บทคัดย่อ

ยางคอมพาวนด์สำหรับดอกยางล้อที่มีความต้านทานต่อการหมุนของล้อต่ำมักประกอบด้วยยางเบลนด์ SSBR/BR เสริมแรงด้วยซิลิกา ในงานวิจัยนี้ต้องการใช้ยาง NR แทน BR จึงศึกษาสมบัติของยางเบลนด์ NR/SBR โดย เน้นการศึกษาผลของชนิดและเกรดยาง SBR ต่อสมบัติของยางเบลนด์ที่ได้ กำหนดสัดส่วนการเบลนด์ที่ 50/50 โดย น้ำหนัก จากการศึกษาสมบัติเบื้องต้นของยาง NR กับ SBR พบว่ายาง SBR วัลคาในซ์ได้ช้ากว่ายาง NR และยาง ESBR กับยาง SSBR ก็มีพฤติกรรมการวัลคาในซ์ต่างกัน รวมถึงมีสมบัติเชิงกลแตกต่างกันด้วย อุณหภูมิเริ่มต้นที่เหมาะสม สำหรับการผสมยางเบลนด์ NR/SBR ในเครื่องผสมแบบปิดขนาดเล็กที่ใช้คือ 110℃ ซึ่งจะได้อุณหภูมิสุดท้ายหรือ Dump temperature ประมาณ 130-135°C ใช้การผสมแบบสองขั้นตอนโดยการใส่สาร DPG ครึ่งหนึ่งลงในขั้นตอน การผสมยางกับซิลิกาและสารคู่ควบไซเลนในเครื่องผสมแบบปิดและใส่อีกครึ่งที่เหลือพร้อมกับสารวัลคาไนซ์ในขั้นตอน ที่สอง เมื่อเปรียบเทียบผลการใช้ยาง ESBR กับ SSBR เกรด S25 V50 HM ที่มีปริมาณสไตรีนใกล้เคียงกัน คือ 23.5 และ 25 wt% ตามลำดับ พบว่ายางเบลนด์เสริมแรงด้วยซิลิกาที่ใช้ S25 V50 HM มีค่า Tan δ ที่ 60°C ต่ำกว่า ในขณะที่มีค่า Tan δ ที่ 0°C สูงกว่า ซึ่งเหมาะสมกับคอมพาวนด์ดอกยางล้อ นอกจากนี้เมื่อพิจารณาผลจากการใช้ SSBR เกรด FX S34 V32 HM พบว่ามีค่า Tan δ ที่ 60°C ต่ำกว่าการใช้ ESBR แต่มีค่า Tan δ ที่ 0°C สูงกว่าอย่าง ชัดเจนมาก ดังนั้นในแง่ของสมบัติ Wet grip และ Rolling resistance ยาง SSBR สำหรับยางเบลนด์กับยางธรรมชาติ ที่เหมาะสมคือ SSBR เกรด S25 V50 HM และ FX S34 V32 HM จากผลการศึกษาอิทธิพลของสัดส่วนการเบลนด์ ระหว่างยาง NR/SSBR (S25V50HM) ต่อสมบัติของยางเบลนด์ที่ได้พบว่าเมื่อใช้ยาง NR เกิน 60 phr ส่งผลให้ยางเบ ลนด์ที่ได้มีการเปลี่ยนแปลงของสมบัติค่อนข้างมาก โดยยางมีสมบัติการแปรรูปดีขึ้น ความต้านทานต่อแรงดึงและ ความสามารถในการยืดจนขาดสูงขึ้น แต่ยางมีมอดุลัส ความแข็ง และความกระเด้งตัวลดลงอย่างชัดเจน รวมถึงส่งผล ต่อค่า Tan δ ที่ 0°C และ 60°C ของยางเบลนด์ที่ได้โดยลดสมบัติ Wet grip และไม่ส่งผลปรับปรุง Rolling resistance ที่แน่ชัด เมื่อเปรียบเทียบสมบัติของยางเบลนด์ที่เตรียมได้กับข้อมูลอ้างอิง และเปรียบเทียบกับสูตรยาง ESBR ที่ผสมเขม่าดำแบบดั้งเดิม จากค่า Tan δ ที่ 60°C พบว่ายางเบลนด์ NR/SSBR (RSS3/ S25 V50 HM) (50/50) ที่ได้แสดงค่าต่ำกว่าค่าของยางอ้างอิงต่างๆ ซึ่งบ่งชี้ว่าสามารถที่จะนำยางคอมพาวนด์ที่ได้ไปเตรียมยางล้อที่มีค่า Rolling resistance ต่ำได้ ซึ่งจากผลการวิจัยนี้แสดงให้เห็นว่าการเลือกชนิดยาง SBR ที่จะใช้ในการเตรียมยางเบลนด์กับ NR เสริมแรงด้วยซิลิกามีความสำคัญมาก การใช้ยาง SSBR ที่เหมาะสมจะให้สมบัติเชิงกลและสมบัติเชิงพลวัตเด่นกว่า การใช้ยาง ESBR ซึ่งยาง SSBR ที่มีปริมาณสไตรีน 25% และปริมาณไวนิลสูง 50% (เกรด S25 V50 HM) ให้ยางเบลนด์ ที่มีสมบัติโดยรวมดีกว่ายางเกรดอื่นๆ เป็นไปตามวัตถุประสงค์ในการพัฒนายางคอมพาวนด์ NR/SBR สำหรับดอกยาง ล้อรถยนต์นั่งส่วนบุคคลที่เป็นมิตรกับสิ่งแวดล้อมมากขึ้น

คำสำคัญ: ยางล้อประหยัดพลังงาน; คอมพาวนด์ดอกยางล้อ; ยางเบลนด์ NR/SBR; SSBR; ESBR

Abstract

Rubber compounds for low rolling resistance tire tread generally compose of SSBR/BR blends reinforced with silica. This work aims to use NR instead of BR. The blends of NR/SBR are investigated with emphasis on effect of types and grades of SBR on the blend properties. The blend ratio was fixed at 50/50 by weight. Based on the basic property study of NR and SBR, SBR has slower cure reaction rate than NR. Moreover, ESBR and SSBR show different cure behaviors and mechanical properties. The optimum initial mixer temperature setting for mixing of NR/SBR in small internal mixer was at 110°C, which led to final or dump temperature in a range of 130-135°C. Twostep mixing method was applied in which first half of DPG was added together with silica and silane coupling agent in the first mixing step, while the second half was added together with curatives in the second step. On comparing the use of ESBR with SSBR (S25 V50 HM) having similar styrene content (i.e. 23.5 and 25 wt%, respectively), the silica-reinforced blend with S25 V50 HM shows lower tan δ at 60°C and higher tan δ at 0°C which is suitable for tire tread compounds. Moreover, the blend with SSBR (FX S34 V32 HM) also shows lower tan δ at 60°C and clearly higher tan δ at 0°C compared to the use of ESBR. Therefore, with respect to wet grip and rolling resistance properties, S25 V50 HM and FX S34 V32 HM SSBRs are suitable for blending with NR. In the blends of NR/SSBR (S25V50HM) at various blend ratios, the use of NR more than 60 phr results in the large change in the properties in which processing properties, tensile strength and elongation at break are improved, but modulus, hardness as well as resilience are clearly decreased. Tan δ at 0°C and 60°C of the blends are also affected with negative impact on wet grip and no clear improvement in rolling resistance. When compared the data obtained with the references, the value of tan δ at 60°C of the NR/SSBR (RSS3/ S25 V50 HM) (50/50) blend is lower compared to all references, indicating that this compound can be used for preparation of low rolling resistance tires. The results indicate that SBR type selection for blending with NR reinforced with silica is crucial. The proper SSBR grade gives superior mechanical and dynamic properties compared to the use of ESBR. SSBR with 25 % styrene and 50 % vinyl (S25 V50 HM grade) offers overall better properties than other grades, in accordance with our objective to develop NR/SBR blend compounds for more environmental friendly passenger car tire treads.

Keywords: energy saving tires; tire tread compounds; NR/SBR blends; SSBR; ESBR