## บทคัดย่อ

อ้อยเป็นพืชเศรษฐกิจที่สำคัญของประเทศไทย เนื่องจากอ้อยเป็นวัตถุดิบหลักที่ใช้ในการผลิตน้ำตาลทราย ซึ่งนอกเหนือจากการผลิตน้ำตาลทรายเพื่อตอบสนองการบริโภคตอบสนองความต้องการของประชาชน ภายในประเทศแล้วนั้น ประเทศไทยยังเป็นผู้ผลิตและผู้ส่งออกน้ำตาลทรายใหญ่เป็นอันดับที่ 2 ของโลกโดยใน อุตสาหกรรมอ้อยและน้ำตาล มีกระบวนการสำคัญ 3 กระบวนการ ประกอบด้วย โลจิสติกส์ขาเข้า (Inbound logistics) กระบวนการผลิตภายในโรงงานน้ำตาล และโลจิสติกส์ขาออก (Outbound logistics) ซึ่งปัญหาที่พบ ในปัจจุบันของอุตสาหกรรมอ้อยและน้ำตาล คือ รถบรรทุกอ้อยมารอต่อคิวกันบริเวณหน้าโรงงานเป็นจำนวน มาก และมีเวลารอคอยนานหลายวัน เนื่องมาจากเกษตรกรขาดการวางแผนการปลูก การเก็บเกี่ยว และการ ขนส่งอ้อยเพื่อเข้าสู่โรงงานที่มีประสิทธิภาพ ทำให้เกิดการรอคิวของรถบรรทุกอ้อยในอีกทั้งช่วงการเปิดหีบอ้อย ประกอบกับกำลังการหีบอ้อยของโรงงานมีอยู่อย่างจำกัด อีกทั้งการขาดการบำรุงรักษาเครื่องจักร ทำให้ เครื่องจักรเกิดการหยุดชะงักในบางช่วงเวลา ดังนั้นงานวิจัยนี้จึงมุ่งเน้นการเพิ่มประสิทธิภาพระบบโลจิสติกส์ขา เข้าของการผลิตอ้อยสำหรับเป็นวัตถุดิบในการผลิตเป็นผลิตภัณฑ์น้ำตาล โดยมีวัตถุประสงค์เพื่อลดปริมาณ รถบรรทุกอ้อยที่รอคิวบริเวณหน้าโรงงานน้ำตาลตัวอย่าง โดยการเพิ่มประสิทธิภาพการจัดส่งอ้อยให้ตรงตาม ความต้องการของโรงงานน้ำตาลตัวอย่าง และตามกำลังการหีบอ้อยของเครื่องจักรในแต่ละวัน ในงานวิจัยนี้ได้ พัฒนาระบบอินเทอร์เน็ตของสรรพสิ่ง (Internet of Things: IoT) และแบบจำลองทางคณิตศาสตร์มา ประยุกต์ใช้ในการเก็บข้อมูลและทำการวิเคราะห์ด้านสถิติ เพื่อการวางแผนทั้งแผนการปลูก การเก็บเกี่ยว และ การขนส่งอ้อยเพื่อเข้าสู่โรงงาน โดยผลจากการวิเคราะห์ด้วยแบบจำลองทางคณิตศาสตร์ทำให้ทราบถึงแนวทาง ที่ทำให้เกิดต้นทุนที่ต่ำที่สุดทั้งในส่วนการเพาะปลูกอ้อยและการขนส่งอ้อยจากแปลงปลูกสู่โรงงาน คือ วางแผน ้ตั้งแต่การไถเตรียมดินจนถึงการขนส่งเข้าสู่โรงงาน จะทำให้เกิดประสิทธิภาพสูงสุด ในส่วนของการนำเอาระบบ IoT มาประยุกต์ใช้จะช่วยให้เกิดความรวดเร็วในการติดต่อระหว่างรถบรรทุก ชาวไร่อ้อย และเจ้าหน้าที่ รวมทั้ง สามารถแจ้งปัญหาเครื่องจักรขัดข้องไปยังเจ้าหน้าที่และสามารถแก้ไขปัญหาได้อย่างรวดเร็ว ส่งผลให้จำนวนการ รอคิวของรถบรรทุกหน้าโรงงานลดลง สามารถขนส่งอ้อยเข้าสู่โรงงานได้ในปริมาณที่เหมาะสมตามกำลังของ โรงงาน และลดปัญหาค่าความหวานในอ้อยที่ลดลงได้อีกด้วย

**คำสำคัญ:** รูปแบบปฏิบัติการโลจิสติกส์อ้อย, ระบบอินเทอร์เน็ตของสรรพสิ่ง, แบบจำลองทางคณิตศาสตร์, การ วางแผนสำหรับแปลงปลูก, การวางแผนการขนส่ง

## Abstract

Sugar cane is an important cash crop of Thailand since sugar cane is the main raw material for producing sugar. Besides, sugar is produced for consumption in our own country, Thailand is the world's fourth-largest sugar producer and second-largest exporter in the world. There are three main procedures in sugar industries i.e., inbound logistics, production process wit in a sugar mill, and outbound logistics. The problems are found in the sugar industry currently, which consists of sugar cane truck queuing in front of sugar mills. This cause has made a long waiting period for the sugar cane truck. Due to lack of planting plans, harvest, and transportation from farms to mills, these effect to sugar cane truck queuing in the sugar cane opening period along with the sugar cane crushing capacity of the mill is limited. Moreover, sometimes a machine does not work due to a lack of machine maintenance. Consequently, enhancing the inbound logistics system of sugar cane production for being the raw material of sugar production is focused on this study. This study aims to reduce the number of sugar cane truck queuing in front of the sugar mill by enhancing sugar cane truck scheduling more efficiently based on the demand of the sugar mill and the sugar cane crushing capacity of the mill daily. The development of the Internet of Things (IoT) and mathematical model have been employed in terms of collecting data and analyzing statistical data for planting plans, harvest, and transportation from farms to mills. Based on the analysis of the mathematical model, it leads to the method for reducing the cost of sugar cane planting and transportation from farms to mills that include planning from plowing for preparing the soil until transportation to the sugar mill. These will help to make the most effective of the inbound logistics system. In addition, the IoT system has applied for improving communication among truck drivers, farmers, and sugar mill's staff. Notification of machine failure can be provided in this IoT system for supporting staff to fix it dramatically. The results of this study show that the number of sugar cane truck queuing in front of the sugar mill can be reduced. This also supports the appropriated transportation of sugar cane based on the capacity of the sugar mill. Moreover, reducing sweetness's sugar cane will be solved due to applying these methods.

**Keywords:** Logistics Operational Model for Sugarcane, Internet of Things, Mathematical model, Farm Scheduling, Sugar Cane Truck Scheduling