

บทคัดย่อ

งานวิจัยนี้ได้ทำการออกแบบและสร้างเครื่องอบมันเส้นแบบสายพานลำเลียงต่อเนื่องชนิดหอยสถานะการอบ เพื่อป้องกันมันสำปะหลัง ถูกความร้อนสูง ที่ผิวน้ำของชิ้nmันซึ่งจะเกิดเจลแป้ง และความชื้นภายในจะไม่สามารถระเหยออกมากได้ เครื่องอบที่ออกแบบจึงประกอบด้วยห้องความร้อน スペースอุณหภูมิต่ำไปสูง 3 สถานะ และ ห้องคลายความร้อน 1 สถานะ ตัวเครื่องอบและอุปกรณ์ต่อร่วม ถูกออกแบบด้วยทฤษฎีการถ่ายเทความร้อนและมวลสำหรับลักษณะเครื่องอบแบบสายพานลำเลียง บนวิธีการ Spread sheet – aided dryer design ร่วมกับวิธีการหาค่าที่เหมาะสมที่สุดแบบ Hybrid differential evolution & Nelder and Mead method ตัวเครื่องอบที่สร้างขึ้น มีสายพานแสตนเลสชั้นเดียว เจาะรูด้านล่าง เส้นผ่าศูนย์กลาง 5 มิลลิเมตร ห่างกัน 25 มิลลิเมตร 3 แฉบวนแนวยาวของชิ้นสายพาน เมื่อประกอบกันได้สายพานกว้าง 2 เมตร ยาว 9 เมตร ความยาวทั้งหมด 20 เมตร ระยะห้องอบ 6 เมตร ขับเคลื่อนด้วยมอเตอร์ขนาด 4.8 กิโลวัตต์ ด้วยความเร็วสายพานต่ำสุด 2 เมตรต่อชั่วโมง เครื่องอบใช้พลังงานความร้อนจากแก๊สร้อนของหัวเผาขนาด 245 กิโลวัตต์ แก๊สร้อนไหหล่อผ่านท่อหุ้มฉนวนขนาดเส้นผ่าศูนย์กลาง 6 นิ้ว เข้าที่ห้องอบด้านบน ใน 3 สถานะ แรก และเข้าที่ห้องอบด้านล่าง ทั้ง 4 สถานะ ด้วยความเร็วลมเฉลี่ย 20 เมตรต่อวินาที ความชื้นถูกผลักออกจากระบบท้องอบจากความแตกต่างของความดัน ผ่านช่องทาง ออกด้านบน ขนาด 20×20 ตารางเซนติเมตร จำนวน 8 ช่อง ในแต่ละสถานะ พรมป้องช่วยปล่อยอากาศออกขนาดเส้นผ่าศูนย์กลาง 6 นิ้ว ที่ห้องอบ 3 สถานะแรกเพื่อเพิ่มความสามารถในการอบเมื่อ ความชื้นบรรยายกาศสูง

การทดสอบประสิทธิภาพของเครื่องอบมันเส้นแบบการออกแบบทดลองแบบปัจจัยทั่วไป (General factorial design) สามารถสรุปได้ว่าความชื้นของมันเส้นก่อนการอบและอุณหภูมิในการอบมีผลอย่างมีนัยสำคัญทางสถิติต่อความชื้นของมันเส้นหลังการอบ และไม่มีปฏิกริยาสัมพันธ์ระหว่างความชื้นของมันเส้นก่อนอบกับอุณหภูมิในการอบ เมื่อนำเข้ามูลมาสร้างสมการลด削 (Linear regression model) พบว่า スペースที่เหมาะสมในการอบมันเส้นเพื่อให้ความชื้นไม่เกิน 16 %wb คือ เมื่อความชื้nmันเส้นก่อนอบประมาณ 40 %wb ควรใช้อุณหภูมิในการอบไม่น้อยกว่า 120 องศาเซลเซียส หรือ เมื่อมันเส้นมีความชื้นก่อนอบ 65 %wb ควรใช้อุณหภูมิในการอบไม่น้อยกว่า 125 องศาเซลเซียส ผลการวิเคราะห์ทางเศรษฐศาสตร์พบว่า ค่าวัตถุดีบไม่ควรเกิน 3.49 บาทต่อกิโลกรัม กำลังการผลิตขั้นต่ำ 1,191.46 กิโลกรัมต่อวัน ราคาขายมันอบแห้งไม่ควรต่ำกว่า 5.62 บาทต่อกิโลกรัม จะทำให้โครงการนี้ไม่ขาดทุนและน่าลงทุน

Abstract

The aims of this research are to design and to construct the multi-stage line-cassava baking machine with continuous apron conveying system. The purpose of this design is to protect line-cassava from overheated causing surface gel and moisture ventilation clogged. The proposed machine consists of multi-chambers allowing temperature to increase for 3 stages and remaining stage is set for cooling the higher temperature. The baking machine equipped with all accessories is adopted to heat and mass transfer theory for conveying system on spread sheet – aided dryer design and evolution & Nelder and Mead method. The built machine has one-layer stainless apron conveyor with 5 mm diameter reamed and 25 mm separated throughout 6 meters long of the stainless belt. The dimension of machine conveying is of the total length of 20 meters (upper and lower parts) and 6 meters for baking chamber and width of 2 meters driven by 4.8 kw motor with the lowest speed of 2 meters per hour. The machine is fueled by the 245-kilowatt burner. The hot air is transferred via 6 inched diameter insulated duct to the machine's first three upper chambers and 4 stages of the lower chamber with average air flow of 20 meters per second. The moisture is pushed from the system with different pressures through 8 channels with the dimension of 20 X 20 centimeters in each stage and 6-inch hood at the baking chamber in order to enhance the baking efficiency at high atmospheric humidity.

The performance testing of the machine is designed according to the general factorial design and it can be concluded that the prior moisture of the line cassava and temperature are significant different but the interaction between moisture of cassava before baking and temperature is not significant different at $\alpha = 0.5$.

All data are analyzed and constructed the linear regression model. It can be summarized that, to obtain 16%wb cassava, the prior moisture of cassava at 40%wb should be baked at 120 C while that of 65%wb should be baked at 65 C, respectively.

For engineering economic analysis, the machine investment is very attractive at current situation. And for sensitivity analysis, the raw material cost is at most 3.49 baht per kilogram, the lowest daily capacity is at least 1,191.46 kilogram, and the baked cassava price is at least 5.62 baht per kilogram will make this machine investment preferable.