รหัสโครงการ RDG61T0014

ชื่อโครงการ ศึกษาสมบัติและการบำบัดส้นเท้าแตกของแผ่นโฟมรองฝ่าเท้าจากน้ำยาง

ธรรมชาติที่มียูเรียเป็นสารตัวเติม

ชื่อนักวิจัย ฮาซัน ดอปอ ซีตีไซยีดะห์ สายวารี สุกรี เส็มหมาด อัชมาน อาแด

สถาบัน มหาวิทยาลัยราชภัฏยะลา

ปึงบประมาณ 2561

บทคัดย่อ

งานวิจัยนี้ศึกษาการเตรียมฟองน้ำจากยางธรรมชาติผสมสารยูเรีย นำไปขึ้นรูปเป็นผลิตภัณฑ์ ต้นแบบแผ่นรองส้นเท้า และศึกษาสมบัติในการบำบัดอาการส้นเท้าแตกกับกลุ่มอาสาสมัครจำนวน 35 คน สำหรับสูตรที่เหมาะสมในการเตรียมฟองน้ำสำหรับแผ่นรองส้นเท้าในงานวิจัยชิ้นนี้ คือ โพแทสเซียมโอลีเอต 2 phr ซัลเฟอร์ 2.5 phr ZMBT 1.0 phr ZDEC 1.0 phr Wingstay-L 1.0 phr แคลเซียมคาร์บอเนต 30 phr TSPP 1.0 phr ยูเรีย 12 phr DPG 1.2 phr ซึ่งค์ออกไซด์ 2.0 phr SSF 1.2 phr ใช้เวลาในการตีฟองน้ำ 15 นาทีที่อุณหภูมิห้อง นำไปนึ่งที่อุณหภูมิประมาณ 60-90 องศา เซลเซียส และนำไปอบจนแห้งที่อุณหภูมิ 70 องศาเซลเซียส ให้ค่าความหนาแน่นและค่าความเค้นที่ ใช้ในการกดฟองน้ำให้ยุบตัว 25% เท่ากับ 0.80±0.002 g/cm³ และ 1.71±0.20 kPa ตามลำดับ นอกจากนี้ พบว่าสมบัติความหนาแน่นและความเค้นของฟองน้ำมีค่าเพิ่มขึ้นตามปริมาณแคลเซียม คาร์บอเนตที่เพิ่มสูงขึ้น แต่ถ้าเพิ่มปริมาณยูเรีย ค่าความหนาแน่นและความเค้นของฟองน้ำจะค่อย ๆ ลดลง เนื่องจากมีแก๊สคาร์บอนไดออกไซด์เกิดขึ้นมาก ทดสอบการบลูมของสารยูเรียโดยวิธีการวางชิ้น ทดสอบบนกระดาษชั่งสาร แล้ววิเคราะห์หาปริมาณยูเรียด้วยเทคนิค Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) โดยการสร้างกราฟมาตรฐานของยูเรียใน โหมด one peak และ one base เลือกเลขคลื่นที่เหมาะสม คือ 3332 cm $^{ ext{-}1}$ และ 3380 cm $^{ ext{-}1}$ ตามลำดับ ได้สมการเส้นตรงเป็น y = 0.0000549x + 0.00453 มีค่าความเป็นเชิงเส้น (R^2) เท่ากับ 0.9062 พบปริมาณยูเรียในตัวอย่างชิ้นทดสอบ 107.68±23.69 มิลลิกรัม บลูมออกมาบนกระดาษชั่ง สาร 10.91±2.96 มิลลิกรัม (10.14 %) ส่วนการคงอยู่ของยูเรียโดยวิธีการกดทับด้วยมวลเพื่อจำลอง การใช้งานจริงนั้นพบว่ายูเรียบลูมออกมา 53.56±11.26 มิลลิกรัม (31.28 %) สำหรับปริมาณยูเรียที่ คงอยู่ในผลิตภัณฑ์หลังจากผ่านการใช้งานจริงกับกลุ่มอาสาสมัคร 1 สัปดาห์จนถึง 4 สัปดาห์ ปริมาณ ยูเรียจะค่อย ๆ ลดลง คือ 133.41±11.87, 77.23±24.86, 59.21±20.56 และ 20.07±11.26 มิลลิกรัม ตามลำดับ (82.71, 47.88, 39.71 และ 16.16%) จากการทดลองใช้ผลิตภัณฑ์โฟมรองส้น เท้ากับกลุ่มอาสาสมัครบุคลากรทางการแพทย์และสาธารณสุข โรงพยาบาลศูนย์ยะลา ที่มีปัญหาส้น เท้าแตกจำนวน 35 คน ผลการวิเคราะห์ทางสถิติประกอบกับภาพถ่าย พบว่าสามารถบำบัดอาการส้น ้เท้าแตกหลังจากการใช้ 1 สัปดาห์ และผิวบริเวณส้นเท้าแตกจะดีขึ้นเรื่อย ๆ ในสัปดาห์ถัดไปเมื่อเทียบ กับกลุ่มอาสาสมัครอ้างอิงที่ใช้แผ่นโฟมที่ไม่มีสารยูเรีย โดยสอดคล้องกับผลการวิเคราะห์ทางสถิติด้วย t-test แบบ 2 กลุ่มตัวอย่างที่สัมพันธ์กัน ที่ระดับนัยสำคัญ 0.05 ในด้านความพึงพอใจโดยรวมต่อ

ผิวหนังบริเวณส้นเท้าก่อนใช้และหลังใช้ 4 สัปดาห์ พบว่าก่อนใช้และหลังใช้ 1 สัปดาห์ไม่แตกต่างกัน (t-prob=0.173) แต่หลังจากการใช้ 2, 3 และ 4 สัปดาห์ มีความแตกต่างอย่างมีนัยสำคัญ

คำสำคัญ: ยูเรีย น้ำยางธรรมชาติ โฟมยาง แผ่นรองส้นเท้า ส้นเท้าแตก

Project Code RDG61T0014

Project Title Study on the properties and cracked heels treatment of foam

insole made from urea filled natural rubber latex

Investigator Hasan Daupor, Sitisaiyidah Saiwari, Sukree Semmard and

Ajaman Adair

University Yala Rajabhat University

Project Year 2018

Abstract

This research studied preparation of natural rubber foam adding urea for producing heel pads prototype and further investigation a foot care treatment with 35 volunteers. It was found that the optimum latex compound formulation consisted of potassium oleate 2 phr, sulphur 2.5 phr, ZMBT 1.0 phr, ZDEC 1.0 phr, Wingstay-L 1.0 phr, CaCO₃ 30 phr, TSPP 1.0 phr, urea 12 phr, DPG 1.2 phr, ZnO 2.0 phr, and SSF 1.2 phr. They were blended for 15 minutes at room temperature. The obtained heel pads were vulcanized at 60-90°C and dried at 70 °C. The foam exhibited the optimum properties with 0.80±0.002 g/cm³ and 1.71±0.20 kPa of density and stress at 25% compressive, respectively. Moreover, the results also showed that the density and the stress of the prototype product increased with increasing calcium carbonate content. However, an increase of urea leaded to decreasing trends of both density and stress of the prototype products which is due mainly to a more releasing of carbon dioxide gas. The blooming out of urea was further determined by placing samples on weighing paper. The ATR-FTIR technique was used to determine the quantity of urea by generating calibration curve in one peak and one base modes at respective absorption band 3332 cm⁻¹ (absorption peak) and 3380 cm⁻¹ (peak base). The obtained linear equation was y = 0.0000549x + 0.00453 while the R^2 was 0.9062. It was found that 107.68±23.69 mg of urea was found on testing prototype product and 10.91±2.96 mg (10.14%) had bloomed out to weighing paper. The retention of urea in prototype was tested by mass pressing for the actual model, the result showed that about 53.56±11.26 mg (31.28 %) of urea was bloomed out. The prototype products were used by the volunteer for 1- 4 weeks. It was found that the urea contents slightly decreased to 133.41±11.87, 77.23±24.86, 59.21±20.56 and 20.07±11.26 mg (82.71, 47.88, 39.71 and 16.16%) from week 1-4, respectively. The practical satisfaction tests were done with 35 volunteers who have suffered with heel broken. The statistical analysis results combined with photo was found that the cracked heels were able to

VI

improve after having the treatment for 1 week and the skin have been better in the next week compared to that of using the controlled sample without urea. This was confirmed by the statistical analysis 2 type relation t-test at level of significance 0.05 in overall satisfaction before and after using for 4 weeks. The results found that there was no difference (t-prob=0.173) after 1 week of treatment but there were significant differences after treating for 2, 3 and 4 weeks.

Key word: Urea, Natural rubber latex, Rubber foam, Insole, Heel cracked