บทคัดย่อ

โครงการนี้ที่มีวัตถุประสงค์หลักเพื่อเพิ่มมูลค่าของกากกาแฟ โดยสกัดสารต้านอนุมูลอิสระจากกาก กาแฟ และนำกากกาแฟทั้งที่สกัดสารต้านอนุมูลอิสระ และไม่ได้สกัดสารต้านอนุมูลอิสระมาเป็นส่วนผสมใน การผลิตวัสดุคอมโพสิตสีเขียว ทั้งนี้โดยมีขั้นตอนการศึกษาเป็นสามส่วนคือ (1) ศึกษากระบวนการสกัดสารต้าน อนุมูลอิสระ และการทำให้เข้มขันโดยกระบวนการต่าง ๆ อาทิ การสกัดแบบขุ่น การทำให้แห้งที่จุดเยือกแข็ง การห่อหุ้มในลักษณะแคปซูล (2) ศึกษาเปรียบเทียบอิทธิพลของสารต้านอนุมูลอิสระที่มีอยู่ในกากกาแฟต่อ ลักษณะสมบัติต่าง ๆ ของวัสดุคอมโพสิตสีเขียว และ (3) ศึกษาแนวทางและรูปแบบการจัดการเพื่อนำไปสู่การ ต่อยอดในเชิงพาณิชย์

การสกัดสารต้านอนุมูลอิสระจากกากกาแฟโดยใช้สารลดแรงตึงผิวพบว่าสารละลาย Triton X-100 ให้ ประสิทธิภาพการสกัดสารประกอบฟินอลสูงสุด 14.9 มก. GAE ต่อกรัม SCG ซึ่งมีค่ามากกว่าการสกัดด้วยน้ำ ถึง 4 เท่า และมีค่าต้านทานปฏิกิริยาออกซิเดชั่น 12.1 มก. BHA ต่อกรัม SCG โดยมีค่ามากกว่าการสกัดด้วยน้ำ มากกว่า 2 เท่า ซึ่งค่าดังกล่าวสามารถเพิ่มโดยการปรับสภาวะให้เหมาะสมด้วยการออกแบบการทดลองชนิด Central composited rotatable design โดยสามารถสกัดสารประกอบฟื่นอลได้ 19.2 มก. GAE ต่อกรัม SCG และค่าต้านทานปฏิกิริยาออกซิเดชั่น 15.6 มก.BHA ต่อกรัม SCG ในสภาวะการสกัดที่ใช้ความเข้มข้นของ Triton X-100 ที่ 7 %w/v, L/S ratio ที่ 15 มล.ต่อกรัม และอุณหภูมิ 80 ℃ เป็นเวลา 1 ชั่วโมง สารสกัด ดังกล่าวจะถูกทำให้เข้มข้นด้วยกระบวนการสกัดแบบจุดขุ่นของสารลดแรงตึงผิว ซึ่งเป็นคุณสมบัติพิเศษของ Triton X-100 ที่สามารถแยกชั้นของสารสกัดออกจากชั้นน้ำด้วยการปรับอุณหภูมิและความเข้มข้นของเกลือที่ 70 องศาเซลเซียส ความเข้มข้นของ NaCl 5%w/v เป็นเวลา 1 ชั่วโมง และในสภาวะแรงโน้มถ่วงปกติ โดย สามารถเพิ่มความเข้มข้นของสารประกอบฟีนอลเป็น 4.8 เท่า ในขั้นตอนสุดท้ายสารสกัดเข้มข้นดังกล่าวจะถูก นำไปดูดซับบนแคลเซียมคาร์บอเนต เพื่อนำไปใช้เพิ่มประสิทธิภาพการต้านรังสี UV ในผลิตภัณฑ์คอมโพสิตสี เขียว อย่างไรก็ตาม ผลการทดลองพบว่าว่า แคลเซียมคาร์บอเนตไม่เหมาะสมในการดูดซับสารสกัดเข้มข้นจาก กากกาแฟ เนื่องจากสภาวะที่เป็นด่างของแคลเซียมคาร์บอเนต ทำให้สารประกอบฟีนอลเสื่อมสภาพอย่างถาวร จึงไม่มีความจำเป็นในการเติมสารสกัดจากกากกาแฟลงในผลิตภัณฑ์คอมโพสิตสีเชียว แต่มีความเป็นไปได้ว่า สารสกัดกากกาแฟเข้มข้นจากโครงการสามารถนำไปใช้เป็นวัตถุดิบในเวชสำอางค์ได้โดยตรง

ในส่วนของการศึกษาผลของปัจจัยต่างๆ ต่อคุณลักษณะวัสดุคอมโพสิตที่ไม่มีและมีกากกาแฟเป็น ส่วนผสม (Dry blend/Spent coffee ground: DB/SCG composite) ได้แก่ ผลของปริมาณกากกาแฟ ต่อ สมบัติด้านการดัดงอ (Flexural properties) ของวัสดุคอมโพสิต DB และ วัสดุคอมโพสิต DB/SCG พบว่าการ เติมกากกาแฟ 5%wt ทำให้ได้ วัสดุคอมโพสิต ที่มีสมบัติด้านการดัดงอสูงที่สุด นอกจากนี้ได้มีการทดสอบ ชิ้นงานที่ใช้ SCG ที่สกัดสารต้านอนุมูลอิสระออกแล้วผสมกับ DB ในอัตราส่วน 5% SCG พบว่าค่าการดัดงอค่า

ลดลง 43.04% เมื่อเทียบกับวัสดุคอมโพสิต DB/SCG 5% ที่ใช้ SCG ที่ยังมีได้สกัดสารต้านอนุมูลอิสระออก และผลของการจำลองสภาวะแวดล้อมแบบเร่ง โดยใช้ Accelerated Weathering Test และผลของการเติม UV absorber, สารต้านอนุมูลอิสระ รวมไปถึงการเคลือบผิวของวัสดุคอมโพสิต DB และ วัสดุคอมโพสิต DB/SCG ด้วย Urethane based lacquer ต่อการเปลี่ยนแปลงไปของลักษณะปรากฏของชิ้นงานตัวอย่าง พบว่าภายใต้สภาวะแบบเร่ง มีผลทำให้ Yellowness index (YI) ของ วัสดุคอมโพสิต DB และ วัสดุคอมโพสิต DB/SCG มีค่าสูงขึ้นในช่วงแรกของการทดสอบและมีค่า YI ลดลงในช่วงหลังของการทดสอบ ซึ่งอนุมานว่าเกิด จากการเกิดขึ้นของ Conjugated double bond และการเกิดปฏิกิริยาเปอร์ออกซิเดชั่น (Peroxidation reaction) ตามลำดับ โดยพบว่ามีการแตกของผิวชิ้นงานหลังจากการให้สภาวะกับชิ้นงาน ซึ่งการเติม UV absorber สามารถลดการแตกของผิวชิ้นงาน การเติมสารต้านอนุมูลอิสระสามารถลดการแตกของผิวชิ้นงาน และทำให้การลดลงของ YI หรือการซีดลงของสีชิ้นงานลดลงได้ ในขณะที่การเคลือบผิวชิ้นงานด้วย Urethane based lacquer สามารถลดการแตกของผิวชิ้นงานและลดการซีดลงของสีชิ้นงานซึ่งนำมาสู่การเปลี่ยนแปลงไป ของลักษณะปรากฏของชิ้นงานในระหว่างการทดสอบ

สำหรับการศึกษารูปแบบการจัดการเพื่อนำไปสู่การต่อยอดในเชิงพาณิชย์ พบว่าปริมาณกากกาแฟที่ เก็บได้มีมากกว่า 1.5 ตันต่อเดือน ซึ่งเพียงพอต่อความต้องการในการผลิตของโรงงานไทยพลาสวู้ด และ มากกว่า 50% ของร้านกาแฟที่ทางสำนักแผนงานกายภาพ เข้าไปจัดเก็บ ยินดีให้ความร่วมมือ อย่างไรก็ตาม เนื่องจากขาดแรงจูงใจและความต่อเนื่องในการให้คำแนะนำ ทำให้การจัดเก็บกากกาแฟให้ถูกต้องเหมาะสม โดยแยกจากขยะอื่นๆ เช่น ใบชา ยังไม่สามารถทำได้อย่างมีประสิทธิภาพ แต่เนื่องจากกากกาแฟมีความชื้นสูง จึงเป็นประเด็นปัญหา ทั้งในการจัดเก็บและการผลิต ทำให้โรงงานต้องเพิ่มขั้นตอน การตาก และผสมใน เครื่องให้ความร้อนก่อนส่งเข้าสู่เครื่องผลิต แนวทางการแก้ไขปัญหาคือการหารือ และประสานงานเพื่อลด ปัญหาในผู้มีส่วนเกี่ยวข้อง แต่เนื่องจากปัญหาคุณภาพของวัสดุคอมโพสิตที่ผลิตและจัดจำหน่ายให้ลูกค้าแล้ว พบว่ามีปัญหาในเรื่องสีซีดจางอย่างมากภายหลังการติดตั้งกลางแจ้งเป็นเวลา 11 เดือน ซึ่งโรงงานต้อง ดำเนินการจัดเปลี่ยนวัสดุให้แก่ลูกค้า ส่งผลให้ทางขอระงับการผลิตชั่วคราวเพื่อรอแก้ไขปัญหานี้ การเจรจา เพื่อหารือในประเด็นนี้จึงยังไม่เกิดขึ้นภายใต้ระยะเวลาของโครงการนี้ อย่างไรก็ตามในส่วนของการสกัดสาร ต้านอนุมูลอิสระ ผู้วิจัยได้ประมาณการค่าใช้จ่ายของการสกัดสารต้านอนุมูลอิสระโดยใช้เทคนิคจุดขุ่นของสาร ลดแรงตึงผิว เปรียบเทียบกับเทคนิคการสกัดโดยใช้เอทานอล พบว่าการสกัดสารต้านอนุมูลอิสระโดยใช้ เทคนิคจุดขุ่นมีค่าใช้จ่ายต่ำกว่าวิธีการสกัดโดยใช้เอทานอลถึงประมาณ 3 บาทต่อกรัม GAE ซึ่งแสดงให้เห็นว่า การสกัดสารต้านอนุมูลอิสระจากกากาแฟ มีศักยภาพที่จะพัฒนาเพื่อเพิ่มมูลค่าในการเป็นสารตั้งต้นสำหรับ ผลิตภัณฑ์อื่นต่อไป

Abstract

This present work aims to study the possibility for value adding of spent coffee ground (SCG) utilization by an extraction of antioxidant from SCG and addition SCGs both before ad after antioxidant extraction in composite materials. The study was divided into 3 parts namely; (1) the investigation for process of the antioxidant extraction by clound point separation technique; dry frozen and encapsulation; (2) the investigation for the influence of the various factors on the dry blend the composite, and dry blend/SCG composite; and (3) the study on management and possibility for commercialization.

The extracted solution from Triton-X 100 showed the highest phenolic content (14.9 mg GAE/g SCG) and antioxidant activity (12.1 mg BHA/g SCG), which were higher than that of water extraction approximately 4 and 2 times, respectively. The optimization process based on the Central Compositeed Rotatable Design further improved the phenolic content to 19.2 mg GAE/g SCG and the antioxidant activity 15.6 mg BHA/g SCG under these conditions: 7%w/v of Triton X-100, 15 mL/g of L/S ratio, 80 °C for 1 h. The extracted solution was preconcentrated using the unique property of Triton X-100, named cloud point extraction. The antioxidant rich phase was spontaneously separated from aqueous phase at 70 °C with 5%w/v of NaCl for 1 h. The concentration of phenolic compound was increased 4.8 times. The preconcentrated extracted antioxidant was then encapsulated by CaCO₃ for using in green composite material. However, the phenolic content in encapsulated CaCO₃ reduced dramatically due to the alkaline condition. Thus, using CaCO₃ for phenolic compound encapsulation might not be suitable and practical for an improvement of UV resistant in the green composite material.

The study in this part aimed to investigate the influence of spent coffee ground (SCG) content on flexural properties of DB and DB/SCG composite, the effect of accelerated weathering on appearance of DB and DB/SCG composite, as well as an influence of adding UV absorber, antioxidant and urethane based lacquer coating on the appearance of DB and DB/SCG composite samples after testing under accelerated weathering condition. The results indicated that DB/SCG5% showed highest flexural strength compare to DB, DB/SCG10%, DB/SCG15% and DB/SCG20%. In addition, the DB/SCG5% using antioxidant extracted SCG was measured for the comparison. The result shows that the flexural properties of the composite

with antioxidant extracted SCG was reduced more than 43.04%. YI of all samples increased proportionally with time in the beginning of the test and YI decreased after testing for around 7 days as a results of increasing of conjugated double bond and peroxidation reaction of oxygen with double bond respectively. Surface erosion was detected in all samples after testing under accelerated weathering condition. UV absorber and antioxidant reduced surface erosion of DB and DB/SCG composite while coating DB and DB/SCG composite with urethane based lacquer reduced the surface erosion of DB and DB composite as well as reduced bleaching of sample color.

For the management perspective, the study shows that the collection of spent coffee ground from the cafe shops in Chulalongkorn university was average higher than 1.5 tons per month which is enough for the requirement of the Thai Plastwood Industry. Besides, more than 50% of the café shops were willing to provide the spent coffee ground to the Office of Physical Resources Management (PRM). However, due to a lack of motivation and noncontinuity of an officer from PRM to suggest the proper way to collect the SCG, some other contamination such as tea leaves, plastic bags, were found. In addition, SCG is generally having high moisture content up to 50%. This led to another process for the industry to reduce the contaminants and moisture in the SCG before mixing with dry blend. To solve this problem, the talk for discussion among involved parties was arranged. However, an urgent problem that happened from the DB/SCG composite product was claimed by a customer that the color was complete fade after installation for 11 months. The company was then decided to suspend the production of the DB/SCG composite for a while. Thus the discussion on the logistic for SCG collect could not be conducted in the time frame of this project. Nevertheless, the pre-concentrated extracted antioxidant from SCGs was potentially used as an active ingredient of cosmetic product since it shows the lower cost compare to the conventional extraction by ethanol at around 3 Baht per g GAE. This result shows a potential of using extracted antioxidant for being a raw material for other products.
