บทคัดย่อ

การศึกษาวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของการเสริมเอนไซม์ย่อยเยื่อใยในอาหารผสมสำเร็จที่ใช้ ชานอ้อยหมักยูเรียเป็นอาหารหยาบต่อสมรรถนะการให้ผลผลิตของโคนม โดยแบ่งการทดลองเป็น 3 การ ทดลอง การทดลองที่ 1 การศึกษาผลของการหมักชานอ้อยด้วยยูเรียและกากน้ำตาลต่อองค์ประกอบทางเคมี ของชานอ้อยหมัก ปริมาณผลผลิตแก๊สและการย่อยได้ในหลอดทดลองของโคนม วางแผนการทดลองแบบ 2X2 X2 factorial arrangement ในแผนการทดลองแบบสุ่มสมบูรณ์ (CRD) มีกลุ่มควบคุมเป็นชานอ้อยไม่ได้หมัก และ มีปัจจัยการทดลอง คือ ปัจจัย A กระบวนการหมัก ได้แก่ ชานอ้อยก่อนการหมัก (BF) และชานอ้อยหลังการ หมัก 21 วัน (AF) ปัจจัย B คือ ระดับของยูเรีย ได้แก่ 0 และ 5% (U0 or U5) และ ปัจจัย C คือ ระดับของ กากน้ำตาล 0 และ 5% (M0 or M5) ผลการทดลองพบว่า การหมักชานอ้อยด้วยยูเรียและกากน้ำตาลทำให้ องค์ประกอบของโปรตีนในชานอ้อยหมักมีค่าเพิ่มขึ้น (P<0.05) ในขณะที่องค์ประกอบของเยื่อใย (NDF, ADF) ้มีค่าลดลง (P<0.05) มากไปกว่านั้น ภายหลังการหมักชานอ้อยทำให้ค่าจนพลศาสตร์การผลิตแก๊สและปริมาณ ผลผลิตแก๊สของชานอ้อยทุกทรีทเมนต์มีค่าสูงกว่าชานอ้อยก่อนการหมักและชานอ้อยกลุ่มควบคุม ซึ่งปริมาณ ผลผลิตแก๊สจากส่วนที่ละลายได้ง่าย (a) ค่าปริมาณแก๊สที่เกิดจากการบ่มหมักกระเพาะรูเมน (b) และค่า ์ ศักยภาพการผลิตแก๊ส (a+b) ตลอดจนปริมาณการผลิตแก๊สมีค่าสูงที่สุด (P<0.05) ในชานอ้อยหมักด้วยยูเรีย และกากน้ำตาล นอกจากนี้ค่าการย่อยได้ของวัตถุแห้งและอินทรียวัตถุในหลอดทดลองมีค่าสูงที่สุด(P<0.05) ใน ชานอ้อยหมักยูเรียร่วมกับกากน้ำตาลด้วยเช่นกัน ดังนั้น การปรับปรุงคุณภาพของชานอ้อยด้วยยูเรียและ กากน้ำตาลทำให้ชานอ้อยมีคุณค่าทางโภชนะที่เหมาะสมสำหรับนำมาใช้เป็นอาหารสัตว์โคนมได้

การทดลองที่ 2 การศึกษาผลของการใช้เอนไซม์ย่อยเยื่อใยในอาหารผสมสำเร็จที่ใช้ชานอ้อยหมักยูเรีย ร่วมกับกากน้ำตาลเป็นอาหารหยาบ ต่อปริมาณผลผลิตแก๊สและการย่อยได้ในหลอดทดลองโดยเทคนิควัดผล ผลิตแก๊ส วางแผนการทดลองแบบ 2X3 factorial arrangement ในแผนการทดลองแบบสุ่มสมบูรณ์ (CRD) มี กลุ่มควบคุมเป็นอาหารผสมสำเร็จไม่เสริมเอนไซม์ย่อยเยื่อใย และมีปัจจัยการทดลอง คือ ปัจจัย A วิธีการเสริม เอนไซม์ (การเสริมเอนไซม์ในอาหารขันและการใช้เอนไซม์หมักชานอ้อยร่วมกับยูเรียและกากน้ำตาล) ปัจจัย B ระดับการเสริมเอนไซม์ (2, 4 และ 6% ตามลำดับ) เอนไซม์ที่ใช้ในการศึกษานี้เป็นเอนไซม์ทางการค้า (เพนโต ไซม์®) ที่ผลิตจากเชื้อราสายพันธุ์ Aspergillus niger BCC7178 และอาหารผสมสำเร็จมีสัดส่วนของอาหารขัน ต่ออาหารหยาบ 60 ต่อ 40 ผลการทดลอง พบว่า การเสริมเอนไซม์ย่อยเยื่อใยทำให้เยื่อใย NDF ของอาหารผสมสำเร็จมีค่าลดลง และมีค่าต่ำสุด (P<0.05) ในกลุ่มที่ใช้เอนไซม์ 4% หมักชานอ้อยร่วมกับยูเรียและกากน้ำตาล ขณะที่วัตถุแห้ง, เถ้า, อินทรียวัตถุ, ไขมัน และเยื่อใย ADF ไม่มีความแตกต่างกันทางสถิติ (P>0.05) มากไปกว่า นั้น การใช้เอนไซม์ 4% ในอาหารผสมสำเร็จทั้งการเสริมในอาหารขันและการใช้เอนไซม์หมักชานอ้อยร่วมกับยูเรีย และกากน้ำตาล ทำให้ค่าจนพลศาสตร์การผลิตแก๊ส ปริมาณผลผลิตแก๊ส และการย่อยได้สูงกว่ากลุ่มอื่น ดังนั้น การใช้เอนไซม์ย่อยเยื่อใยในอาหารผสมสำเร็จที่ใช้ชานอ้อยหมักยูเรียร่วมกับกากน้ำตาลเป็นอาหารหยาบ สามารถเพิ่มประสิทธิภาพกระบวนการหมักในกระเพาะรูเมนของอาหารผสมสำเร็จได้

การทดลองที่ 3 การศึกษาผลของการเสริมเอนไซม์ย่อยเยื่อใยในอาหารผสมสำเร็จที่ใช้ชานอ้อยหมัก ยูเรียเป็นอาหารหยาบต่อสมรรถนะการให้ผลผลิตของโคนม โดยใช้โคนมพันธุ์ผสมโฮลสไตน์ฟรีเชียน อยู่ใน ระยะเริ่มต้น-กลางของการให้นม จำนวน 4 ตัว วางแผนการทดลองแบบ 4x4 จตุรัสละติน (4x4 Latin Square Design) เพื่อศึกษาผลของการเสริมเอนไซม์ย่อยเยื่อใย (เพนโตไซม์®) ที่ผลิตจากเชื้อราสายพันธุ์ Aspergillus niger BCC7178 ในอาหารผสมสำเร็จสำหรับโครีนมที่ระดับ 0, 2, 4 และ 6% ต่อปริมาณการกินได้ การย่อยได้ ของโภชนะ กระบวนการหมักในกระเพาะรูเมน ผลผลิตน้ำนมและองค์ประกอบทางเคมีของน้ำนม ตลอดจน

ผลตอบแทนทางเศรษฐกิจจากการเลี้ยงโคนม ผลการทดลองพบว่า ปริมาณการกินได้ของโคนมไม่มีความ แตกต่างกันทางสถิติ (P<0.05) ในขณะที่การเสริมเอนไซม์ย่อยเยื่อใยในอาหารผสมสำเร็จมีผลทำให้สัมประสิทธิ์ การย่อยได้ของโภชนะ ได้แก่ วัตถุแห้ง (DM) อินทรียวัตถุ (OM) เยื่อใย NDF และเยื่อใย ADF มีค่าสูงที่สุดในโคน มกลุ่มที่ได้รับการเสริมเอนไซม์ 4% ในอาหารผสมสำเร็จ(P<0.05) สอดคล้องกับปริมาณโภชนะที่โคนมได้รับ ได้แก่ เยื่อใย NDF และ เยื่อใย ADF ของโคนมที่ได้รับการเสริมเอนไซม์ย่อยเยื่อใย 4% ในอาหารผสมสำเร็จ ซึ่ง มีค่าสูงที่สุดเช่นเดียวกัน อย่างไรก็ตาม การเสริมเอนไซม์ย่อยเยื่อใยในอาหารผสมสำเร็จสำหรับโครีดนมไม่มี ผลกระทบต่อกระบวนการหมักในกระเพาะรูเมน ได้แก่ ค่าอุณหภูมิ ความเป็นกรด-ด่าง ความเข้มข้นของ แอมโมเนีย-ในโตรเจน และการผลิตแก๊สเมทเธน รวมถึงยูเรีย-ในโตรเจนและกลูโคสในกระแสเลือด (P>0.05) ในทางตรงกันข้ามการเสริมเอนไซม์ย่อยเยื่อใยในอาหาร ผสมสำเร็จทำให้ความเข้มข้นของกรดไขมันที่ระเหยได้ ้ง่ายทั้งหมด กรดโพรพิโอนิก ณ ที่เวลา 4 ชั่วโมงหลังการให้อาหาร และค่าเฉลี่ยของกรดไขมันระเหยได้ง่าย ทั้งหมด กรดโพรพิโอนิก มีค่าแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (P<0.05) โดยมีค่าสูงที่สุดในโคนมที่ได้รับ การเสริมเอนไซม์ย่อยเยื่อใย 4% ในอาหารผสมสำเร็จ ในขณะที่ สัดส่วนระหว่างกรดอะซิติกต่อกรดโพรพิโอนิก ณ ที่เวลา 4 ชั่วโมงหลังการให้อาหาร และค่าเฉลี่ยของสัดส่วนระหว่างกรดอะซิติกต่อกรดโพรพิโอนิกมีค่าต่ำ ที่สุดในโคนมที่ได้รับการเสริมเอนไซม์ย่อยเยื่อใย 4% ในอาหารผสมสำเร็จ และเมื่อเพิ่มระดับการเสริมเอนไซม์ ย่อยเยื่อใยเป็น 6% ในอาหาร TMR ทำให้ความเข้มข้นของกรดไขมันที่ระเหยได้ง่ายมีค่าต่ำที่สุด (P<0.05) ้นอกจากนี้ การเสริมเอนไซม์ย่อยเยื่อใยในอาหารผสมสำเร็จ ไม่มีผลต่อปริมาณน้ำนมและองค์ประกอบทางเคมี ของน้ำนม ได้แก่ โปรตีน ของแข็งไม่รวมไขมัน และของแข็งทั้งหมด ตลอดจนองค์ประกอบของกรดไขมันใน ้น้ำนม (P>0.05) แต่ปริมาณน้ำนมเมื่อปรับไขมันนม 3.5% และเปอร์เซ็นต์ใขมันนมมีค่าสูงที่สุด (P>0.05) โค นมที่ได้รับการเสริมเอนไซม์ย่อยเยื่อใย 4% ในอาหารผสมสำเร็จ เมื่อพิจารณาผลตอบแทนทางเศรษฐกิจจาก การเลี้ยงโคนม พบว่า การเลี้ยงโคนมด้วยอาหารผสมสำเร็จที่เสริมเอนไซม์ในระดับต่างๆกันมีผลทำให้ต้นทุน ์ ทั้งหมดของการเลี้ยงโคนมมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (P<0.05) โดยเมื่อเพิ่มระดับการเสริม เอนไซม์ในอาหารผสมสำเร็จ ทำให้ต้นทุนค่าอาหารมีค่าเพิ่มขึ้นอย่างเป็นเส้นตรง (P<0.05) ตามระดับการเสริม เอนไซม์ ส่งผลทำให้ต้นทุนทั้งหมด มีค่าเพิ่มสูงด้วยเช่นกัน และเมื่อพิจารณาผลตอบแทนที่จะได้รับจากการ เลี้ยงโคนม พบว่า ผลตอบแทนทั้งหมดของโคนมที่ได้รับการอาหารผสมสำเร็จเสริมด้วยเอนไซม์ 4% ผลตอบแทนทั้งหมดสูงที่สุด แต่ในทางตรงกันข้ามการเสริมเอนไซม์เอนไซม์ย่อยเยื่อใยในอาหารผสมสำเร็จทำให้ ได้รับผลตอบแทนสุทธิลดลงอย่างเป็นเส้นตรง (P<0.05) เมื่อเพิ่มระดับการเสริมเอนไซม์ในอาหารผสมสำเร็จ และการเลี้ยงโคนมอาหารผสมสำเร็จเสริมแอนไซม์ 6% ทำให้มีผลตอบแทนสุทธิน้อยที่สุด

การปรับปรุงคุณค่าทางโภชนะของชานอ้อยด้วยการหมักยูเรียและกากน้ำตาลสามารถเพิ่มคุณค่าทาง โภชนะของชานอ้อยให้สูงขึ้น และสามารถนำชานอ้อยหมักยูเรียและกากน้ำตาลไปใช้เป็นแหล่งอาหารหยาบใน อาหารผสมสำเร็จสำหรับโคนมได้อย่างเหมาะสมโดยไม่มีผลกระทบต่อตัวสัตว์ ดังนั้น การหมักชานอ้อยด้วย ยูเรียและกากน้ำตาลจึงเป็นอีกทางเลือกหนึ่งที่เกษตรกรสามารถนำไปประยุกต์ใช้เพื่อการผลิตอาหารสำหรับ เลี้ยงสัตว์ในฟาร์มของเกษตรกรได้

Abstract

This experiment was to study the effects of fibrolytic enzyme in total mixed ration (TMR) containing urea treated bagasse as a roughage source on dairy cow performance. Three experiments were conducted. Experiment 1: Effect of urea and molasses treated sugarcane bagasse on chemical composition, fermentation quality, in vitro gas production and digestibility in dairy cows. The experiment followed the Completely Randomized design (CRD) with 2×2×2 factorial arrangement of treatments with control. The control treatment involved sugarcane bagasse without any treatment. Factor A was before or after sugarcane bagasse fermented with substrate at 21 d (BF or AF), factor B was level of urea 0 or 5% (U0 or U5) and factor C was level of molasses 0 or 5% (M0 or M5). The results showed that CP content of sugarcane bagasse was increased (P<0.05) by urea and molasses treatment; whereas, treatment of urea and molasses could reduce (P<0.05) fiber content (NDF, ADF) of sugarcane bagasse. Moreover, after fermentation, all treatments of sugarcane bagasse showed higher gas kinetics and gas production when compared with before fermentation and untreated group (control), which was highest (P<0.05) on gas produced from soluble fraction (a), gas production from the insoluble fraction (b), and gas potential extent of gas production (a+b) as well as cumulative gas production when urea and molasses was added. In addition, in vitro DM and OM degradability was increased (P<0.05) by urea and molasses treatment. In conclusion, sugarcane bagasse treated with urea and molasses could suitable used as roughage source for dairy cattle.

Experiment 2: Effect of fibrolytic enzyme in total mixed ration (TMR) containing ureamolasses treatment of sugarcane bagasse on chemical composition, in vitro gas production and ruminal digestion in lactating dairy cows by using in vitro gas production technique. The experimental design was 2X3 factorial arrangement in a completely randomized design (CRD) with control. The control treatment was composed of urea-molasses treated sugarcane bagasse in TMR without any enzyme supplementation. Factor A was method of enzyme supplementation (enzyme supplemented in concentrate or enzyme fermented in combination with urea-molasses treatment of sugarcane bagasse), and Factor B was level of enzyme supplementation (2, 4 and 6%, respectively). Enzyme mixture (pentozyme®) produced from Aspergillus niger BCC7178. Total mixed ration, with a concentrate to roughage (sugarcane bagasse treatment) ratio of 60:40, were used as substrate treatments. The results showed that supplementation of fibrolytic enzyme could reduce (p<0.05) NDF content of TMR which was lowest in the group of 4% enzyme fermented in combination with urea-molasses treatment of sugarcane bagasse; whereas, DM, Ash, OM, CP, EE and ADF was not affected (p>0.05) by enzyme supplemented. Moreover, supplementation of 4% enzyme in TMR by mixed with concentrate and fermented in combination with urea-molasses treatment of sugarcane bagasse showed higher gas kinetics and gas production as well as in vitro ruminal digestion

when compared with other treatments. Based on this study utilization of fibrolytic enzyme in TMR containing urea-molasses treatment of sugarcane bagasse could improve *in vitro* rumen fermentation of TMR.

Experiment 3: Effect of fibrolytic enzyme in total mixed ration (TMR) containing urea treated bagasse as a roughage source on dairy cow performance. Four, multiparous early-mid lactation Holstein-Friesain crossbred cows were randomly allocated in 4x4 Latin Square Design. All cow were used to determine effect of fibrolytic enzyme (pentozyme®) from Aspergillus niger BCC7178 in TMR at 0, 2, 4 and 6% on feed intake, nutrient digestibility, rumen fermentation, milk yield and milk composition as well as economical return in lactating dairy cows. The results showed that dry matter intake was not significant differences among treatments (P>0.05). Whereas, digestion coefficients of DM, OM, NDF and ADF were significant highest in cow fed with 4% fibrolytic enzyme (P<0.05), resulted in significant highest (P<0.05) in nutrient intake including NDF and ADF. However, ruminal pH, ruminal temperature, ammonia-nitrogen methane production, blood urea-nitrogen and glucose were not affected by fibrolytic enzyme supplementation in TMR (P>0.05). On the other hand, total volatile fatty acids and propionic acid at 4 h-post feeding as well as the mean of total volatile fatty acids and propionic acid were significantly highest in cow fed with 4% fibrolytic enzyme in TMR (P<0.05). Furthermore, milk yield and milk composition in term of protein, solids-not fat, total solids and milk fatty acids profile were not significantly different among treatments (P>0.05); while, 3.5% fat collected milk and milk fat were significantly highest in cow fed with 4% enzyme. Feeding cow with fibrolytic enzyme in TMR were affected economical of return by linearly increased (P<0.05) feed cost and total cost of production when increasing level of enzyme supplementation. Although, feeding cow with 4% enzyme in TMR had highest in total returns, net returns was linearly decreased (P<0.05) when increasing level of enzyme supplementation, which was lowest in cow fed with 6% enzyme.

In conclusion, improving of sugarcane bagasse by urea and molasses treatment could improve the nutritive value of sugarcane bagasse. It could be suitable used as roughage source for dairy cattle by small holder farmers.