
Abstract

The “Application of PCA and spatial interpolation methods on various soil attributes data for sugarcane production under precision agricultural technology” project aimed at finding production factors affecting on sugarcane growth and yield. The project consists of 1) collecting and analysing soil attribute data on sugarcane productivity, 2) soil maps related to managements on soils, water, and plant nutrition. The 1st phase concentrated in areas of Chaiyaphon, Nakhon Ratchasima, Buriram, and Surin provinces. Results showed that the best method of spatial interpolation on soil attributes was inversed distance weighting (IDW). Principle component analysis of 4 factors affecting yield, namely soil pH, organic matter (OM), phosphorus (P), and potassium (K) contents, showed that these factors were poor correlated. OM, P, and K had positive relations to yield while soil pH had a negative relation to yield.

The “Mathematical algorithm for obtaining fertilizer formulations suitable and specific to sugarcane plantation areas of sugar-mill” project aimed at finding the algorithm of fertilizer formulation. The result must be suitable and specific site of application. The project used soil map data which covered an area of 50,000 rai, total count of 8,988 locations, incorporation with localized 100 data points of field data. Formulation algorithm consisted of 1) soil map interpretation, and 2) grouping results to strict criteria. All methods of data processing were conducted by either MS Excel or JavaScript programming. Results showed that the fertilizer formulas of 17-9-18 and 17-6-17 at rate of 100-150 kg/rai were suitable for the aforementioned provinces. Formulations algorithm guaranteed that sugarcanes would receive sufficient amount of essential macronutrient elements.

The “Computer Program for Fertilizer Determination for High Yielding Sugarcane” project aimed at finding commercial fertilizer blending to produce high yield sugarcane. The fertilizer blending result would hold all essential nutrients, including macro, micro, and minor elements. The computer program required 1) amount of rainfall along sugarcane growing period, 2) soil attributes of a sugarcane plot, and 3) a set of computation constants, as inputs. The applicability of the computer program required two steps of development, namely calibration and validation. The calibration was performed for improve types of equations and computation constants used in the computer program. The validation was made for the program reliability or confidence of application. For 2 years of work, the resulting computer program held >90% reliability. This project was also conducted in the farmer fields in concurrent period of the computer program development. The field experiments investigated fertilizer blending results of the computer program using soil attributes either from soil maps or from laboratory analysis. The 1st year results showed that sugarcane yields responded to fertilizer treatments. They were not show any differences in yields for sources of soil attributes used. Yields were ranged from 16.9-22.9 and 17.3-21.6 ton/rai for uses of soil map and laboratory analysis of soil attributes, respectively. Their sugarcane quality were not statistically different, ranging from 14.8-15.8%CCS. In the 2nd year, results were almost the same as those of the 1st year. The uses of two sources of soil attributes on fertilizer treatments gave no any significantly differences in yields. Their ranges were 15.6-17.1 and 14.1-15.1 ton/rai, respectively for uses of soil map and lab analysis. Their sugarcane quality were not statistically different, ranging from 14.3-15.5%CCS. In the 1st year of experiment, sugarcanes

received 835-1,294 mm. amount of water, and average temperatures of 28.0-28.8 and 27.0-28.0C for their vegetative and sugar accumulation growth periods respectively. In the 2nd year, they received 571-886 mm. of water, and temperatures of 28.2-29.2 and 27.6-28.6C for their two growing periods. These results suggested that sugarcanes would response to any fertilizer treatments only if they have received total amount of water for >900 mm. annually.

Abstract

บทคัดย่อ

โครงการ “ประยุกต์ใช้การวิเคราะห์องค์ประกอบหลักและการประมาณค่าในช่วงเชิงพื้นที่ของข้อมูลคุณลักษณะดินเพื่อการผลิตอ้อยด้วยเทคโนโลยีเกียรติแม่นยำ” มีจุดมุ่งหมายเพื่อหาและสร้างสมการกำหนดปัจจัยที่มีผลต่อการปลูกและให้ผลผลิตอ้อย โดยรวมรวมข้อมูลคุณลักษณะดินที่มีผลต่อการปลูกอ้อยจำนวน 106 ตัวอย่าง ดำเนินการกิจกรรมวิเคราะห์ทางสถิติเบื้องต้นเพื่อหาความสัมพันธ์ของข้อมูลที่จัดเก็บได้ และจัดทำแผนที่ดินที่เกี่ยวข้องกับจัดการดิน น้ำ และรัตตุอาหารสำหรับการปลูกอ้อย ครอบคลุมพื้นที่ 4 จังหวัด ได้แก่ จังหวัดนราธิวาส จังหวัดยะลา จังหวัดสุราษฎร์ธานี และจังหวัดปัตตานี ที่สามารถให้ผลการประมาณค่าที่ดีที่สุดในข้อมูลเกือบทุกชนิด คือวิธี IDW (Inverse Distance Weighting) และเมื่อนำข้อมูลที่ได้จากการประมาณค่ามาทำการวิเคราะห์ทางองค์ประกอบหลัก (Principle Component Analysis: PCA) จากตัวแปรทั้ง 4 ตัวแปรที่มีผลต่อการผลผลิตอ้อย ได้แก่ ปฏิกริยาดิน ปริมาณอินทรีย์วัตถุ ฟอสฟอรัส และโพแทสเซียม พบว่า โดยภาพรวมความสัมพันธ์ระหว่างตัวแปรอิสระมีความสัมพันธ์กันในระดับต่ำ โดยที่ปริมาณอินทรีย์วัตถุ ฟอสฟอรัส และโพแทสเซียมมีความสัมพันธ์กันในทิศทางเดียวกัน ส่วนปฏิกริยาดินมีความสัมพันธ์ในทิศทางที่เป็นวงกับผลผลิตอ้อย โครงการ “การหาลำดับขั้นตอนที่แน่นอนเพื่อสร้างสูตรปัจย์ที่เหมาะสมและจำเพาะกับพื้นที่ส่งเสริมการปลูกอ้อยของโรงงานน้ำตาล” โดยใช้ข้อมูลดินของกรมพัฒนาที่ดินในกลุ่มชุดดินที่ปลูกอ้อยในพื้นที่รวมมากกว่า 50,000 ไร่ รวมทั้งสิ้น 8988 จุด ร่วมกับข้อมูลภาคสนามในพื้นที่ 4 จังหวัดจำนวน 100 จุด มีขั้นตอนหลักคือ แปลผลค่าวิเคราะห์ดิน จัดกลุ่มและเลือกความถี่สูงที่สุดภายใต้เงื่อนไข ก่อนจะนำมาหาค่าเฉลี่ยประจำกลุ่ม ผ่านการทำงานจริงด้วยการใช้งานโปรแกรม excel และภาษา JavaScript เพื่อการใช้งานลำดับขั้นตอนทำงานผ่านโปรแกรมสำหรับใช้งานอินเทอร์เน็ตที่สนับสนุนการทำงานโดยผลที่ได้ พบว่า สูตรปัจย์ที่เหมาะสมมี 2 สูตร ได้แก่ 17-9-18 และ 17-6-17 ประมาณ 100 – 150 กิโลกรัมต่อไร่ การใช้ลำดับขั้นตอนที่แน่นอนสำหรับการสร้างสูตรปัจย์ จะได้รัตตุอาหารใกล้เคียงกับที่พืชต้องการ ไม่ขาดรัตตุฟอสฟอรัส และโพแทสเซียม ส่งผลให้ง่ายต่อการผลสมปุ่ยเพื่อใช้งานในปริมาณมาก และถูกต้องตามหลักวิชาการ โครงการ “โปรแกรมคอมพิวเตอร์กำหนดปัจย์สำหรับการปลูกอ้อยที่ให้ผลผลิตสูง” มีจุดมุ่งหมายเพื่อประมาณผลหาชนิดและปริมาณปัจย์ที่มีข่ายในห้องทดลองเพื่อนำไปสมกับใช้ปลูกอ้อยเพื่อให้ผลผลิตสูง ปัจย์ที่สมแล้วจะมีปริมาณรัตตุอาหารที่จำเป็นต่อการเจริญเติบโตของอ้อยครบถ้วน การประมาณผลให้ข้อมูลปริมาณน้ำฝนที่อ้อยได้รับตลอดช่วงปลูก ค่าคุณสมบัติดินที่ใช้ปลูกอ้อย และเซตของค่าคงที่ที่ใช้ในการประมาณผล ก่อนจะใช้โปรแกรมคอมพิวเตอร์ได้อย่างมั่นใจ ต้องดำเนินการ 2 ขั้นตอน สอบเทียบโปรแกรมเพื่อปรับปรุงรูปสมการที่ใช้ในการคำนวณและหาเซตค่าคงที่ที่ใช้ในการประมาณผล ในปีแรกพบว่า สำหรับพืชที่ต้องการหัวดินที่ดินและจากการวิเคราะห์ค่าคุณลักษณะดินในห้องปฏิบัติการ แล้วใช้โปรแกรมคอมพิวเตอร์ประมาณผลหาชนิดและปริมาณปัจย์เพื่อใช้ในแต่ละสำหรับทดลองนั้น อ้อยปลูกใหม่ให้ผลผลิตที่ตอบสนองต่อชนิดและปริมาณปัจย์ที่แตกต่างกัน ในทุกสถานที่ทดสอบ ผลผลิตอ้อยที่ได้รับจากทดลองที่ใช้แผนที่ดินและค่าวิเคราะห์ในห้องปฏิบัติการอยู่ระหว่าง 16.9-22.9 และ 17.3-21.6 ตันต่อไร่ตามลำดับ ผลผลิตไม่แตกต่างกันทางสถิติ ไม่พบความแตกต่างของคุณภาพความหวานของผลผลิตอ้อย ซึ่งมีอัตราการเจริญเติบโตสูงในช่วง 14.8-15.8% ส่วนในปีที่สองซึ่งเป็นอ้อยต่อได้ทดลองในห้องทดลอง ใช้แผนที่ดินและการใช้ค่าวิเคราะห์ในห้องปฏิบัติการเป็นฐานในการกำหนดปัจย์ด้วยโปรแกรมคอมพิวเตอร์ให้ผลผลิตระหว่าง 15.6-17.1 และ 14.1-15.1 ตันต่อไร่ตามลำดับ ผลผลิตที่ได้ไม่ตอบสนองต่อชนิดและปริมาณปัจย์ของทดลอง คุณภาพความหวานของอ้อยในแต่ละสำหรับทดลองก็ไม่แตกต่างกัน ซึ่งมีอัตราการเจริญเติบโตสูงในช่วง 14.3-15.5% ในปีแรกอ้อยได้รับน้ำฝนรวมกับให้น้ำเสริมในช่วง 835-1,294 มม. อุณหภูมิช่วงเดียวกันและสะสมน้ำตาลในช่วง 28.0-28.8 และ 27.0-28.0 เซลเซียสตามลำดับ ในขณะที่อ้อยต่อได้รับน้ำระหว่าง 571-886 มม. และอุณหภูมิในสองช่วงการเจริญเติบโตเป็น 28.2-29.2 และ 27.6-28.8 เซลเซียสตามลำดับ จึงสรุปว่าการตอบสนองด้านผลผลิตของอ้อยต่อปัจย์จะเกิดขึ้นเมื่ออ้อยได้รับน้ำมากกว่า 900 มม. ตลอดช่วงปลูก ส่วนคุณภาพของอ้อยที่ไม่แตกต่างกันเพราะอ้อยได้รับอุณหภูมิพากันในทุกสถานที่และทุกปีที่ทดสอบ