concentrations of PAHs, LMW-PAHs, HMW-PAHs, OPAHs, and Az all presented
increasing trends, with abrupt increase occurring at 1980. LMW-/HMW-PAHs presented an

roughly overall decreasing trend.

6.4. Discussion

6.4.1. Distinct increase in fossil fuel contributions since 1980
From the results of concentrations variations of BC, char, soot, PAHs, HMW-PAHs, and

LMW-PAHSs, as well OC/TN, char/soot, and LMW-/HMW-PAHs ratios, a clear separation time
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of 1980 can be observed, which corresponds well with the beginning operation of the Mae Moh
coal plant ?° and suggests the industrial period starting here.

MARs of BC and char showed vary similar variations due to much high proportion of char in
BC in this core, and both presented an overall decreasing trends. However, for soot, its MARs
presented an overall increasing trend. Although BC including char and soot originate from both
biomass burning and fossil fuel combustions !, due to their different formation pathways for char
and soot, with char being combustion residues produced in relatively low temperature, while soot
as combustion condensates produced via gas-to-particle conversion in relatively high temperature,
high proportions of char can produced in biomass burning while more proportions of soot can be
emitted from fossil fuel combustions. This suggests that the increasing trend in soot MARs is likely
associated with the industrialization. Especially after 1980 a fast increase in soot MARs happened,
while for char MAR it presented a relatively stable level.

Soot, as its ultrafine particle size and regional atmospheric transport % ! 39 has been
suggested to be used to reflect atmospheric soot deposition from its sediment records '6. Previous
studies have reconstructed soot emission history in southeastern Asia using the statistic data of
human activities, and it presents an emissions growth rapidly in the latter half of the twentieth
century °. However, it does not include a emissions from biomass burning. Previous studies have
found a quick increase in soot MARs occurring at ~1950 in eastern China '°, due to the
industrialization of China, with the post-1980 soot MARs being about 6.7-7.7 times of those for
pre-1950 period. However, in this study although soot MARSs present an increasing trend at 1980,
the extent looks not as big as that occurring in China. Soot MARs during post-1980 period were
lower than those during the pre-1980 period in some cases. This may suggest that fossil fuel

emissions in this region are not as big as those occurring in eastern China, the intensive developed
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region. In some cases when an intensive biomass burning occurred such as the periods 1911-1921
and 1942-1954 (see Sec. 4.2), the emitted soot concentrations may be higher than those from
industrial emissions. This suggests that in southeastern Asia the soot emissions of biomass burning
and its potential climatic implications cannot be overlooked when we estimate the human
influences '°. This is consistent with the global estimate on BC sources !, which estimated that
~42% BC aerosol originated from forest open burning in 1996.

The comparison of soot MARs from Phayao Lake sediments with those in China lake
sediments (Table 6.1) showed a lower values than those from the industrialized regions such as
Chaohu and Taihu regions, while they are comparable with those in rural areas such as Daihai
region and higher than those from relatively remote areas such as Qinghaihu region. Char/soot
ratio has been used as an useful indicator to differentiate fossil fuel combustion from biomass
burning emissions . It showed a clear decreasing trend for char/soot ratios in the studied sediment
core, consistent with the increasing fossil fuel combustion contributions in this region. A
pronounced decrease in char/soot ratios happened in ~1980, with the ratios in general lower than
5.0 compared with those higher than 5.0 for pre-1980 period, which further supports the
industrialization in this region due to the beginning operation of the Mae Moh coal plant 2°, which
is located approximately 93 km away in the northern part from the Phayao Lake. The highest post-
1980 soot MARs happened at the year of 2000, which corresponds to the expansion of the Mae

Moh Coal plant, reaching 13 units and producing 2,625 Megawatts electricity 2.

148



3749  Table 6.1. Comparison of the concentrations and mass accumulation rates (MARs) of BC, char,

3750  and soot, as well as char/soot ratios in Phayao Lake, northern Thailand with those around the

3751  world in the literature (For the different methods used here please refer to Han et al. %)

Areas Descriptio Concentration (mg g!)  Deposition flux (mg cm™ yr'!) hMofits zef
BC Char  Soot BC Char Soot gohtar/s
Lake 0.38- 0.28- 0.01- 0.05-  0.01- 1.9- Thi
Northern ‘ 2.8 ‘ 0.06-0.72 ‘ ' : s
Phayao, . 2.87 0.30 0.7 0.08 41.2
g Thailand (0.66 (0.21) stud
Thailand (0.80) ) ‘ (0.14) ‘ (0.17)  (0.04) (5.6) y
Qinghai 0.40- (1)(1)2- 0.22- 0.028- 0.013- 0.015-  0.63-
Lake edoe of 1.45 ((') 31 0.35 0.101 0.076  0.025 3.30
(North) & (0.57) ‘ (0.26)  (0.040) (0.022) (0.018) (1.16)
north ) 26
Qinghai g{:;t;? 0.39- g'g;' 022-  0.028- 0.005- 0.016-  0.18-
Lake 0.61 ((') 19 0.38 0.044 0.026  0.027 1.43
(South) (0.46) ) ‘ (0.27)  (0.033) (0.014) (0.019)  (0.73)
Nam Co Central 0.49- 0.012-
Lake Tibeten  1.09 0.044 MP
Plateau (0.74) (0.026) RO
Rural 0.37-
Daihai  mountain, o0 469 012 00607 03 0O 200 VE
Lake North (205 5 s 0T 00 6
China (2.26) ) (0.21) (0.27)  (0.03) (9.76) “
Taihu urban, 0.41- (1)2;- 0.31- 0.115- 0.003- 0.086-  0.03-
Lake Eastern 1.95 ((') 60 1.09 0.689 0.555 0312 421
China (1.01) ) ' (0.42)  (0.33) (0.20)  (0.13) (1.51)
Chaohu sub-urban, 0.61- ?gg- 0.08- 0.170- 0.135-  0.023-  2.82-
Lake Eastern 2.03 ((') 93 0.47 0.567 0.443  0.131 8.02
China (1.13) ) ‘ (0.20)  (0.316) (0.259) (0.057)  (5.14)
16
0.15-
vt Soubest U702 ool gogs oo oms  4e
Lake (0.58) ) ‘ (0.22)  (0.023) (0.014) (0.009)  (2.31)
Aspvreten  backgroun 0.0071- 54
,Sweden darea 0.04
Pan- Arctic 0.17- 0.00013- CTO 55
Arctic 1.5 0.0036 -375
Jlovenian - Aps oy 0.03-1.10 56
West Pine  New York 0.0026- 14
Pond state 0.6-8 0.077 STN

3752

3753  6.4.2. Dryness controls biomass burning in southeastern Asia

149



3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

MARs of BC, char, and soot, and sometimes their concentrations as well, are traditionally
used as indicators of biomass burning (BB) in wildfire reconstruction 2’. Before the
industrialization period, BC, char, and soot originated mainly from biomass burning. Due to their
different formation pathways, i.e. char being combustion residues formed in smoldering fires and
soot via gas-to-particle conversion in flame %32, soot and char have been used to indicate regional
high intensity flaming fires and local smoldering fires, respectively *. Overall, similar profiles
char and soot MARs were observed, indicating both high intensity and smoldering combustion can
occur simultaneously in a single fire. However, discrepancies still existed for char and soot MARs.
For example, at the bottom of the sediment core, it presented very high char MARs while low soot
MARs, which is likely associated with the local and regional contribution of char and soot,
respectively, or the different transport ways, with char mainly from riverine inputs while soot
mainly from distant atmospheric deposition ',

Although there is no consensus regarding the dominant factor that determines BB occurrences
because both dry and wet climate and both high and low temperature from local BB records have
been linked with high BB activities in paleowildfire studies 3*3°, dryness is accepted to be the key
factor controlling BB activities in modern global biomass burning observation *¢. Palmer Drought
Severity Index (PDSI) is a traditional proxy for soil moisture availability. The comparison of the
MARs of BC, char, and soot with the southeastern Asia PDSI reconstructed from tree ring records
in southeastern Asia ¥, presented a good coupling between the BB activities and PDSI. For
example, before 1980 there are three main drought periods: before 1868-1886, and 1911-1921,
and 1942-1954, all of which time correspond with peaks of BC, char, and soot MARs (Fig. 6.4).
Especially, although the 1868-1886 drought event is relatively moderate indicated by the

reconstructed southeastern Asia PDSI by Sano et al. 37, it corresponds the late Victorian Great
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Drought ¥, and thus presents a very high BC and char MARs but with a relatively low soot MARs,
an indicator of regional flaming fires *3. This also suggests that this drought event had likely
different manners in different locations, and in some southeastern Asia regions the intensity of this
drought may be low. This may be also true for the period of 1876-1886, when there were relatively
moderate BC and char MARs. Apparently, the 1942-1954 drought event lasted a long time and
had a relatively high intensity, leading to a very high biomass burning indicated by BC, char, and
soot MARs.

Previous studies 37> 37

observed that warm sea surface temperature (SST) anomalies in the
tropical Pacific El Nifio-like (warm) phases and regional climate forcing over the Indian Ocean
and western Pacific sectors are these important factors contributing to the drought in this region.
This confirms that in this region ENSO-modulated dryness is the dominant factor controlling BB
occurrences and thus their emissions of BC, char, and soot during the pre-industrialization period.
In southeastern Asia, the PDSI has been found to be positively related to temperature while

negatively correlated to precipitation

, suggesting that temperature and precipitation may
influence biomass burning and BC, char, and soot emissions in this region. The similar timing of
decrease of temperature and BC, char, and soot MARs from 1950 to 1975 (Fig. 6.5C) may imply
the temperature effect on the drought and biomass burning.

After 1980, the relationship between the drought indicated by the PDSI and the biomass
burning indicated by BC, char, and especially soot MARs, seems weak. This confirms that the
dominant factors controlling on soot MARs variation originated from industrial activities in the
Industrial period. The drought event influences on biomass burning seems weak; for example, the

most pronounced El Nifio event that resulted in the extensive drought in southeastern Asia during

1997-1998 #! just caused a relatively small increase in BC and char MARs, which are even lower
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than most of their corresponding values during pre-1950 period. However, the increase of
temperature in northwestern Thailand at 1980 may also contribute to drought and biomass burning,
and such effect cannot be totally overlooked.

6.4.3. Polycyclic aromatic compounds associated with different sources contributions and
atmospheric transport

PACs are important pollutants in the environment and mainly originate from human activities,
and especially similar to BC, char, and soot from combustions, in modern time. A quick increase
in PACs concentrations including ) 25PAHs, HMW-PAHs, LMW-PAHs, > 130PAHs, and
> 3AZAs occurred at ~1980 (Fig. 6.5), which is in well agreement with our demonstration that
industrialization occurred in this region at that time.

Although PAC compounds ratios have been widely used for source identification 4> *, the
method is limited by availability of local emission data. LMW-/HMW-PAHs ratio seems the
valuable method in historical PACs source identifications !¢, which is seldom impacted by the
local specific emission characteristics. An overall decreasing trend of LMW-/HMW-PAHs ratio
suggests an increase in fossil fuel emissions in this region. Especially, the lowest ratios (lower than
1.0) occurred at ~1980s, which is in well agreement with the local Mae Moh Coal plant with little
emission reduction measures at that time 2°. The comparison of the LMW-/HMW-PAHs ratio in
this study with those from our previous works in Chaohu and Taihu Lakes, an industrialized region
in eastern China with LMW-/HMW-PAHs ratios generally lower than 1.5, and from Qinghai Lake,
a relatively rural area at the edge of Tibetan Plateau with LMW-/HMW-PAHs ratios ranging
between 0.76 and 2.17, indicates that the Phayao region is a relatively less human influenced
region.

As soot is sub-micron sized particles and comes mainly from atmospheric deposition in

sediments !%25, the ratios of other pollutants to soot would reflect the transport pathways for other
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pollutants. For example, in this study the ratios of ) 25PAHs/soot, > 130PAHs/soot, and
> 3AZAs/soot all present a sharp increase since ~1980. This suggests that the local emissions and
contributions of PAHs, OPAHs, and AZAs increased after 1980 and this is consistent with the
increase of local coal plant emissions. However, considering that the transition from biomass
burning to fossil fuel emissions happened at 1980 (see section 4.1), the differences in emissions of
soot and PACs from biomass burning and fossil fuel combustion cannot be overlooked. As some
of HMW-PACs can perform as the precursors of soot #, it may suggest more PACs emitted from
fossil fuel combustions than the proportions of soot. For example, much higher > 25PAHs/soot
ratios happened during the 1980s and at the early of 1990s, while thereafter the ratios of
> 25PAHs/soot decreased to the same level as the pre-industrial biomass burning period. This
suggests that, on the one hand, the main local fossil fuel emissions from the Mae Moh coal-fired
plant, which mainly occurred during the 1980s and at the early of 1990s, and on the other hand,
there may be a transition of coal burning emissions to vehicle emissions since 2000, which is
supported by the sharp increase in vehicle amounts in Thailand over the past few years. As a
consequence of first-car buyer scheme (Noparumpa and Saengchote, 2017), the total automotive
production in Thailand increased from 1.65 million cars in 2010 to 2.46 million cars in 2013
(http://www.boi.go.th/upload/content/BOI-brochure%202015-automotive-20150325 70298.pdf).
There were also 1.8 million motorcycles produced, with domestic sales of 1.6 million and exports
of 350,000 units. In addition, the monthly sold car numbers in Thailand are clearly reported by the

Thai Automotive Industry Association (http://www.taia.or.th/Statistics/).

Noparumpa, T. and Saengchote, K., 2017. The impact of tax rebate on used car market: Evidence
from Thailand. International Review of Finance, 17(1), pp.147-154.
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The ratios of ) 130PAHs/Y 25PAHs also support the potential variations of the transition
from coal burning to gasoline emissions since the late of 1990s, when it presents a quick increase
in the Y’ 130PAHSs/Y 25PAHs. As gasoline emissions contain more oxygen-contain species 4, more
OPAHs could be emitted from vehicle emissions than coal combustion.

BeP/BaP ratio is a commonly use indicator for atmospheric process as BaP is more vulnerable
to atmospheric degradation than BeP %47 and long-term exposure to atmosphere ultra-violet (UV)
would lead to high BeP/BaP ratios. The historical variation of BeP/BaP ratios presents a decreasing
trend, but with small fluctuations since 1900. Especially, since 1980 the BeP/BaP ratios had just
small increased. This suggests that although atmospheric processes would influence on the PAC
variations in the studied region, the sources transformed from biomass burning via coal
combustion to vehicle emissions may be the main reason for the historical variation of PACs. This
may be also true for soot variations in this region. For more details of PAC variations, please see

the supplementary materials.

6.4.4. Potential influences of biomass burning and human activities on lake sediments
and surrounding soil quality

Sedimentary organic matter can mainly from surrounding soil inputs and in-lake production
48 OC/TN ratio has been suggested to indicate the relative in-lake production, with low values
indicating a high in-lake production “*%°, The concentrations of OC and TN in lake sediments
present an overall increasing trend until ~1950s and fluctuations occurred thereafter (Fig. 6.3-6.4).
During the pre-industrial period the highest OC and TN concentrations happened at ~1950, while

the lowest OC and TN concentrations happened at the bottom of the sediment core (before 1880).

Both of them correspond to a drought climate with high SE Asia PDSI %’. So, it is hard to say that
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climate is the key factor that controls soil quality. However, the lowest OC and TN concentrations
for pre-1880 period corresponding a long-term drought climate and an extremely high local low
intensity biomass burning indicated by the char-MARs, suggesting that extensive biomass burning
likely decreased OC and TN concentrations in surrounding soils. Thereafter, in the natural
processes until 1950 moderate or low biomass burning that can also produce biochar to keep soil
nutrients *° and thus may restore soil quality. The 1950 drought event may be another extensive
climate event that may result in the reduce in soil organic matter in following years.

Distinct decrease in OC/TN ratios occurred at ~1980, which corresponds well with the
industrialization in this region #. Also, this is consistent with the fact that industrial and human

agricultural activities would result in enhanced in-lake production 3! 32

and promote the
eutrophication. After the industrialization in 1980, the whole variation of OC and TN
concentrations seems similar with that soot MAR fluctuation, with the two peaks of soot MARs
during 1980-1985 (in association with coal plant emissions) and 2000-2007 (in association with
vehicle emissions) corresponding to the high OC and TN concentrations. This may suggest that
the industrial activities may mainly influence OC and TN concentrations in lake sediments, while
whether such effects can also reach the surrounding soil is unknown since the in-lake production
may cause the increase in OC and TN concentrations in lake. In recent year, the OC and TN
concentrations in lake sediments reached their highest, which corresponds to the enhanced in-lake
productions indicated by the reduced OC/TN ratios, suggesting the extensive industrial activities
or fertilizer usage in this region. The most recent study showed that both Nitrogen and Phosphorus
balances in the agricultural system of Phayao Province were negative because of the large amount

of nutrient loss through numerous ways such as nutrient leaching into water systems (Jakrawatana

et al., 2017). Also, the > 3AZAs, an indication of unique human products, and ) 130OPAHs also
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3895 reached their highest values in the upmost sediments (Fig. 6.5), supporting the human
3896  contributions to water quality.
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3905  Figure 6.4. Variations of mass accumulation rate (MAR) of BC, char, and soot of Phayao
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3911  Figure 6.5. Historical variations of concentrations of polycyclic aromatic compounds (PACs) and

3912  their concentration ratios in Phayao Lake, northern Thailand
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Chapter-VII

Results & Discussion

Vertical Profile of Organic and Elemental Carbon in
Sediments of Songkhla Lake, Thailand

Abstract

In this study, a historical record of atmospheric deposition in the sediment cores from Songkhla
Lake, the second largest lake in Southeast Asia, located in the southern part of Thailand is reported.
It is well known that lake sediments, including spheroidal carbonaceous particles generated by
both anthropogenic and natural emissions, contain records of lake, catchment, and atmospheric
deposition histories. Vertical profiles of these carbonaceous particles can be used to investigate
enormously influential disturbances, particularly those triggered by extreme paleo events, over
large spatial areas. In this study, organic carbon/elemental carbon (OC/EC) ratios displayed
unusually high values of 3.07 and 4.02 for depths 240 and 340 mm, respectively. Previous studies
have attributed remarkably high values of OC/EC ratios to both biomass burnings and volcanic
eruptions. Although anthropogenic emissions (e.g. fossil fuel combustions) can be responsible for
relatively high levels of contamination, as expected, the existence of relatively low OC/EC ratios
(i.e. 1.43 £ 0.30) for all sediment samples (except those collected at 240 and 340 mm depths)

suggests a tropical background of these particles.
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7.1. Introduction

Numerous studies have extensively investigated the physicochemical properties of organic carbon
(OC) and elemental carbon (EC) in aerosols (Huang et al. 2013; Li et al. 2006; Pongpiachan et al.
2013; Pongpiachan et al. 2014a, 2014b; Srivastava et al. 2014; Zhang et al. 2009, 2011), soils (Lal
2006; Moller et al. 2005; Raich and Schlesinger 1992), and sediments (Gacia et al. 2003; Hung et
al. 2006; McCourt et al. 1996) especially, in Asian countries over the past few years. Although
previous reports have highlighted the importance of anthropogenic emissions of carbonaceous
aerosols in different environmental compartments (Chen et al. 2005; Ito and Penner 2005), the
influences of biomass burning, forest fires, and volcanic eruptions also play a major role in
governing OC and EC contents (Birch and Cary 1996; Cachier et al. 1989; Ito and Penner 2005;
Martinsson et al. 2009; Szidat et al. 2006). Recent studies suggest that there has been a tendency
toward enhanced summer floods in south China, increased droughts in north China, and moderate
cooling in China and India, despite the ambient air warming trends in other parts of the world
(Menon et al. 2002; Ramanathan and Carmichael 2008; Yihui et al. 2007). Since heat-absorbing
carbonaceous aerosols increase the air temperature and influence both regional atmospheric
stability and vertical movements, the investigation of OC/EC ratios can assist the understanding
of regional-scale circulation and hydrologic cycles with significant regional climate impacts for

many reasons.

Firstly, OC/EC ratios have been used as chemical tracers for characterizing emission sources from
vehicle exhausts. According to a busy roadway tunnel experiment in central Lisbon, OC/EC ratios
in aerosol components were in the range of 0.3-0.4 (Pio et al., 2011). Similar OC/EC ratios were
detected at the road side of Birmingham, UK (Pio et al., 2011). The average OC/EC ratios in PMio
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(i.e. particulate matter less than 10 microns) collected from seven air quality observatory sites in
heavily polluted road sides of Bangkok was 0.99+0.63, indicating that traffic emissions responsible
for relatively low OC/EC ratios (Pongpiachan et al., 2014b). Secondly, biomass and agricultural
waste combustions play a crucial role in elevating the OC/EC ratios as earlier discussed in
numerous studies (Cao et al., 2007; Gongalves et al., 2011; Pongpiachan et al., 2009). For instance,
the generated smoke aerosols were characterized by relatively high OC/EC ratios detected from
controlled field burning of rice straw (10) and wood combustions (7.8) (Engling et al., 2009; Ram
and Sarin, 2010). Since OC/EC and Char/Soot ratios provide valuable insights for source
identifications, many scientific reports have focussed on the chemical characterisation of
carbonaceous compounds, particularly in lake sediments, which is exceedingly advantageous for
deciphering historical trends related with biomass burnings/forest fires (Cong et al., 2013; Han et
al., 2011). During the El Nifio-Southern Oscillation (ENSO) year, severe droughts provoke forest
leaf-shedding and greater flammability and thus forests became vulnerable to fire. Since numerous
studies underline the strong correlation between the frequency of forest fires and ENSO (Nepstad
et al., 1999; Schoennagel et al., 2005; Siegert et al., 2001), it appears reasonable to apply OC/EC

ratios for reconstructing historical trends of forest fires in Southeast Asian regions.

A previous study also highlighted the importance of dissolved organic carbon (DOC) (i.e. water
soluble organic carbon in aquatic ecosystem) as a key indicator for predicting and understanding
the response of lake ecosystems to multiple threats such as acid rain, toxic heavy metal and
hazardous persistent organic pollutants, enhancement in UV radiation, and climate change
(Williamson et al., 1999). As a consequence of 20 year global warming, drought and enhanced

biomass burnings between 1970 and 1990 appears to be responsible for the DOC reduction by 15-
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25% in lakes of North-western Ontario, Canada (Schindler et al., 1997). It is also crucial to note
that DOC 1is deeply connected with microbial metabolism, light climate, acidity, and primary
production in lakes (Sobek et al., 2007). While the altitude, mean annual runoff, and precipitation
were negatively correlated with lake DOC, the conductivity, soil carbon density, and soil C:N ratio
were positively associated with lake DOC (Sobek et al., 2007). It has been suggested that
increasing trends in DOC in the surface waters of glaciated landscapes across eastern North
America and northern and central Europe between 1990 and 2004 can be briefly described by an
elementary simulation based solely on variations in atmospheric deposition chemistry and
catchment acid-sensitivity (Monteith et al., 2007). A similar rising trend of DOC contents in
streams and lakes of UK within a range of 8 to 42 years was also detected with the average annual
enhancement in DOC content of 0.17 mg C I'! year!(Worrall et al., 2004). Overall, it appears
reasonable to assume that carbonaceous aerosols are deeply connected with those of DOC contents
in lakes and reservoirs and thus underlining the impacts of particulate OC-EC on numerous

stressors over aquatic ecosystems.

Despite a large number of research studies focusing on the computation of emission factors
of carbonaceous particles released from different fuel and vehicle types (Alves et al. 2015; Shen
et al. 2014; Wei et al. 2014), little is known about their past records in tropical sediments. To the
best of our knowledge, there is no information available on the vertical profile of OC/EC ratio
distributions in the lake sediments of Thailand. Overall, the main objectives of this study are to (7)
generate novel insights into the nature of complex climate systems in Southeast Asian countries

with some assistances from OC/EC ratio data; (if) obtain a vertical profile of total carbon (TC),
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OC, and EC for the Songkhla Lake sediments; and (ii7) quantify the OC/EC ratios and compare

their values with previous combustion source studies.

7.2. Materials & methods
7.2.1. Study site

The Thale Noi Lake (TNL) is located at 7° 46" 00” N 100° 09’ 11" E, which is the largest lagoon
lake in Thailand, is a protected freshwater wetland situated in Phatthalung Province and covers an
area of over 460 km?. TNL became regionally acknowledged as an ecosystem dynamic hotspot in
1975 when the Ministry of National Resources and Environment and in conjunction with the
International Union for Conservation of Nature (IUCN) declared it a Protected Area Category III
(Natural Monuments). TNL can be further separated into four subareas namely Melaleuca forests
(170 km?), Rice Paddies (153 km?), Swamp (109 km?), and Open Water (28 km?). It is also
important to highlight that TNL is positioned in the northern part of Thale Luang, Thale Sap, and
Songkhla Lake. The area around the lake consists of farmland, forests, and swamps. There is no
main river flowing through this area, but sediment loads from many small man-made canals as
well as run-off water from the high steep mountains is observed (VKI, 1997). The sediment core
samples of TNL were collected from three sites (Fig. S1 and Table S1) and Fig. S2 shows the
sampling method and collected sediment cores.

7.2.2. Sediment collection

Three uninterrupted sediment cores were obtained from the northern, central, and southern parts
of the TNL in August 2017 when the water level ranged between 150 and 170 cm (see Fig. S1—
S2). A gravity corer was lowered from a speedboat equipped with a transparent PVC plastic tube

12 cm in diameter 1.2 m in length. All materials used for core sectioning were washed carefully
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with detergent and water, and rinsed successively with methanol and dichloromethane prior to
removing the frozen core from the freezer. The putty knife and spatulas were properly cleaned
with tap water, methanol, and then dichloromethane. More information associated with QA/QC
considerations were strictly followed the standard operating procedure for the USGS Reston,
Virginia Environmental Organic Geochemistry Laboratory Appendix 3
(https://water.usgs.gov/nrp/biogeochemical-processes-in-

groundwater/forms/SOP_ LMWOA 05272015 FINAL Website.pdf).

For this study, as displayed in Fig. S1, only No. 1 sediment core was selected for the chemical
analysis of OC/EC ratios. The retrieved sediment columns were subsequently maintained in the
vertical position to avoid disturbance or damage to sediments during transport to the laboratory.
In this study, no physical evidence of bioturbation was detected in the retrieved sediment columns,
indicating biological limitations in the TNL. In this project, the No.1 sediment core (580 mm) was
precisely subdivided into a series of slices in 20 mm intervals. The 29 sediment sections (i.e.
580/20) were subsequently freeze-dried in order to remove the water content without greatly
altering the physicochemical properties of the lake sediment. The samples were then passed
through a 0.15 mm mesh sieve and kept in a refrigerator at - 20 °C in labelled zip lock bags for

further OC/EC ratio analysis.

7.2.3. Analysis of OC & EC
The dried sediment samples were ground and homogenised with an agate mortar and sieved though

a 200-mesh sieve. The sample pre-treatment procedure has been clearly described in previous
studies (Han et al. 2007a, 2007b) and will not be discussed here (see Table S2 for more details).

Entire sediment samples were quantitatively identified employing a DRI Model 2001
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Thermal/Optical Carbon Analyser (Desert Research Institute, Division of Atmospheric Sciences
2215 Raggio Parkway Reno, NV 89506) (Chow et al. 1993, 2001). The employment of an
analytical instrument is depended on the advantageous oxidation of OC and EC components at
various heating conditions. Its operation depends on the truth that OC can be evaporated from the
filter in a non-oxidising helium (He) atmosphere while EC has to be ignited by an oxidiser. The
degree of decomposition brought by high temperature can be calculated by repeatedly observing
the filter reflectance and/or transmittance throughout an analysis cycle. The reflectance and
transmittance, mainly occupied by the existence of light absorbing EC, reduces as pyrolysis occur
and enhance as light-absorbing carbon is liberated over the subsequent process of the
determination. By observing the amount of light transmitted by a sample (i.e. transmittance) and
the amount of light that reflects from the surface of a sample (i.e. reflectance), the EC peak area is
theoretically positively correlated with pyrolysed OC, which can be precisely converted to the OC
fraction. The computation for the charring conversion of OC to EC is important for eliminating
the bias in the detection of carbon components (Johnson et al. 1981). The charring corrections of
thermal optical reflectance (TOR) and thermal optical transmittance (TOT) are not essentially
identical, owing to charring of organic vapours adsorbed within the quartz fibre filter (Chow et al.
2004; Chen et al. 2004). All samples were analysed by a DRI Model 2001 Thermal/Optical Carbon
Analyser (Atmoslytic Inc. Calabasas, CA). The operation of the DRI Model 2001 Thermal/Optical
Carbon Analyser is based on the preferential oxidation of OC compounds and EC at different
temperatures. Its function relies on the fact that organic compounds can be volatilised from the

sample deposit in a non-oxidising He atmosphere while EC must be combusted by an oxidiser.

7.2.4. Probability distribution function (PDF) of carbonaceous sediments
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The PDF was applied to TC, OC, and EC of sediments collected at the TNL. Normally, a PDF is
an equation that explains the relative probability of a random parameter to take a given value. The
probability for the random parameter to fall within a specific area is given by the Gaussian

distribution, which can be described as follows:

o271

1)

Where y, o, °, 1 and x symbolise PDF, standard deviation, variance, arithmetic mean, and

contents of carbonaceous compositions in lake sediments, respectively. In addition, Statistical

Program for Social Sciences (SPSS) version 13 was used for simple linear regression analysis
(SLRA), analysis of variance (ANOVA), and Pearson correlation analysis.

7.2.5. Estimation of secondary organic carbon (SOC) in PMj collected at Hat-Yai City
Since numerous constraints can cause comparatively high OC/EC ratios in atmospheric deposits,

it is important to perform further evaluation of SOC, which is generally related to the atmospheric
long-range transportation (ALRT) process (Wang et al. 2012; Zhou et al. 2012). Secondary
Organic Carbons (SOCs) are carbonaceous pollutants released from both natural and
anthropogenic sources. SOCs are formed through a complex interaction of photo-oxidation,
aqueous phase reaction, biogenic volatile organic compounds (BVOCs) from forests, plants,
vehicles or imperfect combustions from industrial activities, and other particulate pollutants
(Bessagnet et al., 2008; Claeys et al., 2004; Sartelet et al., 2018; Zhang et al., 2018). It is well
known that SOCs can play a major role in governing gas-particle partitioning of persistent organic

pollutants (POPs), which has been detected to cause lung cancers, respiratory problems and other
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adverse health impacts (Cocker et al., 2001; Odum et al., 1996; Pongpiachan et al., 2009, 2013).
In this study, particulate carbonaceous contents were cited from a previous study that collected
PMi at two air quality observatory stations, namely Novotel Centara Hat-Yai Hotel (7°00"20.65"
N 100°28'15.65" E) and Lee Gardens Plaza Hotel (7°00'21.39” N 100°28'15.94" E), which were
situated at the centre of Hat-Yai city, Songkla province (Pongpiachan et al., 2014a). The
computation of SOC was conducted by applying the protocol proposed by Na et al. (2004). This
method is based on the hypothesis that atmospheric deposits possessing the smallest OC/EC ratios
constitute essentially primary carbonaceous compositions (Castro et al. 1999). For the atmospheric
deposits observed at Hat-Yai city, the arithmetic mean of the three lowest OC/EC ratios was 8.47
and hence, these could be employed for the calculation of the SOC. It is also crucial to highlight
that the three lowest OC/EC ratios were assumed to have solely primary OC and the impacts of
small proportions of SOC was ignored. The content of SOC was estimated as follows:

oC,, =0C,, — ECx(OC/EC)

primary
(2)
Where OCgec, OCiot, and (OC/EC)primary are SOC, TOC, and the arithmetic mean of the three

lowest OC/EC ratios, respectively.

7.3. Results & Discussion

Statistical descriptions of TC, OC, EC, and SOC detected during the sampling interval in the TNL
are shown in Table 7.1. The arithmetic mean contents of TC, OC, EC, and SOC ranged from 178
to 1,136 mg g!, 142 to 636 mg g'!, 35t0 555 mg g, and 27 to 520 mg g™, respectively. For percent
contributions relative to TC mass, OC varied from 51 to 80 % with an arithmetic mean of 60 +

6.9 %, whilst EC ranged from 20 to 49 % with an arithmetic mean of 40 + 6.9 %. SOC differed
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from 15 to 46 % contributing on average of 37 + 7.3 %. In addition, the ANOVA test revealed a
statistical difference between the mean values of OC (396 + 126 mg g'!') and EC (284 £ 125 mg g
1. These results indicate that OC is the major chemical composition of the TC mass concentration.
It is worth mentioning that three main features for the vertical profile of OC/EC ratio in the
sediment core were observed. Firstly, three maximum peaks of TC were observed at sediment
layer depths of 160—-180 mm, 260-300 mm, and 500-520 mm, which were in good agreement with
those of OC (see Fig. 7.1). Secondly, two maximum peaks of EC and SOC were detected at the
same sediment layer depths of 480—-500 mm and 500-520 mm. Thirdly, two maximum peaks of
OC/EC ratios were measured at sediment layer depths of 320-340 mm and 220-240 mm.

7.3.1. OC/EC ratios and estimation of SOC

In this study, TC, OC and EC contents are assumed to be random parameters and remain
unchanged during early diagenesis in sediments for numerous reasons. Diagenesis is the alteration
of deposits or existing sedimentary rocks into a various sedimentary rock in the middle and after
rock formation (i.e. lithification), at temperatures and pressures less than that necessary for the
creation of metamorphic rocks (Berner, 1980). Since there are no hydrothermal vent and/or hot
springs exist in the study sites, it appears reasonable to consider that diagenesis can take place at
Songkla Lake sediments. However, it is crucial to note that diagenesis excludes surface alteration
and metamorphism. In other words, diagenesis does not include any changes from physical,
chemical and biological weathering. As a consequence, it seems rationale to conclude that
diagenesis plays a minor role in governing physicochemical properties of Songkla lake deposits
and thus TC, OC and EC concentrations should theoretically remain unchanged at the early stage
of diagenesis in lacustrine deposits. One of the major factors associated with variations of

carbonaceous contents in sediments is simply the chemical compositions of TC, OC, and EC
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contents originally contained in aerosols prior to its wet and/or dry depositions into Songkla Lake.
In spite of the possible impacts of atmospheric depositions, biota living in the lake and in its
watershed can be considered as the crucial sources of the organic compounds initially contributed
to the lake system. Microbial reprocessing in the middle of sinking and early sedimentation
noticeably reduce the total amount of organic matter while substituting many of the primary
organic matters with secondary ones (Meyers and Ishiwatari, 1993). Therefore, much of the
organic matter content of lacustrine sediments is the product of this microbiological
decomposition. Numerous carbonaceous compounds of lake sediments still reserve source

information and by that assist for better understanding of regional paleolimnological conditions.

Over the last few years, OC/EC ratios have been comprehensively employed for interpreting the
photo-oxidation process of carbonaceous compositions, formation of secondary organic aerosols
(SOA), and quantification of its potential sources (Gray 1986; Turpin and Huntzicker 1995;
Strader et al. 1999). In this study, as displayed in Table 7.1 and Fig. 3, OC/EC ratios ranged from
1.02 to 4.02 with an arithmetic mean of 1.59 + 0.65. In order to categorise any plausible
contributors of carbonaceous compositions, the average OC/EC ratio in the sediment core of the
TNL was compared with a previous study on emission sources of carbonaceous aerosols as
illustrated in Fig. 7.3 (Pongpiachan et al. 2013). It should be noted that the average OC/EC ratio
of the TNL sediments was similar to those of Rubber Factory and Traffic Emissions (see Table 7.2
and Fig. 7.3), but lower than those of PM: 5 collected at Chaumont, Switzerland (2.8), Guangzhou,
China (2.8 + 2.8), and Xi’an, China (2.9 + 2.7) (Cao et al. 2003, 2005; Hueglin et al. 2005). The
comparatively low average OC/EC ratio observed in the sediment core of the TNL reflects the

impacts of agricultural waste burnings coupled with local vehicle releases in this area.
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However, it is crucial to note that two maximum peaks of OC/EC ratios, detected at 320 ~
340 mm and 220 ~ 240 mm sediment layers, were 4.02 and 3.07, respectively. The relatively high
OC/EC ratios measured at these two peaks could be attributed to numerous causes. First, earlier
investigations underline the significance of the generation of SOC via ALRT (Wang et al. 2012;
Zhou et al. 2012). For example, the considerably high PM; s-bound OC/EC ratios (range: 1.6—10.4;
average: 5.2 + 1.8) detected at Mount Heng, China were attributed to in-cloud SOA creation
coupled with ALRT (Zhou et al. 2012). Second, both heterogeneous and homogeneous
photochemical reactions of carbonaceous particles enhance dramatically during spring and
summer, which were responsible for the comparatively high OC/EC ratios observed in the North
China Plain (Wang et al. 2012). Since the TNL is located adjacent to the equator, it is reasonable
to assume that the seasonal effect over the fluctuations of OC/EC ratios is of minor importance.
Third, the unusually high OC/EC ratios can be ascribed as to extremely low EC value during the
observatory period. Unfortunately, this interpretation cannot be used to explain the relatively low

OC/EC ratios (i.e. comparatively high EC) found in other sediment layers.

Further investigations on the formation of SOC were conducted by applying the Eq. 2.
OCiec concentrations and its percentage contributions of PMjo collected at the Hat-Yai city, the
nearest city to sediment sampling sites, were detected as 3.96 + 2.18 ug m> and 63 + 25 %,
respectively. This arithmetic mean percentage contribution is considerably higher than that of
Kaohsiung (40.0 %, Lin and Tai 2001) and almost 3.7 times higher than that of Birmingham,
United Kingdom (17 %, Castro et al. 1999). This underlines the considerable impacts of

atmospheric depositions from Hat-Yai city as the potential mechanism responsible for relatively
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high OC/EC ratios observed in the sediment layers at 320-340 mm and 220-240 mm depths. In
spite of the overwhelming impacts from Hat-Yai city, it is also crucial to underline other plausible
influences such as local biomass burnings and ALRT as alternative causes for comparatively high
OC/EC ratios detected in the lake deposits. A previous study detected the radioactivity of isotope
137Cs using gamma-ray spectrometer in the Songkhla Lake sediments (Chittrakarn et al. 1996).
Results of the analysis for 3’Cs in all 20 sediment cores show that the average sedimentation rate
in Songkhla Lake, determined from each core, ranged from 0.0 to 8.7 mm y! with an arithmetic
mean of 5.4 + 0.2 mm y'!. By using this sedimentation rate, the age of the two maximum peaks of
OC/EC ratios could be indirectly quantified as 59-63 y and 4144 y for the sediment layers at

320-340 mm and 220-240 mm depths, respectively.

7.3.2. SLRA
As described in section 3.1, the relatively high OC/EC ratios observed for the sediment layer

depths of 320-340 mm and 220-240 mm are probably related to high OC rather than low EC
values. There are three possible causes for this, i.e. human activities (e.g. traffic releases and
factory emissions), biogenic emissions (e.g. forest fires, agricultural waste burnings, and plant
wax), and ALRT of carbonaceous particles from outside of the TNL. Relative contribution of
ALRT and local biogenic emissions can be evaluated by applying the SLRA for OC and EC
concentrations in the lake sediments. If a larger part of OC in the atmospheric deposits of the TNL
sediments were governed by local biomass burnings, the R-value of OC and EC should be low
since EC is principally emitted from vehicular exhausts. On the contrary, if R-values of OC and
EC are high, it appears reasonable to assume that both were released instantly from a single source,

namely traffic emissions (Chen et al. 2012).
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In order to test this hypothesis and to evaluate the influence of ALRT on maximum peaks
of OC/EC ratios observed in the TNL, linear regression between OC and EC concentrations in
each sediment layer was performed. As indicated in Figs. 7.4-7.6, the SLRA of TC vs. OC, TC
vs. EC, and OC vs. EC were plotted along with their respective slopes and intercepts. Generally, a
comparatively high R-value (R = 0.81) coupled with a lower p-value (p < 0.0001) was detected in
the SLRA of OC vs. EC in all sediment layers indicating a single dominant contributor (plausibly
traffic-associated emissions). On the contrary, the lowest R-value (R = 0.79, p < 0.0001) was
observed in the SLRA of TC vs. OC while the highest R-value (R =0.95, p <0.0001) was detected
in the SLRA of TC vs. EC. These findings highlight the importance of vehicular exhausts, which
are predominantly connected with EC emissions, as one of the main contributors of carbonaceous
particles in the TNL sediments. These results also indicate that the unusually high OC/EC ratios
measured at sediment layer depths of 320-340 mm and 220-240 mm are probably associated with

non-traffic emissions, namely ALRT, rather than the impacts of local biomass burnings.

7.3.3. PDF
The PDF was applied to all TC, OC, and EC contents at 29 sediment sections as explained in

section 7.2.2. PDF is a function that describes the relative probability for a random parameter to
assume a given value. The probability for the random variable to fall within a particular region is
given by the Gaussian distribution as explained by Eq. 1. PDF will give an idea of vertical spatial
distribution pattern of target compounds. It is important to underline that “vertical spatial
distribution” indicates the distribution of target compounds along with numerous sediment depths
not in the sense of distribution among several sampling sites. For instance, if PDF is normally
distributed, this indicates an homogeneous distribution of chemical substances in Songkla Lake

sediments. In the case of right skewness, this implies comparatively high inputs of chemical
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species in the study area. On the contrary, if PDF is left skewness, this underlines potential
decaying mechanism (e.g. micro-biodegradation) of chemical species in the observatory site. As
shown in Figs. 7.7-7.9, symmetrical bell-shape curves were observed for all carbonaceous
compositions. Since the detected values of the PDF are more concentrated in the middle than in
the tails, it seems rational to attribute it to moderately homogeneous spatial distribution of
carbonaceous compositions in the background lake sediments that were less likely to be influenced
by extreme events (e.g. forest fires and volcanic eruptions). Previous studies have highlighted the
significance of large scale of forest fires and volcanic eruptions on fluctuations of carbonaceous
compositions in atmospheric deposits (Bhugwant et al. 2000; Cachier et al. 1989; Lavoué et al.
2000; Martinsson et al. 2009; Pio et al. 2008). A previous study suggested that volcanic eruptions
(Piton de la Fournaise, 2632 m above sea level) do not emit EC directly and during the air quality
observation period from 10 to 28 March 1998, no significant vegetation fires ignited by the lava
were observed (Bhugwant et al. 2000). The exceedingly high OC/EC ratio of 5.08 was also
observed during the intense forest fire episode that occurred during the summer of 2003 in the
Aveiro region, Portugal (Pio et al. 2003). Since no asymmetrical distribution curves for the
carbonaceous compositions were observed in the sediment cores of the TNL, it appears reasonable
to assume that atmospheric deposits in the TNL were mainly released from a single dominant
source, probably vehicular exhaust. Nevertheless, it is safe to mention that the exceedingly high
OC/EC ratios detected at the sediment layer depths of 320—340 mm and 220-240 mm are plausibly

related to some extreme episodes such as forest fires and/or volcanic eruptions.
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Table 7.1 Statistical descriptions of TC, OC, EC, SOC, and OC/EC ratios in sediment samples

collected from the TNL

TC oC EC SOC OC/EC
[mg g] [mg g] [mg g] [mg g]
Aver 679 396 284 260 1.59
Stdev 245 126 125 118 0.65
Min 178 142 35 27 1.02
Max 1136 636 555 520 4.02

Table 7.2 Statistical descriptions of TC, OC, EC, and OC/EC ratios in PM¢ samples collected

from various emission sources (Pongpiachan et al. 2013)

PMo TC oC EC OC/EC
[ug m™] [ug m™] [ug m™] [ug m™]
PSU 35.7+10.3 6.671 + 4.838 =+ 1.833 =+ 2.639
Campusl 8.391 5.650 0.856
PSU 27.9 £8.7 4.897 + 3573 £ 1.324 + 2.699
Campus?2 3.640 1.937 0.673
Traffic 46.9 +30.6 14.831 + 8.572 + 6.259 + 1.370
Intersection 37.439 10.572 13.786
Corpse 35.9 +£28.7 7.485 + 5.230 + 2.254 + 2.320
Incinerator 15.925 5.854 4.079
CPF 245 +£54 7.385 + 5.168 + 2217 £ 2.331
15.428 4.448 4.221
Songkla 13.8 £2.9 4296 + 3.063 + 1.232 + 2.486
Lakel 2.000 1.426 0.268
Songkla 11.6 £3.7 0.977 + 0.757 + 0.221 + 3.425
Lake2 1.849 0.397 0.401
Rubber 344 £8.6 15.829 + 10.852 + 4977 + 2.180
Factoryl 31.658 17.158 6.096
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Rubber 36.7 £15.7 11.022 + 6.922 + 4.100 + 1.688

Factory2 24.784 10.449 6.833
Bus terminal 42.8 +24.9 14.112 + 8.062 = 6.050 + 1.333
29.391 8.154 11.015
Garbage 86.6 £65.4 24.449 + 5.427 + 19.023 + 0.286
burner 64.879 11.266 31.442
Barbeque 30.2 +£14.1 6.280 + 4.850 + 1.430 + 3.392
Festival 8.799 2.611 1.849
Petkrasem 25.1 £9.2 9.650 + 5438 + 4212+ 1.291
Road 22.896 8.693 7.385
Kor Hong 9.6 £4.0 1.850 + 1.352 £ 0.499 + 2.709
Mountain 1.224 0.894 0.055
Straw 217.8 + 80.362 + 64.992 + 15.370 + 4.229
Burning 96.1 91.936 51.974 12.574
Bush 255 +£23 11.106 + 7.980 + 3.126 + 2.553
Burning 10.069 2.234 2.696
Para Rubber 83.7 +23.2 48.390 + 38.578 + 9.812 + 3.931
Tree 66.486 35.154 10.090
Burning

Prince of Songkla University (PSU): The sampling station is positioned at approximately 3 m
above the basement of the Faculty of Environmental Management, Prince of Songkla University.
This location is about 3 km far from city centre and thus can be acknowledged as an urban
residential zone.

Traffic Intersection (TI): This monitoring site is situated at the traffic intersection adjacent to
Tesco Lotus department store in Hat-Yai city. TI can be considered as a representative of vehicular
exhausts.

Corpse Incinerator (CI): The monitoring site is located at crematory of Kor-Hong Buddhist
monastery adjacent to PSU and approximately 1.5 km away from TI. CI can be considered as a
representative of both timber and tire-combustions.

Charoen Phokphand Factory (CPF): CPF is located inside the facility of fish can producing
factory owned by Charoen Phokphand group. This site can be considered as a representative of
crude oil combustion.

Songkhla Lake (SL): SL is positioned at the coastal area of Songkhla Lake and is roughly 13 km
away from Hat-Yai city. SL is also located approximately 14 km away from the western side of
the Gulf of Thailand. This sampling site can be acknowledged as a representative of rural
background monitoring site.

Rubber Sheet Manufacturing Factory 1 (RMF1): RMF1 can be considered as a mixture of Para
rubber trees combustions coupled with emissions of latex fragments and sulphuric acid particles.
This sampling stations is situated at Tumbol Tungwan, Hat-Yai district, Songkla province.
Rubber Sheet Manufacturing Factory 2 (RMF2): RMF2 can be considered as a mixture of Para
rubber trees combustions coupled with emissions of latex fragments and sulphuric acid particles.
This sampling stations is situated at Tumbol Tachang, Banglum district, Songkla province.

Bus Terminal (BT): This monitoring site is positioned at bus terminal about 1.4 km away from
PSU. BT was carefully chosen as a representative of diesel emissions since most of the buses are
diesel-fuelled.
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Waste Incinerator (WI): WI is a facility which is a part of the municipality of Hat-Yai city. This
sampling station can be acknowledged as a mixture of solid wastes and diesel oil combustions.
Barbeque Festival (BF): BF is positioned at the centre of PSU campus on the rooftop of Faculty
of Natural Resources. PMio samples was collected during the barbeque festival which is an annual
tradition normally occurred in the second week of August. BF can be acknowledged as an
representative of charcoal combustion.

Petkrasem Road (PR): PR is situated close to Petkrasem Road at the city centre of Hat-Yai. This
site can be considered as the most congested area of Songkla province. As a consequence, PR can
be considered as a representative of a mixture of diesel and benzene combustions.

Kor-Hong Hill (KHH): KHH is located on the top of Kor-Hong hill with a height of 356 m. KHH
can be regarded as a mixture of anthropogenic emissions from Hat-Yai city.

Rice Straw Burning (RSB): RSB can be regarded as a representative of rice straw combustion.
This sampling site is positioned at rice paddy field in Satingpra district, Songkla province.
Biomass Burning (BB): BB can be considered as a mixture of agricultural waste burnings at the
planting areas of Namon district, Songkhla province.

Para Rubber Tree Burning (PTB): PTB can be regarded as an emission source of Para rubber tree
combustion.

Total Carbon Organic Carbon Elemental Carbon
Conc. [mg/e] Conc. [mg/g] Conc. [mg/e]
0 200 400 600 800 1000 1200 0 50 100 150 200 250 0 100 200 300 400 500
0 0 0
100 100 100
20 200 0
E‘ —
£ E
£ E30 — 30
§ 300 i E
d :
£
400 400 & 400
500 500 500
L 600 600

Figure 7.1. Vertical profile of TC, OC, and EC in sediments collected from the TNL
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Figure 7.2. Vertical profile of OC/EC ratios in sediments collected from the TNL
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4822  Figure 7.4. Linear regression analysis of TC vs. OC in sediments collected from the TNL

4823

190



4824
4825

4826
4827
4828

Linear Regression Analysis of TC vs EC
600 -
Y = 0.50X-54
R2=0.95
500 -

400

EC [mg/g]

200

100 -

0 200 400 600 800 1000 1200
TC [mg/gl]

Figure 7.5. Linear regression analysis of TC vs. EC in sediments collected from the TNL
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Figure 7.7. PDF of TC in sediments collected from the TNL
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Figu;e S2. Sampling method and sediment cores at the TNL

Table S1. Locations of sediment cores sampled form the TNL

Location

Sample Sub-sample Site-Description
(2 cm)
lat long
Up-stream mud / black
Thale Noi is a protected
! 7.7703 | 100.1436 | 29 samples fresh water wetland situated
in _ Phatthalung province,
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southern part of Thailand.
Covering an area of 460
km?, the wetlands are
positioned roughly 20 km
inland from the east coast
peninsula of the Gulf of
Thailand and 115 km north
of the Malaysian border in
Satun province. Thale Noi
Non-Hunting Area is one of
the largest natural
freshwater lakes in South
East Asia. It is the smallest,
northernmost basin in the
chain of lagoons that form
Songkhla Lake, spreading
across three provincial
boundaries into Nakhon Si
Thammarat,  Phatthalung
and Songkhla provinces and
is home to the critically

endangered Irrawaddy
dolphin (Orcaella
brevirostris)
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Chapter-VIII
Conclusions & Future Works & National Policy

Conclusion 8.1

The results of the one-year monitoring campaign highlight the importance of biomass burning as
one of the main contributors of carbonaceous particles in the ambient air of Chiang-Mai, Thailand.
The comparatively high OC/EC ratios (e.g. 6.8+3.0), coupled with the high SOC contents (e.g.,
8.12+0.26 pug m) detected at Chiang-Mai, emphasize the dominant effects of biomass/agricultural
waste burning in northern Thailand. HCA illustrates that mixtures of biomass burning, fossil fuel,
coal combustion, and industrial emissions are major sources of PMzs. It is also to interesting to
note that PCA successfully identified five major sources of PM, s, namely, vehicular exhaust,
biomass burning, diesel emissions, sea-salt aerosols and agricultural emissions, which accounted
for 51.6%, 16.2%, 10.6%, 5.20% and 3.70%, respectively. Overall, this study provides compelling
evidence for adopting a zero-burning farming policy as a priority for national clean air act policies,

strategies and plans.

Conclusion 8.2
In this project, the result presents the mean of PM» s was three times higher than the annual average
concentration of Thai National Ambient standard (25 pug m™) as well as USEPA standard. The
OC/EC ratios suggested that the source was gasoline and LPG exhausts, while the comparatively
high Char-EC/Soot-EC ratio coupled with a strong correlation between K* with OC (+=0.86) and
Char-EC (r=0.82), respectively, so it guided that the ambient aerosol was emerging from biomass
burning activity. Interestingly, a strong correlation between K+ with NOs (7=0.81) was also found
in Bangkok area, as the major source of NO3 is originated from incomplete combustion, including
traffic emissions and industrial emission. Thus, the result underlined that vehicular exhausts and
biomass burning played a significant role in the Bangkok’s atmosphere.

HCA indicated that the main source was mixture from combustion activities (e.g. biomass
burning, vehicular exhausts, fossil fuel, coal and industrial). It is remarkable to notice that PCA
efficiently separated five important sources of PMz s samples, including vehicular exhaust, biomass

burning, sea salt aerosols, power plants and industrial emission, which clarified for 43.7%, 24.0%,
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10.5%, 6.48% and 4.46%, respectively. Overall, the results from this study emphasized that the
effect of both local (vehicular exhausts) and regional (biomass burning) sources on the level of
PM:s. Hence this data can be significance for potential manage plans for decreasing exposure at

Bangkok’s atmosphere such as policy as a priority for national clean air act.

Conclusion 8.3

This study investigated the carbonaceous aerosol compositions (OC, EC, WSIS, and PAHs) of
PM> s samples obtained in Phuket during March 2017 to February 2018. The main findings are as
follows. The average PM: s concentration was 42.26 + 13.45 pg m 3. Of the OC fraction, OC3 was
the highest, followed in descending order by OC4, OC2, and OCI1. Of the EC fraction, EC1 was
the highest, followed by EC2 and EC3. Despite the relatively high OC/EC ratio (6.05 + 2.70), the
SOC content (1.30 & 1.63 ug m3) was relatively low, reflecting the comparatively low EC content
in marine aerosols. Strong correlation (r = 0.80) was found between nss-K* and OC, which was
also shown to be affected significantly by long-range atmospheric transport of organic aerosols
associated with BB. The concentrations in the PM s samples of 10 selected WSIS, i.e., SO4*~, Na*,
Ca*', CI,NOs, NO, ", NH4", K*, Mg?*, and F~ accounted for 34%, 21%, 14%, 8%, 8%, 4%, 4%,
4%, 2%, and 1% of the total mass of ions, respectively. The average SO4>~ concentration in Phuket
was the highest throughout the entire study period (2.33 + 1.73 pg m3). The average contribution
of SO4* to the major ionic component was 34%. It was surprising that NO3~ and NH4" had
relatively low concentrations, i.e., 0.53 = 0.21 and 0.29 + 0.32 ug m3, respectively. The mean
[NO37)/[SO4>7] ratio found during this study was 0.33 + 0.24. The concentration of individual
PAHs in the PM> s samples decreased in the following order: B[g,h,i]P > Ind > Phe > B[a]A > Cor
> B[b]F > B[k]F > B[a]P > B[e]P > Ace > D[a,h]A > Fluo > F1 > Pyr > DJ[a,e]P > Chry > Ant >
Per > B[a]F. In this study, relatively high abundances of B[g,h,i]P and Ind were detected,
indicating that motor vehicles, petroleum/oil combustion, and industrial waste burning are
emission sources of the PAHs found in the ambient air of Phuket. Source identification of the
chemical species by PCA revealed that five sources of carbonaceous composition observed in the
PM:s samples of ambient air in Phuket explained 82.8% of the total variance. The highlight
showed that vehicular exhausts, BB, diesel emissions, sea salt aerosols, and industrial emissions
accounted for 55.5%, 10.9%, 6.1%, 5.20%, and 5.1% of the total variance, respectively.
Interestingly, the PCA result showed vehicular exhausts as the main source. However, the
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contributions of both marine aerosols and BB to SOC also played a major role. Overall, 17.2% of
the variance could not be attributed to the five primary local and/or regional sources; this
proportion was considered to originate from other combustion activities such as incinerators,

incense burning, and cooking.

Conclusion 8.4
Long-term pollutants history from pre-industrial to industrial period would tell us the interactions

between natural processes and human activities, advancing our prediction of future climate and
environment. Previous studies emphasized more about human influences on pollutions, while less
discussed about the natural impact. It is still unknown that in the less industrialized regions of
southeastern Asia, human emissions or natural processes, which, play a key role in the emissions
of light-absorbing carbon fractions of black carbon (BC), char, and soot. In this study, we
determined historical variations of organic carbon (OC), total nitrogen (TN), BC, char, soot, and
polycyclic aromatic compounds (PACs including 26 PAHs, 13 OPAHs, and 3 azaarenes) over the
past 150 years from sediments of Phayao Lake, northern Thailand. We observed a clear transition
from pre-industrial to industrial processes occurring at ~1980. However, the mass accumulation
rates (MARs) of soot, the key atmospheric light-absorbing aerosol, after 1980 did not fully exceed
their pre-industrial period, indicating that in rural and remote regions natural biomass burning
emission is still a main contributor for soot. Well correlations of BC, char, and soot MARs with
the reconstructed regional Palmer Drought Severity Index (PDSI) were observed for the pre-
industrial period, suggesting that drought is the dominant factor controlling biomass burning.
PACs source identification indicates two sub-stages of the industrial period: the transition from
coal burning to vehicle emissions since ~2000. From natural processes to industrial activities, the
surrounding soil and the lake water quality have been impacted, and notably more in-lake
production associated with the eutrophication occurred during the industrial period.

Conclusion 8.5

The analyses of OC/EC ratios, OCsoc, SLRA, and PDF reveal that traffic emissions are the most
influential factor controlling the atmospheric deposits of carbonaceous compositions observed in
the TNL core sediments. Although vehicular exhausts play an important role in governing

carbonaceous compositions of most sedimentary samples, multiple types of extreme events,
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including the ALRT of forest fire particulate matter and smoke from volcanic eruptions, seem to
be the principal contributors detected at 320-340 mm and 220-240 mm sediment layers. By
applying a sedimentation rate of 5.4 = 0.2 mm y!, the age of the two extreme events could be
roughly estimated as 59—63 y and 41-44 y, respectively. Irrespective of some degree of uncertainty
resulting from sediment age dating techniques, the overwhelming contribution of traffic releases
to carbonaceous deposits is unquestionably evident. These findings also provide evidence for
considerable concerns regarding ecotoxicology and environmental safety of communities
surrounding the Songkhla Lake and thus, are likely to encourage policy makers to develop realistic
plans for the reduction of traffic related pollutants, especially under the context of sustainable

development.

Futureworks

In the interest of public health, the risks vs. benefits of the possible alternatives must be carefully
considered. For instance, it might well be that the traffic emissions result in a certain number of
patients suffering from lung cancer per year. However, this risk must be balanced against the
available alternatives of no vehicles or even no long distance transportation. Unless or until the
creativity and technological developments offer superior methods for trapping those carcinogens,
the policy makers have to make decision based on risk assessment. Since PAHs are continuously
released into the atmosphere, raising concerns over the safety of urban residents and those who are
living at countryside, it is therefore crucial to continue monitoring PAHs at the three air quality
observatory sites. This will expand the database, and thus amend the scope of long term temporal

trend analysis of PAHs in both urban and rural atmosphere.

Moreover, one should keep in mind that air quality compliance measurements should be conducted
at multiple monitoring sites within the city. Therefore, a more comprehensive air monitoring
network requires to be developed in order to provide a more precise risk assessment of human
exposures in cities of Thailand. The combination of PAHs, WSIS, and OC/EC provides useful
information to enable better source characterisation. However, the greater difficulty lies in proper
source identification during the agricultural waste burning episodes (e.g. sugar cane burnings).
Therefore, future work and sampling efforts should focus on finding key PAH source markers that
will improve the ability to separate wood combustion originated PAHs from those generated by
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anthropogenic sources. The lack of insight of finger prints from various emission sources leads to
inadequate description of the source identification of PMz 5. Therefore, it becomes essential to have
a more comprehensive knowledge of the source fingerprints of chemicals in PMzs. There are
uncertainties in the estimation of source contribution by using PCA and diagnostic binary ratios.
Further source apportionment techniques such as a positive matrix factorisation (PMF) and a
chemical mass balance (CMB) model should be conducted to increase the reliability of source

contributions.

National Policy for Controlling PAH Concentrations in Ambient Air of Thailand

Polycyclic Aromatic Hydrocarbons (PAHs) constitutes a large group of chemically related
substances many of which are recognized as carcinogenic substances. To minimise human
exposure there are already numerous regulations which limit their existence in ambient air. There
are currently no EU Directives or other guidance to member states, which bear directly on either
emissions or air quality objectives of PAH. PAH are, however, covered by the Persistent Organic
Pollutant (POP’s) -Protocol under the United Nations Economic Commission for Europe’s
Convention on Long Range Transboundary Air Pollution [UN ECE CLRTAP]; under the Protocol,
emissions of four PAH compounds have to be reported annually; in addition, emissions of PAH in
2010 may not exceed the levels of 1990 (or any other base year between 1985 and 1995). The

Protocol will enter into force after 16 ratifications, which is expected between 2001 and 2002. The

European Community is a party to the Convention and will therefore have to fulfil the obligations
of the Protocol after ratification. Of the EU member states currently only Italy has legally
enforceable ambient air standards for PAH but five others have sufficient concern that they have
issued guidance for planning and policy purposes. All have used B[a]P as a marker for PAH and
one (Sweden) has gone further and set a value for Fluo as well. As illustrated in Table 8.1, the
average concentrations of B[a]P in PMas collected from Chiang-Mai, Bangkok and Phuket were

clearly illustrated. The statistical descriptions of particulate B[a]P collected at Chinag-Mai,
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Bangkok and Phuket were 115+159 pg m™, 221+100 pg m and 17.4+19.0 pg m™, respectively
(see Fig. 8.1).

Table 8.1. Statistical descriptions of PAH contents in PM2 s collected at Chiang-Mai, Bangkok and
Phuket

Nisbet and LaCoy (1992) Chiangmai Bangkok Phuket
Conc. [pg/m3] TEF Aver Stdev Aver Stdev Aver Stdev
acenapthene 0.001 34,7 379 27.9 13.8 14.0 9.63
fluorene 0.001 29.3 34.1 333 18.9 11.2 7.95
phenanthrene 0.001 112 177 123 36.9 40.9 41.1
anthracene 0.010 17.9 20.2 21.1 6.8 6.68 454
fluoranthene 0.001 50.8 43.7 79.1 38.7 12.0 12.0
pyrene 0.001 52.8 46.7 98.1 43.9 11.0 12.7
benzo[a]anthracene 0.100 109 86.6 116 41.1 34.0 16.3
chrysene 0.010 49.4 47.2 96.3 47.4 6.70 7.02
benzo[b]fluoranthene 0.100 166 161 261 115 239 22.0
benzo[klfluoranthene 0.100 183 190 289 148 23.8 229
benzo[alfluoranthene 24.6 24.8 32.8 15.4 3.17 3.00
benzo[e]pyrene 91.1 84.0 159 70.4 14.4 13.4
benzo[a]pyrene 1.000 155 159 221 100 17.4 19.0
|perylene 17.5 16.6 24.0 11.2 4.83 5.79
indeno[1,2,3-cd]pyrene 0.100 410 369 439 224 50.7 50.0
benzo[ghi]perylene 0.010 384 370 669 394 57.5 59.0
dibenzo[a,hJanthracene 1.000 90.1 83.0 98.6 59.4 133 11.8
coronene 132 119 178 129 23.9 20.8
dibenzo(a,e)pyrene 48.6 52.7 75.8 63.9 8.54 9.08

It is worth mentioning that the annual concentration of B[a]P collected at Chiang-Mai, Bangkok
and Phuket were 6.5 times, 4.5 times and 57 times lower than WHO guideline, which is 1,000 pg
m>. It is also interesting to note that the annual concentration of B[a]P collected at Chiang-Mai,
Bangkok and Phuket were 33 times, 23 times and 285 times lower than India guideline, which is
5,000 pg m3. Although the annual concentration of B[a]P collected from the tree cities are
generally lower than the majority of international guideline, there are some international standards
that have very strict regulations. Croatia and Sweden limit B[a]P content in ambient air not to
exceed 100 pg m>. In the case of adopting Croatia and Sweden's regulation, the annual
concentration of B[a]P collected at Chiang-Mai and Bangkok will exceed the guideline (Table
8.2).

Table 8.2. International guideline of B[a]P in comparison with those annual concentration

collected at Chiang-Mai, Bangkok, and Phuket
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International Chiang-Mai Bangkok
Standard

Belgium (500 pg m?3) v
comsosery . v
France (700 pg m-3) v v v
Germany (1,300 pg m3) v v v
Italy (1,000 pg m3) v v v
Netherland (500 pg m3) v v v
wedentooper)  IIIEIIIEEIIEI v
U.K. (250 pg m?3) v v v
Australia (1,000 pg m-3) v v v
WHO (1,000 pg m?3) v v v
India (5,000 pg m-3) v v v
sg7p  USA(1,000pg m?3) v v v
Chiang-Mai Bangkok Phuket
| ? F LRAT
Bla]P: 115+159 pg m™3 E B[a]P: 221+100 pg m™3 B[a]P: 17.4+19.0 pg m
07 Ba]Peqyiiens: 337327 pg m’3 Bla]Peqyiyaiens: 4382217 pg m BlalPeqgiyaten:: 45143 pgm™

5074  Figure 8.1. Annual concentration of PM> s bounded B[a]P collected at Chiang-Mai, Bangkok and
5075  Phuket

5076  As a consequence, it appears rationale to adopt the WHO, Italy, Australia and US EPA guideline,
5077  which regulate B[a]P content not to exceed 1 ng m= or 1,000 ng m™ in 24 h of monitoring period.
5078 By applying these four guideline, the annual concentration of B[a]P will fall in acceptable level
5079  and this will allow the government to implement other policies for enhancing air quality level to

5080 meet U.K., Croatia and Sweden's guideline.
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both countries.
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5125  Appendix 1. Hot spot distribution (200~250 °K) in Thailand in March 2020
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5128  Appendix 2. Hot spot distribution (251~300 °K) in Thailand in March 2020
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Appendix 3. Hot spot distribution (301~350 °K) in Thailand in March 2020
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Appendix 4. Hot spot distribution (351~400 °K) in Thailand in March 2020
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Appendix 5. Analytical results of NIST SRM1941b

daya SRM
Afifnfuan (uun/nu.  Aidesedld (uuns/

SRM CODE WiAS) N.UUUAS) %Accuracy
Phenanthrene Phe 406+44 464+16 86+4
Fluoranthene Fluo 651+50 721445 88+7
Pyrene Pyr 581+39 538+34 106+7
Chrysene Chry 291431 336+25 83+8
Benzolalanthracene BlalA 335+25 289+26 114+8
Benzo[blfluoranthene  B[b]F 453+21 480+25 94+6
Benzolklfluoranthene  B[kIF 225+18 229+19 100+8
Benzolelpyrene BlelP 325+25 321+10 10143
Indeno[1,2,3-cd]
pyrene Ind 341+57 291+14 115+4
Benzolg,h,ilperylene Blg,h,iIP 307+45 267+17 113+6
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5150

Appendix 6. Analytical results of PAHs (ng Kg! dry weight) in Songkla Lake sediments

CORE 1
11H-

amii Phe An Fluo Pyr Bla]F 11H-B[b]F Bla]A Chry B[b]F BIKIF Ble]P Bla]P Ind D[a,h]A B|g,h,i]P ZPAHS
SL101 11.89 1.97 13.73 16.96 1.91 327 271 391 17.86 244 6.58 314 342 111 19.41 169.37
SL102 15.14 2.61 21.17 36.96 2.56 4.64 3.17 4.68 24.6 2.56 10.19 49.38 51.44 0.91 49.19 279.2
SL103 18.2 29 25.1 29.53 4.16 7.52 5.08 747 20.69 2.72 743 35.66 39.2 1.17 20.85 227.67
SL104 16.54 2.75 21.66 25.17 3.68 6.3 355 573 25.02 2.85 8.24 41.22 39.22 1.07 24.37 227.36
SL105 27.09 4.68 65.93 197.31 4.73 6.69 351 747 69.04 16.07 7.12 143.76 239.17 1.09 424.01 1217.67
SL106 18.06 2.93 33.88 32.71 10.09 14.41 6.16 15.41 27.79 344 9.37 58.69 39.42 1.46 19.98 293.81
SL107 13.7 225 32.54 26.98 11.89 16.16 5.28 18.59 11.82 2.59 7.25 38.46 27.99 1.15 11.08 227.72
SL108 18.14 322 37.67 35.04 12.32 17.03 52 33.43 20.65 221 6.63 45.54 25.82 0.96 13.18 277.04
SL109 24.22 397 43.44 42.69 14.42 21.03 4.83 52.93 19.27 22 537 55.32 23.74 1.32 11.75 326.49
SL110 313 55 38.89 49.18 23.12 36.49 10.74 45.87 24.83 3.04 4.23 90.54 26.82 0.82 8.51 399.88
SL111 43.51 7.19 33.39 41.74 13.66 19.38 355 94.75 7.5 2.14 1.35 65.07 13.41 0.38 4.87 351.89
SL112 21.27 5.99 37.06 47.42 21.91 30.78 7.7 121.31 9.01 3.19 22 68.95 11.69 0.84 5.55 394.9
SL113 25.65 7.39 33.66 41.48 16.43 252 5.56 125.29 13.17 2.56 1.92 124.27 16.31 1.95 7.37 4482
SL114 30.11 6.32 24.17 29.03 18.01 22.74 5.82 81.45 6.01 2.07 1.05 78.46 10.94 0.75 4.02 320.93
SL115 63.7 7.97 31.92 40.81 14.75 20.91 5.16 96.36 2.55 1 1.2 44.81 10.84 1.12 4.36 347.48
SL116 49.9 8.61 38.06 46.94 25.1 33.63 8.94 89.5 3.74 1.36 1.48 60.25 13.71 0.95 2.64 384.81
SL117 32.12 5.38 232 27.33 14.24 20.22 4.56 68.18 2.16 1.63 1.15 61.04 9.5 1.4 2.58 274.69
SL118 17.75 4.96 24.53 27.84 18.44 24.73 6.52 74.69 2.07 1.2 0.83 63.79 11.15 0.94 2.83 282.27
SL119 19.99 44 26.18 29.83 23.08 25.92 8.71 71.74 371 1.28 0.94 43.51 11.34 0.21 2.57 273.4
SL120 20.24 4.66 31.66 35.24 29.23 31.37 9.51 75.38 4.39 1.71 1.38 66.01 12.92 0.99 297 327.66
SL121 19.3 545 32.46 40.21 31.64 31.35 10.85 54.64 8.05 2.75 2.96 131.42 22.08 1.38 5.6 400.14
SL122 18.12 43 36.02 43.51 31.32 333 11.87 37.73 821 2.55 2.66 50.68 153 0.54 234 298.43
SL123 16.03 534 35.92 46.95 37.08 43.51 15.76 37.52 11.41 4.11 337 93.95 20.03 0.84 4.02 375.84
SL124 24.19 573 36.93 66.67 30.04 42.82 7.05 20.2 17.24 4.19 4.84 125.72 21.97 0.58 3.17 41132
SL125 22.25 4.54 34.32 49.98 21.54 36.63 8.53 16.11 20.66 571 7.86 158.22 15.06 0.86 5.62 407.9
SL126 16.81 2.93 15.89 2435 14.56 23.62 355 10.97 11.21 3.65 3.04 772 32.86 0.42 3.01 244.07
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stiz7 | 1191 297 1837 n7 | 235 3039 15.44 1157 1092 417 263 6026 | 2884 083 479 25021
s | 1403 33 20.11 2621 3381 424 £.09 2226 754 371 49 15645 | 1516 138 483 386.01
sz | 1285 201 1201 1478 13.04 2.02 648 1468 444 167 168 53.59 1265 039 207 17435

Average | 2324 | a6 3034 4126 1793 %7 703 4551 1433 313 413 795 | 2041 096 2336 34485

SD. 1179 182 1075 32.06 983 1334 342 371 1314 271 288 338 | aist 038 7.7 296.1

CORE 2

un-
amil | Phe An Fluo Pyr BalF | unBpF | Baa | oy | Bor | BwE | Bl | e ind | Dlania | Bighip | Ypans
st | 634 127 1122 16.06 71 677 38 635 1115 215 595 a7 | 22 099 671 13024
sz | 556 L13 1425 278 997 974 589 89 1643 324 697 241 242 147 668 16062
st | 513 084 1231 1811 692 885 319 733 10.09 259 504 1844 | 2042 055 681 127.12
stas | 700 093 1558 1666 18.78 965 282 791 702 154 349 178 15.18 041 507 130.03
sos | 633 135 17.05 377 | 2w 1095 323 86 7.09 244 442 33.08 19.44 047 69 15786
s | s 073 10 623 1274 516 185 547 8.16 226 449 2625 19.65 063 632 11566
st07 | 53 082 £.89 452 1148 511 188 5.08 737 197 363 18.62 16.12 085 491 96.58
sta0s | 410 064 9.04 47 1193 577 206 508 726 207 339 1633 1475 044 42 9187
st20 | 493 135 1443 716 208 1065 43 751 1489 416 622 33.86 2.2 103 881 1693
stz | 277 039 356 23 386 1.96 095 216 384 L13 157 849 839 022 298 4457
st | s 026 213 275 119 054 034 085 169 048 074 349 549 0.8 286 2.1
stz | 208 021 1.49 123 139 054 039 116 163 038 05 295 416 0.12 178 2001
stz | 366 023 182 153 118 051 045 L1s 164 044 055 28 406 0.1 162 2175
stz | 197 0.19 131 274 L13 055 032 077 147 046 071 325 517 0.16 289 23.59
stais | 38 021 266 479 119 054 037 L12 1.49 042 092 328 458 008 381 2024
state | 184 0.19 183 328 12 054 041 Lol 156 044 074 337 53 0.17 338 25.26
Average | 437 067 804 81 835 4586 202 44 642 164 3.08 1472 1371 049 473 85.61
SD. 17 044 577 711 75 415 172 315 49 116 228 1 844 041 212 61.86
CORE 3 (ng kg>] dry weight)
un-
amil | Phe An Fluo Pyr Balf | unBpF | Bala | oy | Bor | BmE | Bl | e id | Dlania | Bighip | Ypans
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SL301 7.53 1.31 19.53 16.05 9.92 11.91 4.01 9.22 11.62 2.52 5.76 30.61 24.48 2.01 8.43 16491
SL302 5.85 1.28 18.18 18.91 11.76 12.16 4.73 9.7 13.44 2.87 6.51 28.65 23.06 1.75 833 167.18
SL303 5.59 1.34 17.76 18.66 13.06 13.14 578 10.94 14.95 2.76 6.54 23.89 24.82 15 6.89 167.62
SL304 597 1.45 15.51 16.24 12.35 11.43 5 9.41 15.04 2.99 6.47 21.27 23.15 1.53 6.88 154.69
SL305 5.12 1.19 13.08 13.4 8.79 8.49 4.71 7.86 12.05 25 52 16.9 19.72 1.36 5.53 1259
SL306 12.24 0.97 11.68 12.17 6.17 6.08 338 6.21 8.27 1.69 341 11.46 13.92 0.56 54 103.61
SL307 10.8 0.67 9.6 8.93 4.75 4.89 2.53 5.05 8.92 1.65 35 11.88 13.28 0.7 4.27 91.42
SL308 4.99 0.72 8.99 831 45 535 2.57 5.69 7.28 1.46 29 10.27 11.97 0.68 3.65 79.33
SL309 6.02 0.76 83 7.75 4.6 4.69 241 533 7.44 1.42 271 10 11.76 0.68 3.58 77.45
SL310 4.8 0.53 6.05 5.57 2.68 3.01 1.63 3.86 5.69 1.17 2 7.46 9.51 0.7 3.03 57.69
SL311 9.32 0.57 5.63 551 2.06 225 1.09 32 3.94 0.98 1.56 6.13 8.06 0.3 2.87 53.47
SL312 6.54 0.4 4.28 4.08 1.51 1.74 0.81 2.6 4.03 0.85 1.24 5.09 6.48 0.35 25 425
SL313 7.18 0.27 248 2.68 1.56 0.68 0.38 1.69 22 0.49 0.69 3.04 4.69 0.2 1.76 29.99
SL314 6.76 031 2.49 238 1.78 0.88 0.36 1.76 3.08 0.73 0.84 4.54 575 0.18 2.17 34.01
SL315 5.44 0.17 1.95 221 1.45 0.66 0.3 1.78 232 0.56 0.59 3.74 4.55 0.17 2.02 27.91
SL316 6.19 0.32 2.26 22 1.24 0.51 031 1.09 1.95 0.47 0.51 434 4.02 0.12 1.32 26.85
SL317 535 0.34 2.15 2.18 1.43 0.64 0.35 1.26 1.88 0.48 0.5 2.66 42 0.18 1.53 25.13
SL318 6.89 0.28 236 2.18 1.53 0.55 0.33 1.4 1.91 0.43 0.47 2.08 4 0.22 1.15 25.78
SL319 5.08 0.23 1.99 2.14 1.29 0.47 033 1.63 22 0.58 0.61 271 4.92 0.12 1.7 26
SL320 3.86 0.26 2.06 2 1.6 0.58 0.34 1.54 2.04 0.44 0.55 231 3.86 0.09 1.59 23.12
SL321 4.08 0.24 1.61 1.62 1.23 0.39 0.24 0.99 1.81 0.41 0.47 2.13 3.69 0.2 1.46 20.57
SL322 5.62 0.26 1.84 1.7 1.19 0.42 03 0.97 1.68 0.47 0.45 223 39 0.16 1.56 22.75
SL323 6.23 03 1.98 1.87 1.08 0.36 031 0.99 1.91 0.44 0.43 2.07 44 0.07 15 23.94
SL324 521 0.24 1.92 2.01 1.07 0.4 03 1.01 1.92 0.42 0.51 239 5.08 0.13 1.58 24.19
SL325 237 0.21 15 1.6 1.14 0.35 0.32 1.17 1.88 0.43 0.47 2.07 43 0.16 1.41 19.38
SL326 6.05 0.23 245 2.53 1.09 0.47 0.42 1.25 1.64 0.37 0.44 1.98 4.12 0.15 1.62 24.81
SL327 6.58 0.24 2.08 1.98 1 0.34 0.25 0.9 1.43 0.3 0.47 1.78 3.86 0.16 1.34 22.71
SL328 5.14 033 2.04 1.96 1.09 0.36 0.34 1.02 1.68 0.35 0.43 1.82 43 0.12 1.43 22.41
Average 6.17 0.55 6.13 6.03 3.68 333 1.57 355 5.15 1.08 2.01 8.05 9.28 0.52 3.09 60.19
S.D. 1.98 0.41 5.84 5.76 3.86 4.25 1.79 322 4.52 0.88 2.16 8.54 7.24 0.57 225 51.33

215




5151  Appendix 7. Analytical results of PAHs (ng Kg! dry weight) in Nonghan Lake sediments

Core 1
11H-
aonil Phe An Fluo pyr | BlalF | 1B-BpF | Bala | chry | BIF | BKIF | Blelp | Blap Ind Diahla | Bighilp | YPaRs
HK101 5231 824 278 37.01 791 1152 7 1311 325 52 1284 | 3651 | 4736 197 175 333.76
HK102 205 64 38.55 3433 | 926 1253 600 | 1307 | 3313 56 1355 | 4421 26 1.56 15.68 319.61
HK103 4473 771 41.69 3455 | 963 1393 797 148 | 4063 705 | 1583 | 3ss1 | 5423 181 19.85 3532
HK104 5255 7.92 50.14 4195 | 1004 1615 863 | 1779 | 37.63 660 | 1572 | a0m | s103 17 186 387.15
HK105 411 7.67 4086 29 | 1007 1434 725 152 | 308 659 | 1497 | 426 487 19 1738 340.74
HK106 4656 829 4683 4163 | 1079 1654 866 | 17.81 385 683 | 1485 | 4898 | 4960 227 1745 375.68
HK107 216 7.02 4449 4027 | 1449 21.49 1075 | 2152 | 4677 707 | 1705 | 5202 | s137 29 1778 397.15
HK108 263 47 39.25 3576 | 1392 238 016 | 2224 | 4532 65 1578 | 4691 | 2253 171 1443 346.96
HK109 30.69 427 3548 3405 | 1334 1733 603 | 1584 | 4009 6 1578 | 8327 | 3584 112 13.14 35227
HK110 2057 44 3375 2948 | 1404 19.81 8 1831 | 3933 sas | 135t | w2 | 3303 228 11.69 297.89
HK111 19.06 3.69 283 2504 | 12103 162 55 1283 | 3439 41 1020 | 3057 | 2398 237 743 34478
HK112 1682 418 30.86 3084 | 1594 20.12 886 | 1674 | 3896 s77 | 19 | 3384 | a3 244 1022 281.89
HK113 1642 347 25.53 2651 | 1519 16.66 013 | 1548 | 4003 628 | 1265 | 3701 | 3996 242 171 278.45
HK114 1326 347 25 2521 | 1342 1689 731 1419 | 3618 sas | 177 | 2768 | 3150 1.98 8.82 242,05
HK115 125 321 2146 2499 | 1355 16.64 874 | 1688 | 5462 791 1585 | 2105 | 3824 149 9.54 266.65
HK116 1143 324 199 259 | 1251 1676 88 18 61.26 688 | 1773 | 2226 | 4146 145 934 275.61
HK117 1024 204 1728 20 | 1 1627 908 | 2033 | 6582 887 | 2051 | 1725 | 4229 147 877 27468
HK118 1274 317 18.24 nsa | 120 17.04 893 | 2166 | s6.03 964 | 2478 | 205 55.02 1.96 12.09 326.66
HK119 1489 37 2074 2602 | 1477 21.19 179 | 3053 | 10044 | 1418 | 3163 | 2437 | 6231 2,05 1162 399.23
HK120 1033 358 20.16 2588 | 1518 2.5 1205 | 3098 | 12005 | 1539 | 3262 | 2341 634 223 1178 40954
HK121 13.84 484 2945 4086 | 2568 3647 239 | 6346 | 20318 | 2580 | 5407 | 3088 | 10099 37 16.84 672.54
HK122 18.26 42 26.04 3683 | 29 3132 1751 | s26 | 10465 | 2073 | s1s3 | 207 | 7631 3.07 1318 599.16
HK123 179 459 27.14 4051 | 2604 3443 1865 | sa75 | 1921 | 2335 | sim | 2083 | 9745 293 1781 640.09
HK124 15.49 49 30.78 4783 | 2002 4114 2497 | 732 | 27403 | 3704 | 7347 | 3848 | 13559 435 2347 853.78
HK125 2123 578 35.17 207 | 4212 583 3497 | 997 | 3s279 | 4283 | o367 | 4241 159.7 574 25.16 11164
HK126 2414 6.02 38.85 6466 | 3908 555 3219 | o817 | 35503 | 435 | sas | 4337 | 12879 425 20.17 1038.35
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Average | 2491 507 31.87 3495 | 2097 2321 1232 | 312 | worer | or | 2881 | 692 | ern 243 1467 443.06
S.D. 1403 177 9.52 1092 | 222 1239 797 | 2501 | 10227 | 1187 | 2408 | 1377 | 3493 1.06 469 297.42
Core 2
11H-
aonil Phe An Fluo pyr | BlalF | 1B-BpF | Bala | chry | BbIF | BKIF | Blelp | Blap Ind Diahla | Bighile | YPaRs
HK201 37.12 6.49 36.79 3679 | 1257 1621 677 | 134s | 27 528 127 | 2075 | sous 1.04 17.11 31497
HK202 38.12 6.89 411 27 1639 20,84 s1a | 1671 | 3126 sz | 1284 | 2712 | 800 133 16.16 33271
HK203 37.86 643 36.04 3728 | 1053 1443 716 | 1347 | 2487 422 | 1054 | 2334 | 4323 203 1531 286.74
HK204 3631 6.56 376 4329 | 1959 2501 881 1898 | 3578 se2 | 1253 | 2079 | 4501 147 15.07 34232
HK205 19.12 52 36.68 4345 | 2656 31.99 s14 | 2019 | 3687 451 108 | 3824 | 3712 242 1042 3171
HK206 274 541 43.94 05 2145 294 822 | 1618 | 3595 517 | 104 | a7 4023 1.64 1317 348.19
HK207 292 577 44.02 20 | 2208 2939 92 1701 | 4518 305 | 1237 | 4735 | a9 0.8 1239 358.5
HK208 26.72 633 4345 4328 | 1866 25.76 9.41 1775 | 4761 621 1668 | s655 | s234 25 1407 387.32
HK209 3435 572 4581 4525 | 1851 26.13 963 | 2019 | 5502 sos | 1688 | 2813 | 46 235 1182 37185
HK210 26.05 673 4121 3838 | 1596 262 101 | 2058 | 6626 7 | 234 | w2 | s 26 1377 39433
HK211 1795 3.93 26,01 257 | 926 1521 445 | 1301 | 3686 495 | 1346 | 1606 | 3211 075 771 22429
HK212 1781 41 28.03 254 | 989 18.46 684 | 1554 | s0s6 666 | 1674 | 2472 405 0.84 1043 273.96
HK213 1697 32 21.53 1892 | o982 1452 501 1461 | 4275 557 | 1563 | 1ss1t | 3746 225 836 235.41
HK214 1198 287 18.67 171 9.25 1332 495 | 1472 | 3879 631 1546 | 1702 | 3645 103 757 215.49
HK215 15.03 175 1235 1255 | 708 8.54 378 | nor | 383s 505 | 1330 | 1243 | 2055 0.87 546 178.09
HK216 1722 1.54 1251 1294 | sa2 8.82 448 | 1231 | 3646 415 | 1279 | 1251 | 2398 0.56 475 170.44
Average | 2489 493 32.86 326 1475 2026 719 | 1604 | 4097 54 141 | 2033 | 4156 1.54 1147 297.9
S.D. 9.1 18 1144 1234 | 644 755 2,09 2.89 1013 101 308 | 1336 8.76 0.72 383 94.54
Core 3
11H-
aonil Phe An Fluo pyr | BlalF | 1B-BpF | Blala | chry | BbIF | BKIF | Blelp | Blap Ind DiahA | Bighilp Y PAHs
HK301 26.98 3.86 27.09 2483 | 705 1213 ss6 | 1332 | 1904 3.79 813 | 1416 | 2443 16 1036 202.73
HK302 26.13 37 2335 207 361 922 35 438 1227 318 753 | 1352 | 2494 161 1138 169.04
HK303 35 5 29.63 263 26 476 357 403 1317 358 78 1592 37 15 1484 2047

217




5152

5153

5154

5155

5156

5157

5158

5159

HK304 27.07 3.15 24.32 20.25 225 3.88 3.14 232 9.46 2.7 5.64 13.98 27.89 1.42 12.58 160.05
HK305 21.84 2.84 19.54 15.5 1.91 3.01 238 5.82 9.9 251 5.26 12.62 24.03 2.06 10.5 139.72
HK306 17.54 229 15.06 12.61 1.68 2.6 1.93 4.26 8.15 1.83 4.65 9.48 19 1.18 8.72 110.98
HK307 18.95 2.75 16.42 15.04 2.64 4.43 2.88 5.52 7.77 1.75 4.68 10.75 19.3 1.29 7.92 122.09
HK308 20.58 324 16.7 14.51 4.17 6.47 3.09 237 11.22 1.94 4.71 12.02 17.41 1.78 6.83 127.04
HK309 22.04 1.36 18.04 14.15 3.99 6.19 239 7.19 13.96 2.01 6.32 9.56 17.25 4.47 6.93 135.85
HK310 17.65 247 16.5 10.67 342 5.13 2.69 731 13.48 2.15 4.86 213 18.27 13 5.66 132.86
HK311 15.28 235 20.17 10.84 435 6.3 2.53 338 14.38 25 4.61 23.86 16.46 2.05 532 134.38
HK312 14.89 2.61 25.28 13.7 4.86 6.9 2.84 8.61 12.22 2.07 4.09 23.96 16.74 1.47 5.7 146.01
HK313 13.06 3.1 29.55 16.87 6.41 9.63 332 8.7 14.33 2.14 4.76 24.11 18.57 1.81 6.88 163.24
HK314 21.09 575 51.73 34.12 16.51 20.13 6 14.79 26.39 337 7.86 38.18 26.96 1.12 875 282.75
HK315 18.13 523 29.14 21.58 10.61 13.48 3.85 7.96 51 5.96 13.34 23.33 36.1 1.72 9.77 251.2
HK316 17.56 6.75 39.37 34.74 21.85 28.29 10.49 19.54 55.25 6.37 16.83 25.09 39.4 1.75 9.82 333.1
HK317 23.06 9.75 56.85 51.44 3931 49.53 18.22 33.58 82.78 10.17 26.63 26.61 63.12 1.66 13.57 506.28
HK318 26.46 13.32 68.71 55.31 4522 56.93 24.73 41.86 113.42 14.16 34.05 33.28 80.1 25 16.31 626.36
HK319 19.21 7.52 52.57 37.13 323 44.39 17.75 414 127.85 15.68 35.7 26.75 77.85 2.86 14.03 552.99
HK320 19.9 9.23 55.6 40.89 38.77 48.77 21.45 44.84 147.86 17.73 39.61 40.2 105.14 2.59 17.5 650.08
Average 21.12 4.81 31.78 24.56 12.68 17.11 7.13 14.06 382 5.28 12.35 20.93 355 1.89 10.17 257.57

S.D. 521 3.09 16.39 13.41 14.51 18.02 7.25 143 44.22 5.02 11.73 9.25 25.55 0.77 3.64 192.37
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5160

Appendix 8. Analytical results of PAHs (ng Kg! dry weight) in Phayao Lake sediments

CORE 1
11H-

amii Phe An Fluo Pyr Bla]F 11H-B[b]F Bla]A Chry B[b]F BIKIF Ble]P Bla]P Ind D[a,h]A B|g,h,i]P ZPAHS
PY101 2.18 0.16 0.99 0.63 0.16 0.10 0.09 0.39 0.00 0.88 0.00 0.00 0.00 0.00 0.05 5.63
PY102 1.78 0.13 0.83 0.76 0.14 0.05 0.08 0.23 0.02 0.11 0.02 0.02 0.02 0.01 0.03 4.20
PY103 1.83 0.14 0.85 0.78 0.14 0.05 0.08 0.24 0.02 0.11 0.02 0.02 0.02 0.01 0.03 4.32
PY104 1.54 0.10 0.69 0.70 0.11 0.05 0.05 0.14 0.02 0.05 0.00 0.00 0.02 0.00 0.02 347
PY105 1.45 0.10 0.55 0.60 0.10 0.03 0.05 0.14 0.01 0.05 0.00 0.00 0.02 0.00 0.02 3.11
PY106 238 0.18 1.23 1.32 0.27 0.08 0.19 0.47 0.02 0.13 0.01 0.01 0.01 0.00 0.02 6.30
PY107 1.72 0.09 0.78 0.84 0.15 0.03 0.12 0.35 0.02 0.08 0.01 0.01 0.01 0.00 0.01 4.23
PY108 2.58 0.20 1.34 1.23 0.23 0.10 0.09 0.27 0.04 0.17 0.02 0.02 0.02 0.02 0.04 6.37
PY109 2.95 0.18 1.66 1.61 031 0.13 0.17 0.53 0.03 0.21 0.02 0.01 0.02 0.01 0.03 7.86
PY110 2.03 0.14 1.13 1.10 0.21 0.10 0.13 0.40 0.04 0.29 0.02 0.01 0.02 0.01 0.04 5.69
PY111 347 0.16 2.73 247 0.57 0.24 0.39 1.29 0.04 0.21 0.02 0.00 0.02 0.00 0.03 11.65
PY112 271 0.27 1.79 1.46 0.44 0.44 0.41 0.69 0.07 0.23 0.06 0.06 0.56 0.91 0.49 10.58
PY113 4.90 0.41 333 3.26 0.91 0.44 0.74 1.95 0.04 0.37 0.02 0.01 0.02 0.03 0.03 16.47
PY114 4.77 0.41 230 1.99 0.46 0.27 0.30 0.75 0.04 0.17 0.02 0.01 0.01 0.00 0.03 11.53
PY115 4.38 0.36 2.17 1.95 0.41 0.22 0.33 0.82 0.03 0.27 0.02 0.01 0.00 0.00 0.02 10.99
PY116 1.09 0.12 0.65 0.71 0.19 0.11 0.20 0.39 0.05 0.14 0.03 0.02 0.02 0.01 0.03 3.76
PY117 5.04 0.36 2.73 2.53 0.55 0.29 0.58 1.03 0.04 0.97 0.02 0.01 0.02 0.00 0.03 14.18
PY118 4.75 0.40 341 321 0.75 0.40 0.60 1.61 0.04 0.24 0.02 0.01 0.02 0.00 0.03 15.50
PY119 4.21 0.36 321 324 0.80 0.39 0.66 1.73 0.04 0.22 0.02 0.01 0.02 0.00 0.03 14.95
PY120 4.15 0.39 3.14 3.07 0.71 0.40 0.62 1.55 0.04 0.23 0.02 0.01 0.02 0.00 0.03 14.37
PYI121 4.18 0.38 321 2.96 0.71 0.34 0.50 1.30 0.03 0.16 0.02 0.01 0.02 0.00 0.03 13.85
PY122 4.19 0.40 2.98 341 1.01 0.39 0.58 1.45 0.02 0.09 0.01 0.01 0.00 0.00 0.02 14.55
Average 3.10 0.25 1.89 1.81 0.42 0.21 0.32 0.80 0.03 0.24 0.02 0.01 0.04 0.05 0.05 9.25
S.D. 1.32 0.12 1.04 1.03 0.29 0.15 0.23 0.58 0.02 0.23 0.01 0.01 0.12 0.19 0.10 4.68
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CORE 2

11H-

amii Phe An Fluo Pyr Bla]F 11H-B[b]F Bla]A Chry B[b]F BIKIF Ble]P Bla]P Ind D[a,h]A B|g,h,i]P ZPAHS
PY201 1.38 0.13 0.49 0.35 0.42 0.14 0.29 0.45 0.00 0.56 0.05 0.14 0.05 0.00 0.06 4.51
PY202 1.15 0.10 0.41 0.26 0.08 0.06 0.18 0.20 0.07 0.23 0.10 0.06 0.09 0.00 0.12 3.11
PY203 1.15 0.10 0.41 0.26 0.08 0.06 0.18 0.20 0.07 0.23 0.10 0.06 0.09 0.00 0.12 3.11
PY204 1.73 0.20 0.83 0.60 0.18 0.08 0.19 031 1.82 0.00 0.30 0.19 0.47 0.00 0.79 7.68
PY205 3.00 0.23 1.55 1.07 0.29 0.23 0.28 0.56 0.03 0.08 0.02 0.01 0.03 0.00 0.05 743
PY206 3.40 0.23 1.86 1.24 0.34 0.24 0.30 0.69 0.02 0.10 0.02 0.01 0.04 0.00 0.06 8.56
PY207 2.14 0.15 1.00 0.68 0.19 0.16 0.23 0.38 0.16 0.42 0.14 0.04 0.18 0.00 0.24 6.10
PY208 2.75 0.21 1.68 1.31 0.39 0.27 0.37 0.72 0.18 0.15 0.02 0.01 0.04 0.00 0.05 8.15
PY209 2.95 0.24 1.54 1.12 031 0.22 0.34 0.63 0.03 0.06 0.02 0.01 0.04 0.00 0.05 7.56
PY210 324 0.28 1.59 1.13 0.05 0.26 0.32 0.80 0.02 0.00 0.00 0.04 0.04 0.00 0.06 7.82
PY211 2.12 0.16 0.82 0.68 0.04 0.09 0.12 0.30 0.03 0.08 0.00 0.00 0.00 0.00 0.06 4.50
PY212 1.82 033 1.16 1.13 0.00 0.24 0.27 0.00 0.03 0.00 0.02 0.01 0.04 0.00 0.05 5.09
PY213 232 0.20 1.27 1.25 0.38 0.25 0.32 0.67 0.03 0.10 0.02 0.02 0.04 0.00 0.05 6.91
PY214 2.77 0.28 1.29 1.33 0.40 0.29 0.46 0.78 0.03 0.07 0.02 0.01 0.03 0.00 0.04 7.79
PY215 4.05 0.41 2.63 2.86 0.99 0.60 0.86 1.65 0.03 0.08 0.02 0.01 0.03 0.00 0.05 14.27
PY216 1.77 0.17 0.71 0.73 0.26 0.16 0.17 0.39 0.02 0.00 0.02 0.01 0.04 0.00 0.04 4.51

247 0.22 0.99 111 0.34 0.25 031 0.00 0.03 0.00 0.02 0.04 0.04 0.00 0.05 5.85
PY217

1.85 0.20 0.95 1.05 0.39 0.28 0.00 0.55 0.02 0.07 0.02 0.01 0.02 0.00 0.04 545
PY218
PY219 2.14 0.33 1.02 1.04 0.40 0.29 0.26 0.65 0.03 0.07 0.02 0.01 0.03 0.00 0.03 6.32
PY220 1.86 0.29 0.74 0.75 0.21 0.19 0.15 0.24 0.03 0.08 0.00 0.00 0.00 0.00 0.00 4.53
PY221 355 033 1.56 1.51 0.46 0.36 0.35 0.76 0.02 0.07 0.02 0.01 0.03 0.00 0.04 9.08
PY222 352 0.34 1.29 1.21 0.38 0.25 0.24 0.52 0.02 0.10 0.00 0.00 0.03 0.00 0.00 7.89
PY223 3.07 0.29 1.94 2.59 0.97 031 0.89 1.61 0.06 0.14 0.04 0.04 0.07 0.00 0.09 12.12
PY224 3.07 0.29 1.94 2.59 0.97 031 0.89 1.61 0.06 0.14 0.04 0.04 0.07 0.00 0.09 12.12
PY225 322 0.24 1.02 1.07 0.26 0.26 0.15 0.43 0.03 0.00 0.00 0.00 0.00 0.00 0.08 6.75
PY226 2.53 0.16 0.52 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.70
PY227 1.23 0.10 0.68 0.73 0.27 0.22 0.27 0.50 0.02 0.14 0.00 0.08 0.03 0.00 0.03 4.29
PY228 3.81 0.26 225 231 0.81 0.61 0.44 1.01 0.03 0.11 0.00 0.00 0.04 0.00 0.05 11.75
PY229 1.85 0.25 0.90 0.91 0.28 0.24 0.23 0.34 0.13 0.33 0.00 0.00 0.00 0.00 0.00 5.47
PY230 3.04 0.32 1.68 1.82 0.56 0.45 0.25 0.51 0.03 0.05 0.00 0.00 0.00 0.00 0.00 8.69
PY231 0.77 0.07 0.78 0.79 0.34 0.26 0.12 0.36 0.02 0.05 0.00 0.00 0.00 0.00 0.00 3.56
PY232 0.77 0.06 0.76 0.80 0.38 0.23 0.12 0.30 0.00 0.06 0.00 0.00 0.00 0.00 0.00 3.48
PY233 0.59 0.09 0.56 0.72 0.28 0.24 0.33 0.54 0.00 0.15 0.02 0.01 0.02 0.01 0.00 355
PY234 0.77 0.08 0.53 0.70 0.23 0.19 0.21 0.39 0.02 0.03 0.01 0.01 0.02 0.00 0.02 322
PY235 1.44 0.14 1.06 1.41 0.47 0.38 0.38 0.76 0.02 0.04 0.01 0.01 0.00 0.00 0.00 6.12
PY236 228 0.25 1.63 237 0.77 0.59 0.51 1.05 0.02 0.07 0.01 0.01 0.02 0.01 0.04 9.63
PY237 1.49 0.15 1.01 1.41 0.47 0.34 0.28 0.66 0.03 0.07 0.02 0.01 0.02 0.00 0.03 6.00
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5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

PY238 2.53 0.26 0.69 0.87 0.22 0.15 0.09 0.20 0.05 0.08 0.02 0.02 0.03 0.00 0.05 525
PY239 1.26 0.12 0.60 0.82 0.28 0.22 0.19 0.43 0.03 0.07 0.02 0.01 0.02 0.00 0.04 4.12
PY240 222 0.21 1.03 1.47 0.47 0.34 0.29 0.64 0.03 0.09 0.02 0.01 0.03 0.01 0.04 6.91
PY241 1.47 0.13 0.42 0.52 0.15 0.09 0.06 0.11 0.03 0.10 0.03 0.02 0.05 0.00 0.04 322
PY242 0.43 0.02 0.22 0.34 0.12 0.09 0.08 0.18 0.03 0.08 0.03 0.02 0.03 0.00 0.05 1.73
PY243 330 031 0.99 1.57 0.37 0.26 0.24 0.52 0.03 0.06 0.02 0.02 0.04 0.00 0.05 7.77
PY244 0.01 0.07 0.16 0.04 0.03 0.02 0.05 0.05 0.08 0.00 0.00 0.02 0.00 0.06 0.34 0.93
PY245 0.02 0.02 0.18 0.03 0.04 0.04 0.08 0.13 0.09 0.02 0.01 0.02 0.00 0.03 0.33 1.03
Average 2.10 0.20 1.05 1.09 0.34 0.24 0.27 0.53 0.08 0.10 0.03 0.02 0.04 0.00 0.08 6.17
S.D. 1.03 0.10 0.57 0.66 0.25 0.14 0.20 0.39 0.27 0.11 0.05 0.04 0.07 0.01 0.13 2.94

221




5177

5178

5179

Appendix 9. Raw data of chemical species in PMa s Collected at Chiang-Mai

No Sample 1D © oc EC | OCEC | 00 oz | oa | oo Bz 78] on o ECLOR| F- o NOL | NOX | SOR. | Na+ | NHes | K¢ Mg Cae
£ o | wpmd  wpmd | upmd wmd  wpmd  wpml  wml  wml  wml | wmd  mpmd  wpmd wmd  wpmd  wpmd  wmd  wml  wmd  wmd  wpmd  wpmd  upmd
1 a1 2160 7200 | 2146 1651 | 495 | 333 | 021 252 | 662 716 470 | 022 003 000 | 262 470 014 | 038 000 098 1031 | 170 0139 | 105 | 003 145
2 [<7F) 2160 7200 | 2023 1706 317 538 019 230 681 550 498 028 017 226 276 272 012 034 000 000 537 175 013 084 007 143
3 ™3 2160 7200 | 3281 2682 599 448 030 469 1137 1046 542 033 024 000 283 542 014 034 027 151 521 179 159 130 013 144
4 ama 2160 7200 | 597 538 | 059 917 009 083 216 125 154 010 000 105 109 048 009 035 026 077 307 144 070 045 010 087
5 ] 2160 7200 | 1736 1544 192 802 018 223 577 526 361 022 009 139 159 16 011 030 034 108 1075 159 283 138 013 123
6 ™6 2160 7200 | 1943 1616 | 327 494 024 238 53 576 4939 010 000 183 237 317 011 030 030 125 1336 169 361 138 014 139
7 a7 2160 7200 | 1334 1204 190 633 009 145 525 373 329 013 000 152 140 177 011 038 034 101 453 166 098 099 011 121
f] s 2160 7200 | 3256 2530 726 348 029 459 1128 875 710 034 022 040 352 670 01l 030 029 090 653 166 160 187 013 157
3 ™9 2160 7200 | 1598 1298 | 300 433 020 186 501 397 477 017 001 195 265 283 008 030 026 060 834 181 18 114 | 013 144
10 am10 2160 7200 | 1518 1218 | 300 406 012 166 487 447 388 017 001 106 254 282 011 032 026 055 847 165 226 107 011 116
1 M1l 2160 7200 | 1366 1165 201 579 014 169 455 358 355 015 001 170 233 185 011 040 024 073 650 152 158 091 011 109
12 12 2160 7200 | 1516 1268 | 248 512 | 015 183 522 403 377 017 000 147 130 231 012 030 030 074 55 148 153 097 | 010 126
13 am13 2160 7200 | 1943 1603 340 471 019 223 659 465 556 020 001 236 274 320 011 031 000 095 477 171 088 114 013 135
14 [0 1440 | 4800 | 1543 1312 231 568 009 188 472 386 467 021 000 256 235 210 015 058 044 123 858 226 205 107 015 147
15 15 2160 7200 | 2626 2052 | 574 358 023 316 883 831 548 023 003 000 276 548 014 033 026 143 816 161 244 134 012 144
16 M16 2160 7200 | 1088 972 116 835 015 142 481 217 220 013 000 117 103 103 008 056 029 056 129 148 029 036 012 089
17 17 2160 7200 | 1832 1540 292 526 015 219 652 423 499 024 001 231 239 268 010 032 031 079 507 158 096 114 011 125
18 amis 2160 7200 | 1370 1114 | 256 434 006 149 434 340 422 019 000 184 184 238 010 044 042 054 1077 188 227 102 | 013 129
19 19 2160 7200 | 697 597 | 100 597 012 105 254 142 166 013 000 085 111 081 009 035 055 071 300 150 069 043 010 101
20 ™20 2160 7200 | 583 500 083 606 001 078 199 136 152 016 000 085 081 066 008 037 053 066 722 122 177 056 011 033
21 coM21 2160 7200 | 689 604 085 712 008 079 306 133 144 018 000 077 077 067 011 046 033 054 146 108 026 020 007 092
2 22 2160 7200 | 365 331 | 034 981 010 053 197 06 037 005 000 008 017 029 007 085 034 050 065 131 024 029 013 101
23 23 2160 7200 | 343 291 | 052 563 005 051 136 070 066 | 015 000 029 033 037 008 038 000 040 142 | 120 020 | 015 | 010 071
24 am24 2160 7200 | 48 413 | 076 547 010 059 1933 098 113 015 001 053 062 060 008 043 035 042 092 038 021 016 003 089
25 25 2160 7200 | 279 253 | 026 967 006 035 144 049 037 008 000 019 022 018 010 040 046 050 138 168 027 017 013 075
2% 26 2160 7200 | 1360 1155 | 204 566 006 152 453 350 389 009 000 134 134 195 006 031 030 04l 887 136 185 117 | 010 119
27 27 2160 7200 | 358 331 | 027 1237 001 051 138 067 034 006 000 013 022 021 008 058 046 043 069 107 021 022 015 150
28 28 2160 7200 | 311 270 | 041 654 000 046 140 062 052 | 012 000 022 028 030 008 043 031 045 057 | 073 025 | 017 | 010 095
2 29 2160 7200 | 295 259 | 036 719 000 040 137 057 048 013 000 026 027 023 010 037 043 048 106 105 026 017 | 010 092
30 30 2160 7200 | 386 349 037 952 005 038 225 058 043 010 000 023 024 026 003 037 040 045 076 102 025 016 013 088
31 [YER 2160 7200 | 405 354 | 051 691 008 050 173 077 | 083 | 014 000 045 044 037 010 037 037 044 096 | 101 020 | 016 | 009 085
32 32 2160 7200 | 559 480 | 080 602 008 056 226 123 131 | 015 000 067 074 065 008 031 048 049 263 120 044 023 010 091
33 33 4320 | 14400 | 074 067 007 | 1000 003 | 016 | 040 008 001 005 | 000 000 | 001 | 001 005 018 000 019 018 | 045 000 000 003 027
34 M34 2160 7200 | 242 205 | 038 542 001 034 114 041 038 015 000 015 022 023 010 052 038 045 096 142 021 | 013 011 07
35 M35 2160 7200 | 337 296 | 041 717 010 044 205 035 034 009 000 001 021 033 010 043 047 049 085 112 028 020 008 073
36 36 2160 7200 | 202 169 | 033 509 000 030 109 030 026 008 000 000 023 026 009 038 035 045 154 110 021 | 016 011 076
37 37 2160 7200 | 252 220 032 687 006 043 112 045 036 009 000 013 017 023 009 039 064 056 147 117 025 017 010 087
38 38 2160 7200 | 201 162 | 038 423 001 031 037 034 026 012 000 000 016 026 008 042 030 037 056 055 026 020 008 071
3 39 2880 9600 | 118 100 | 018 561 001 025 059 015 011 | 007 000 000 011 011 006 029 023 026 103 08 015 012 008 053
0 cma0 2160 7200 | 486 459 | 027 1715 030 110 248 052 033 013 000 020 025 013 012 038 000 048 037 103 027 017 008 074
a cmay 2160 7200 | 1638 1403 236 596 014 201 514 510 377 017 005 163 139 213 008 044 000 096 1570 152 398 130 013 114
a2 ma2 2160 7200 | 1238 1082 156 691 003 161 420 340 297 016 002 158 185 139 009 035 030 080 1018 116 201 091 010 102
43 ama3 2160 7200 | 879 757 | 122 620 011 102 345 202 187 031 000 036 030 031 007 040 030 073 379 125 065 042 012 208
4 cmaa 2160 7200 | 1266 1095 172 638 010 139 452 338 311 017 000 15 145 155 009 033 032 047 671 133 134 075 011 113
a5 cmas 2160 7200 | 707 612 094 650 008 085 252 164 179 017 000 102 093 077 008 035 029 043 640 129 111 057 003 099
6 cmas 2160 7200 | 536 517 | 079 654 006 075 241 134 124 | 016 000 061 061 063 009 035 031 040 204 126 021 | 025 | 008 084
a7 ma7 2160 7200 | 480 416 | 065 644 000 069 154 102 142 013 000 091 086 052 008 036 041 068 986 149 212 060 013 099
) cmag 2160 7200 | 387 368 019 1918 000 056 210 080 034 006 000 022 030 013 009 06 028 089 092 157 027 026 017 100
4 cmag 2160 7200 | 327 283 | 045 631 008 054 127 060 060 017 000 033 030 027 008 033 033 060 467 134 068 031 011 089
50 cMso 2160 7200 | 570 499 | 072 698 010 067 267 114 098 | 015 000 041 053 057 008 041 032 055 217 | 134 030 | 022 003 088
No Sample ID TC oc EC OC/EC ocl oc2 oc3 oc4 ECI EC2 EC3 opP2
m3 hours ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3

1 Bkk 1 153 51 11.37 8.48 2.89 293 0.00 1.35 343 258 3.55 0.47 0.00 112

2 Bkk 2 21.6 72 13.80 9.54 4.26 224 0.06 1.83 4.17 348 4.05 0.21 0.00 0.00

3 Bkk 3 21.6 72 10.41 7.18 323 222 0.01 116 3.09 2.07 3.86 0.22 0.00 0.84

4 Bkk 4 21.6 72 15.15 10.73 4.42 243 0.07 1.65 4.74 3.85 4.61 0.23 0.00 0.41

5 Bkk 5 21.6 72 8.27 595 231 257 0.01 0.98 253 1.55 297 0.24 0.00 0.89

6 Bkk 6 21.6 72 8.95 7.18 1.77 4.05 0.01 1.20 3.16 1.81 255 0.23 0.00 1.00

7 Bkk 7 213 71 13.39 10.78 2.61 4.14 0.04 1.55 4.13 3.46 4.02 0.19 0.00 1.60

8 Bkk 8 21.6 72 13.42 9.53 3.89 245 0.80 1.79 3.66 327 3.64 0.23 0.02 0.00

9 Bkk 9 21.6 72 10.23 6.82 341 2.00 0.01 1.24 2.60 2.06 4.09 0.23 0.00 0.90

10 Bkk 10 21.6 72 9.89 7.39 249 2.96 0.02 115 3.46 2.04 297 0.25 0.00 0.73

11 Bkk 11 21.6 72 8.09 579 231 2.51 0.00 0.92 244 1.64 2.84 0.26 0.00 0.79

12 Bkk 12 21.6 72 6.52 4.10 242 1.69 0.00 0.76 1.88 1.07 2.56 0.24 0.00 0.38

13 Bkk 13 21.6 72 6.98 4.88 2.09 233 0.00 0.85 1.92 1.30 2.62 0.28 0.00 0.81

14 Bkk 14 21.6 72 7.93 5.81 212 2.74 0.00 0.97 2.62 1.48 2.56 0.28 0.00 0.73

15 Bkk 15 21.6 72 6.50 4.05 245 1.65 0.00 0.81 2.00 1.08 233 0.28 0.00 0.15

16 Bkk 16 21.6 72 5.20 3.70 1.51 2.46 0.04 0.63 1.82 0.81 1.68 0.22 0.00 0.40

17 Bkk 17 20.82 69.4 6.68 4.77 1.91 249 0.00 0.78 239 113 217 0.21 0.00 0.47

18 Bkk 18 21.6 72 6.04 4.67 1.37 342 0.00 0.81 2.14 1.21 1.72 0.16 0.00 0.51

19 Bkk 19 21.6 72 8.13 6.32 1.81 348 0.01 0.90 299 1.59 242 0.24 0.00 0.84
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20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Bkk 20

Bkk 21

Bkk 22

Bkk 23

Bkk 24

Bkk 25

Bkk 26

Bkk 27

Bkk 28

Bkk 29

Bkk 30

Bkk 31

Bkk 32

Bkk 33

Bkk 34

Bkk 35

Bkk 36

Bkk 37

Bkk 38

Bkk 39

Bkk 40

Bkk 41

Bkk 42

Bkk 43

Bkk 44

Bkk 45

Bkk 46

Bkk 47

Bkk 48

Bkk 49

Bkk 50

Bkk 51

Bkk 52

Bkk 53

Bkk 54

Bkk 55

Bkk 56

Bkk 57

Bkk 58

Bkk 59

Bkk 60

Bkk 61

21.3

216

19.8

15.21

20.7

216

11.55

16.8

17.55

12.9

204

11.28

10.62

15.24

17.73

21.69

16.2

21.72

23.16

21.66

216

216

21.54

18.15

20.19

21.66

21.81

21.72

222

16.86

20.58

18.09

21.66

21.69

216

21.87

58.5

43

354

50.8

59.1

723

72.4

772

72.2

72.2

72.7

72.4

68.6

60.3

72.2

723

72.9

6.78

5.03

573

5.81

6.08

6.93

7.85

7.12

7.82

7.07

11.68

12.43

12.52

3.58

3.05

7.00

9.56

5.30

10.19

7.39

10.32

7.59

8.93

7.48

10.91

8.25

7.89

15.32

29.06

5.07

3.81

4.62

474

523

5.26

5.84

5.80

6.45

5.05

9.75

8.95

2.79

2.64

4.82

6.93

4.25

7.59

5.49

7.72

5.74

6.81

5.93

8.55

6.40

6.65

10.59

2275

1.72

1.22

111

1.06

0.85

1.67

2.01

1.32

1.37

2.03

2.68

3.57

0.79

0.40

0.64

2.17

2.63

1.05

2.60

1.74

1.91

2.60

1.85

2,12

1.55

237

1.85

1.24

4.73

631

295

312

4.16
4.46
6.15

3.14

2.90
4.38
4.70

249

251
352

6.56

222
2.63
4.04
2.92

4.04

2.88
2.96
3.10

322

3.83
3.61
3.46

537

224

3.60

223

0.00

0.00

1.17

0.00

0.09

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.06

0.08

0.04

0.04

0.13

0.29

0.86

0.63

1.40

0.92

0.87

0.90

0.99

1.09

0.93

0.82

1.24

0.83

1.14

1.58

1.49

1.36

0.47

0.38

0.85

1.08

0.69

1.15

1.07

1.08

0.94

1.29

0.98

1.01

1.22

0.92

1.39

0.94

0.95

1.12

1.66

3.57

251

1.81

2.18

2.15

2.56

238

2.90

2.98

324

2.46

430

4.14

1.53

1.70

220

3.03

2.05

2.41

3.14

2.63

3.09

2.56

372

2.92

2.67

322

5.20

10.73

1.28

0.94

1.12

1.19

1.13

1.05

1.27

1.31

1.39

1.56

1.37

1.35

1.39

1.20

1.65

2.70

244

0.59

0.57

1.21

1.85

0.98

236

1.96

1.43

242

1.48

1.73

1.35

1.53

221

1.65

2.06

3.59

8.16

1.98

1.38

1.92

1.70

1.30

1.51

1.16

2.02

1.95

234

1.69

3.60

4.27

0.80

0.24

2.57

341

2.46

3.30

237

2.93

222

324

2.55

2.02

4.51

5.88

0.15

0.27

0.20

0.13

0.20

0.22

0.14

031

0.29

031

0.21

033

0.30

0.19

0.16

0.17

0.19

0.15

0.29

0.16

0.17

0.14

0.16

0.22

0.18

0.28

0.14

0.16

0.22

0.29

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.14

0.41

0.44

0.39

0.58

0.50

0.56

0.64

0.65

0.57

0.56

1.25

1.00

0.20

0.00

0.57

0.97

0.54

1.03

0.71

0.86

0.66

0.98

0.85

1.15

0.85

0.93

1.02

0.00

0.00



62 Bkk 62 2118 70.6 2595 19.52 6.43 3.04 0.30 3.18 8.88 7.16 6.25 0.18 0.00 0.00
63 Bkk 63 21.63 72.1 17.70 13.21 4.49 2.94 0.22 2.07 571 521 4.22 0.19 0.08 0.00
64 Bkk 64 21.66 72.2 12.99 8.61 4.39 1.96 0.17 1.60 3.68 3.16 4.20 0.19 0.00 0.00
65 Bkk 65 21.51 71.7 15.37 10.74 4.62 232 0.24 1.84 4.86 3.81 4.42 0.20 0.00 0.00
66 Bkk 66 21.84 72.8 14.96 10.73 4.24 2.53 0.15 1.81 4.88 3.89 4.03 0.21 0.00 0.00
67 Bkk 67 21.69 723 10.20 7.17 3.03 236 0.10 1.28 3.02 2.04 355 0.21 0.00 0.72
68 Bkk 68 21.63 72.1 11.52 7.72 3.80 2.03 0.10 1.47 3.36 2.75 3.62 0.21 0.00 0.03
69 Bkk 69 21.84 72.8 14.87 10.57 430 2.46 0.13 1.75 5.01 3.67 4.11 0.18 0.01 0.00
70 Bkk 70 21.78 72.6 17.43 13.48 3.96 341 0.12 2.06 6.93 4.37 3.74 0.21 0.00 0.00
71 Bkk 71 21.63 72.1 12.07 875 332 2.63 0.16 1.43 345 2.53 431 0.19 0.00 1.18
72 Bkk 72 21.63 72.1 8.72 6.90 1.82 3.78 0.23 1.32 2.79 1.66 248 0.25 0.00 0.91
73 Bkk 73 216 72 19.30 14.70 4.60 3.20 0.19 2.41 7.04 5.05 435 0.23 0.02 0.00

5180

5181  Appendix 11. Raw data of chemical species in PM> s Collected at Phuket

N Sampl oc/ oc oc oc oc EC EC EC op op NO NO S0 Na NH Mg a2
oc EC - K
o eIp EC 1 2 3 4 1 2 3 2 s or2 2 3 - + s 2 +
m o ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/
3 urs w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3 w3
Phuket 21
1 1 6 n 378 324 053 607 003 05 L 06 06 015 000 023 0.46 03 009 035 000 02 218 [RERE 019 o1 088
Phuket 21
2 2 6 n 350 320 0.60 529 o0l 061 157 om 076 015 000 030 050 046 009 o4l 030 058 235 0 02 02 o1 092
Phuket 21
3 3 6 n 4.06 348 058 598 000 066 8 00 076 016 000 0 051 042 009 046 033 076 138 122 030 025 010 075
Phuket 21
4 4 6 n 36 313 0.49 634 000 05 Lot 061 065 o 000 030 044 035 010 046 020 057 Los 122 020 0 010 080
Phuket 21
s s 6 n 306 25 052 ast 000 oSl 135 051 054 015 000 06 035 03 009 048 0m 061 Los [RERE 026 010 084
Phuket 21
6 6 6 n a1 3.46 0.66 52 007 060 10 o8t 080 o 000 027 056 052 007 035 026 064 379 47 030 051 o1 120
Phuket 21
7 7 6 n 361 287 074 38 000 069 L9 070 080 023 000 02 047 051 009 045 000 067 s41 L0 0s2 03 012 Loa
Phuket 21
8 8 6 n 300 249 0.60 42 005 oas 121 055 064 016 000 020 038 044 009 050 020 053 362 157031 026 o1 085
Phuket 21
9 9 6 n 7 23 086 260 000 047 126 059 068 018 000 000 025 068 008 044 027 055 536 190 040 039 014 126
1 Phuket 21
0 10 6 n 428 327 Lot 33 000 056 177 03 0s 018 000 000 Lot 083 009 038 06 0.69 393 157 043 03 012 L13
1 Phuket 21
1 1 6 n 36 301 062 a3 003 05 151 066 070 015 000 023 044 047 009 038 026 041 Lot 0 020 02 006 075
1 Phuket 21
2 12 6 n 326 28 042 678 010 056 L5t 049 044 013 000 06 036 028 010 045 08 061 135 131 024 018 o1 086
1 Phuket 21
3 13 6 n 281 224 058 38 003 044 124 053 045 013 000 000 026 045 009 048 051 0.49 154 122 020 017 o1 Lot
1 Phuket 21
4 14 6 n 21 183 028 641 000 045 096 034 02 009 000 007 026 019 008 038 03 040 084 06 023 o7 0.08 103
1 Phuket 21
s 1s 6 n 244 206 038 536 000 041 15 037 034 007 000 003 041 031 o1 018 038 057 173 s 000 017 018 103
1 Phuket 21
6 16 6 n 284 228 056 404 001 052 122 02 044 013 000 000 041 044 008 047 000 053 349 s 000 02 016 103
1 Phuket 21
7 17 6 n 203 249 044 s o3 0 124 052 039 013 000 o008 039 031 009 06 026 061 231 12 00 018 o4 090
1 Phuket 21
8 18 6 n 635 548 087 628 000 08 200 095 159 009 000 081 L8 079 009 050 057 050 050 L0 021 019 o1 097
1 Phuket 21
9 19 6 n 248 214 034 624 002 05l L3 044 035 03 000 ois 031 021 008 066 026 067 445 29 o2 023 023 L1
2 Phuket 21
0 20 6 n 21 236 041 s 003 048 L7 02 0de 02 000 06 033 03 010 04 05 0.60 151 L3 023 019 010 097
2 Phuket 21
1 2 6 n 197 163 034 475 000 0w 083 031 027 02 000 005 024 02 008 06 033 056 219 15 02 ox o4 090
2 Phuket 21
2 2 6 n 217 175 042 418 000 040 098 031 037 010 000 005 032 031 010 058 040 057 131 15 02 017 012 095
2 Phuket 21
3 2 6 n L62 L4s 017 830 00l 031 094 019 0w 003 000 000 018 o4 02 040 07 053 039 L 021 018 o1 0.94
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