บทคัดย่อภาษาไทย

การส่งออกอัญมณีและเครื่องประดับทำรายได้เข้าประเทศไทยสูงอยู่ลำดับต้นๆ กำลังประสบปัญหาการ ขาดแคลนแรงงาน ผู้ประกอบการจึงมีความต้องการหุ่นยนต์อัตโนมัติเพื่อทดแทนแรงงานที่กำลังจะหมดไป จึง เป็นที่มาของโครงการเครื่องเจียระในพลอยอัตโนมัติขนาดเล็กสำหรับวิสาหกิจขนาดกลางและขนาดย่อม ในการ ทดลองได้ออกแบบและสร้างเครื่องเจียระในพลอยอัตโนมัติหลายรุ่น โดยมีแนวคิดในการออกแบบตามหลักการที่ ้ เครื่องเจียระในต้องเคลื่อนที่ได้อย่างน้อย 4 แกนอิสระ จึงจะเจียระในพลอยเป็นเหลี่ยมได้ตามต้องการ มีแนวคิด ในการออกแบบตามลักษณะการทำงานได้ 5 รูปแบบ เมื่อพิจารณาจากข้อกำหนดที่สำคัญ 5 ข้อ คือ (1) ราคา ไม่เกินสองแสนบาท (2) รูปแบบพลอยที่ต้องการเจียระไนเป็นเหลี่ยมเพชร (3) ขนาดของพลอยที่ได้หลังเจียระไน ประมาณ 2-3 มิลลิเมตร (4) สามารถใช้งานได้กับโต๊ะเจียระไนพลอยเดิม และ (5) มีรูปแบบที่สร้างได้ง่าย แบบ ไม่ซับซ้อน จึงได้รูปแบบเครื่องลักษณะที่สองเป็นแนวคิดหลักในการใช้พัฒนาขึ้นมาเป็นเครื่องเจียระไนพลอย อัตโนมัติต่อไป โดยแบบที่สองมีแนวคิดในการออกแบบให้ชุดจับไม้ทวนสามารถหมุนรอบแกน C เพื่อตั้งองศาการ เจียระใน ไม้ทวนหมนรอบแกน A เพื่อแบ่งเหลี่ยมรอบแกนไม้ทวน (360 องศา) ในการเจียระในว่าพลอยจะมีกี่ เหลี่ยม การเคลื่อนที่เพื่อเจียระไนกัดพลอยแต่ละเหลี่ยมให้ลึกลงไปเท่าไรจะเคลื่อนที่ในแนวแกน Z แนวคิดใน การออกแบบแบบนี้จะมีข้อเด่นที่สร้างได้ง่าย ฟังก์ชันการทำงานตรงตามแต่ละแกนทำให้ผู้ใช้งานเข้าใจการ ทำงานได้ง่าย หลักการเหมือนการเจียระในด้วยมือที่ทำกันอยู่ในปัจจุบัน แบบไม่มีความซับซ้อน และใช้รางสไลด์ ในการเคลื่อนที่ในแกน Z ในระหว่างทดลองสร้างเครื่องเจียระไนพลอยฯ พบปัญหาหลายอย่างที่คาดไม่ถึง ต้อง แก้ไขและปรับปรุงจนกระทั่งสำเร็จลูล่วงด้วยดี ตัวอย่างปัญหาที่พบ เช่น ปัญหาการส่งกำลังในบางแกนไม่พอ ระบบการปรับระนาบของเครื่องเจียระในพลอยฯ เมื่อติดตั้งบนโต๊ะเจียระในที่มีอยู่เดิมของผู้ประกอบการ ข้อจำกัดในเรื่องขนาดของเครื่อง เป็นต้น ได้พัฒนาเครื่องเจียระไนพลอยฯ จากเครื่องรุ่นที่ 1 ปรับปรุงมาจนถึง รุ่นที่ 5 จนมั่นใจว่าทำงานได้ดีแล้วจึงนำไปทดสอบภาคสนาม ผลการทดสอบภาคสนามพบว่าสามารถเจียระไน พลอยเนื้อแข็งขนาด 2-3 มิลลิเมตร เป็นเหลี่ยมเพชร แซมคู่ ได้ตามต้องการ เหลี่ยมเรียบและขึ้นเงาทั้งระนาบ ความเร็วในการเจียระไนพลอยด้วยเครื่องเจียระไนพลอยอัตโนมัติฯ ขึ้นกับโปรแกรมควบคุมและคุณภาพพลอยที่ บล็อกมาก่อนเข้าเครื่องเจียระไน ถ้าจัดเตรียมการอย่างดี ความเร็วในการเจียระไนประมาณ 1.4 ถึง 1.7 เท่าของ ช่าง สรุปว่าการออกแบบและสร้างเครื่องเจียระในพลอยอัตโนมัติฯ บรรลุวัตถุประสงค์ของโครงการวิจัย ความ เหมาะสมในการติดตั้งเครื่องเจียระในพลอยอัตโนมัติฯ เพื่อใช้งานควรติดตั้ง 2 เครื่องต่อ 1 โต๊ะเจียระใน และใช้ผู้ ควบคุมเครื่อง 1 คนต่อ 4 เครื่องเจียระไน

Abstract

Gems and jewelry export generates one of the top revenues for Thailand. Gems entrepreneurs are experiencing a shortage of skill workers. It is proposed that automatic faceting robots can reviate the issue of labor shortage. The aims of this research are to design and manufacturing an automatic gemstone faceting machine for small and medium enterprises. The proposed design of an automatic faceting machine has to be able to move independently on at least 4 axes in order to cut and polish the gemstone as desired. Five functional designs have been created, based on five key requirements as the following; (1) the machine costs must lower than two hundred thousand bahts, (2) the resulted gem should have brilliant cut, (3) sizes of the gems after cutting are about 2-3 mm, (4) the machine can be assembled together on the existing facet tables and (5) the machine should be fabricated easily. After careful consideration of all five designs, the second design was selected to be the best automatic faceting machine. In this design, a dropstick can rotate around the C-axis to set cutting angles. The dropstick can be turned around the A-axis (360 degree) to set the amount of cutting edges. The depth of the cut is controlled by the movement in the Z-axis. The concept of this design is simple for installation and manufacturing. The cutting functionality corresponds to each axis allowing the user to monitor easily. The working principles of the automatic faceting machine are similar to the manual faceting used in the present routine work. The machine design was not complicated which used the linear guide way for moving on the Z-axis. In the experimental fabrication process, there were many unexpected problems, for examples, poor power transmission in some axes, getting a proper alignment of the system when the machine was placed on the existing facet tables, and the size limitations of the machine. Several fabrication procedures have been developed to overcome numerous challenges. The faceting machine was developed from version 1 to version 5 until it was sure to work well and then to field test. The results of the field tests showed that the machine could handle gems as small as 2-3 mm. and created a brilliant cut of small double sides on each facet. The speed of the automatic faceting machine depended on the software programme that controlled the machine and quality of the blocked gems. For a high quality and well prepared blocked gems, the speed of the automatic faceting machine was 1.4 to 1.7 higher than that of the skill workers. In conclusion, the automatic faceting machine was achieved to design and fabricate as the project objective. It is recommended that two automatic gemstone faceting machines can be installed on one table and one operator can work on four machines simultaneously.