

บทคัดย่อ

อาการแพ้ผลิตภัณฑ์ยางมีความเสี่ยงที่จะทำให้เกิดอันตรายถึงชีวิตขั้นเนื่องมาจากระบบภูมิต้านทานในร่างกายของผู้ป่วยทำการต่อต้านโปรตีนบางชนิดที่ผลิตจากยางธรรมชาติ ดังนั้นการวิเคราะห์การปนเปื้อนของโปรตีนในผลิตภัณฑ์ที่ผลิตจากยางธรรมชาติจึงมีความสำคัญที่จะช่วยลดความเสี่ยงจากการแพ้ในผู้ใช้งาน ถึงแม้ว่าการวิเคราะห์โปรตีนในผลิตภัณฑ์ยางในข้างต้นมีด้วยกันหลากหลายวิธี เช่น modified Lowry method, amino acid analysis (HPLC), enzyme-linked immunosorbent assay (ELISA) inhibition test, radio allergosorbent test (RAST) inhibition assay และ latex ELISA for antigenic protein (LEAP) แต่ยังนั้น วิธีต่าง ๆ ในข้างต้น มีต้นทุนสูงในการตรวจวิเคราะห์และบางชนิดยังต้องอาศัยการนำเข้าจากต่างประเทศ ดังนั้นในงานวิจัยนี้ จึงเลือกใช้การตรวจวัดปริมาณโปรตีนบนผลิตภัณฑ์จากยางธรรมชาติด้วยเทคนิคพื้นผิวข่ายสัญญาณร้าน โดยเฉพาะอย่างยิ่งโปรตีน Hev b1 และ Hev b3 ที่เป็นโปรตีนที่ละลายน้ำได้ดี โดยอาศัยสมบัติทาง plasmonic ของอนุภาคโลหะที่มีโครงสร้างอยู่ในระดับนาโนเมตรจะทำหน้าในการการข่ายสัญญาณของสารบนพื้นผิวที่ต้องการตรวจวัดในเทคนิคนี้ โครงสร้างของอนุภาคโลหะในระดับนาโนเมตรจะถูกควบคุมและท่าสภาวะที่เหมาะสมสำหรับเทคนิคพื้นผิวข่ายสัญญาณร้านด้วยกระบวนการสังเคราะห์ทางเคมี หลังจากนั้นวัสดุที่ได้พัฒนาขึ้นสำหรับเทคนิคพื้นผิวข่ายสัญญาณร้านจะถูกนำมาใช้ในการวิเคราะห์ปริมาณโปรตีนในผลิตภัณฑ์ที่แปรรูปจากยางธรรมชาติ

Abstract

The latex allergy is lethal case in allergy patients due to immune system in human against proteins from natural rubber. Therefore, determination of contaminated protein in products from natural rubber is necessary that will reduce the risk from latex allergy in consumers. For determination of protein in latex, several methods were employed such as modified Lowry method, amino acid analysis (HPLC), enzyme-linked immunosorbent assay (ELISA) inhibition test, radio allergosorbent test (RAST) inhibition assay and latex ELISA for antigenic protein (LEAP). However, these methods have a high cost for test and need to import. In this work, surface enhanced Raman spectroscopy (SERS) will be proposed for protein determination in products from natural rubber, especially, Hev b1 and Hev b3 are insoluble proteins. The plasmonic property depending on structure of metal nanoparticles played an importance role to enhance Raman signal in SERS technique. The type of proteins will be confirmed by the molecular information from SERS spectrum. The structures of metal nanoparticles will be controlled by wet chemical synthesis and optimized. After that, developed SERS substrates will be employed for quantitative analysis of trace proteins in latex produces.