

บทคัดย่อ

การใช้เครื่องผงกลบปุ๋ยในอ้อยเป็นวิธีการที่สะดวกและรวดเร็ว ซึ่งปุ๋ยที่撒ลงไปนั้นจะถูกผงกลบลงในดินลึกประมาณ 15-40 ซม. อย่างไรก็ตามในปัจจุบันยังมีการศึกษาน้อยมากว่าควรใส่ปุ๋ยที่ระดับความลึกเท่าใด จึงจะเหมาะสมกับตำแหน่งของรากที่จะนำธาตุอาหารไปใช้ได้อย่างมีประสิทธิภาพ การศึกษาในครั้งนี้มีวัตถุประสงค์เพื่อให้ทราบการเจริญของรากและตำแหน่งการใส่ปุ๋ยที่เหมาะสมเพื่อเป็นข้อมูลในการพัฒนาเครื่องผงกลบปุ๋ย จากการศึกษาการเจริญของรากอ้อยที่สัมพันธ์กับความชื้นร่วมกับใส่ปุ๋ยที่ระดับความลึกต่างกัน 3 ระดับ คือ 10 20 และ 30 ซม. และในช่วง 3 ถึง 6 เดือน มีการปรับการให้น้ำออกเป็น 2 กลุ่ม คือ ให้น้ำปกติและงดให้น้ำเพื่อเปรียบเทียบการเจริญของรากในสองสภาพ พบรากที่มีอุณหภูมิและน้ำหนังแห้งของรากน้อยกว่า การออกแบบเครื่องผงกลบปุ๋ยได้พัฒนาให้สามารถรักษาระดับความลึกของการใส่ปุ๋ยโดยใช้ล้อกันลม พบรากที่มีความสามารถในการทำงานที่ความลึก 10 20 และ 30 ซม. อายุที่ 2.55 2.33 และ 1.73 ไร่/ชั่วโมง มีประสิทธิภาพการทำงานที่ 67.58 67.00 และ 62.41 เปอร์เซ็นต์ และมีอัตราการสิ้นเปลืองเชื้อเพลิงที่ 0.89 0.91 และ 1.74 ลิตร/ไร่ ตามลำดับ จากข้อมูลการวิจัยการใส่ปุ๋ยที่ระดับความลึก 20 ซม. มีข้อดีในเรื่องของความสามารถและประสิทธิภาพในการทำงาน ประหยัดเชื้อเพลิง และสอดคล้องกับการเจริญของรากที่พบมากที่ระดับความลึกนี้

Abstract

Sugarcane growers using fertilizer machine to apply fertilizer into the soil which approximately 15-40 cm depth but no evidence for optimum depth of fertilizer placement for sugarcane production and relates to sugarcane root distribution. This research combined with 2 experiments as (1) Study on the relationship between root growth and soil moisture content with fertilizer application methods and (2) Development of fertilizer machine for small tractor. The result showed root observation at 3 MAT revealed the highest root biomass, density, and distribution were found at 10-20 cm. At 3 MAT, fertilizer was placed at different depths of 10, 20, and 30 cm, and irrigation was separated for 2 treatments as well-watered and drought conditions by withholding water for 3 months. Root observation at 6 MAT revealed 10-20 cm depth showed the highest root distribution and density in both conditions. However, total root biomass was significantly lower under the drought condition. The second experiment showed the result of the performance of the ability of work was similar between 10 and 20 cm depth by 2.55 and 2.33 Rai/hour better than at 30 cm depth was 1.73 Rai/hour. The efficiency of work at 10, 20, and 30 cm depth is 67.58, 67.0, and 62.41% respectively. Fuel consumption is highest in 30 cm depth at 1.74 Liter/Rai follow by 10 and 20 cm depth is 0.89 and 0.91 Liter/Rai, respectively. Thus, applying the fertilizer at 20 cm depth may benefit for root growth with high efficiency of work and reduce fuel consumption.

Abbreviations: MAT, month after transplanting.