บทคัดย่อภาษาไทย

โครงการนี้มีวัตถุประสงค์เพื่อพัฒนาแนวทางการใช้ประโยชน์กากกาแฟสดโดยการพัฒนากระบวนการ ผลิตแบบต่อเนื่องเพื่อให้ได้ผลิตภัณฑ์ที่มีมูลค่าเพิ่มสูงขึ้นอันประกอบด้วย (1) การผลิตเชื้อเพลิงไบโอดีเซลจากกาก กาแฟ และกากกาแฟไร้น้ำมันจากกระบวนการนี้จะถูกนำไปใช้ต่อเพื่อผลิตเป็น (2) เชื้อเพลิงอัดแท่งชีวภาพ , (3) วัสดุคอมโพสิตชีวภาพ และ (4) ไบโอเอทานอล นอกจากนี้ได้มีการวิเคราะห์การใช้พลังงานและวัตถุดิบที่ใช้ในการ ผลิตในแนวทางเลือกต่าง ๆ เพื่อพิจารณาความคุ้มทุนและเป็นไปได้ในเชิงพาณิชย์ วัตถุดิบที่ใช้เป็นกากกาแฟสด จากร้านกาแฟในจุฬาลงกรณ์มหาวิทยาลัย ทั้งนี้จากการสำรวจปริมาณกากกาแฟในจุฬาลงกรณ์มหาวิทยาลับพบว่า ในหนึ่งวันมีการผลิตกากกาแฟเป็นจำนวน 100 กิโลกรัมเปียก โดยมีค่าความชื้นราว 50% โดยน้ำหนัก กากกาแฟมี ปริมาณน้ำมันระหว่าง 12 – 15% โดยน้ำหนัก แต่น้ำมันมีค่าความเป็นกรดที่สูงประมาณ 10 – 11 มิลลิกรัม KOH ต่อกรัมน้ำมัน เนื่องจากกรดไขมันอิสระที่สูง

ในการผลิตไบโอดีเซลจากกากกาแฟ กระบวนการอินซิตู ทรานส์เอสเตอร์ริฟิเคชั่น ได้ถูกนำมาใช้ เพื่อควบ รวมการสกัดน้ำมันและสังเคราะห์ใบโอดีเซลไว้ในขั้นตอนเดียว โดยใช้เพียงแอลกอฮอล์และตัวเร่งปฏิกิริยาเท่านั้น จากผลการทดลองเบื้องต้นพบว่าการล้างกากกาแฟด้วยเมทานอลสามารถลดค่าความเป็นกรดให้เหมาะสมกับ กระบวนการผลิตไบโอดีเซล และการใช้ไอโซโพรพานอลเป็นตัวเพิ่มค่าการละลาย ให้แก่สารละลายโพแทสเซียม เมทอกไซด์สามารถเพิ่มประสิทธิภาพการผลิตไบโอดีเซลได้ โดยสามารถผลิตไบโอดีเซลได้ 1,500 มิลลิกรัม ต่อกาก กาแฟแห้ง 15 กรัม แต่กระบวนการนี้ยังมีการใช้แอลกอฮอล์ในปริมาณที่สูง และการนำแอลกอฮอล์กลับมาใช้ใหม่ จำเป็นต้องแยกเมทานอลออกจากไอโซโพรพานอล ดังนั้นในขั้นต่อไปกระบวนการผลิตแบบกึ่งต่อเนื่อง ได้ถูกนำมา ประยุกต์ใช้ในกระบวนการผลิตไบโอดีเซลโดยใช้โพแทสเซียมเมทอกไซด์เป็นสารเคมีเพียงตัวเดียว ภายใต้สภาวะที่ เหมาะสมพบว่าสามารถผลิตไบโอดีเซลโดมักกกว่า 6,000 มิลลิกรัม ต่อกากกาแฟแห้ง 60 กรัม และลดการใช้ แอลกอฮอล์ลงได้ถึงครึ่งหนึ่ง ซึ่งสภาวะการผลิตนี้ได้ถูกใช้ในการขยายขนาดของการผลิตให้สามารถแปรรูปกาก กาแฟอบแห้งได้ครั้งละ 2 กิโลกรัม โดยได้ไบโอดีเซลราว 200 กรัม ในระดับการผลิตนี้มีการเติมน้ำมันปิโตรเลียม ดีเชลลงไปเพื่อช่วยในการแยกไบโอดีเชลออกจากกลีเชอรอล เมทานอล และน้ำ โดยผลิตภัณฑ์ที่ออกมาจะอยูในรูปของน้ำมันไบโอดีเชลผสม เรียกว่า B10 (มีปริมาณไบโอดีเซลอยู่ 10% โดยปริมาตร) และกากกาแฟไร้น้ำมันที่เหลือ จะถูกนำไปแปรรูปในทางเลือก 3 กระบวนการต่อไป

แนวทางแรกคือการใช้ประโยชน์จากกากกาแฟที่ผ่านกระบวนการสกัดน้ำมันออกแล้ว ในรูปแบบของ เชื้อเพลิงแข็งอัดแท่ง โดยนำเอากากกาแฟที่ผ่านกระบวนการสกัดน้ำมันแล้วมาวิเคราะห์ค่าความร้อน คุณสมบัติ ของเชื้อเพลิง วิเคราะห์ปริมาณธาตุ ตามมาตรฐาน ASTM จากนั้นนำมาผ่านกระบวนการคาร์บอไนเซชั่น ที่ อุณหภูมิ 400, 450, และ 500 องศาเซลเซียส ระยะเวลา 2 ชม. และนำมาผสมกับกาวแป้งเปียกมันสำปะหลัง ซึ่ง ทำหน้าที่เป็นตัวประสาน อัดขึ้นรูปทรงกระบอกด้วยแรงคน ผลการศึกษา พบว่า การคาร์บอไนเซชั่นที่อุณหภูมิ 500 องศาเซลเซียส ระยะเวลา 2 ชม. ให้ค่าความร้อนของแท่งเชื้อเพลิงกากกาแฟสูงสุดโดยมีค่าความร้อนอยู่ที่ 25.99 กิโลจูลต่อกรัม เพิ่มขึ้นจากแท่งเชื้อเพลิงกากกาแฟที่ไม่ผ่านกระบวนการคาร์บอไนเซชั่น ร้อยละ 19 นอกจากนั้น ลักษณะทางกายภาพแท่งเชื้อเพลิงที่ได้จากการศึกษานี้ คือหยิบใช้ไม่เปื้อนมือ ติดไฟได้ดีและควันน้อย

สำหรับแนวทางที่สองการผลิตวัสดุคอมโพสิตชีวภาพ ในทางเลือกนี้เนื่องกากกาแฟไร้น้ำมันหลัง กระบวนการผลิตไบโอดีเชลยังคงเหลือโพแทสเซียมไฮดรอกไชด์ตกค้าง จึงจำเป็นที่จะต้องสะเทินออกโดยใช้ สารละลายกรดชัลฟิวริค เข้มข้น 10% ก่อนเข้าสู่กระบวนการ หลังจากสะเทินด้วยกรดแล้วกากกาแฟไร้น้ำมันถูก นำไปผสมกับพลาสติกชนิดโพสิโพรพิลีนและสารคู่ควบ PP-g-maleic acid ในสัดส่วนของกากกาแฟไร้น้ำมัน 5, 10 และ 20% โดยน้ำหนัก และใช้สารคู่ควบที่ 2% โดยน้ำหนัก ซึ่งส่วนผสมทั้งหมดจะถูกผสมให้เป็นเนื้อเดียวกันโดย เครื่องรีดชนิดเกลียวคู่ และขึ้นรูปเป็นแผ่นคอมโพสิตชีวภาพ ผลวิเคราะห์คุณสมบัติทางวัสดุชี้ให้เห็นว่า การเพิ่มขึ้น ของสัดส่วนกากกาแฟไร้น้ำมันมีผลทำให้ค่าความแข็งแกร่งต่อการดึง ค่าการต้านแรงกระแทก และค่าการยืดหด ของวัสดุ มีค่าต่ำลง รวมถึงทำให้วัสดุคอมโพสิตชีวภาพมีความเปราะมากขึ้นโดยเฉพาะวัสดุคอมโพสิตชีวภาพที่ใช้ สัดส่วนของกากกาแฟไร้น้ำมัน 20% โดยน้ำหนัก ผลการวิเคราะห์ ANOVA แสดงให้เห็นว่าไม่มีความแตกต่างอย่าง มีนัยสำคัญทางสถิติระหว่างการผสมกากกาแฟไร้น้ำมันที่ 5 และ 10% โดยน้ำหนัก ผลของความเสถียรทางความ ร้อนทำให้ทราบว่าวัสดุคอมโพสิตชีวภาพสามารถทนความร้อนได้ 150 องศาเชลเซียส โดยไม่มีการเสื่อมสภาพจาก ความร้อน จากคุณสมบัติของวัสดุคอมโพสิตชีวภาพที่กล่าวมาทำให้ทราบว่าวัสดุที่ผลิตได้เหมาะสมกับงานที่ไม่ต้อง รับแรงมากและทนความร้อนได้ เช่น ถาดรองแก้ว เป็นต้น ซึ่งสามารถเพิ่มมูลค่าของกากกาแฟได้เป็นอย่างดี

แนวทางที่สามการผลิตไบโอเอทานอลด้วยกระบวนการย่อยด้วยเอนไซม์และหมักด้วยยีสต์ Saccharomyces cerevisiae TISTR 5339 พบว่ากากกาแฟไร้น้ำมันที่ผ่านกระบวนการอินซิตูทรานเอสเตอริ ฟิเคชั่นสามารถให้ผลผลิตเอทานอลที่มากกว่ากากกาแฟวัตถุดิบ โดยมีผลผลิตเอทานอลมากสุดที่ 5.91±0.9 มล. ต่อ 1 กิโลกรัมของวัตถุดิบ ซึ่งได้จากการหมักกากกาแฟด้วยเอนไซม์เซลลูเลส 1 หน่วย ผสม เพคทิเนส 2,000 หน่วย ต่อ 1 กรัมวัตถุดิบ อัตราส่วนวัตถุดิบต่อสารละลายเอนไซม์ 6 กรัม ต่อ 100 มิลลิลิตร ซึ่งสารละลายเอนไซม์ มีการเติมบัฟเฟอร์ เพื่อควบคุมพีเอชให้เหมาะสมต่อการทำงานของเอนไซม์ที่ 4.8 ภายใต้อุณหภูมิ 45 องศา เซลเซียส เป็นระยะเวลา 72 ชั่วโมง แล้วต่อด้วยการหมักเอทานอลด้วยยีสต์ภายใต้อุณหภูมิห้อง เป็นระยะเวลา 72 ชั่วโมง

ในการวิเคราะห์การลงทุนและผลตอบแนของแนวทางเลือกตามสถานการณ์ต่าง ๆ 4 แบบ ได้แก่ (1) ส่ง กำจัดไปยังหลุมฝังกลบ, (2) ส่งขายกากกาแฟอบแห้งให้กับบริษัทไทยพลาสวู้ด จำกัด (3) ผลิตเป็นไปโอดีเซลและ เผากากกาแฟไร้น้ำมันเป็นพลังงานในกระบวนการผลิต และ (4) ผลิตเป็นไปโอดีเซลและนำกากกาแฟไร้น้ำมันไป ผลิตเป็นเชื้อเพลิงชีวมวลอัดแท่ง โดยวิเคราะห์การใช้พลังงานและวัตถุดิบในการคำนวณเป็นหลัก พบว่า ผลตอบแทนที่ได้สูงสุดเท่ากับ 1,376 บาท ต่อ กากกาแฟเปียก 100 กิโลกรัม โดยเป็นทางเลือกที่ 4 ประกอบด้วย การนำกากกาแฟมาผลิตเป็นไปโอดีเซลและเชื้อเพลิงชีวภาพอัดแท่ง และรวมถึงผลตอบแทนจากการขายผลิตภัณฑ์ รองที่เกิดขึ้นระหว่างกระบวนการผลิต ได้แก่ กลีเซอรอล และปุ๋ยโพแทส และผลตอบแทนจากสภานการณ์นี้ สามารถเพิ่มขึ้นเป็น 1,921 บาท ต่อ กากกาแฟเปียก 100 กิโลกรัม ถ้าเปลี่ยนแหล่งพลังงานจากไฟฟ้าเป็นเชื้อเพลิง ปิโตรเลียมเหลว ณ ราคาปัจจุบัน เมื่อเทียบกับการจัดการกากกาแฟในจุฬาลงกรณ์มหาวิทยาลัยในปัจจุบันที่เป็น การส่งกากกาแฟไปยังหลุมฝังกลม โดยเสียค่าใช้จ่ายแบบเหมา 90 บาท ต่อ กากกากแฟเปียก 100 กิโลกรัม การ เพิ่มมูลค่ากากกาแฟโดยกระบวนการผลิตแบบต่อเนื่องในงานนี้สามารถเพิ่มมูลค่าให้กับการจัดการกากกาแฟไปใช้ ประโยชน์ได้สูงสุดและและตอบโจทย์แนวคิดการจัดการขะแบบให้ขยะเป็นศูนย์ (Zero Waste)

Abstract

The objective of this project is to develop guideline for utilization spent coffee grounds (SCGs) as sequential processes to obtain a few value added prodeucts including (1) biodiesel production from SCGs feedstock and then the defatted SCGs after biodiesel production were converted to (2) biocomposited material; (3) bio-coal; and (4) bio-ethanol. In addition, the energy and material flow analysis was applied in order to determine the scenario which provided the highest revenue and possibility to be commercialization. According to survey, it was found that there was approximately 100 kg wetted SCGs produced within Chulalongkorn University, daily. The initial moisture content of wetted SCGs was 50 %wt. SCGs contained high oil content between 12 and 15 %wt, but they had high acid value of 10 – 11 mg KOH/g oil due to free fatty acid.

For SCGs biodiesel production, an in-situ transesterification (in-situ TE) was applied with a column reactor. Such process could merge vegetable oil extraction and biodiesel synthesis into one step using only alcohol and catalyst. The preliminary study showed that methanol could be used as the pretreatment solvent to reduce high acid value of oil in SCGs, then the potassium methoxide with isopropanol as co-solvent were applied for in-situ TE process. Under the optimal conditions, up to 1,500 mg of biodiesel to 15 g of SCGs was achieved. However, a large amount of methanol was required in this condition, and it was difficult to reuse the mixed methanol and isopropanol. Thus, the semicontinuous countercurrent process with four column reactors were developed and applied into this process, and only potassium methoxide was used in the process. Under the optimal condition approximately 6,000 mg of biodiesel to 60 g of SCGs could be achieved, and half of methanol could be saved by this process compared to the previous one. These conditions were used to scale up the process of 2 kg SCGs processing. The results showed that almost 200 g biodiesel could be achieved from 2 kg SCGs. In this scaled up process, petroleum diesel was introduced for improving biodiesel separation and purification, and showed a promising results. The final product was blended biodiesel B10 (10 %vol of biodiesel). The defatted SCGs after biodiesel production contained 0.5 %wt oil content with heating value of 18.7 MJ/kg. These defatted SCGs were used for the further applications.

The first production option using defatted SCGs from the in-situ TE as a raw material was for bio-coal. Heating value, proximate analysis, and ultimate analysis of defatted SCG were evaluated according to ASTM (American Standard for Testing and Material). Defatted SCG was carbonized at

temperature of 400, 450, and 500 °C for 2 hours. After that, the defatted SCG was mixed with starch glue as a binder. Then, the defatted SCG was added to the cylinder mold and shaped by human forces. Results found that the carbonization at temperature of 500 °C for 2 hours gave the highest heating value. The highest heating value of 25.99 KJ/g increased from 19% compared with non-carbonized SCG. In addition, the physical characteristics of fuel bio-coal obtained in this study was clean for handpicked, easy to ignite, and little smoke exhuastion.

In a case of bio-composited material production, the residual KOH in defatted SCGs was neutralized by 10% sulfuric acid. Then, the defatted SCGs were mixed with polypropylene (PP) plastic and PP-graft-maleic acid (coupling agent) in three compositions at 5, 10 and 20 %wt defatted SCGs and fixed PP-graft-maleic acid at 2 %wt. The mixture was extruded by twin-screw extruder before compressing into bio-composited material sheet. Based on material analytical testing, an increase in defatted SCGs proportion reduced the tensile strength, impact strength and elongation as well as made material more fragile, especially in 20 %wt. ANOVA results showed that using 10 %wt of defatted SCGs was not significantly different from that of 5 %wt in every parameters. Thermal gravimetric analysis and differential scanning calorimetry showed that there was no thermal degradation under the temperature lower than 150 °C. Based on these material properties, this bio-composited material could be used for a small task such as coaster. This could dramatically increase the value of SCGs waste.

The third option for the continuous production of defatted SCGs was bioethanol production. The process combined enzymatic reaction and decompose defatted SCGs by yeast *Saccharomyces cerevisiae* TISTR 5339. The result show that defatted SCGs from in-situ TE provided higher yield than those of initial SCGs. The bioethanol produced from the defatted SCGs was 5.92 + 0.9 mL/g defatted SCG. The ratio of the mixed enzymes used in the process was ellulose 1 unit and pectinase 2000 unit for 2g of defatted SCG. Buffer was added to the enzyme solution to maintain the pH at 4.8 which is suitable for the reaction. Ratio of defatted SCG to the enzyme solution was 6 g to 100 mL at the temperature of 45 °C for 72 hours. Then, the fermentation by yeast was carried out at room temperature for another 72 hours.

The evaluation for cost and revenue of this project was divided into 4 scenarios which were (1) sending SCGs waste to a landfill, (2) selling dried SCGs to Thaiplastwood Co., Ltd., (3) producing biodiesel

and burned defatted SCGs as the energy source in the process, and (4) producing biodiesel and using defatted SCGs for bio-coal production. Energy and material flow and cost effective analysis indicated that processing SCGs for biodiesel and bio-char provided the highest profit with 1,376 baht/100 kg wetted SCGs. The by-products from these processes such as glycerin and potassium fertilizer could be sold as well. The revenue could be increase to 1,921 baht/100 kg wetted SCGs once the energy source of bio-char production was changed from electricity to liquid petroleum gas. Currently, most of SCGs waste in Chulalongkorn University were sent to landfill and it costed 90 bath/100 kg wetted SCGs. Thus, applying these sequential processes could provide a maximum revenue for SCGs waste utilization instead of paying for the treatment and would led to the concept of zero waste.
