บทคัดย่อ

ปัจจุบันอุตสาหกรรมอาหารสัตว์ไทยมีความเจริญและขยายตัวระดับสากล ทำให้ความ ต้องการวัตถุดิบอาหารสัตว์เพิ่มสูงขึ้น กากถั่วเหลืองและปลาป่นเป็นแหล่งโปรตีนที่นิยมใช้ในปัจจุบัน และไม่เพียงพอต่อความต้องการจึงต้องนำเข้า ซึ่งในอนาคตอาจเกิดการขาดแคลนและราคาสูงขึ้น เนื่องจากความแปรปรวนของฤดูกาล โปรตีนจากจุลินทรีย์หรือโปรตีนเซลล์เดียวเป็นแหล่งโปรตีนจึง เป็นทางเลือกที่ได้รับความสนใจ งานวิจัยนี้ได้ศึกษาการผลิตโปรตีนเซลล์เดียวจากกากน้ำตาลโดยยีสต์ Saccharomyces cerevisiae DBKKUY53 เพื่อใช้ทดแทนกากถั่วเหลืองในอาหารไก่ไข่ จากการ ทดลองหาสูตรอาหารอย่างง่ายและสภาวะที่เหมาะสมสำหรับการเจริญของยีสต์ พบว่าการใช้ กากน้ำตาล 33 % (w/v) หรือน้ำตาลทั้งหมด 180 g/L และยูเรีย 0.24 % (w/v) ภายใต้สภาวะการ ผลิตที่อุณหภูมิ 37 °C ค่าความเป็นกรดด่าง 6.00 และอัตราการเขย่า 200 rpm จะให้ผลผลิตยีสต์ดี ที่สุด นอกจากนี้ยังสามารถใช้กระบวนการผลิตแบบกะซ้ำจากอาหารเลี้ยงเชื้อที่ผ่านการฆ่าเชื้อด้วย KMS ที่สภาวะการผลิตที่อุณหภูมิ 37 °C ค่าความเป็นกรดด่าง 6.0 อัตราการให้อากาศ 1 vvm และ อัตราการกวน 200 rpm สามารถผลิตยีสต์ที่มีโปรตีนเฉลี่ย 40.83 % (w/w) ผลได้ของมวลเซลล์ต่อ น้ำตาลเท่ากับ 0.10 g/g และยังสามารถผลิตแบบไม่ควบคุมอุณหภูมิ ซึ่งสามารถผลิตยีสต์ที่มีโปรตีน เฉลี่ย 39.63 % (w/w) ผลได้ของมวลเซลล์ต่อน้ำตาลเท่ากับ 0.16 g/g และเมื่อผลิตในระดับโรงงาน ต้นแบบโดยกระบวนการผลิตแบบกึ่งกะและอบแห้งเซลล์ยีสต์ด้วยเครื่องอบแห้งแบบถาด จะได้ยีสต์ที่ มีโปรตีน 36.84 - 37.09 % (w/w) ผลได้ของมวลเซลล์ต่อน้ำตาลเท่ากับ 0.24 g/g ในการทดลอง เลี้ยงไก่ไข่โดยใช้อาหารที่ใช้ยีสต์ทดแทนกากถั่วเหลืองที่ระดับ 10, 20, และ 40 % (w/w) เปรียบเทียบกับชุดควบคุมที่ไม่ใช้ยีสต์ พบว่าค่าอัตราแลกเนื้อดีขึ้นเมื่อระดับการใช้ยีสต์เพิ่มขึ้น และที่ ระดับการใช้ยีสต์สูงสุดคือ 40 % (w/w) ไก้ไข่มีสมรรถนะการผลิตใกล้เคียงกับชุดควบคุม แต่สามารถ ทำให้ค่า Haugh unit ค่าสีไข่แดง และค่าความถ่วงจำเพาะเท่ากับ 94.34, 7.78 และ 846.28 ซึ่งมีค่า ดีขึ้นจากชุดควบคุม นอกจากนี้ยังช่วยเสริมสร้างภูมิคุ้มกันของไก่ไข่ให้ดีขึ้น โดยค่าเปอร์เซ็นต์ความเข้ม ของเลือดและค่า H/L ratio ดีขึ้นแตกต่างจากชุดควบคุมอย่างมีนัยสำคัญทางสถิติ (p<0.05) ค่าไขมัน ไตรกลีเซอไรด์ลดลง และค่า HDL สูงขึ้นในขณะที่ค่า LDL ลดลง แตกต่างจากชุดควบคุมอย่างมี นัยสำคัญทางสถิติ (p<0.05) จะเห็นได้ว่าการใช้ยีสต์ทดแทนกากถั่วเหลืองจะช่วยแก้ปัญหาการขาด แคลนถั่วเหลืองในอนาคต นอกจากนี้ยังช่วยพัฒนาคุณภาพของไข่ไก่และยังช่วยเสริมสร้างภูมิคุ้มกันใน ตัวไก่ไข่ได้อีกด้วย แม้ในขณะนี้ยังมีข้อเสียเปรียบในด้านราคาและปริมาณโปรตีน แต่ปัญหานี้สามารถ แก้ไขได้ด้วยการพัฒนากระบวนการผลิตทั้งในกระบวนการหมักและกระบวนการเก็บเกี่ยวให้มี ประสิทธิภาพต่อไป

Abstract

Nowadays, the Thai animal feed industry has developed and expanded internationally which causing the demand of animal feed ingredients to increase. Recently soybean meal and fish meal were popular sources of protein which were not enough to meet the high demand and had to import from abroad. In the near future, there may be shortages and higher prices of protein sources due to the global warming and climate change. Proteins from microbes or single cell proteins were alternative interesting protein source. This research studies the production of single-cell proteins from molasses by yeast Saccharomyces cerevisiae DBKKUY53 for substitution of soybean meal in laying hens feed. The results from the finding of simple culture medium formula and the optimum conditions for yeast growth showed that using molasses 33% (w/v) or total sugar of 180 g/L and 0.24% urea (w/v) under production conditions at 37 °C, pH value 6.00 and the shaking rate of 200 rpm gave the best yeast production. In addition, it was possible to use a repeated batch production process by using KMS sterilized culture media at production conditions of 37 °C, pH 6.0, aeration rate of 1 vvm and a stirring rate of 200 rpm. The obtained yeast contained an average protein of 40.83% (w/w). The yield of dried biomass was 0.10 g/g sugar. Moreover, this process could also produce yeast without temperature control, in which yeast with an average protein of 39.63% (w/w) were obtained and this equaled to the yield of dried biomass of 0.16 g/g sugar. When produced at the pilot scale by repeated batch fermentation and dried yeast cells with a tray dryer, yeast with protein contents of 36.84 - 37.09% (w/w) were obtained. The yield of dried biomass was 0.24 g/g sugar. Studies of feeding laying hens by using yeast instead of soybean meal in the feed at the level of 10, 20, and 40% (w/w) compared to the control without yeast found that feed conversion ratio (FCR) was increased with the increase of % yeast used and at the highest level of yeast adding, which were 40% (w/w), the laying hens showed the

production efficiency close to the control set. However, the Haugh unit, the yolk color and the specific gravity, which were 94.34, 7.78 and 846.28, respectively, were better than the control group. In addition, it also helps in strengthen the immunity of the laying hens. The percentage of blood intensity and the H/ L ratio were significantly different from the control groups (p <0.05). The triglyceride levels and LDL levels were decreased while the HDL values were increased, which were significantly difference from the control set (p <0.05). It could be seen that replacing of soybean meal with yeast could solve the problem of soybean shortage in the future. In addition, it also helped in improving the quality of the eggs and also strengthen the immunity of the hens. Even though there were still disadvantages in terms of price and protein content. However, these problems could be solved by improving the production process in both fermentation and harvesting processes to be more effective.