บทคัดย่อ

การศึกษาติดตามผลกระทบของฝุ่นต่อสมรรถนะระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์ ของประเทศไทยอย่างต่อเนื่อง

อนุภาคฝุ่นและสิ่งสกปรกที่สะสมบนแผงเซลล์แสงอาทิตย์เป็นหนึ่งในปัจจัยที่ทำให้การผลิตไฟฟ้าของเซลล์ แสงอาทิตย์ลดลง เนื่องจากการลดทอนการส่องผ่านของแสง โครงการนี้มีวัตถุประสงค์เพื่อพัฒนาองค์ความรู้ ในการจัดการฝุ่นที่เกาะบนแผงเซลล์แสงอาทิตย์ที่ติดตั้งในพื้นที่ภูมิอากาศร้อนชื้น และศึกษาผลกระทบของฝุ่น ต่อสมรรถนะระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์ของประเทศไทยอย่างต่อเนื่อง โดยการเก็บข้อมูลการสะสม ฝุ่นบนกระจกตัวอย่างจากโรงไฟฟ้าเซลล์แสงอาทิตย์จำนวน 11 แห่ง ในเขตภาคกลาง ภาค ตะวันออกเฉียงเหนือ ภาคตะวันออก และภาคตะวันตกของประเทศไทยเป็นระยะเวลา 1 ปี เพื่อศึกษา พฤติกรรมการสะสมฝุ่นบนแผงเซลล์แสงอาทิตย์ อันประกอบด้วยสัดส่วนพื้นที่ที่มีฝุ่นบนวัสดุโดยใช้โปรแกรม ประมวลภาพถ่ายจากกล้องจุลทรรศน์ (Optical Microscope) การสูญเสียการส่องผ่านของแสงโดยใช้ เครื่องวัดค่าการดูดกลืนแสง (Visible Spectrophotometer) ลักษณะของฝุ่นโดยใช้กล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope, SEM) และองค์ประกอบทางเคมีของฝุ่นโดยใช้ เทคนิคการวัดพลังงานคลื่นของการเรืองรังสีเอ็กซ์ (Energy Dispersive x-ray Spectroscopy, EDS) นอกจากนั้นยังศึกษาการลดลงของประสิทธิภาพทางไฟฟ้าอันเนื่องมาจากการสะสมของฝุ่น ซึ่งพบว่าใน ระยะเวลา 1 ปี ฝุ่นมีการสะสมสูงสุดในช่วงฤดูหนาวปลายปีถึงต้นปีต่อไป (เดือนตุลาคมต่อเนื่องถึงเดือน มกราคม) และสะสมมากในฤดูร้อน (เดือนมีนาคมถึงพฤษภาคม) โดยภาคตะวันออกเฉียงเหนือมีการสะสมฝุ่น สูงที่สุด ภาคกลางและภาคตะวันออกมีการสะสมฝุ่นใกล้เคียงกัน และภาคตะวันตกมีการสะสมน้อยที่สุด ซึ่ง อนุภาคฝุ่นที่พบส่วนใหญ่มีขนาด 10-15 ไมโครเมตร การศึกษาชนิดของฝุ่นพบว่าส่วนใหญ่เป็นฝุ่นจากหิน ดิน และทราย ซึ่งมาจากการไถพลิกหน้าดินเพื่อเก็บเกี่ยวและเพาะปลูกทางการเกษตร และการขนส่ง (โดยเฉพาะ พื้นที่ถนนลูกรัง) รวมทั้งมีฝุ่นที่เป็นเส้นใยพืชที่มาจากการเก็บเกี่ยวและการเผาไหม้ ได้แก่ ฟางข้าว ข้าวโพด มันสำปะหลัง และอ้อย เมื่อพิจารณาฝุ่นที่มีเฉพาะพื้นที่พบว่าจังหวัดสระบุรีพบฝุ่นจากหินปูนค่อนข้างมาก เนื่องจากมีการระเบิดภูเขาเพื่อการผลิตปูนซิเมนต์ ส่วนจังหวัดพระนครศรีอยุธยาและลพบุรีพบฝุ่นจากโรงกลั่น น้ำมันและการระเบิดภูเขา ตามลำดับ ในอีกทางหนึ่งการประเมินประสิทธิภาพไฟฟ้าที่ลดลงเนื่องจากการ สะสมฝุ่น (Soiling Loss) พบว่าโรงไฟฟ้าเซลล์แสงอาทิตย์ในภาคตะวันออกเฉียงเหนือมีค่ากระแสไฟฟ้าลดลง จากการสะสมฝุ่น 5% ต่อเดือน (ก.พ. 2562) ส่วนในภาคกลางค่ากระแสไฟฟ้าลดลง 6% จากการสะสมฝุ่นเป็น เวลา 2 เดือนครึ่ง (ธ.ค. 2561 - ก.พ. 2562) ซึ่งผลการศึกษานี้สอดคล้องกับการสะสมฝุ่นที่มีมากในช่วงปลายปี ถึงต้นปีตามที่กล่าวข้างต้น และปริมาณการสะสมฝุ่นในภาคตะวันออกเฉียงเหนือสูงกว่าภาคกลางจึงใช้เวลา การสะสมฝุ่นที่สั้นกว่าแต่ค่ากระแสไฟฟ้าลดลงในระดับใกล้เคียงกัน จากนั้นมีการศึกษาในช่วงที่ฝนตกต่อเนื่อง

(ตั้งแต่ ก.พ. จนถึงฤดูฝน 2562) พบว่าค่ากระแสไฟฟ้าลดลงไม่เกิน 3% เพราะฝนช่วยชำระฝุ่นออกจากแผง เซลล์แสงอาทิตย์ สำหรับการทำความสะอาดแผงเซลล์แสงอาทิตย์ในโรงไฟฟ้าพบว่าควรทำโดยใช้น้ำชำระล้าง ร่วมกับการใช้ผ้าหรือวัสดุที่นุ่มถูแล้วเช็ดด้วยผ้าให้แห้งเพื่อลดความชื้นที่เกิดจากการทำความสะอาด ส่วนจำนวนครั้งในการล้างทำความสะอาดแผง (โดยเฉพาะในฤดูแล้ง) ควรทำความสะอาดแผงเดือนละครั้ง เนื่องจากภูมิอากาศแบบร้อนชื้นเอื้อให้เกิดการสะสมและการจับตัวกันแน่นของฝุ่นจึงล้างทำความสะอาดได้ ยากขึ้น โดยที่หากมีฝนตกในช่วงเดือนใดสามารถเลื่อนการทำความสะอาดแผงออกไปได้ ทั้งนี้ขึ้นกับการ บริหารจัดการที่ดี ซึ่งจะส่งผลให้เกิดความคุ้มค่าในการล้างแผงกับไฟฟ้าที่ผลิตได้

ABSTRACT

A Study on the Impact of Dust on the Performance of Solar Power Systems in Thailand

Dust accumulation on photovoltaic (PV) modules is one of the factors that reduce the electrical energy production due to the decrease of optical transmittance. This project aims to earn the explicit knowledge about dust accumulation on PV modules in the tropical climate and study the impacts of dust accumulation on the performance of electrical energy production in Thailand. One-year dust accumulation on the glass slides from 11 PV power plants in northeastern, eastern, western and central regions of Thailand were monitored. The dust accumulation proportion on the glasses was investigated by an optical microscope. The transmission loss was determined by a visible spectrophotometer. A scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDS) was used to investigate the dust morphological appearances and chemical components. It was found that the highest dust accumulation occurred in the dry season (from October to the next January) and the high dust accumulation could be found in the hot season (from March to May). Considering the regions, the highest dust accumulation was found in the northeastern region. The eastern and central regions showed similarly medium dust accumulation, while the western region showed the lowest dust accumulation. The dust particle size was found in the range of 10-15 micrometers. From the study of dust types, the organic elements from the agricultural products such as rice, cassava, corn, and sugarcane; and inorganic elements from sands, clays, and rocks, were observed. For some particular provinces, Saraburi had high amount of calcium carbonate from the cement industry, while Ayutthaya and Lopburi had some dust from oil refineries and stone explosions, respectively. Decreasing electrical performance due to dust accumulation (soiling loss) was subsequently studied. In 2019, the power plants in the northeastern region had 5% soiling loss per month, while those in the central region had 6% of soiling loss per 2.5 months (December 2017 - February 2018). Fortunately, Thailand had continuous rainfall from February to the rainy season (June to September), resulting in the reduction of the soiling losses to lower than 3%. Finally, for the cleaning of PV modules in Thailand, the wet cleaning (by water with rubbing by cloth or a soft material) with subsequent wiping (by dry soft cloth) to remove the humidity is recommended. The cleaning of PV modules should be carried out once a month in the dry season, while the cleaning schedule can be postponed in the rainy season. This depends on

the balancing management of the return from electricity benefits and the PV module cleaning costs.