

บทคัดย่อ

การวิจัยเรื่อง “การบริโภครังนกแบบเป็นวิทยาศาสตร์” นี้ได้ตรวจสารสำคัญในรังนกบ้านของไทย โดยการเก็บตัวอย่างรังนกบ้านจากทุกภูมิภาคของประเทศไทย หลังจากนั้น สารสำคัญในรังนก สารสำคัญในรังนกบ้านของไทย รวมทั้งได้ผลิตเครื่องสำอางรังนกที่มีสารสำคัญรังนกเป็นส่วนผสม การทดลองเริ่มจากการเก็บรังนกตัวอย่างจากภูมิภาคต่าง ๆ ของประเทศไทย ได้แก่ ภาคใต้ (จังหวัดกรุงเทพฯ และนราธิวาส) ภาคกลาง (จังหวัดสมุทรสงคราม) ภาคตะวันออก (จังหวัดระยอง) ภาคตะวันออกเฉียงเหนือ (จังหวัดอุดรธานี) และภาคเหนือ (จังหวัดเชียงใหม่) รังนกตัวอย่างจากจังหวัดอุดรธานีมีสีแดงและสีเหลืองมากที่สุด ในขณะที่รังนกตัวอย่างจากจังหวัดเชียงใหม่มีความสว่างมากที่สุด การเตรียมสารสกัดรังนกตัวอย่างในงานวิจัยนี้ ใช้วิธีสกัดด้วยน้ำร้อน โดยมีวิธีเตรียมดังนี้ ต้มรังนกตัวอย่างที่ทำการล้างสะอาดแล้วเป็นเวลา 60 นาที แล้วจึงนำเข้าหม้อนึ่งความดันไอน้ำที่ 121°C เป็นเวลา 15 นาที และปั่นเร่งที่ 11,000 rpm เป็นเวลา 20 นาที สารสกัดรังนกคือส่วนใส่ที่เก็บได้หลังจากการปั่นเร่ง การศึกษาปริมาณสารต้านอนุมูลอิสระทั้งหมดในสารสกัดรังนก โดยการตรวจวัดปริมาณสารฟีโนลิกรวมของสารสกัดรังนก ด้วยวิธี Folin-Ciocalteau method พบร่วมกับสารฟีโนลิกทั้งหมดอยู่ในช่วง 4.16 ถึง 5.70 mg GAE/g รังนกแห้ง และรังนกตัวอย่างจากจังหวัดที่แตกต่างกันส่งผลต่อปริมาณสารฟีโนลิกรวมที่แตกต่างกันอย่างมีนัยสำคัญ ($P<0.05$) การตรวจวัดปริมาณกรดเชียลิกในสารสกัดรังนกจากรังนกบ้านในประเทศไทยด้วยวิธีโครมาโทกราฟีเหลวสมรรถนะสูง พบร่วม ได้ปริมาณกรดเชียลิก 10.325 % และเมื่อตรวจสอบด้วยวิธี periodate-resorcinol method มีค่าอยู่ในช่วงจาก 7.22 ถึง 9.60 g/100 g รังนกแห้ง โดยมีค่าแตกต่างกันอย่างมีนัยสำคัญขึ้นกับแหล่งที่เก็บรังนกตัวอย่าง ($P<0.05$) การตรวจวัดปริมาณโปรตีนรวมของสารสกัดรังนกตัวอย่าง ใช้วิธี Bradford method พบร่วม ปริมาณโปรตีนรวมอยู่ในช่วงระหว่าง 2.78 - 3.42 mg/g รังนกแห้ง และปริมาณโปรตีนรวมของสารสกัดรังนกที่ได้จากจังหวัดที่แตกต่างกันมีค่าแตกต่างกันอย่างมีนัยสำคัญ ($P<0.05$) การตรวจสอบฤทธิ์ต้านอนุมูลอิสระของสารสกัดรังนกตัวอย่าง ด้วยวิธีที่แตกต่างกัน 3 วิธี ได้แก่ วิธี ABTS⁺ method วิธี DPPH⁺ method และวิธีอนุมูลอิสระ ·OH พบร่วม ค่าการยับยั้งอนุมูลอิสระ ABTS⁺ ของสารสกัดรังนกที่ได้จากจังหวัดต่าง ๆ ไม่มีความแตกต่างกันอย่างมีนัยสำคัญ (4.63 ถึง 8.76 mg TE/g รังนกแห้ง; $P>0.05$) แต่ค่าการยับยั้งอนุมูลอิสระ DPPH⁺ (1.95 to 2.60 mg TE/g รังนกแห้ง) และอนุมูลอิสระ ·OH (26.27 - 56.00 %) ของสารสกัดรังนกที่ได้จากจังหวัดต่าง ๆ มีความแตกต่างกันอย่างมีนัยสำคัญ ($P<0.05$) นอกจากนี้ สารสกัดรังนกที่ความเข้มข้นที่ใช้ในการทดสอบ (1.5, 3, 15, and 30 mg/mL) ไม่มีความเป็นพิษต่อเซลล์เพาะเลี้ยงไฟโบรบลาสท์ การตรวจสอบการปักป้องเซลล์ไฟโบรบลาสท์ ของสารสกัดรังนกต่อไฮโดรเจนperอกรไซด์ โดยการตรวจวัดจำนวนเซลล์ไฟโบรบลาสท์ที่มีชีวิตด้วยวิธี MTT assay และตรวจวัดระดับอนุมูลออกซิเจนที่ไวต่อการทำปฏิกิริยา (reactive oxygen species: ROS) รวมทั้งระดับออกไซด์ไดออกซิเจนโดยใช้วิธี flow cytometry พบร่วม เซลล์เพาะเลี้ยงไฟโบรบลาสท์ที่มีชีวิตเพิ่มขึ้นอย่างมีนัยสำคัญ หลังจากบ่มด้วยสารสกัดรังนกที่ความเข้มข้น 3 และ 15 mg/mL เมื่อเปรียบเทียบกับการบ่มด้วยไฮโดรเจนperอกรไซด์

เพียงอย่างเดียว ($P<0.05$) และพบว่า การผลิตอนุมูลออกซิเจนที่ໄວ่ต่อปฏิกิริยาในเซลล์เพาะเลี้ยงไฟฟ์ในเซลล์ที่บ่มด้วยสารสกัดรังนกที่ความเข้มข้นต่ำกว่า 15 mg/mL ลดลงอย่างมีนัยสำคัญ เมื่อเปรียบเทียบกับการบ่มเซลล์เพาะเลี้ยงไฟฟ์ในเซลล์ที่ด้วยไฮโดรเจน Peroxide เพียงอย่างเดียว ($P<0.05$) นอกจากนี้ยังพบว่า สารสกัดรังนกที่ความเข้มข้น 15 และ 30 mg/mL สามารถเพิ่มจำนวนเซลล์เพาะเลี้ยงไฟฟ์ในเซลล์ที่มีชีวิต และลดจำนวนเซลล์เพาะเลี้ยงไฟฟ์ในเซลล์ที่เกิดอะพอพโทซิสในระยะเริ่มต้น เซลล์ที่เกิดอะพอพโทซิสในระยะหลัง และเซลล์ตาย ได้อย่างมีนัยสำคัญ หลังจากการตุนด้วยไฮโดรเจน Peroxide ($P<0.05$) การตรวจสอบคุณสมบัติสามารถแพลงของสารสกัดรังนก ด้วยวิธี *in vitro scratch assay* พบว่า ที่เวลา 8 ชั่วโมงของการบ่มเซลล์เพาะเลี้ยง L929 ไฟฟ์ในเซลล์ที่ด้วยสารสกัดรังนกที่ความเข้มข้นมากกว่า 1.5 mg/mL ช่องว่างที่สร้างบน cell monolayer ถูกเติมเต็มได้ด้วยเซลล์เพาะเลี้ยง L929 ไฟฟ์ในเซลล์ที่เมื่อเปรียบเทียบกับเซลล์ที่ไม่ได้บ่มด้วยสารสกัดรังนก สุดท้ายได้ผลิตเครื่องสำอางที่มีสารสกัดรังนกเป็นส่วนผสมสำคัญ ได้แก่ สบู่กลีเซอรีนสารสกัดรังนก เซรั่มสารสกัดรังนก และครีมสารสกัดรังนก ประเทศไทยผลิตรังนกบ้านได้มากกว่าปีละ 100 ตัน รังนกส่วนใหญ่ส่งออกไปต่างประเทศในสภาพรังนกดิบ ถ้ามีการแปรรูปเป็นผลิตภัณฑ์รังนกต่าง ๆ จะเป็นการเพิ่มมูลค่าและเพิ่มรายได้ให้ประเทศชาติได้อีกมหาศาล

คำสำคัญ : รังนกบ้าน สารสกัดรังนกบ้าน กรดเซียลิก เครื่องสำอางรังนก

Abstract

This research of the “Scientific Consumption of Edible Bird’s Nests” detected the active ingredient in house Edible Bird’s Nests (EBN) collected from all regions of Thailand. After that, the EBNs were extracted, and the medical properties of EBN extract from Thailand were investigated. Also, cosmetic products containing the EBN extract as an active ingredient were formulated. The research started with the EBN collection from all regions of Thailand, including Southern Thailand (Krabi and Narathiwat), Central Thailand (Samut Songkhram), Eastern Thailand (Rayong), Northeastern Thailand (Udon Thani), and Northern Thailand (Chiang Mai). The most reddish and yellowish EBN sample was from Udon Thani, whereas the EBN sample from Chiang Mai showed the most lightness. The EBN samples were prepared using the hot water extraction method for EBN extract as follows: cleaned EBN samples were boiled for 60 min, autoclaved at 121°C for 15 min, and centrifuged at 11,000 rpm for 20 min. The supernatant was collected to obtain the EBN extract. Total phenolic contents (TPC) of the EBN extracts were detected using the Folin-Ciocalteau method. The TPC values were in a range of 4.16 to 5.70 mg GAE/g dried EBN and were significantly different between different EBN origins ($P<0.05$). Total sialic acid contents of the EBN extract obtained from the house EBNs in Thailand were determined using high performance liquid chromatography, resulting in the total sialic acid contents of 10.325 %. These contents varied significantly from 7.22 to 9.60 g/100 g dried EBN, depending on the EBN origins ($P<0.05$), when detected using the periodate-resorcinol method. The Bradford method was used to investigate the total protein content of the EBN extracts. The total protein contents ranged from 2.78 to 3.42 mg/g dried EBN, and these values were significantly different between different EBN samples ($P<0.05$). The antioxidant activities of the EBN extract were determined using three different methods, including the ABTS⁺, DPPH[•], and •OH method. The ABTS⁺ inhibition values of the EBN extracts did not differ significantly between different EBN origins (4.63 to 8.76 mg TE/g dried EBN; $P>0.05$). However, the DPPH[•] (1.95 to 2.60 mg TE/g dried EBN) and •OH inhibition values (26.27 to 56.00 %) obtained from the EBN extracts differed significantly between different EBN origins ($P<0.05$). Moreover, the EBN extracts at the tested doses (1.5, 3, 15, and 30 mg/mL)

were not toxic to fibroblasts. The protective effect of EBN extracts in fibroblasts against hydrogen peroxide (H_2O_2) was assessed by measuring the fibroblast viability using the MTT assay and detecting the reactive oxygen species (ROS) and apoptosis level using the flow cytometry method. The fibroblast viability increased significantly after the EBN extract treatment at 3 and 15 mg/mL when compared with H_2O_2 treatment alone ($P<0.05$). The ROS production in EBN extract-treated fibroblasts at doses lower than 15 mg/mL significantly decreased when compared with H_2O_2 treatment alone ($P<0.05$). Furthermore, the EBN extracts at the dose of 15 and 30 mg/mL significantly enhanced live cells and reduced early apoptotic, late apoptotic, and dead cells after H_2O_2 induction ($P<0.05$). The wound healing properties of the EBN extract was determined using the *in vitro* scratch assay. At 8 h incubation of the EBN extract doses more than 1.5 mg/mL, the gaps created on the cell monolayer were mostly filled by fibroblasts when compared to non-treated cells. Finally, the cosmetic products containing the EBN extract as the active ingredient were formulated, including EBN extract glycerin soap, EBN extract serum, and EBN extract cream. Thailand produces house EBNs for more than 100 tons a year. Most EBNs are exported as raw EBNs. If they are processed into various EBN products, their value will be raised, and eventually, the income of Thailand will be vastly increased.

Keywords: House Edible Bird's Nests, House Edible Bird's Nests Extract, Sialic acid, Bird's Nests cosmetics