บทคัดย่อ

การศึกษาวิจัยครั้งนี้มีวัตถุประสงค์เพื่อศึกษาระบบการให้อาหารที่ใช้ผลพลอยได้จากโรงงานแปรรูปสับปะรดคือ เปลือก และเหง้าสับปะรด เป็นแหล่งอาหารหยาบ ร่วมกับการใช้ผลิตผลร่วมของสับปะรด คือ แป้งที่ได้จากโรงงานผลิตเอนไซม์โบรมีเลน ใน สูตรอาหารขั้น สำหรับเลี้ยงโคขุนคุณภาพต่อลักษณะการศึกษาดังนี้ 1) พัฒนาการด้านคุณภาพซาก เกรดซาก และผลตอบแทนจาก ซากโคขุนของสมาชิกสหกรณ์เครือข่ายโคเนื้อจำกัด โดยใช้ข้อมูลจากสหกรณ์ ๆ ย้อนหลัง 5 ปี 2) สมรรถภาพการผลิต การย่อยได้ ของโภชนะ และต้นทุนค่าอาหารในการเพิ่มน้ำหนักตัวของโคขุนคุณภาพ ศึกษาลักษณะกระเพาะรูเมน ลักษณะสัณฐานวิทยาของ ลำไส้เล็ก คุณภาพซาก ผลตอบแทนจากเกรดคุณภาพซากของโคขุนลูกผสมชาโรเลส์ และ 3) คุณภาพเนื้อทางกายภาพและเคมีบาง ประการ ระยะเวลาการบุ่มต่อคุณภาพเนื้อบางประการ ปริมาณกรดไขมัน และการเกิดปฏิกิริยา Lipid oxidation ในเนื้อโค ลูกผสมชาโรเลส์ ดำเนินการทดลองโดยใช้โคเนื้อลูกผสมเพศผู้ตอน 2 กลุ่ม คือ โคเนื้อลูกผสมสายเลือดชาโรเลส์และบราห์มัน (มี สายเลือดชาโรเลส์ไม่น้อยกว่า 50 เปอร์เซ็นต์) จำนวน 15 ตัว และ โคเนื้อลูกผสมสายเลือดวากิว ชาโรเลส์และบราห์มัน (มีสายเลือด วากิวไม่น้อยกว่า 50 เปอร์เซ็นต์) จำนวน 15 ตัว น้ำหนักเริ่มทดลองประมาณ 400 กิโลกรัม โคทดลองได้รับอาหารแบบเต็มที่ (ad libitum) คือ อาหารข้นที่ผลิตขึ้นเองเพื่อใช้ในฟาร์ม มีโภชนะโปรตีนหยาบร้อยละ 14, ปริมาณการย่อยได้ของโภชนะทั้งหมด (TDN) ร้อยละ 78 ซึ่งมีแป้งที่เป็นผลิตผลร่วมของสับปะรดจากโรงงานผลิตโบรมีเลนเป็นส่วนประกอบในสูตรอาหาร และอาหารหยาบเป็น อาหารหมักจากผลพลอยได้จากโรงงานแปรรูปสับปะรด ได้แก่ กากเยื่อใยที่ได้จากการผลิตโบรมีเลนและเปลือกสับปะรดจาก โรงงานผลิตสับปะรดกระบ๋อง โดยทำการเลี้ยงโคทดลองไปจนได้น้ำหนักประมาณ 650 กิโลกรัม จากนั้นนำโคขุนลูกผสมชาโรเลส์ส่ง โรงฆ่ามาตรฐาน และบ่มซากเป็นเวลา 7 และ 14 วัน เพื่อศึกษาคุณภาพซากและคุณภาพเนื้อ การศึกษาประกอบด้วย 3 การทดลอง คือ การทดลองที่ 1 การศึกษาย้อนหลังเกี่ยวกับพัฒนาการทางด้านคุณภาพซาก เกรดซาก และผลตอบแทนที่ได้จากซากโคขุนของ สมาชิกสหกรณ์เครือข่ายโคเนื้อ จำกัด จากการรวบรวมและวิเคราะห์ข้อมูลย้อนหลัง 5 ปี แต่สามารถรวบรวมข้อมูลได้จริงเพียง 3 ปีย้อนหลัง เนื่องจากไม่สามารถกู้คืนข้อมูลก่อนหน้านี้จากเครื่องคอมพิวเตอร์ของสหกรณ์ฯ การทดลองที่ 2 การศึกษา สมรรถภาพการผลิต การย่อยได้ของโภชนะ ต้นทุนค่าอาหารในการเพิ่มน้ำหนักของโคขุนต่างสายพันธุ์ ลักษณะกระเพาะรูเมน ลักษณะสัณฐานวิทยาของลำไส้เล็ก คุณภาพซาก และผลตอบแทนจากเกรดซาก ของโคขุนลูกผสมพันธุ์ชาโรเลส์ และการทดลองที่ 3 การศึกษาคุณภาพเนื้อทางกายภาพและทางเคมี และองค์ประกอบของกรดไขมันในเนื้อโคขุนลูกผสมพันธุ์ชาโรเลส์ ลักษณะคุณภาพ เนื้อทางกายภาพและทางเคมีบางประการของกล้ามเนื้อสันนอก และอิทธิพลของระยะเวลาการบ่มต่อความนุ่มของเนื้อ การละลายได้ ของคอลลาเจน การสลายตัวของโทรโปนิน ที่ องค์ประกอบของกรดไขมัน และการเกิดปฏิกิริยาออกซิเดชั่นของไขมันในเนื้อโค ลูกผสมพันธุ์ชาโรเลส์ทดลองที่ได้รับอาหารที่มีส่วนประกอบของผลพลอยได้และผลิตผลร่วมของสับปะรด จากโรงงานอุตสาหกรรม ผลิตผลิตภัณฑ์สับปะรด ผลการศึกษาพบดังนี้

การทดลองที่ 1 สามารถแบ่งกลุ่มฟาร์มที่เป็นสมาชิกของสหกรณ์ฯ ออกได้เป็น 4 ขนาด คือ ฟาร์มขนาดใหญ่มาก (ผลิต 4500 ตัว/ปี) ฟาร์มขนาดใหญ่ (ผลิต 101-400 ตัว/ปี) ฟาร์มขนาดกลาง (ผลิต 30 – 100 ตัว/ปี) และฟาร์มขนาดเล็ก (ผลิต <30 ตัว/ปี) ทั้งนี้ฟาร์มขนาดใหญ่มากเป็นฟาร์มที่ใช้ผลพลอยได้และผลิตผลร่วมของสับปะรดในการเลี้ยงโคเป็นหลัก โดยโคลูกผสมชา โรเลส์และโคลูกผสมวากิวในฟาร์มขนาดใหญ่มากมีระดับคะแนนไขมันแทรกที่สูงที่สุด และโคลูกผสมวากิว (3.57) มีค่าระดับคะแนนไขมันแทรกที่สูงที่สุด และโคลูกผสมวากิว (3.57) มีค่าระดับคะแนนไขมันแทรกสูงกว่าโคลูกผสมชาโรเลส์ (1.91) ส่งผลให้ราคารับซื้อซึ่งเพิ่มขึ้นตามระดับคะแนนไขมันแทรกที่สูงขึ้น สำหรับการศึกษา พัฒนาการด้านคุณภาพชาก เกรดชาก และผลตอบแทนจากชากโคขุนของสมาชิกสหกรณ์ฯ โดยใช้ข้อมูลย้อนหลัง 3 ปี พบว่าโคลูกผสมวากิวมีคะแนนไขมันแทรกที่มากขึ้นตามปีที่ศึกษา ส่งผลให้ราคารับซื้อต่อซากและราคารับซื้อต่อน้ำหนักตัวสูงขึ้นตามไปด้วย โดยที่โคลูกผสมวากิวมีอายุส่งฆ่าสูงกว่าโคลูกผสมชาโรเลส์ และทั้งโคลูกผสมชาโรเลส์และโคลูกผสมวากิวมีแนวโน้มที่เกษตรกรผู้เลี้ยง ส่งโคเข้าฆ่าที่น้ำหนักตัวสูงมากกว่าในอดีต ซึ่งสอดคล้องกับผลการศึกษาในโคทดลองในฟาร์มขนาดใหญ่มาก ที่โคลูกผสมชาโรเลส์มี ระดับคะแนนไขมันแทรก น้ำหนักมีชีวิต น้ำหนักซากก่อนตัดแต่ง และปริมาณเนื้อขึ้นส่วนใหญ่ มีค่าสูงกว่าค่าที่ได้จากข้อมูล ย้อนหลัง 3 ปี อย่างซัดเจน ในขณะที่โคลูกผสมชาโรเลส์ของทุกขนาดฟาร์มมีการเปลี่ยนแปลงเล็กน้อยและเป็นไปในทิศทางเดียวกัน

ของคุณภาพซาก เกรดซาก และผลตอบแทนจากซากโคขุน ในช่วงเวลาย้อนหลัง 3 ปี ของการศึกษานี้ ยกเว้นฟาร์มขนาดเล็กที่มี แนวโน้มผลิตโคลูกผสมชาโรเลส์ที่มีคุณภาพด้อยลง ส่งผลให้ผลตอบแทนจากการรับซื้อโคลดลง ส่วนการผลิตโคลูกผสมวากิว พบว่า ฟาร์มขนาดใหญ่มากผลิตโคที่มีคะแนนไขมันแทรกได้สูงขึ้นและผลตอบแทนจากการรับซื้อโคสูงขึ้นตามไปด้วย ถึงแม้จะมีแนวโน้ม ของ %ชากอุ่น และ %ชากเย็น ลดลงเหมือนกับฟาร์มขนาดเล็กก็ตาม ทั้งนี้ฟาร์มทุกขนาดที่ทำการศึกษานี้มีการผลิตโคลูกผสมวากิว ที่มีอายุมากขึ้น สำหรับข้อมูลการตัดแต่งขึ้นส่วนของซากโคลูกผสมวากิว โดยภาพรวมผลเป็นไปในทิศทางเดียวกันกับโคลูกผสมชา โรเลส์ กล่าวคือ โคขุนคุณภาพจากฟาร์มขนาดใหญ่มากมีน้ำหนักซากโค ปริมาณเนื้อชิ้นส่วนใหญ่ และไขมัน ที่สูงกว่าฟาร์มขนาด กลางและขนาดเล็ก และสัดส่วนของเนื้อชิ้นส่วนใหญ่ เศษเนื้อรวม กระดูก และไขมัน มีปริมาณที่ใกล้เคียง กันในแต่ละขนาดฟาร์ม

การทดลองที่ 2 การศึกษาสมรรถภาพการผลิต การย่อยได้ของโภชนะ ต้นทุนค่าอาหารในการเพิ่มน้ำหนักของโคขุน ลูกผสมต่างสายพันธุ์ คุณภาพชาก ลักษณะกระเพาะรูเมน ลักษณะสัณฐานวิทยาของลำไส้เล็ก และผลตอบแทนจากเกรดชากของ โคขุนลูกผสมชาโรเลส์ เมื่อพิจารณาสมรรถภาพการผลิตและการย่อยได้ของโภชนะในอาหารของโคทดลองตลอดระยะเวลาการ เลี้ยงในช่วงน้ำหนัก 400-650 กิโลกรัม พบว่าโคลูกผสมทั้งสองกลุ่มทดลองมีน้ำหนักตัวเริ่มต้นและสิ้นสุดไม่แตกต่างกันทาง สถิติ (P>0.05) โดยที่โคลูกผสมวากิวมีน้ำหนักตัวเพิ่มขึ้น (263.8±29.6 กิโลกรัม) สูงกว่ากลุ่มโคลูกผสมชาโรเลส์ (243.5±36.1 กิโลกรัม) เล็กน้อย แต่โคลูกผสมชาโรเลส์มีอัตราการเจริญเติบโตสูงกว่า (P<0.01) โคลูกผสมวากิว (0.88±0.1 และ 0.71±0.1 กิโลกรัม/วัน ตามลำดับ) ทั้งนี้เนื่องจากโคลูกผสมวากิวใช้ระยะเวลาการเลี้ยงจนถึงน้ำหนัก 650 กิโลกรัม นานกว่าโคลูกผสมชา โรเลส์ (370 และ 278 วัน ตามลำดับ) เมื่อพิจารณาปริมาณอาหารที่กินทั้งหมด พบว่าโคลูกผสมชาโรเลส์มีปริมาณการกิน อาหารขันและอาหารหยาบทั้งในรูปน้ำหนักสดและน้ำหนักแห้งต่ำกว่า (P<0.01) โคลูกผสมวากิว ในขณะที่โคทั้งสองกลุ่มมี ปริมาณการกินได้วัตถุแห้งของอาหารและปริมาณการกินได้อินทรีย์วัตถุของอาหาร ไม่แตกต่างกันทางสถิติ (P>0.05) อย่างไรก็ ตามโคลูกผสมชาโรเลส์มีประสิทธิภาพการเปลี่ยนอาหารเป็นน้ำหนักทั้งในรูปของน้ำหนักสดและน้ำหนักแห้งของอาหารดีกว่า (P<0.01) โคลูกผสมวากิว ส่งผลให้โคลูกผสมชาโรเลส์มีต้นทุนค่าอาหารทั้งหมดในการขุนและต้นทุนค่าอาหารในการเพิ่ม น้ำหนักตัวต่ำกว่า (P<0.01) โคลูกผสมวากิว (23,681.70<u>+</u>741.70, 30,615.30<u>+</u>921.83 บาท/ตัว และ 99.10<u>+</u>13.90, 117.30±12.10 บาท/กิโลกรัมน้ำหนักเพิ่ม ตามลำดับ) โคลูกผสมชาโรเลส์ทดลองมีปริมาณซากอุ่นร้อยละ 59.52 ซากเย็นร้อยละ 58.05 เนื้อชิ้นส่วนใหญ่ร้อยละ 65.01 กระดูกร้อยละ 10.59 และไขมันร้อยละ 9.66 มีคะแนนไขมันแทรกเฉลี่ย 1.87 ได้ราคารับซื้อ 118.20 บาพ/กิโลกรัมน้ำหนักมีชีวิต หรือ 203.67 บาพ/กิโลกรัมน้ำหนักซาก ได้ผลตอบแทนทั้งหมดเฉลี่ย 75,528.07 บาพ/ตัว ผล การประเมินลักษณะกระเพาะรูเมนของซากโคลูกผสมชาโรเลส์ทดลอง พบว่ามีสัดส่วนของโคที่มีลักษณะกระเพาะรูเมนที่ปกติร้อยละ 64.29 ลักษณะสัณฐานวิทยาของลำไส้เล็ก ทั้งส่วนต้น ส่วนกลาง และส่วนปลาย มีค่าความสูงของวิลไล ความลึกของคริปต์ และ อัตราส่วนความสูงของวิลไลต่อความลึกของคริปต์ มากที่สุดที่ลำไส้เล็กส่วนกลาง โดยความลึกของคริปต์ไม่มีความแตกต่างกัน ระหว่างลำไส้เล็กทั้งสามส่วน ในขณะที่ความสูงของวิลไลของลำไส้เล็กส่วนกลางมีค่ามากกว่าลำไส้เล็กส่วนต้นและส่วนปลาย (P<0.05) ในขณะที่อัตราส่วนความสูงของวิลไลต่อความลึกของคริปต์ของลำไส้เล็กส่วนกลางมีค่ามากกว่าลำไส้เล็กส่วนต้น (P<0.05) แต่ไม่มีความแตกต่าง (P>0.05) กับลำใส้เล็กส่วนปลาย ผลการศึกษาการย่อยได้ของโภชนะในโคทดลองทั้งสองกลุ่ม พบว่าที่ น้ำหนักตัว 400 กิโลกรัม โคลูกผสมชาโรเลส์และโคลูกผสมวากิวมีการย่อยได้ของวัตถุแห้ง อินทรีย์วัตถุ เยื่อใยที่ละลายใน สารละลายที่เป็นกลาง เยื่อใยที่ละลายในสารละลายที่เป็นกรด และพลังงานไม่มีความแตกต่างกันทางสถิติ (P>0.05) ในขณะที่ โคลูกผสมวากิวมีการย่อยได้ของไขมันสูงกว่า (P<0.05) โคลูกผสมชาโรเลส์ที่น้ำหนักตัว 500 และ 600 กิโลกรัม ในขณะที่ พบว่าโคลูกผสมชาโรเลส์มีการย่อยได้ของโปรตีนหยาบสูงกว่าโคลูกผสมวากิวที่น้ำหนักตัว 500 กิโลกรัม (P<0.05)

การทดลองที่ 3 การศึกษาคุณภาพเนื้อบางประการทางกายภาพและทางเคมี และองค์ประกอบของกรดไขมันในเนื้อโคขุน ลูกผสมชาโรเลส์ที่ได้รับอาหารที่มีส่วนประกอบของผลพลอยได้และผลิตผลร่วมของสับปะรด จากโรงงานอุตสาหกรรมผลิต ผลิตภัณฑ์สับปะรด ผลการศึกษาพบว่า กล้ามเนื้อสันนอกโคลูกผสมชาโรเลส์ที่ผ่านการบ่มซากไว้เป็นระยะเวลา 7 วัน มีค่าเฉลี่ย องค์ประกอบทางเคมีของเนื้อดังนี้ ความชื้นร้อยละ 67.89 วัตถุแห้งร้อยละ 32.11 อินทรียวัตถุร้อยละ 98.89 โปรตีนหยาบ ร้อยละ 21.52 ไขมันร้อยละ 9.28 และเถ้าร้อยละ 1.11 มีค่าเฉลี่ย pH 5.47 อุณหภูมิเนื้อ 12.28 องศาเซลเซียส ค่าสีของเนื้อ L* 42.60 a* 19.47 และ b* 16.72 ในขณะที่ระยะเวลาการบ่มไม่มีอิทธิพลต่อค่าการสูญเสียน้ำระหว่างการบ่ม และค่าการ สูญเสียน้ำระหว่างการปรุงสุก แต่พบว่ามีอิทธิพลต่อค่าแรงตัดผ่านเนื้อ (P < 0.01) โดยระยะการบ่มที่ 21 วัน มีค่าแรงตัดผ่านเนื้อต่ำ กว่าระยะการบุ่มที่ 7 และ 14 วัน ระยะเวลาการบุ่มไม่มีผลต่อการละลายได้ของปริมาณคอลลาเจน (P > 0.05) แต่มีอิทธิต่อการ สลายตัวของโทรโปนิน ที่ โดยพบว่า ปริมาณโทรโปนิน ที่ ขนาด 37 กิโลดาลตัน ที่ระยะการบุ่ม 7 วัน มีแนวโน้มสูงที่สุด ในขณะที่ ระยะการบ่ม 21 วัน มีแนวโน้มต่ำที่สุด ส่วนผลผลิตที่ได้จากการย่อยสลายของโทรโปนิน ที ขนาด 30 กิโลดาลตัน นั้น พบว่า มี ์ ปริมาณสูงสุดที่ระยะการบ่ม 21 วัน (P < 0.01) ระยะเวลาการบ่มไม่มีผลต่อสัดส่วนของกรดไขมันส่วนใหญ่ในเนื้อโคลูกผสมพันธุ์ ชาโรเลส์ทดลอง (P>0.05) ยกเว้นปริมาณกรดไขมัน Palmitoleic acid (C16:1) และ Linoleic acid (C18:2n6c) โดยเมื่อ ระยะการบุ่มที่นานขึ้นจะมีปริมาณกรดไขมัน C16:1 เพิ่มขึ้น (P<0.01) ซึ่งมีค่า 2.29, 4.57 และ 4.70 เปอร์เซ็นต์ ตามลำดับ ในขณะที่กรดไขมัน C18:2n6c มีปริมาณลดลง (P<0.01) ซึ่งมีค่า 3.04, 0.69 และ 0.82 เปอร์เซ็นต์ ในเนื้อที่มีระยะเวลาการ บุ่ม 7 14 และ 21 วันตามลำดับ สำหรับการเกิดปฏิกิริยาออกซิเดชั่นของไขมันในเนื้อโคทดลองที่ระยะเวลาการบุ่ม 7 และ 14 วัน ใช้วิธีการวัด 2 เทคนิค คือ 2-Thiobarbituric Acid Reaction Substances (TBARs) และ การวัดค่า Tetradecanal, Pentadecanal และ Hexadecanal ด้วยเครื่อง Gas Chromatography / Mass Selective Detector (GCMS) พบว่า เมื่อ ระยะเวลาการบ่มเนื้อนานขึ้นค่า TBARs จะเพิ่มขึ้น (P<0.01) ซึ่งมีค่า 0.06 และ 0.69 เปอร์เซ็นต์ ตามลำดับ ในขณะที่ ระยะเวลาการบ่มไม่มีผลต่อปริมาณของ Tetradecanal, Pentadecanal และ Hexadecanal ในเนื้อ (P>0.05) จากการวิจัยครั้งนี้สรุปได้ว่าสามารถใช้ผลพลอยได้จากโรงงานแปรรูปสับปะรดเป็นแหล่งอาหารหยาบ ร่วมกับการใช้ผลิตผลร่วมของ สับปะรดในสูตรอาหารข้นเลี้ยงโคขุนคุณภาพ ส่งผลให้ 1) โคขุนลูกผสมวากิวมีระดับไขมันแทรกและผลตอบแทนสูงกว่าโคลูกผสมชา โรเลส์ 2) โคลูกผสมชาโรเลส์มีอัตราการเจริญเติบโต และการย่อยได้ของโปรตีนหยาบสูงกว่า แต่มีต้นทุนค่าอาหารทั้งหมดในการ เลี้ยงและการใช้อาหารในการเพิ่มน้ำหนักตัวต่ำกว่าโคลูกผสมวากิว ในขณะที่โคลูกผสมวากิวมีการย่อยได้ของไขมันสูงกว่าโคลูกผสม ชาโรเลส์ โดยไม่ส่งผลเสียต่อลักษณะกระเพาะรูเมนและลักษณะสัณฐานวิทยาของลำไส้เล็กของโคลูกผสมชาโรเลส์ และ 3) สำหรับ เนื้อโคลูกผสมชาโรเลส์ ระยะเวลาการบ่มเนื้อไม่มีผลต่อการสูญเสียน้ำระหว่างการบ่ม และค่าการสูญเสียน้ำระหว่างการปรุงสุก แต่ ทำให้ค่าแรงตัดผ่านเนื้อลดลง ระยะเวลาการบ่มไม่มีผลต่อปริมาณกรดไขมันส่วนใหญ่ในเนื้อ แต่มีผลต่อการเกิดปฏิกิริยาออกซิเดชั่น ของไขมันมากขึ้น โดยมีค่า TBARs สูงขึ้น ดังนั้นจากการวิจัยครั้งนี้ได้นวัตกรรมระบบการให้อาหารที่ใช้ผลพลอยได้จากโรงงาน แปรรูปสับปะรด (เปลือกและเหง้า) เป็นแหล่งอาหารหยาบ ร่วมกับการใช้ผลิตผลร่วมของสับปะรด (แป้ง) ที่ได้จากโรงงานผลิต เอนไซม์โบรมีเลนในสูตรอาหารข้นเลี้ยงโคขุนคุณภาพ โดยไม่ส่งผลกระทบต่อสมรรถภาพการผลิต การย่อยได้ของโภชนะ คุณภาพซากและคุณภาพเนื้อของโคพร้อมทั้งส่งผลให้ได้อัตลักษณ์ของเนื้อโคขุนคุณภาพที่มีสีเนื้อสว่างและมีปริมาณไขมันใน เนื้อสูง

Abstract

The current study was aimed to investigate influence of feeding pineapple by-products (peel and rhizome) from pineapple processing factory as roughage source diet and co-products of pineapple (starch) from a factory producing bromelain enzyme extraction from pineapple as a main ingredient in a concentrate diet for quality beef cattle. The study aspects consist of 1) development of carcass quality, carcass grading and return from beef carcasses obtained from farm members of the Beef Cluster Cooperative Limited (BCC) from a retrospective study of 5 years from the BCC database, 2) production performance, nutrient digestibility, feed cost per gain of Charolais and Wagyu crossbred beef cattle, gross rumen pathology, small intestine histology, carcass quality and return from carcasses of Charolais crossbred beef cattle, 3) some physical and chemical aspects of meat quality, fatty acid content, and lipid oxidation of beef from Charolais crossbred beef steers. The study used 2 crossbred beef steers; Charolais (Charolais with > 50% \times Brahman) and Wagyu (Wagyu with > 50% \times Charolais x Brahman) crossbred, where 15 for each crossbred were used. Initial body weight of experimental beef steers was approximately 400 kg. All experimental beef steers were ad libitum offered with in house concentrate diet containing 14% crude protein (CP) and 78% total digestible nutrients (TDN) by adding co-products of pineapple (starch) from factory which produced bromelain enzyme extraction from pineapple as a main ingredient, and with roughage diet as silage made from pineapple by-products from the pineapple processing factory (pineapple fiber left-over from bromelain enzyme extraction factory and pineapple peels from pineapple can factory). The experiment lasted until the experimental beef steers had a body weight of approximately 650 kg. Subsequently, the experimental Charolais crossbred beef steers were slaughtered at a standard slaughterhouse and then beef carcasses were chilled for 7 and 14 days for carcass and meat quality investigation. The present study consists of 3 experiments, which are the experiment 1; the retrospective study for the development of carcass quality, carcass grading and return from beef cattle carcasses obtained from farm members of the Beef Cluster Cooperative Limited (BCC) for a 5 years data set by data collecting and information analysis, but the data can be collected for 3 years, since previous data cannot be recovered from the BCC's computer, the experiment 2; the study on production performance, nutrient digestibility, feed cost per gain of Charolais and Wagyu crossbred beef cattle, gross rumen pathology, small intestine histology, carcass quality and return from beef carcasses of Charolais crossbred cattle, the experiment 3; the study on some physical and chemical aspects of meat quality, and influence of beef ageing periods on meat tenderness, collagen solubility, troponin T degradation, fatty acid content, and lipid oxidation of beef in experimental Charolais crossbred steer fed with diets containing by-products and co-products from the pineapple factory. The results were found as the followings.

The experiment 1; The beef farm members of the BCC can be classified as 4 farm sizes; 1) very big fam size (producing 4,500 beef/year) 2) big farm size (producing 101-400 beef/year) 3) medium farm size (producing 30-100 beef/year) and 4) small farm size (producing <30 beef/year). By-products and co-products of pineapple were used in the very big farm as main diet sources. Both Charolais and Wagyu crossbred beef carcasses in the very big farm had the highest value of marbling score. Wagyu crossbred beef carcasses (3.57) had higher marbling score

than that of Charolais crossbred beef carcasses (1.91), resulting in the increase of returns for the higher marbling score. For the development of carcass quality, carcass grading and return from beef cattle carcasses obtained from farm members of the BCC from the retrospective study of 3 years from the BCC database, Wagyu crossbred beef carcasses had higher marbling score with studied year, resulting in higher buying price per carcass and per body weight. Wagyu crossbred beef cattle was delivered to the slaughterhouse at a higher age than Charolais crossbred beef cattle. However, beef farmers tend to deliver both Charolais and Wagyu crossbred beef cattle to the slaughterhouse at higher body weight compared to the past year. This is in accordance to the results from the experimental beef cattle in the very big farm size having obviously higher marbling score, live body weight, carcass weight before cutting and whole sale cut, compared to those obtained from the retrospective data of 3 years. In the meantime, Charolais crossbred beef cattle in all farm sizes had only minor changes for carcass quality, carcass grading and return from beef carcasses during the 3 year retrospective study, however the small farm size had a tendency of lower quality of beef cattle, resulting in lower return from beef carcasses. In the very big farm size, Wagyu crossbred beef cattle had higher marbling score and return from beef carcasses, although there was a trend of lower % warm and % cold carcasses, similar to those in the small farm size. All beef farm size produced Wagyu crossbred beef cattle with higher age. For beef cutting information, generally Wagyu crossbred beef carcasses had similar changes to Charolais crossbred beef cattle in terms of higher beef carcasses, whole sale cut and fat content found in the very big farm size when compared to medium and small farm sizes while there are no difference for the proportion of whole sale cut, lean, total scrap, bone and fat found in all beef farm sizes.

The experiment 2; The study on production performance, nutrient digestibility, feed cost per gain of Charolais and Wagyu crossbred steers, carcass quality, gross rumen pathology, small intestine histology and return from beef carcasses of Charolais crossbred cattle. When considering production performance and nutrient digestibility of the experimental beef steers during rearing period; between body weight 400 kg to 650 kg, the results showed that the initial weight and final weight were not significantly different (P>0.05) between Charolais crossbred and Wagyu crossbred steers. However, Wagyu crossbred steer (263.8±29.6 kg) had a slightly higher value of body weight gain than that of Charolais crossbred steer (243.5±36.1 kg), whereas Charolais crossbred steer had significantly higher (P<0.01) growth rate than Wagyu crossbred steer (0.88±0.1 and 0.71±0.1 kg/day, respectively) as Wagyu crossbred steer consumed more during the rearing period than Charolais crossbred steer (370 and 278 days, respectively). When total feed intake was considered, Charolais crossbred steer had lower (P<0.05) intake for both concentrate and roughage as both fresh and dry basis feed from those of Wagyu crossbred steer. However, total feed intake of dry matter and organic matter had no difference (P>0.05) between both experimental groups. In the meantime, Charolais crossbred steer has a better efficiency of feed conversion ratio (P<0.01) than Wagyu crossbred steer for both fresh and dry basis of feed, resulting in Charolais crossbred steer has lower total feed cost $(23,681.70\pm741.70$ and $30,615.30\pm921.83$ Baht/cattle) and feed cost per gain (FCG) (99.10 ± 13.90) and 117.30±12.10 Baht/kg) (P<0.01) than Wagyu crossbred steer. The results have shown that Charolais crossbred steer had 59.52% hot carcass, 58.05% chilled carcass, 65.01% whole sale cut, 10.59% bone content

and 9.66% fat content, They have an average marbling score of 1.87, buying price of 118.20 Baht/BW kg which equals to 203.67 Baht/kg of carcass weight and total returns of 75,528.07 Baht/cattle. For the results of gross rumen pathology, the proportion of steers having normal gross rumen morphology was 64.29%. For the results of small intestine histology, the highest values of villous height (VH), crypt depth (CD) and ratio of VH:CD were found at the jejunum part from all 3 studied parts of the small intestine (duodenum, jejunum and ileum). The VH of the jejunum part had a higher (P<0.05) value than that of the duodenum and ileum parts while the ratio of VH:CD of the jejunum part had a higher (P<0.05) value than that of duodenum part but there was no difference (P>0.05) in value from that of ileum part. For efficiency of nutrient digestibility of both experimental Charolais and Wagyu crossbred beef steers, the results have shown that there were no difference (P>0.05) for digestibility of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF) and gross energy (GE) at the period of 400 kg BW, while Wagyu crossbred steer had higher fat digestibility (P<0.05) than Charolais crossbred steer at the period of 500 and 600 kg BW, conversely Charolais crossbred steer had higher crude protein digestibility (P<0.05) than Wagyu crossbred steer at the period of 500 kg BW.

The experiment 3; The study on some physical and chemical aspects of meat quality and fatty acid content for beef in Charolais crossbred steer. The results of nutritive values for Longissimus dorsi (LD) muscle of experimental Charolais crossbred steer were found that chemical composition of LD muscles with ageing periods at 7 day contained moisture (67.89%), dry matter (32.11%), organic matter (98.89%), crude protein (21.52%), ether extract (9.28%) and ash (1.11%), including values of pH 5.47, beef temperature of 12.28 degree celcius, and meat colour of L* 42.60, a* 19.47 and b* 16.72. The results of the influence of ageing periods on meat tenderness, collagen solubility, troponin-T degradations, fatty acid content and lipid oxidation of beef from Charolais crossbred steer were found, as mentioned in the following. Ageing period had no effect on purge loss, and cooking loss while shear force value at 21 days of ageing was significantly lower than that of ageing period at 7 and 14 days (P<0.01). The ageing period did not affect collagen solubility in the present study (P>0.05). The content of troponin T (37 kDa) at 7 days of ageing tend to be higher than that of 21 days while the degradation product (30 kDa) was the highest at 21 days of ageing (P<0.01). The ageing period did not affect the content of main fatty acids in beef used for the current study (P>0.05), except for Palmitoleic acid (C16:1) and Linoleic acid (C18:2n6c). As ageing period increased, the content of C16:1 was elevated (P<0.01) to 2.29%, 4.57% and 4.70% at ageing period of 7, 14 and 21 days, respectively, while the content of C18:2n6c was depressed (P<0.01) to 3.04%, 0.69% and 0.82% at 7, 14 and 21 days ageing period, respectively. For lipid oxidation results of beef with ageing periods of 7 and 14 days by using 2 techniques of 2-Thiobarbituric Acid Reaction Substances (TBARs), and measurements of Tetradecanal, Pentadecanal and Hexadecanal by the use of gas chromatography with Mass Selective Detector (GCMS), the results have demonstrated that when ageing period increased, the TBARs values were increased (P<0.01) to 0.06% and 0.69% for 7 and 14 days ageing period, respectively, whereas there was no effect of ageing period on contents of Tetradecanal, Pentadecanal and Hexadecanal in beef (P>0.05).

The conclusion of the present study could be that using pineapple by-products from pineapple factory as a roughage source diet and co-products of pineapple as feed for quality beef cattle resulted in 1) Wagyu crossbred beef cattle having higher marbling score and higher return when compared with Charolais crossbred beef cattle, 2) higher growth rate and crude protein digestibility, but lower total feed cost and feed cost per gain in Charolais crossbred beef cattle, whereas higher fat digestibility found in Wagyu crossbred beef cattle, including no any adverse effects on gross rumen morphology and villous morphology of small intestine in Charolais crossbred beef cattle, and 3) for Charolais crossbred beef, there were no effect of beef ageing period on purge loss, cooking loss for beef and content of main fatty acids in beef, but results in lower shear force value and higher lipid oxidation as TBARs value increased. Therefore, from this research, the innovation of rearing quality beef cattle system by feeding pineapple by-products (peel and rhizome) from pineapple processing factory as roughage source diet and co-products of pineapple (starch) from a factory producing bromelain enzyme extraction from pineapple as a main ingredient in a concentrate diet shows that no affecting to production performance, nutrient digestion, carcass and meat quality of beef cattle as well as resulting in the identity of quality beef with a bright color and high fat content of meat.