

รายงานวิจัยฉบับสมบูรณ์ (1 มิถุนายน 2548 – 31 พฤษภาคม 2551)

โครงการ สถาปัตยกรรมของอุปกรณ์โมเลกุลแบบฟิล์มบางอินทรีย์

โดย ผศ. ดร. ธีรเกียรติ๋ เกิดเจริญ

เดือน ปี ที่เสร็จโครงการ *มิถุนายน 2551*

รายงานวิจัยฉบับสมบูรณ์

โครงการ สถาปัตยกรรมของอุปกรณ์โมเลกุลแบบฟิล์มบางอินทรีย์

ผศ. ดร. ชีรเกียรติ๋ เกิดเจริญ ภาควิชาฟิสิกส์ และ หน่วยสร้างเสริมศักยภาพทางนาโนศาสตร์และนาโนเทคโนโลยี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล กรุงเทพฯ 10400

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

ผู้วิจัยขอขอบพระคุณผู้มีส่วนทำให้โครงการวิจัยนี้ประสบความสำเร็จสมความมุ่งหมาย ความสำเร็จของ โครงการนี้นอกจากจะเป็นไปตามเจตนารมณ์ของ สกว. แล้ว ยังมีผลต่ออนาคตในวิชาชีพของผู้วิจัยเป็นอย่าง ยิ่ง จึงขอขอบพระคุณท่านเหล่านั้นดังรายนามต่อไปนี้

- 1. ศ. ดร. สุพจน์ หารหนองบัว (ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย) ที่ก็ยังคอยให้คำ ชี้แนะในการทำงาน การแก้ปัญหาในเรื่องของการบริหารจัดการงานวิจัย และคอยเป็นกำลังใจให้ฝ่าฟัน อุปสรรคต่างๆ เสมอมา ตั้งแต่ครั้งยังเป็นนักวิจัยพี่เลี้ยงของทุนนักวิจัยรุ่นใหม่
- 2. ผศ. คร. ธนากร โอสถจันทร์ ผศ. คร. เติมศักดิ์ ศรีคิรินทร์ และ Professor Michael Kiselev ทั้งในฐานะ มิตรและเพื่อนร่วมงานวิจัยที่ยากจะหาคำขอบคุณใดๆมาบรรยาย
- 3. ลูกศิษย์ได้แก่ ดร. ศรีประจักษ์ ครองสุข ดร. อนุรักษ์ อุดมเวช ดร. ยอดสร้อย คณินธรกุล นายชัชวาล วงศ์ชูสุข นส. สุมนา กลัดสมบูรณ์ นาย Mario Lutz นาย Johannes Mensing นส. Anais Jeanjean นาย Md. Shafiquzzaman ที่มีส่วนสนับสนุนในการช่วยงานวิจัยในโครงการนี้จนสำเร็จ
- 4. คร. อดิสรณ์ เตือนตรานนท์ (เนคเทค) คร. สิรพัฒน์ ประโทนเทพ (เนคเทค) คร. ชัญชณา ธนชยานนท์ (เอ็มเท็ค) กัลยาณมิตรผู้ช่วยเหลือในเรื่องเครื่องมือต่างๆ
- 5. คุณรุจเรขา อัศวิษณุ (หน่วยสารสนเทศงานวิจัย คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล) คนเก่งทางด้าน สารสนเทศงานวิจัย ทำให้ผู้วิจัยได้รับการป้อนวารสารและข่าวสารงานวิจัยอยู่ตลอดเวลา

และสุดท้ายนี้ผู้วิจัยขอขอบคุณครอบครัวได้แก่ คุณจุฑา เกิดเจริญ ภรรยา ค.ญ. อะตอม เกิดเจริญ ธิดา และ ค.ช. พฤกษรักษ์ เกิดเจริญ บุตร ที่เข้าใจและเสียสละให้ผู้วิจัยได้ใช้เวลาทุ่มเทกับการทำงานวิจัยได้ อย่างเต็มที่

ชีรเกียรติ์ เกิดเจริญ

4 กรกฎาคม 2551

ABSTRACT

Project Code: RMU4880008

Project Title: Architecture of Thin-Film Molecular Devices

Investigator: Asst. Prof. Dr. Teerakiat Kerdcharoen

E-mail Address: sctkc@mahidol.ac.th

Project Period: June 1st, 2005 – May 31st, 2008

This research project was aimed to study two molecular architectures frequently found in nature, namely membrane-penetrating protein Bt and metallo-porphyrin. It is hoped that the understanding of these molecular architectures will lead to development of bio-inspired technology. Fabrication of molecular thin-fims of membrane-penetrating protein and metallo-porphyrin using Langmuir-Blodgett and spin-coating, respectively, was performed. Based on nanoscale tools, the principles of thin-film structure and pore-forming mechanism of membrane-penetrating protein was investigated. It was found that the protein has gone to a course of structural transformation prior to and during the penetration process. This understanding may lead to a design of functional membrane-penetrating protein for nutrient and drug delivery into cell. The study on metallo-porphyrins yields a detailed insight into the thin-film structure. Optimized parameters for preparation of a good film as sensing materials in chemical sensor were also obtained. Variation of central metal in the porphyrin rings effect the sensitivity of the film to various chemical vapors. We have invented a laboratory prototype of electronic nose based on optical absorption. The prototype has been tested on the analysis of various alcoholic beverages such as wines, beers and whiskeys. Future improvement of this prototype will be beneficial for the food and beverage industry.

Keyword: Membrane-penetrating Protein, Porphyrin, Thin-film, Electronic Nose,

Chemical Sensor

บทคัดย่อ

รหัสโครงการ: RMU4880008

ชื่อโครงการ: สถาปัตยกรรมของอุปกรณ์โมเลกุลแบบฟิล์มบางอินทรีย์

ชื่อนักวิจัย: ผศ. ดร. ธีรเกียรติ์ เกิดเจริญ

E-mail Address: sctkc@mahidol.ac.th

ระยะเวลาโครงการ: 1 มิ.ย. 2548 - 31 พ.ค. 2551

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาสถาปัตยกรรมของธรรมชาติที่สิ่งมีชีวิตนิยมนำไปใช้งาน 2 ชนิด ได้แก่ โปรตีนเจาะเมมเบรนประเภท Bt และเมทัลโลพอร์ไพรินโดยหวังว่าองค์ความรู้ที่สังเคราะห์ขึ้นมา จากงานวิจัยนี้จะนำไปสู่การสร้างเทคโนโลยีที่อาศัยการเรียนรู้จากธรรมชาติ ได้ศึกษาวิธีการสร้างฟิล์มบาง โมเลกุลจากโปรตีนเจาะเมมเบรนและเมทัลโลพอร์ใพริน โดยใช้วิธีการแลงเมียร์-บล็อตเจ็ตต์และการเคลือบ ้ปั่นตามลำดับ ด้วยการใช้วิธีการทางนาโนศาสตร์ได้นำมาซึ่งความเข้าใจในเรื่องความเป็นอยู่ของโมเลกุล ในชั้นฟิล์มบาง กลไกการทำงานในระดับนาโนของโมเลกุลเจาะเมมเบรน จนนำมาสู่ข้อสรุปที่ว่าโปรตีนมี การเปลี่ยนแปลงรูปร่างก่อนและในขณะเข้าทำการเจาะเมมเบรนจนทำให้เกิดรอยรั่ว องค์ความรู้ดังกล่าว อาจนำไปสู่การออกแบบโมเลกุลเจาะเมมเบรนที่ทำหน้าที่เฉพาะด้าน เช่น การนำส่งยาและสารอาหาร เข้าสู่เซลล์ ในส่วนของสถาปัตยกรรมฟิล์มบางโมเลกุลของเมทัลโลพอร์ไพรินนั้น ได้เข้าใจลักษณะการ จัดเรียงตัวของโมเลกุลในชั้นฟิล์ม ได้พารามิเตอร์ที่เหมาะสมในการเตรียมฟิล์มบางเมทัล โลพอร์ไพริน เพื่อเป็นอุปกรณ์เซ็นเซอร์ตรวจวัดใอระเหยเคมี พบว่าการปรับเปลี่ยนโลหะตรงกลางวงของโมเลกุลพอร์ ไพรินทำให้เป็นเซ็นเซอร์ที่มีความไวต่อกลิ่นแตกต่างกัน ได้ประกอบอุปกรณ์จมูกอิเล็กทรอนิกส์บน พื้นฐานของการตรวจวัดการดูดกลืนแสง และประยุกต์ใช้ตรวจวิเคราะห์รสชาติของเครื่องดื่มประเภทอัล กอฮอล์ เช่น ไวน์ เบียร์ และวิสกี้ ผลงานดังกล่าวสามารถปรับปรุงเพื่อนำไปประยุกต์ใช้ในอุตสาหกรรม อาหารและเครื่องดื่มได้

คำสำคัญ: โปรตีนเจาะเมมเบรน พอร์ไพริน ฟิล์มบาง จมูกอิเล็กทรอนิกส์ เซ็นเซอร์เคมี

EXECUTIVE SUMMARY

นาโนสถาปัตยกรรมศาสตร์ (Nanoarchitectonics) เป็นศาสตร์ใหม่ที่กำลังได้รับความสนใจเป็น อย่างสูงในแวดวงงานวิจัยทางด้านนาโนเทคโนโลยีของโลก นาโนสถาปัตยกรรมศาสตร์กำลังพัฒนาไป อย่างรวดเร็วโดยอาศัยการเรียนรู้และเลียนแบบระบบนาโนที่มีอยู่ในสิ่งมีชีวิต อย่างเช่น ระบบสังเคราะห์ แสง ระบบจัดการพลังงาน โปรตีน เมมเบรน เพื่อนำมาสังเคราะห์องค์ความรู้ สูตร (recipe) และเทคโนโลยี อุปกรณ์โมเลกุลของมนุษย์ เพื่อมิให้ประเทศไทยตกกระแสที่เชี่ยวกรากของแนวโน้มโลกทางด้านนาโน เทคโนโลยีที่หมุนไปอย่างรวดเร็ว ผู้เสนอโครงการฯได้ริเริ่มงานทางด้านนี้ โดยในโครงการนี้ได้แบ่ง ออกเป็น 2 โครงการย่อย ได้แก่

การศึกษานาโนสถาปัตยกรรมศาสตร์ของโปรตีนเจาะเมมเบรนประเภท Bt

โปรตีน Bt มีความพิเศษตรงที่สามารถละลายได้ในน้ำแต่สามารถเจาะเข้าไปอยู่ในเมมเบรนใด้ ความเข้าใจในกลไกการเจาะเข้าไปในเมมเบรนของโปรตีนชนิดนี้จะมีประโยชน์มากต่อนาโนเทคโนโลยี ผู้เสนอโครงการฯจะทำการศึกษาตั้งแต่เรื่องของ เมื่อโปรตีนละลายอยู่ในน้ำ โปรตีนมีปฏิสัมพันธ์กับน้ำที่อยู่ ล้อมรอบมันอย่างไร การเปลี่ยนแปลงรูปร่างของโปรตีนก่อนที่มันจะเจาะเข้าไปในเมมเบรนเกิดขึ้นอย่างไร และเมื่อมันเข้าไปอยู่ในเมมเบรนแล้วมันอยู่อย่างไร เสถียรภาพ และพลวัตเป็นอย่างไร ซึ่งองค์ความรู้ในเรื่อง ดังกล่าว ก็จะมีประโยชน์ต่อการพัฒนาอุปกรณ์นาโนที่ทำจากโปรตีนชนิดอื่นๆได้ในอนาคต

การศึกษานาโนสถาปัตยกรรมศาสตร์ของอุปกรณ์ฟิล์มบางเซ็นเซอร์โมเลกุลที่ทำจากเมทัลโลพอร์ใพริน

เมทัลโลพอร์ไพรินเป็นโมเลกุลที่ระบบนาโนในธรรมชาติชอบเรียกใช้มาก เช่น ระบบสังเคราะห์
แสง ระบบหายใจ เป็นค้น เมทัลโลพอร์ไพรินเป็นโมเลกุลที่มีลักษณะเป็นวง (Macrocyclic Molecule) มัน
สามารถเกิดอันตรกริยาแบบ pi-pi หรือ pi-dipole หรือ แบบอื่นๆ กับโมเลกุลอินทรีย์หลากชนิด การที่มันมี
โลหะทรานสิชัน (Transition Metal) เกาะยึดอย่างแน่นตรงกลางวงทำให้การเกิดอันตรกริยากับโมเลกุลอื่น
ยิ่งซ้าเช้อนมากขึ้น

ในช่วง 1 ปีแรกของการวิจัย ได้ศึกษาอันตรกริยาระหว่างโปรตีนเจาะเมมเบรนกับน้ำ โดยการจำลอง สภาพของรูรั่วที่โปรตีนสร้างขึ้นบนเมมเบรน โดยสมมติให้ส่วนที่เจาะเข้าไปในเมมเบรนนั้นประกอบด้วย เป็ปไตด์ (ซึ่งเป็นส่วนหนึ่งของโปรตีนประกอบด้วย 2 helices) ที่มาจากโปรตีน 6 โมเลกุล แล้วจำลองสภาพ ความเป็นอยู่ของโปรตีน-เมมเบรน ในน้ำด้วยวิธี Molecular Dynamics Simulation การศึกษาครั้งนี้ มีการ แปรเปลี่ยนกรดอะมิโนบางชนิดที่ ณ ตำแหน่งที่คาดว่าน่าจะมีผลต่อการทำงานของโปรตีน ซึ่งถูกเรียกว่า mutant โดยในการทดลองจริงโดยนักชีววิทยานั้น mutant มีทั้งชนิดที่ไม่ทำงานหรือทำงานได้ไม่ดี (inactive)

และทำงานได้ดีเท่าเดิมหรือมากกว่าเดิม (active) จากการจำลอง Molecular Dynamics Simulation ทำให้ ทราบว่า active mutants และ inactive mutants ทำงานอย่างไรในระดับโมเลกุล ซึ่งวิธีการนี้ได้นำมาสู่ข้อสรุป ที่ว่ากรดอะมิโนที่มีการปรับเปลี่ยนมีส่วนสำคัญต่อการเข้า-ออกของไอออนในรูรั่ว จากนั้นได้ทำการทดลอง ประกอบฟิล์มบางของชั้นใขมันบนผิวน้ำแล้วลองใส่โปรตีน Cry4B ลงไปข้างใต้เพื่อทดสอบดูว่าโปรตีน ดังกล่าวจะสามารถเจาะขึ้นมาบนผิวใขมันได้หรือไม่อย่างไร ซึ่งผลก็พบว่าโปรตีนดังกล่าวมีความสามารถ ในการเจาะเมมเบรน โดยมีสมมติฐานว่าโปรตีนมีการเปลี่ยนแปลงรูปร่างบนผิวเมมเบรนด้วย ซึ่งข้อมูลที่ได้ สอดคล้องกับความเชื่อเดิมของนักชีววิทยาว่าโปรตีนน่าจะมีการเปลี่ยนแปลงรูปร่างที่พื้นผิวของเมมเบร นเทียม องค์ความรู้ดังกล่าวได้นำมาสู่การตีพิมพ์ผลงานวิจัยในวารสารนานาชาติ 1 เรื่อง (Y. Kanintronkul, T. Srikhirin, C. Angsuthanasombat and T. Kerdcharoen*, "Insertion behavior of the Bacillus thuringiensis Cry4Ba insecticidal protein into lipid monolayers", Archive of Biochemistry and Biophysics 442 (2005) 180.) และบทคัดย่อในการประชุมนานาชาติที่อ้างอิงในฐานข้อมูล 1 เรื่อง (Y. Kanintronkul, T. Srikhirin, C. Angsuthanasombat and T. Kerdcharoen, "Adsorption of the Bacillus thuringiensis Cry4Ba toxin at lipid membrane-water interface: model studies towards nanodevice implications", FEBS Journal 272 (2005) 377)

ในปีที่ 2 ของการวิจัย ได้พัฒนาแพล็ตฟอร์มสำหรับใช้ในการจำลองฟิล์มบางโมเลกุลซึ่งเป็นครั้ง แรกในประเทศไทย ที่มีการทำการจำลองโมเลกุลที่พื้นผิวรอยต่อ เนื่องจากเทคนิคการจำลองโมเลกุลแบบนี้ ทำได้ค่อนข้างยาก ซึ่งจากการนำผล simulation ไปเทียบกับการทคลองแบบ Langmuir-Blodgett แล้วทำให้ สามารถทำความเข้าใจความเป็นอยู่ของโมเลกุลพอร์ไพรินที่ผิวน้ำ จากการศึกษาโครงสร้างและพลวัตของ พอร์ไพรินเมื่ออยู่ในฟิล์มบางด้วยวิธีการจำลองเชิงโมเลกุล แบบ Molecular Dynamics Simulation ทำให้ เข้าใจลักษณะการเรียงตัวของโมเลกุลในฟิล์มบาง อันตรกริยาระหว่างพอร์ไพรินกับพอร์ไพรินตัวอื่นๆ และ ระหว่างพอร์ไพรินกับน้ำ (ในกรณีการประกอบฟิล์มบางใช้เทคนิคการประกอบโมเลกุลแบบ Langmuir-Blodgett Self-Assembly) องค์ความรู้ดังกล่าวได้นำมาสู่การตีพิมพ์ผลงานวิจัยในวารสารนานาชาติ 1 เรื่อง (S. Krongsuk, T. Kerdcharoen*, A. Borodin and M. Kiselev, "Computer Simulation Study of Porphyrazine Monolayer at the Water-Gas Interface: Structure and Molecular Orientation", Journal of the Korean Physical Society 52 (2008) 1657)

ในปีที่ 3 ของการวิจัย การศึกษาอันตรกริยาระหว่างวัสดุเซ็นเซอร์กับอัลกอฮอล์ชนิดต่างๆ ได้แก่ methanol, ethanol, iso-propanol เพื่อให้เข้าใจในการทำงานระดับโมเลกุลของเซ็นเซอร์ว่าเป็นอย่างไร จากนั้นได้ทำการประกอบเซ็นเซอร์ โดยศึกษาพารามิเตอร์ในการประกอบอุปกรณ์ฟิล์มบางโมเลกุล เช่น วิธีการปั่นเคลือบ จะต้องทราบว่าจะใช้ตัวทำละลายชนิดใด ใช้ความเข้มข้นเท่าใด และอัตราการหมุนปั่น เท่าใด จึงจะได้ฟิล์มที่มีความหนาเหมาะสม ซึ่งผู้วิจัยได้ทำการทดลองจนได้พารามิเตอร์ดังกล่าว และนำไป ผลิตฟิล์มเซ็นเซอร์ ซึ่งทดลองใช้งานทดสอบวัดความต่างของแอลกอฮอล์ ได้ศึกษาเสถียรภาพของฟิล์มบาง

ที่ได้ ศึกษาสมบัติเชิงแสงของฟิล์มบางเมทัลโลพอร์ไพรินในบรรยากาศของไอระเหยของสารอินทรีย์ต่างๆ เช่น ethanol เพื่อตรวจสอบสภาวะการเป็นเซ็นเซอร์โมเลกล ศึกษาการสัณฐานวิทยาของฟิล์มบางและการ เปลี่ยนโครงสร้างฟิล์มเมื่อถูกความร้อนและใอระเหยอินทรีย์ จากนั้นได้ทำการสร้างอุปกรณ์สำหรับการวัด สมบัติเชิงแสงของฟิล์มบางโมเลกุล เมื่อสัมผัสกับใอโมเลกุลที่ต้องการตรวจสอบ การสร้างอุปกรณ์การใหล ของสารตรวจสอบ แชมเบอร์ของเซ็นเซอร์ และพัฒนาซอฟท์แวร์สำหรับการประมวลผลการทำงานของ เซ็นเซอร์รวม (Multiple Sensors) เพื่อให้สามารถจดจำและแยกแยะกลิ่นได้ จนได้สิ่งที่มีชื่อว่าระบบสัมผัส กลิ่นเทียม (Artificial Olfactory System) องค์ความรู้คังกล่าวได้นำมาสู่การตีพิมพ์ผลงานวิจัยในวารสาร นานาชาติ 3 เรื่อง (C. Wongchoosuk, A. Udomvech and T. Kerdcharoen, "The geometrical and electronic structures of open-end fully functionalized single-walled carbon nanotubes", Current Applied Physics, (2008) in press) (A. Udomvech, T. Osotchan and T. Kerdcharoen, "Theoretical Investigation of Lithium Atoms Insertion into the Ultra-Small Diameter Carbon Nanotubes", Journal of the Korean Physical Society 52 (2008) 1350) (C. Wongchoosuk, S. Krongsuk and T. Kerdcharoen, "Theoretical Investigations on the Tip-Functionalized Carbon Nanotubes Interacting with Water", International Journal of Nanoparticles, (2008) in press) และต้นแบบระดับห้องปฏิบัติการระบบตรวจวัดโมเลกุลสำหรับเครื่องดื่ม ประเภทมีแอลกอฮอล์ เช่น เบียร์ ไวน์ วิสกี้ ซึ่งตรวจวัดการปลอมปนของเมทานอล โดยจะพัฒนาต่อเพื่อเป็น ต้นแบบภาคสนามหรือต้นแบบเชิงพาณิชย์ ซึ่งจะขอทุนวุฒิเมธีวิจัยเพื่อนำมาต่อยอด

ผลจากความสำเร็จของโครงการนี้ ผู้วิจัยจึงได้ต่อยอดโครงการวิจัยดังกล่าวไปสู่ประโยชน์ในการใช้ งานมากขึ้น โดยผู้วิจัยกำลังเสนอโครงการเพื่อขอทุนวุฒิเมธิวิจัยเพื่อทำวิจัยและพัฒนาเซ็นเซอร์ตรวจวัดโมเลกุลและอุปกรณ์จมูกอิเล็กทรอนิกส์ โดยมีเป้าหมายเพื่อผลิตเซ็นเซอร์ตรวจวัดกลิ่นที่สามารถประยุกต์ใช้ งานได้จริงในอุตสาหกรรมอาหาร โดยหวังว่าองค์ความรู้จากโครงการนี้จะสามารถต่อยอดไปใช้ประโยชน์ เชิงพาณิชย์ได้อีกใน 1-3 ปีข้างหน้า

เนื้อหางานวิจัย

1. วัตถุประสงค์ของโครงการ

- 1) เพื่อสังเคราะห์องค์ความรู้ใหม่ทางด้านชีวนาโนสถาปัตยกรรมศาสตร์ (Biomimetic Nanoarchitectonics) ของอุปกรณ์โมเลกุล โดยการเรียนรู้จากการศึกษาวัสดุที่ระบบสิ่งมีชีวิตนิยม นำไปใช้งาน 2 ชนิด คือ โปรตีนเจาะเมมเบรนประเภท Bt และเมทัลโลพอร์ไพริน
- 2) เพื่อศึกษาการทำงานของฟิล์มบางเมทัลโลพอร์ไพรินเพื่อใช้เป็นเซ็นเซอร์โมเลกุล และ พัฒนา เทคโนโลยีสำหรับนำไปใช้ตรวจสอบไอระเหย

2. บทน้ำ/ผลงานที่มีมาก่อน

2.1 นาโนเทคโนโลยีตามนิยามดั้งเดิม (Nanotechnology in Original Context)

ปัจจุบันนาโนเทคโนโลยีใด้กลายมาเป็นแม่เหล็กที่ดึงดูดการสนับสนุนจากรัฐบาล เงินลงทุนจาก อุตสาหกรรม รวมไปถึงความสนใจจากสาธารณะชนทั่วโลก¹ ทั้งนี้งบวิจัยทางด้านนาโนเทคโนโลยีจาก รัฐบาลกลางประเทศสหรัฐอเมริกาในปี ค.ศ. 2004 ปีเดียวก็มีมากถึง 850 ล้านเหรียญสหรัฐ² ถึงแม้จะมี บริษัทเอกชนจำนวนมากขึ้นเรื่อยๆ ที่ออกมาอ้างว่าได้วางขายผลิตภัณฑ์ที่ใช้นาโนเทคโนโลยี³ แต่หาก พิจารณาโดยละเอียดก็จะพบว่าส่วนผสมของเทคโนโลยีใหม่ในผลิตภัณฑ์เหล่านั้นกลับมีเพียง 2-3 เปอร์เซ็นต์เท่านั้น ที่น่าเป็นห่วงก็คือคำว่า "นาโน" เริ่มได้รับคำนิยามใหม่ที่กว้างขึ้นเรื่อยๆ⁴ จนบางครั้งก็ขาด ซึ่งเหตุผล สุดแล้วแต่ใครจะแสวงหาประโยชน์จากมัน ด้วยความเป็นห่วงทำให้เริ่มมีกลุ่มวิจัยจำนวนมากขึ้น รวมทั้งของผู้เสนอโครงการฯนี้ ที่เริ่มเล็งเห็นการก้าวไปอย่างไร้หางเสือของศาสตร์นี้ และพยายามเหนี่ยวรั้ง ให้สาขานี้เดินต่อไปในแนวทางที่เป็นนิยามเริ่มต้น นั่นคือ "ความสามารถในการจัดการ ควบคุม ประกอบ ผลิต และ ผลิตระดับอุตสาหกรรม ด้วยความแม่นยำในระดับอะตอม" 5.6

ถ้าหากเรายึดติดกับนิยามของนาโนเทคโนโลยีที่ให้ไว้โดย ศาสตราจารย์ ริชาร์ด ฟายน์แมน⁷ เมื่อปี ค.ศ. 1959 ก็จะพบว่านาโนเทคโนโลยีเพิ่งจะเริ่มต้นขึ้นเท่านั้น ยังต้องการเวลาอีกสักระยะเพื่อไปถึงการใช้ งานเชิงพาณิชย์ ทั้งนี้ ถึงแม้วิทยาศาสตร์พื้นฐานไม่ว่าจะเป็น วิชาฟิสิกส์ เคมี และชีววิทยา เราจะมีค่อนข้าง

¹ D. Marinova and M. McAleer, "Nanotechnology Strength Indicators: International Rankings based on US Patents", *Nanotechnology* 14 (2003) R1.

² M. C. Roco, "Government Nanotechnology Funding: An International Outlook" (National Science Foundation, 2003).

³ A. K. Cheetham and P. S. H. Grubstein, "Nanomaterials and Venture Capital", *Nanotoday*, December 2003.

⁴ M. J. Pitkethly, "Nanoparticles as Building Blocks", *Nanotoday*, December 2003.

⁵ E. S. Raymond, "The New Hacker's Dictionary" (MIT Press, Cambridge, 1993).

⁶ K. Eric Drexler, "Engine of Creation: The Coming Era of Nanotechnology" (Anchor Books, 1986).

⁷ R. P. Feynman, "There is Plenty of Room at the Bottom", Lecture at California Institute of Technology on 29 December 1959, Archived at http://www.zyvex.com/nanotech/feynman.html.

จะเพียงพอสำหรับการพัฒนาเทคโนโลยีระดับนาโน แต่เราเพิ่งจะมีความสามารถในการจัดการและควบคุม สิ่งของในระดับอะตอมเมื่อไม่นานมานี้เอง⁸ โดยก็ยังไม่มีความสามารถในการผลิตสิ่งต่างๆในเชิงพาณิชย์ อย่างแม่นยำในระดับอะตอมแต่อย่างใด⁹ แต่เราก็ยังเชื่อว่านาโนเทคโนโลยีในแบบฉบับของฟายน์แมนไม่ใช่ สิ่งเพื่อฝัน เพราะเทคโนโลยีดังกล่าวมีในธรรมชาติ จักรกลที่ทำงานในระดับนาโนอย่างโปรตีน¹⁰ ซึ่งถูก ควบคุมในระดับนาโนจากดีเอ็นเอ ทำให้เราเชื่อว่าเราอาจจะสร้างนาโนเทคโนโลยีของเราโดยอาศัยการ เรียนรู้จากธรรมชาติได้¹¹

2.2 นาโนสถาปัตยกรรมศาสตร์ที่เรียนรู้จากสิ่งมีชีวิต (Biomimetic Nanoarchitectonics)

จากการที่นักวิจัยมีความสนใจในเรื่องของนาโนเทคโนโลยีของอุปกรณ์ ทำให้มีการพัฒนาศาสตร์ ใหม่ขึ้นมาที่เรียกว่า นาโนสถาปัตยกรรมศาสตร์ โดยมีเนื้อหาเกี่ยวกับการสร้างอุปกรณ์นาโนจาก "ล่างขึ้น บน" (Bottom-Up Approach) ความสามารถในการประกอบตัวเอง (Molecular Self Assembly) โครงสร้างนาโนแบบมีลำดับชั้น (Hierachically Designed Nanostructure) และการวัดในระดับอะตอม (Atomic Level Measurement) ศาสตร์ในสาขานี้ต้องการบูรณาการความรู้จากวิทยาการหลายสาขา ทั้ง ฟิสิกส์ เคมี ชีววิทยา เชิงโมเลกุล วัสดุศาสตร์ และ เทคโนโลยีสารสนเทศ นาโนสถาปัตยกรรมศาสตร์มักจะเกี่ยวข้องกับ การศึกษา เส้นลวดโมเลกุล ในเลกุล ในเลาผู้และฟันเฟืองโมเลกุล เวือช์โมเลกุล ในเลกูล เกียร์โมเลกุล เละ มอเตอร์

_

⁸ D. M. Eigler and E. K. Schweizer, "Positioning Single Atoms with a Scanning Tunneling Microscope", *Nature* 344 (1990) 524.

⁹ H. Doumanidis, "The Nanomanufacturing Programme at the National Science Foundation", *Nanotechnology* 13 (2002)

¹⁰ D. R. Liu and P. G. Schultz, "Generating New Molecular Function: A Lesson from Nature", *Angew. Chem. Int. Ed.* 38 (1999) 36.

¹¹ K. Eric Drexler, "Nanosystems: Molecular Machinery, Manufacturing and Computation" (John Wiley & Sons, 1992).

¹² Y. Cui, Q. Wei, H. Park and C. M. Lieber, "Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, *Science* 293 (2001) 1289.

¹³ H. Hess, J. Clemmens, C. M. Matzke, G. D. Bachand, B. C. Bunker and V. Vogel, "Ratchet Patterns Sort Molecular Shuttles", *Appl. Phys. A* 75 (2002) 309.

Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. Stanley Williams, J. O. Jeppesen, K. A. Nielsen, J. Fraser Stoddart,
 D. L. Olynick and E. Anderson, "Nanoscale Molecular-Switch Devices Fabricated by Imprint Lithography", *Appl. Phys. Lett.* 82 (2003) 1610.

¹⁵ T. Cagin, A. Jaramillo-Botero, G. Gao and W. A. Goddard III, "Molecular Mechanics and Molecular Dynamics Analysis of Drexler-Merkle Gears and Neon Pump", *Nanotechnology* 9 (1998) 143.

โมเลกุล ¹⁶ สิ่งเหล่านี้เป็นชิ้นส่วนที่มีประโยชน์เพื่อไปสร้างสิ่งที่ใหญ่และทำงานซับซ้อนกว่า เช่น นาโน เซ็นเซอร์ ¹⁷ และ ชิพนาโน ¹⁸

จริงๆแล้ว ธรรมชาติได้รังสรรค์เทคโนโลยีดังกล่าวข้างต้นในสิ่งมีชีวิตมานับพันล้านปี นักนาโน เทคโนโลยีสามารถเรียนรู้ทำความเข้าใจจักรกลนาโนในธรรมชาติ เช่น โปรตีน แล้วนำมาสังเคราะห์องค์ ความรู้ทางสถาปัตยกรรมศาสตร์จนกลายเป็นสูตร (recipe) ที่สามารถนำมาพัฒนาจักรกลนาโนฝีมือมนุษย์ที่ เลียนแบบธรรมชาติได้¹⁹ ศาสตร์ของการศึกษาและเลียนแบบอุปกรณ์ขนาดนาโนในธรรมชาติกำลังได้รับ ความนิยมสูงขึ้น เราอาจเรียกสาขาเหล่านี้ว่า นาโนสถาปัตยกรรมศาสตร์ที่เรียนรู้จากสิ่งมีชีวิต (Biomimetic Nanoarchitectonics) หรือเรียกโดยย่อว่า "ชีวนาโนสถาปัตยกรรมศาสตร์" (Bio-Nanoarchitectonics)

ตารางข้างล่างนี้แสดงถึงความคล้ายคลึงของเทคโนโลยีเครื่องกล กับ เทคโนโลยีในธรรมชาติของสิ่งมีชีวิต

ตาราง 1 เปรียบเทียบเทคโนโลยีเครื่องกลกับเทคโนโลยีในสิ่งมีชีวิต 11

Technology	Function	Nature Technology
Struts, beams, casings	Transmit force, hold positions	Microtubules, cellulose, mineral
		structures
Cables	Transmit tension	Collagen
Solenoids, actuators	Move things	Actin, myosin
Motor	Turn shafts	Flagellar motor
Drive shafts	Transmit torque	Bacterial flagella
Containers	Hold fluids	Vesicles
Pumps	Move fluids	Membrane proteins
Clamps	Hold work pieces	Enzyme's binding pockets
Tools	Modify work pieces	Metallic complexes, functional groups
Production lines	Construct devices	Enzyme systems, ribosomes
Software	Control systems	Genetic system

¹⁶ E. Frey, "Physics in Cell Biology: On the Physics of Biopolymers and Molecular Motors", *CHEMPHYSCHEM* 3 (2002) 270.

¹⁷ S. R. Nettikadan, J. C. Johnson, S. G. Vengasandra, J. Muys and E. Henderson, "ViriChip: a Solid Phase Assay for Detection and Identification of Viruses by Atomic Force Microscopy", *Nanotechnology* 15 (2004) 383.

¹⁸ A. R. Pease and J. Fraser Stoddart, "Computing at the Molecular Level", *Structure and Bonding* 99 (2001) 189.

¹⁹ P. Ball, "Natural Strategies for the Molecular Engineer", *Nanotechnology* 13 (2002) R15.

ชีวนาโนสถาปัตยกรรมศาสตร์นั้น ต้องการเรียนรู้หลักการทำงานของจักรกลในธรรมชาติ แล้ว นำมาออกแบบอุปกรณ์นาโนที่สามารถทำงานได้คล้ายคลึงกัน โดยจะเลือกเฉพาะในส่วนที่เราสนใจเท่านั้น ไม่จำเป็นต้องเข้าใจกระบวนการทำงานของจักรกลในธรรมชาติจนครบวงจร เช่น การศึกษาโปรตีนที่ฝังตัว ลงบนเมมเบรนนั้น เราอาจต้องการรู้แค่ เสถียรภาพของโปรตีนตัวนั้นๆ ดำรงอยู่โดยอาศัยปัจจัยอะไรบ้าง ไม่ จำเป็นต้องเข้าใจรายละเอียดทางพันธุกรรมของโปรตีนชนิดนั้นว่ามีความเป็นมาอย่างไร ความรู้เพียงส่วน หนึ่งที่สนใจก็สามารถนำไปใช้ประโยชน์เพื่อสร้างโปรตีนชิพเพื่อเป็นเซ็นเซอร์ได้แล้ว²⁰ อย่างไรก็ตามการ เรียนรู้การทำงานในระดับนาโนของธรรมชาติ บางครั้งก็ต้องทำกันอย่างละเอียดตั้งแต่ โครงสร้าง พลวัต และ อันตรกริยา ว่าไปกำหนด บทบาทและหน้าที่การทำงานในธรรมชาติได้อย่างไร

ชีวนาโนสถาปัตยกรรมศาสตร์นั้น ทำหน้าที่ถ่ายทอดองค์ความรู้จากการมองธรรมชาติลองผิดลอง ถูกมาให้มนุษย์สร้างเทคโนโลยี แต่มนุษย์ก็ไม่จำเป็นต้องทำตามธรรมชาติหมด สามารถคัดแปลงได้ เช่น การสังเคราะห์แสงของพืช เมื่อเราเลียนแบบมาศึกษาเซลล์สุริยะแบบอินทรีย์ ก็ไม่จำเป็นต้องใช้วัสดุประเภท เดียวกัน สามารถใช้วัสดุที่เราคิดค้นขึ้นเอง เช่น โพลิเมอร์นำไฟฟ้า และ บักกี้บอล เป็นต้น

2.3 สถาปัตยกรรมศาสตร์ของโปรตีนเจาะเมมเบรน ประเภท บีที (Membrane-Fused *Bt* Protein)

Bacillus thuringiensis หรือ Bt เป็นแบคทีเรียประเภทหนึ่งที่พบในธรรมชาติซึ่งสามารถผลิตโปรตีน ที่มีฤทธิ์ฆ่าแมลงได้²¹ โปรตีนที่ผลิตออกมามี 2 แบบคือ Cry (crystal) กับ Cyt (cytolytic) โปรตีน Bt ที่ผู้ เสนอโครงการสนใจเป็นประเภท Cry ได้แก่ Cry4A และ Cry4B ซึ่งปัจจุบันนั้นยังไม่ทราบโครงสร้าง 3 มิติ อย่างแท้จริง แต่ก็สามารถประมาณกันว่ามีโครงสร้างคล้ายคลึงกับโปรตีน Cry1A และ Cry3A ซึ่งทราบโครงสร้าง 3 มิติแล้ว ดังนั้นโดยอาศัยวิธี Homology Modeling เราก็สามารถสร้างโมเดลโครงสร้างคร่าวๆ ของโปรตีนทั้ง 2 ตัวเพื่อนำไปใช้งานได้²²

การทำงานของโปรตีน Bt Cry นั้นเป็นดังนี้ โปรตีนประเภทนี้จะถูกสร้างและสะสมในรูปผลึกเก็บ ไว้ในตัวแบคทีเรีย เมื่อแมลงหรือตัวอ่อนแมลงกินแบคีเรียเข้าไป ผลึกก็จะถูกละลายออก สายโซ่โปรตีนที่ ยาวก็จะถูกตัดออกเหลือส่วนที่สามารถทำงานได้ (active protein) จากนั้นโปรตีนเหล่านี้จะฝังตัวไปที่เมม

²¹ A. I. Aronson, W. Beckman and P. Dunn, "Bacillus thuringiensis and Related Insect Pathogens", *Microbiol. Rev.* 50 (1986) 1.

²⁰ K. Rajagopal and J. P. Schneider, "Self-Assembling Peptides and Proteins for Nanotechnological Applications", *Curr. Op. Struc. Biol.* 14 (2004) 480.

²² C. Angsuthanasombat, P. Uawithya, S. Leetachewa, W. Pornwiroon, P. Ounjai, T. Kerdcharoen, G. Katzenmeier and S. Panyim, "Bacillus thuringiensis Cry4A and Cry4B Mosquito-Larvicidal Proteins: Homology-Based 3D Model and Implications for Toxin Activity", *J. Biochem. Mol. Bio.* 37 (2004) 304.

เบรนแล้วเกิดกระบวนการ molecular self assembly เพื่อก่อเป็นโพรงในเมมเบรน 23 ทำให้เซลล์ในทางเดิน อาหารของแมลง เช่น กระเพาะอาหารเกิดการสูญเสียไอออน เช่น $\mathbf{K}^{\scriptscriptstyle \perp}$ แล้วเกิดการพองน้ำจนระเบิดในที่สุด ทำให้แมลงเหล่านั้นถึงแก่ชีวิตได้

สิ่งที่น่าสนใจมากๆในสถาปัตยกรรมของโปรตีน Bt ก็คือ โปรตีนเจาะเข้าไปในเมมเบรนได้อย่างไร ความเข้าใจในกลไกการเจาะเข้าไปในเมมเบรนของโปรตีนชนิดนี้จะมีประโยชน์มากต่อนาโนเทคโนโลยี เช่น มนุษย์อาจพัฒนาโมเลกุลที่สามารถนำส่งยาหรือสารอาหารไปสู่เซลล์เป้าหมายได้โดยตรง ซึ่งโมเลกุล นั้นมีอำนาจในการเจาะผ่านเมมเบรนเป้าหมายได้ หรือ เรื่องการพัฒนาเทคโนโลยีในการฝังโปรตีนลงในเมม เบรนเพื่อสร้างเซ็นเซอร์โปรตีน เป็นต้น

ในประเทศไทย มีทีมวิจัยที่ห้องปฏิบัติการชีวฟิสิกส์เชิงโมเลกุล ณ สถาบันอณูชีววิทยาและพันธุ ศาสตร์ มหาวิทยาลัยมหิดล ซึ่งนำทีมโดย รศ. ดร.ชนันท์ อังศุธนสมบัติ ซึ่งสนใจเรื่องของโปรตีนุ Bt ชนิดนี้ เป็นอย่างมากเพื่อนำไปใช้ในแง่การควบคุมแมลงด้วยวิธีชีวภาพ ได้ทำการศึกษาทั้งในด้านของชีววิทยาเชิง โมเลกุล และชีวฟิสิกส์มาเป็นเวลาหลายปี จนได้หลักฐานว่าโปรตีนน่าจะแหย่โครงสร้างที่เป็น helix บางส่วนในโดเมนที่หนึ่งลงไปในแมมเบรน^{24,25,26} โดยการแหย่ส่วนนั้นลงไป โปรตีนก็จะต้องมีการ เปลี่ยนแปลงรูปร่างไปอย่างมากด้วย ซึ่งเป็นสมบัติพิเศษของโปรตีนชนิดนี้

สำหรับผู้วิจัย ไม่ได้สนใจประโยชน์ของโปรตีนดังกล่าวในเชิงชีววิทยา แต่สนใจในแง่ของชีวนาโน สถาปัตยกรรมศาสตร์ว่าโปรตีน Bt ทำงานได้อย่างไร โดยจะนำวิธีการทางนาโนศาสตร์เพื่อเข้าไปศึกษา ตั้งแต่ โครงสร้าง พลวัต²⁷ อันตรกริยาระหว่างโปรตีนกับน้ำ²⁸ และโปรตีนกับเมมเบรน²⁹ ว่ามีอิทธิพลต่อ หน้าที่การทำงานของโปรตีนอย่างไร ซึ่งในส่วนนี้จะเป็นแง่มุมที่ทีมของ รศ. คร. ชนันท์ ไม่ได้ครอบคลุมถึง

²³ F. Rajamohan, M. K. Lee and D. H. Dean, "*Bacillus thuringiensis* Insecticidal Proteins: Molecular Mode of Action", *Prog. Nucleic Acid Res. Mol. Biol.* 60 (1998) 1.

²⁴ T. Puntheeranurak, S. Leetachewa, G. Katzenmeier, C. Krittanai, S. Panyim and C. Angsuthanasombat, "Expression and Biochemical Characterization of the *Bacillus thuringiensis* Cry4B Alpha1-Alpha5 Pore Forming Fragment", *J. Biochem. Mol. Biol.* 34 (2001) 293.

²⁵ T. Puntheeranurak, P. Uawithya, L. Potvin, C. Angsuthanasombat and J. L. Schwartz, "Ion Channels Formed in Planar Lipid Bilayers by the Diptean-Specific Cry4B *Bacillus thuringiensis* Toxin and Its Alpha1-Alpha5 Fragment", *Mol. Membr. Biol. 21* (2004) 67.

²⁶ Y. Kanintronkul, I. Sramala, G. Katzenmeier, S. Panyim and C. Angsuthanasombat, "Specific Mutations within the Alpha4-Alpha5 Loop of the *Bacillus thuringiensis* Cry4B Toxin Reveal a Crucial Role for Asn-166 and Tyr-170", *Mol. Biotech.* 24 (2003) 11.

²⁷ S. Yoshioki, "Dynamics of a Protein and Water Molecules Surrounding the Protein: Hydrogen-Bonding between Vibrating Water Molecules and a Fluctuating Protein", *J. Comput. Chem.* 23 (2002) 402.

²⁸ C. Mattos, "Protein-Water Interactions in a Dynamic World", *Trend Biochem. Sci.* 27 (2002) 203.

โปรตีนเป็นโมเลกุลขนาดใหญ่ของสายโซ่กรดอะมิโนที่พันกันไปมาอย่างซับซ้อน เมื่อมันอยู่ในน้ำ ก็จะมีกรดอะมิโนที่พื้นผิวของมันนั้นเกิดอันตรกริยากับน้ำ ซึ่งก็มีทั้งส่วนที่ชอบและส่วนที่ไม่ชอบน้ำ จาก ประสบการณ์ของผู้เสนอโครงการฯในการศึกษาโมเลกุลเล็กๆที่มีทั้งส่วนที่ชอบและไม่ชอบน้ำ พบว่า โมเลกุลแบบนี้จะสร้างเครือข่ายพันธะไฮโดรเจนกับน้ำอย่างซับซ้อน 30,31,32 และจะ counter balance ใน ส่วนที่ชอบและไม่ชอบน้ำอย่างสมคุล ในกรณีของโปรตีนที่เป็นโมเลกุลที่มีขนาดใหญ่กว่ามากนั้น ความสัมพันธ์ระหว่างมันกับน้ำที่อยู่ล้อมรอบยิ่งน่าจะซับซ้อนมากขึ้น 33 ผู้เสนอโครงการฯมีความสนใจที่จะ ศึกษาว่าการเปลี่ยนแปลงรูปร่างของโปรตีนก่อนที่มันจะเจาะเข้าไปในเมมเบรนนั้น มีความสัมพันธ์กับน้ำที่ อยู่ล้อมรอบตัวมันอย่างไร รวมไปถึงเสถียรภาพของมันเมื่ออยู่ในเมมเบรนซึ่งก็จะมีประโยชน์ต่อการพัฒนา อุปกรณ์นาโนที่ทำจากโปรตีนได้ในอนาคต

2.4 สถาปัตยกรรมศาสตร์ของอุปกรณ์โมเลกุล ประเภท เมทัลโลพอร์ใพริน (Metalloporphyrin-Based Molecular Devices)

เมทัล โลพอร์ ใพรินเป็น โมเลกุลที่มีลักษณะเป็นวง (Macrocyclic Molecule) แต่มีความพิเศษตรงที่มี conjugated bonds เชื่อมต่อกันครบวง ซึ่งทำให้มันสามารถเกิดอันตรกริยาแบบ pi-pi หรือ pi-dipole หรือ แบบอื่นๆ กับ โมเลกุลอินทรีย์หลากชนิด การที่มันมีโลหะทรานสิชัน (Transition Metal) เกาะยึดอย่างแน่น ตรงกลางวงทำให้การเกิดอันตรกริยากับ โมเลกุลอื่นยิ่งซับซ้อนมากขึ้น 34 เมทัล โลพอร์ ใพรินที่มีโลหะตรงกลางแตกต่างกันมีคุณสมบัติในการเกิดอันตรกริยากับ โมเลกุลอื่นๆ แตกต่างกัน การเปลี่ยนแปลงหมู่แทนที่

²⁹ V. Vie, N. Van Mau, P. Pomarede, C. Dance, J. L. Schwartz, R. Laprade, R. Frutos, C. Rang, L. Masson, F. Heitz and C. Le Grimellec, "Lipid-Induced Pore Formation of the Bacillus thuringiensis Cry1Aa Insecticidal Toxin", J. Membrane Biol. 180 (2001) 195.

³⁰ M. Kiselev, D. Ivlev, Y. Puhovski and T. Kerdcharoen, "Preferential Solvation and Elasticity of the Hydrogen Bonds Network in Tertiary Butyl Alcohol-Water Mixture", *Chem. Phys. Lett.* 379 (2003) 581.

³¹ M. Kiselev, T. Kerdcharoen, S. Hannongbua and K. Heinzinger, "Structural Properties of Sub- and Supercritical Ammonia as Studied by Molecular Dynamics Simulations", *Chem. Phys. Lett.* 327 (2000) 425.

³² M. Kiselev, S. Noskov, Y. Puhovski, T. Kerdcharoen and S. Hannongbua, "The Study of Hydrophobic Hydration in Supercritical Water-Ammonia Mixture", *J. Mol. Graph. Model.* 19 (2001) 412.

³³ P. Nicholls, "Introduction: the Biology of the Water Molecule", Cell. Mol. Life Sci. 57 (2000) 987.

³⁴ J. A. J. Brunink, C. Di Natale, F. Bungaro, F. A. M. Davide, A. D'Amico, R. Paolesse, T. Boschi, M. Faccio and G. Ferri, "The Application of Metalloporphyrins as Coating Material for Quartz Microbalance-Based Chemical Sensors", *Anal. Chim. Acta* 325 (1996) 53.

ด้านข้างของวงก็ทำให้สมบัติของเมทัลโลพอร์ไพรินเปลี่ยนไปได้ ทั้งอันตรกริยากับโมเลกุลอื่นๆ สมบัติเชิง อิเล็กตรอน สมบัติเชิงแสง รวมถึงสมบัติอื่นๆที่แสดงออกในมุมมองของการใช้เป็นวัสดุทำเซ็นเซอร์³⁵

รูปที่ 1 แสดงโมเลกุลเมทัลโลพอร์ลินแบบหนึ่งที่สามารถนำมาทำเป็นเซ็นเซอร์โมเลกุล

ความพิเศษของเมทัลโลพอร์ไพรินนี้เองได้ทำให้วงการเซ็นเซอร์โมเลกุลให้ความสนใจใน
ความสามารถของวัสดุชนิดนี้ในการนำมาใช้ประโยชน์เป็นเซ็นเซอร์ตรวจสอบโมเลกุล 36 โดยเฉพาะ สำหรับการตรวจวัดพวกสารอินทรีย์ระเหยง่าย สำหรับงานเชิงวิสวกรรมในการสร้างอุปกรณ์นั้นปัจจุบันก็มี ความก้าวหน้าพอควร แต่ในแง่ขององค์ความรู้พื้นฐานเกี่ยวกับลักษณะ โครงสร้าง พลวัต และ อันตรกริยา ของเมทัลโลพอร์ไพรินกับสารที่จะตรวจสอบนั้น ยังไม่ค่อยเป็นที่แน่ชัดว่ามีลักษณะอย่างไร สัณนิษฐานกัน ว่า สารอินทรีย์เกิดอันตรกริยากับเมทัลโลพอร์ไพรินได้หลายแบบ 37 เช่น เกิดพันธะ pi-pi กับวง เกิดพันธะ การล้อมรอบ (Coordinated Bond) กับโลหะทรานสิชันที่อยู่ตรงกลาง เป็นต้น จากประสบการณ์ในการศึกษา โมเลกุลที่มีลักษณะคล้ายๆกันนี้ของผู้เสนอโครงการฯ 38,39 คือ โมเลกุลคราวน์อีเธอร์ (Crown Ethers) พบว่า

³⁵ C. Di Natale, A. Macanano, G. Repole, G. Saggio, A. D'Amico, R. Paolesse, T. Boschi, *Mater. Sci. Eng. C* 5 (1998) 209.

³⁶ A. D' Amico, C. Di Natale, R. Paolesse, A. Macagnano and A. Mantini, "Metalloporphyrins as Basic Material for Volatile Sensitive Sensors", *Sensors and Actuators B* 65 (2000) 209.

³⁷ C. W. Rogers and M. O. Wolf, "Luminescent Molecular Sensors Based on Analyte Coordination to Transition-Metal Complexes", *Coor. Chem. Rev.* 233-234 (2002) 341.

³⁸ S. Krongsuk, T. Kerdcharoen and S. Hannongbua, "How Many Water Molecules in the Hydration Shell of 18-crown-6? Monte Carlo Simulations Based on Ab Initio Derived Potential Energy Surface", *J. Phys. Chem. B* 107 (2003) 4175.

การเกิดอันตรกริยาระหว่างโมเลกุลที่เป็นวงกับโมเลกุลอื่นๆ มีความซับซ้อน พันธะในการเกาะยึดระหว่าง โมเลกุลที่เป็นวงกับโมเลกุลอื่นก็มีพลวัตสูงอีกด้วย ดังนั้นการเข้าไปศึกษาในแง่พื้นฐานน่าจะช่วยในด้าน วิศวกรรมของการนำเซ็นเซอร์ไปใช้งานด้วย

เมื่อโมเลกุลพอร์ไพรินเกิดอันตรกริยากับสารที่จะตรวจสอบ ก็มีวิธีในการแปรผล (Transducing) หลายๆวิธีด้วยกัน ตั้งแต่ การเปลี่ยนแปลงการสั่นอันเนื่องมาจากมวลที่เปลี่ยนของผิวผลึกควอตซ์ (Quartz Crystal Microbalance หรือ QMB) การเปลี่ยนแปลงค่าการนำไฟฟ้า การเปลี่ยนแปลงสมบัติทางแสง tiluต้น โดยผู้เสนอโครงการฯนั้นเลือกที่จะใช้การแปรผลโดยตรวจสอบสมบัติเชิงแสง เพราะมีความ สะควกในการสร้างเครื่องมือ ใช้งบประมาณที่ไม่มากนัก tiluต้น แต่ให้ความไวที่ค่อนข้างดี โดยจะศึกษาโครงสร้าง พลวัต และอันตกริยาระหว่างเมทัลโลพอร์ไพรินกับสารตรวจสอบ ว่ามีความสัมพันธ์อย่างไรกับ ฟังก์ชันในการทำงานเป็นเซ็นเซอร์โมเลกุล

3. ระเบียบวิธีวิจัย

เนื่องจากโครงการวิจัยนี้มี 2 โครงการย่อยที่จะทำขนานกันไปจึงขอแสดงรายละเอียดของขั้นตอนและ วิธีการที่ใช้ทำวิจัยแยกตามโครงการย่อยดังนี้

การศึกษานาโนสถาปัตยกรรมศาสตร์ของโปรตีน Bt

1) ศึกษาโครงสร้าง พลวัต และ อันตรกริยาของโปรตีน Cry4A/Cry4B กับ น้ำ ด้วยวิธีการจำลอง โมเลกุลเพื่อศึกษาความสัมพันธ์ระหว่างเครือข่ายพันธะไฮโดรเจนกับการเปลี่ยนแปลงรูปร่างของ โปรตีน ในขั้นตอนนี้เป็นการศึกษาสภาวะของโปรตีนที่อยู่ในน้ำ ซึ่งเกิดขึ้นก่อนที่จะเข้าไปอยู่ใน เมมเบรน

_

³⁹ S. Krongsuk, T. Kerdcharoen and S. Hannongbua*, "Monte Carlo Simulation of Potassium Ion Embedded 18-crown-6 in Water: Effect of the Cation to the Hydration Structure", *submitted*.

⁴⁰ C. Di Natale, R. Paolesse, A. Macagnano, A. Mantini, P. Mari and A. D' Amico, "Qualitative Structure-Activity Relationship in Porphyrins Based QMB Chemical Sensors", *Sensors and Actuators B* 68 (2000) 319.

⁴¹ S. Nardis, D. Monti, C. Di Natale, A. D' Amico, P. Siciliano, A. Forleo, M. Epifani, A. Taurino, R. Rella and R. Paolesse, "Preparation and Characterization of Cobalt Porphyrin Modified Tin Oxide Films for Sensor Applications", *Sensors and Actuators B* 103 (2004) 339.

⁴² A. Ali Umar, M. Mat Salleh and M. Yahaya, "Self-Assembled Monolayer of Copper(II) Meso-Tetra(4-Sulfanatophenyl) Porphyrin as an Optical Gas Sensor", *Sensor and Actuators B* 101 (2004) 231.

⁴³ A. Ali Umar, M. Mat Salleh and M. Yahaya, "Enriching the Selectivity of Metalloporphyrins Chemical Sensors by Means of Optical Technique", *Sensor and Actuators B* 85 (2002) 191.

- 2) ทำการทดลอง Langmuir-Blodgett Molecular Self Assembly เพื่อฝังโปรตีน Cry4B ลงไปใน เมมเบรนเทียม เพื่อทำความเข้าใจในเรื่องเสถียรภาพ และ ความเป็นอยู่ของโปรตีนดังกล่าวในเมม เบรนว่ามีลักษณะอย่างไร เกิดขึ้นยาก-ง่ายอย่างไร
- 3) ทำขั้นตอนที่ 2) กับโปรตีน Cry4A โดยใช้เทคนิคที่ได้เรียนรู้จาก Cry4B มาใช้ เปรียบเทียบสภาวะ การทดลองว่ามีความแตกต่างอย่างไร เพื่อนำไปวิเคราะห์ความแตกต่างกลไกการเจาะเข้าเมมเบรน ระหว่างโปรตีนทั้งสอง
- 4) ทำการศึกษาโมเคลของโปรตีน Cry4A/Cry4B ในเมมเบรนด้วยวิธีการจำลองโมเลกุลและกลศาสตร์ ควอนตัมเชิงโมเลกุล เพื่อทำความเข้าใจในเรื่องเสถียรภาพของโปรตีน Cry4A/Cry4B เมื่ออยู่ในเมม เบรน
- 5) ศึกษาพื้นผิวระหว่างโปรตีน-เมมเบรนด้วย Scanning Probe Microscopy Nano-Imaging เพื่อ นำไปสู่ความเข้าใจเรื่องการประกอบกันของโปรตีนเป็นโพรง

<u>การศึกษาเมทัลโลพอร์ไพรินเพื่อเป็นเซ็นเซอร์โมเลกุล</u>

- 1) ศึกษาการประกอบฟิล์มบางของเมทัลโลพอร์ไพริน ด้วยวิธี Langmuir-Blodgett Molecular Self Assembly เพื่อเข้าใจเสถียรภาพของฟิล์ม ลักษณะความเป็นอยู่ข้างในเนื้อฟิล์ม และ ศึกษา โครงสร้าง พลวัต ของเมทัลโลพอร์ไพรินเมื่ออยู่ในฟิล์มบางด้วยวิธีการจำลองเชิงโมเลกุล เพื่อ เข้าใจลักษณะการเรียงตัวของโมเลกุลในฟิล์ม
- 2) เมื่อสามารถประกอบฟิล์มบางของเมทัลโลพอร์ไพรินได้แล้ว ก็นำมาศึกษาสมบัติเชิงแสงของฟิล์ม บางเมทัลโลพอร์ไพรินในบรรยากาศของไอระเหยของสารอินทรีย์ต่างๆ เช่น ethanol, benzene, chloroform, acetone เพื่อตรวจสอบสภาวะการเป็นเซ็นเซอร์โมเลกุล
- 3) ศึกษาอันตรกริยาระหว่างเมทัลโลพอร์ไพรินกับโมเลกุลอินทรีย์แบบต่างๆ เพื่อเข้าใจความสัมพันธ์ ระหว่างโครงสร้างเชิงอิเล็กตรอนกับหน้าที่การทำงานเป็นเซ็นเซอร์
- 4) เมื่อมีความสามารถในการควบคุมสภาพฟิล์มบางรวมถึงการแปรผลสัญญาณของสมบัติเชิงแสง แล้ว ก็จะสร้างอุปกรณ์ต้นแบบที่เป็นเซ็นเซอร์ขึ้นมา ตั้งแต่ ตัวถัง วงจรการแปรสัญญาณ การแปล ผลด้วยคอมพิวเตอร์เป็นต้น พร้อมทดสอบกับสารระเหย เช่น น้ำหอม เป็นต้น

รายละเอียดของเครื่องมือที่ใช้ในการวิจัย

• กลศาสตร์ควอนตัมเชิงโมเลกุล (Molecular Quantum Mechanics)

เป็นการศึกษาด้วยการคำนวณโครงสร้างเชิงอิเล็กตรอนในคอมพิวเตอร์⁴⁴ ทำให้สามารถ ทำนายเสถียรภาพของโมเลกุล โครงสร้าง อันตรกริยากับโมเลกุลอื่นๆ ได้ ถึงแม้ระบบที่ผู้ เสนอโครงการฯศึกษาจะมีขนาดใหญ่มากเกินกว่าที่วิธีการแบบนี้จะจัดการได้ แต่ก็มี เทคนิคต่างๆ ที่สามารถนำมาใช้เพื่อทำให้ระเบียบวิธีนี้ยังคงสามารถทำงานได้ เช่น ตัด ระบบออกเป็นส่วนย่อยแล้วศึกษาเฉพาะส่วนที่สนใจหรือสำคัญ เป็นต้น

- การจำลองโมเลกุล (Molecular Simulation)
 เป็นการจำลองโครงสร้าง พลวัต อันตกริยา ของโมเลกุลในระบบควบแน่นแบบอ่อน (soft –condensed system) ในคอมพิวเตอร์ ซึ่งจะได้ผลเป็นการเคลื่อนที่ของอะตอมใน ระบบเมื่อเทียบกับเวลา ซึ่งสามารถแปลผลได้เป็นสมบัติต่างๆ ทั้งทางเทอร์โมไดนามิกส์ สมบัติเชิงโครงสร้าง เชิงกล เชิงพลวัต ซึ่งสามารถนำไปสู่ความเข้าใจการทำงานของโมเลกุลได้
- การจัดเรียง โมเลกุลแบบแลงเมียร์-บล็อดเจตต์ (Langmuir-Blodgett Molecular Self Assembly หรือ LB) เป็นวิธีการบังคับ โมเลกุลที่เรียงตัวอยู่ที่ผิวน้ำอย่างสะเปะสะปะใน 2 มิติ ให้มาจัดเรียงตัว กันอย่างมีระเบียบจนกลายเป็นฟิล์มบางๆที่เคลือบอยู่ด้านบนของผิวน้ำ ⁴⁶ จากนั้นกี้ สามารถถ่ายเทฟิล์มบางบนผิวน้ำไปสู่แผ่นรองอื่นๆได้ เพื่อนำไปใช้งานเป็นอุปกรณ์ การศึกษาวิธี LB ทำให้สามารถเข้าใจโครงสร้างความเป็นอยู่ของโมเลกุลและอันตรกริยา ต่อกันเมื่ออยู่ในฟิล์มได้
- การสังเคราะห์ภาพนาโนด้วยกล้องจุลทรรศน์ส่องกราดด้วยโพรบ (Scanning Probe Microscopy Nano-imaging)
 กล้องจุลทรรศน์ส่องกราดด้วยโพรบทำงานโดยการใช้นิ้วที่เล็กมากๆ คลำไปบนพื้นผิวที่ ต้องการ "เห็น" นิ้วที่เล็กๆนี้มียอด (Tip) เพียงแค่อะตอมเดียวเท่านั้น ซึ่งก็จะเกิดอันตกริยา ทั้งดูดและผลักกับพื้นผิว เราสามารถที่จะทราบถึงขนาดการดูดและผลักโดยใช้ ลำแสงเลเซอร์ยิงไปบนนิ้วเล็กๆนั้น ในการคลำนิ้วสามารถเคลื่อนที่ขึ้นลงได้ในระยะที่เล็ก มากๆ ในระดับสั้นกว่านาโนเมตร ด้วยเหตุนี้จึงสามารถได้รายละเอียดของพื้นผิวระดับนา

⁴⁵ A. R. Bizzarri and S. Cannistraro, "Molecular Dynamics of Water at the Protein-Solvent Interface", *J. Phys. Chem. B* 106 (2002) 6617.

_

⁴⁴ F. Ban, K. N. Rankin, J. W. Gauld and R. J. Boyd, "Recent Applications of Density Functional Theory Calculations to Biomolecules", *Theor. Chem. Acc.* 108 (2002) 1.

V. M. Kaganer, H. Moehwald, "Structure and Phase Transitions in Langmuir Monolayers", Rev. Mod. Phys. 71 (1999)
 779.

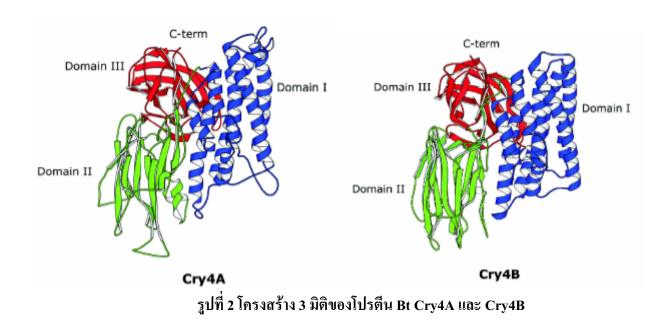
โน⁴⁷ การสังเคราะห์ภาพด้วยการส่องกราดด้วยโพรบนี้มีข้อได้เปรียบเหนือวิธีกล้อง จุลทรรศน์อิเล็กตรอน (Scanning Electron Microscopy หรือ SEM) ตรงที่สามารถ ทำงานกับตัวอย่างในสภาพธรรมชาติหรือแม้กระทั่งมีชีวิต⁴⁸

เอ็กซเรย์ ดิฟแฟรกชันแบบฟิล์มบาง (Thin Film XRD)
 โดยการยิงลำแสงเอ็กซเรย์ ไปยังแผ่นฟิล์มบางแล้วเก็บข้อมูลของการเลี้ยวเบนออกมาก็จะ
 ทำให้สามารถทราบถึงลักษณะ โครงสร้างการเรียงตัวของฟิล์มบางอย่างคร่าวๆ รวมถึงความหนาของชั้นฟิล์มด้วย

นอกจากนี้ยังมีวิธีการวัดแบบอื่นๆอีก ที่อาจไม่ใช่วิธีการทางนาโน เพื่อศึกษาสมบัติต่างๆของพื้นผิวฟิล์มบาง เช่น การวัดการดูดกลื่นแสง photoluminescence และ vibrational spectroscopy เป็นต้น

4. ผลการวิจัยและบทวิจารณ์

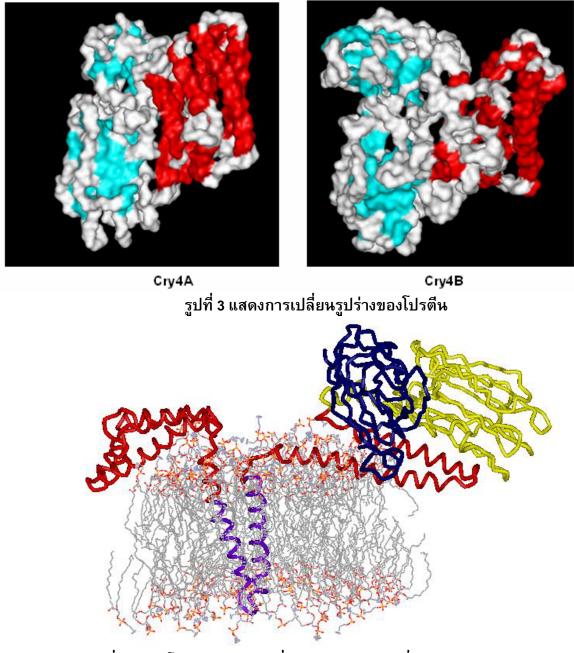
4.1 การศึกษานาโนสถาปัตยกรรมศาสตร์ของโปรตีน Bt


ได้ทำการศึกษาสมบัติของโปรตีนเจาะเมมเบรนประเภท Bacillus thuringiensis หรือ Bt ที่ชื่อว่า CRY4B ซึ่งมีคุณสมบัติในการเจาะเมมเบรนของลูกน้ำยุงลาย Bt เป็นแบคทีเรียประเภทหนึ่งที่พบใน ธรรมชาติซึ่งสามารถผลิตโปรตีนที่มีฤทธิ์ฆ่าแมลงได้ โปรตีนที่ผลิตออกมามี 2 แบบคือ Cry (crystal) กับ Cyt (cytolytic) โปรตีน Bt ที่ผู้เสนอโครงการสนใจเป็นประเภท Cry ได้แก่ Cry4A และ Cry4B ซึ่ง ปัจจุบันนั้นยังไม่ทราบโครงสร้าง 3 มิติอย่างแท้จริง แต่ก็สามารถประมาณกันว่ามีโครงสร้างคล้ายคลึงกับ โปรตีน Cry1A และ Cry3A ซึ่งทราบโครงสร้าง 3 มิติแล้ว ดังนั้นโดยอาศัยวิธี Homology Modeling เรา ก็สามารถสร้างโมเดลโครงสร้างคร่าว ๆของโปรตีนทั้ง 2 ตัวเพื่อนำไปใช้งานได้ และผู้วิจัยได้ใช้โมเดลของ โปรตีนดังกล่าวที่ได้เคยทำไว้ก่อนหน้านี้เพื่อนำมาใช้ในการวิจัยครั้งนี้

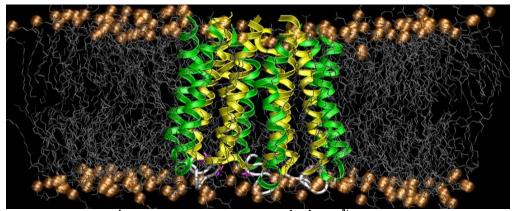
การทำงานของโปรตีน Bt Cry นั้นเป็นดังนี้ โปรตีนประเภทนี้จะถูกสร้างและสะสมในรูปผลึกเก็บ ไว้ในตัวแบคทีเรีย เมื่อแมลงหรือตัวอ่อนแมลงกินแบคทีเรียเข้าไป ผลึกก็จะถูกละลายออกมา สายโซ่ โปรตีนที่ยาวก็จะถูกตัดออกเหลือส่วนที่สามารถทำงานได้ (active protein) จากนั้นโปรตีนเหล่านี้จะฝัง ตัวไปที่เมมเบรนแล้วเกิดกระบวนการ molecular self assembly เพื่อก่อเป็นโพรงในเมมเบรน ทำให้ เซลล์ในทางเดินอาหารของแมลง เช่น กระเพาะอาหารเกิดการสูญเสียไอออน เช่น K+ แล้วเกิดการพอง น้ำจนระเบิดในที่สุด ทำให้แมลงเหล่านั้นถึงแก่ชีวิตได้ สิ่งที่น่าสนใจมากๆในสถาปัตยกรรมของโปรตีน

⁴⁷ W. Hofer, A. S. Foster and A. L. Shluger, "Theories of Scanning Probe Microscopes at the Atomic Scale", *Rev. Mod. Phys.* 75 (2003) 1287.

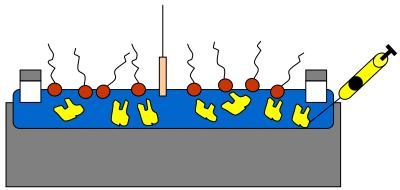
⁴⁸ H. L. Fillmore, I. Chasiotis, S. W. Cho and G. T. Gillies, "Atomic Force Microscopy Observations of Tumour Cell Invadopodia: Novel Cellular Nanomorphologies on Collagen Substrates", *Nanotechnology* 14 (2003) 73.


Bt ก็คือ โปรตีนเจาะเข้าไปในเมมเบรนได้ อย่างไร ความเข้าใจในกลไกการเจาะเข้าไปในเมมเบรนของ โปรตีนชนิดนี้จะมีประโยชน์มากต่อนาโนเทคโนโลยี เช่น มนุษย์อาจพัฒนาโมเลกุลที่สามารถนำส่งยา หรือสารอาหารไปสู่เซลล์เป้าหมายได้โดยตรง ซึ่งโมเลกุลนั้นมีอำนาจในการเจาะผ่านเมมเบรนเป้าหมาย ได้ หรือ เรื่องการพัฒนาเทคโนโลยีในการฝังโปรตีนลงในเมมเบรนเพื่อสร้างเซ็นเซอร์โปรตีน เป็นตัน

พิจารณาโครงสร้างของโปรตีน Cry4A และ Cry4B นักชีววิทยาโมเลกุลแบ่งโครงสร้างโปรตีน ออกเป็น 3 โดเมน ภายใต้ความเชื่อที่ว่าโปรตีนไม่ได้ฝังตัวเองลงไปในเมมเบรนทั้งก้อน เพราะโดย ธรรมชาติหากโปรตีนละลายในน้ำได้ ก็จะไม่สามารถอยู่ในไขมัน ดังนั้นโปรตีน Bt Cry4A/4B น่าจะหย่อน ส่วนที่ชอบไขมันลงไปในเมมเบรน จากนั้นหากกระบวนการนี้เกิดขึ้นกับโปรตีนทีละหลายๆตัว โปรตีน หลายๆตัวเหล่านั้นจะเกิดกระบวนการ oligomerization เพื่อมาฟอร์มโพรงในเมมเบรนได้ ซึ่งปัจจุบันก็ยัง ไม่เป็นที่น่าชัดนักว่าโปรตีนกี่ตัวกันแน่ที่มาร่วมก่อโพรงในเมมเบรน


ได้ศึกษาสภาวะของโปรตีน Cry4A/Cry4B เมื่ออยู่ในน้ำ ซึ่งก็คือสภาวะก่อนการฝังตัวลงไปใน เมมเบรนว่าเป็นอย่างไร พบว่าโปรตีน 2 ชนิดนี้มีสมบัติทางเทอร์โมไดนามิกส์ค่อนข้างแตกต่างกัน โปรตีน Cry4B มีโครงสร้างที่ยืดหยุ่นกว่า Cry4A อย่างเห็นได้ชัด โดยโครงสร้างที่ยืดหยุ่นมากที่สุดของ Cry4B จะเป็นโดเมนที่หนึ่ง ในขณะที่ Cry4A จะเป็นโดเมนที่สอง สอดคล้องกับสมบัติทางการทดลองที่ โปรตีน Cry4B มีแนวโน้มในการเจาะเมมเบรนได้เองโดยไม่ต้องพึ่งพา receptor ซึ่งเชื่อกันว่าตัวเกาะ receptor อยู่บนโดเมน 2

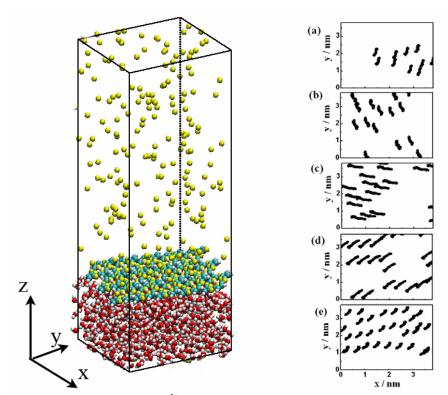
ตลอดการจำลองโมเลกุลนั้น เห็นได้ชัดว่าโดเมนที่หนึ่ง (ซึ่งเป็นส่วนที่เสียบเข้าไปสร้างรูรั่วใน เมมเบรน) ของ Cry4B พยายามบิดตัวออกจากโดเมนอื่นๆ โดยสำหรับ Cry4A นั้นไม่พบลักษณะ ดังกล่าว ซึ่งบ่งชี้ว่า Cry4B นั้นอาจจะเปลี่ยนรูปร่างไปสู่สภาพที่พร้อมจะเจาะเมมเบรนได้ง่ายกว่า Cry4A ทำให้ลดการพึ่งพา receptor ลงไปอย่างมาก จากการตรวจสอบสมบัติทางเทอร์โมไดนามิกส์นั้น นำมาสู่แนวคิดที่ว่า Cry4B เป็นโปรตีนที่มีความสามารถในการเปลี่ยนรูปร่างได้โดยอาศัยน้ำเป็นตัวช่วย โดยเมื่อมันหลุดออกจากผลึกในกระเพาะลูกน้ำยุงลายแล้ว มันจะมีสภาพความพร้อมโดยเปลี่ยนรูปร่าง ในขั้นต้น จากนั้นจึงอาศัย receptor ช่วยในการเจาะเมมเบรน การมี receptor ช่วยนั้น ทำให้มันมีสมบัติ ทาง bio-specificity ทำให้มันมีอันตรายกับเฉพาะสิ่งมีชีวิตเป้าหมายเท่านั้น


รูปที่ 4 แสดงโมเดลของการเปลี่ยนรูปร่าง Cry4B เมื่อมีการเจาะเมมเบรน

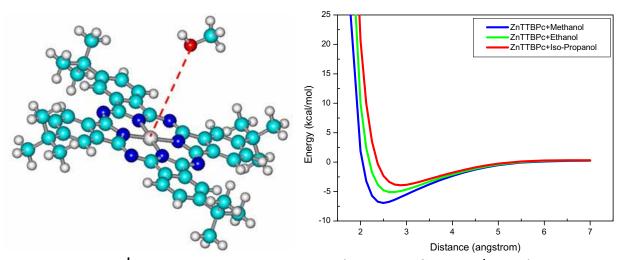
ได้ศึกษาอันตรกริยาระหว่างโปรตีนเจาะเมมเบรนกับน้ำ โดยการจำลองสภาพของรูรั่วที่โปรตีน สร้างขึ้นบนเมมเบรน โดยสมมติให้ส่วนที่เจาะเข้าไปในเมมเบรนนั้นประกอบด้วยเป็ปไตด์ (ซึ่งเป็นส่วน หนึ่งของโปรตีนประกอบด้วย 2 helices) ที่มาจากโปรตีน 6 โมเลกุล แล้วจำลองสภาพความเป็นอยู่ของ โปรตีน-เมมเบรน ในน้ำด้วยวิธี Molecular Dynamics Simulation การศึกษาครั้งนี้ มีการแปรเปลี่ยน กรดอะมิโนบางชนิดที ณ ตำแหน่งที่คาดว่าน่าจะมีผลต่อการทำงานของโปรตีน ซึ่งถูกเรียกว่า mutant โดยในการทดลองจริงโดยนักชีววิทยานั้น mutant มีทั้งชนิดที่ไม่ทำงานหรือทำงานได้ไม่ดี (inactive) และทำงานได้ดีเท่าเดิมหรือมากกว่าเดิม (active) จากการจำลอง Molecular Dynamics Simulation ทำ ให้ทราบว่า active mutants และ inactive mutants ทำงานอย่างไรในระดับโมเลกุล ซึ่งวิธีการนี้ได้นำมา สู่ข้อสรุปที่ว่ากรดอะมิโนที่มีการปรับเปลี่ยนมีส่วนสำคัญต่อการเข้า-ออกของไอออนในรูรั่ว

รูปที่ 5 ในภาพเป็นการจำลองรูรั่วที่เกิดขึ้นจากโปรตีน Cry4B

ได้ทดลองประกอบฟิล์มบางของชั้นไขมันบนผิวน้ำแล้วลองใส่โปรตีน Cry4B ลงไปข้างใต้เพื่อ ทดสอบดูว่าโปรตีนดังกล่าวจะสามารถเจาะขึ้นมาบนผิวไขมันได้หรือไม่อย่างไร ซึ่งผลก็พบว่าโปรตีน ดังกล่าวมีความสามารถในการเจาะเมมเบรน โดยมีสมมติฐานว่าโปรตีนมีการเปลี่ยนแปลงรูปร่างบนผิว เมมเบรนด้วย ซึ่งข้อมูลที่ได้สอดคล้องกับความเชื่อเดิมของนักชีววิทยาว่าโปรตีนน่าจะมีการ เปลี่ยนแปลงรูปร่างที่พื้นผิวของเมมเบรนเทียม


รูปที่ 6 การทดลอง Langmuir-Blodgett Molecular Self Assembly เพื่อฝังโปรตีน Cry4B ลงไปในเมมบรนเทียม

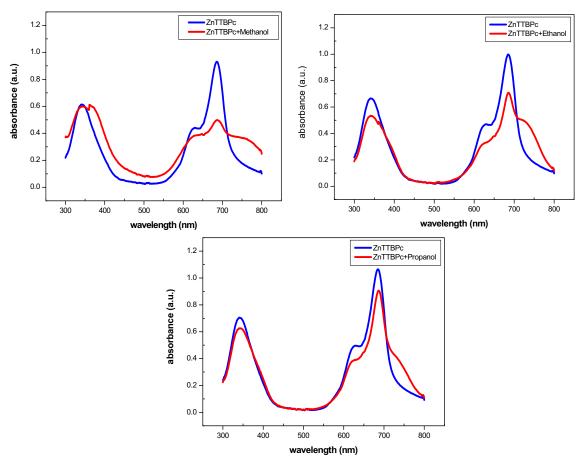
4.2 การศึกษาเมทัลโลพอร์ไพรินเพื่อเป็นเซ็นเซอร์โมเลกุล


อินทรีย์อิเล็กทรอนิกส์ กำลังจะกลายมาเป็นแนวโน้มใหม่ของ (Organic Electronics) ด้วยความที่มันไม่ต้องการโครงสร้างพื้นฐานราคาแพงเหมือน อตสาหกรรมอิเล็กทรอนิกส์ของโลก ชิลิกอนอิเล็กทรอนิกส์ และยังมีสมบัติพิเศษอื่นๆ เช่น สามารถทำเป็นอุปกรณ์พับงอได้ มีความเป็นมิตร อินทรีย์อิเล็กทรอนิกส์มีพื้นฐานบนโมเลกุลสารอินทรีย์ซึ่งอาจเป็น กับสิ่งแวดล้อม และราคาไม่แพง โมเลกุลเล็กหรืออาจเป็นสายโซ่ยาวที่เป็นโพลิเมอร์ก็ได้ โมเลกุลเหล่านั้นต่างต้องมีสมบัติเป็นสารกึ่ง ตัวนำอันเกิดจากพันธะคอนจูเกต (Conjugated Bonds) ซึ่งอนุญาตให้อิเล็กตรอนมีการเคลื่อนที่ได้ไกล จึงทำให้มีแถบการนำไฟฟ้าเช่นเดียวกับโลหะหรือสารกึ่งตัวนำทั้งหลาย ขึ้นกว่าปกติ ปรับแต่งคุณสมบัติเชิงแสงหรือไฟฟ้าของโมเลกุลของสารอินทรีย์ประเภทนี้ได้โดยการแปรค่ากิ่งก้านที่มา ต่อกับโครงสร้างหลักของโมเลกุล งานประยุกต์ของอินทรีย์อิเล็กทรอนิกส์ในปัจจุบันนั้นพุ่งความสนใจไป ที่ วงจรอิเล็กทรอนิกส์แบบอินทรีย์ อุปกรณ์อินทรีย์เปล่งแสง เซลล์สุริยะอินทรีย์ และ เซ็นเซอร์อินทรีย์ ทั้งนี้สำหรับผู้วิจัยมีความสนใจในเรื่องของเซ็นเซอร์อินทรีย์ที่ใช้พอร์ไพรินเป็นวัสดุ

การใช้งานวัสดุอินทรีย์เพื่อเป็นอุปกรณ์ทั้ง 4 แบบดังกล่าวข้างต้น ก็หนีไม่พันการทำให้เป็น แผ่นฟิล์มบาง ซึ่งอาจทำได้โดยการเคลือบปั่น (Spin Coating) การระเหยไอในสุญญากาศ (Vacuum Deposition) การประกอบโมเลกุลที่พื้นผิวของน้ำ (Langmuir-Blodgett Self Assembly) เป็นต้น ซึ่ง สมบัติของแผ่นฟิล์มที่ได้ก็จะแตกต่างกันไป โครงสร้างการจัดเรียงตัวก็ไม่เหมือนกัน แล้วมีผลสืบเนื่องทำ ให้สมบัติที่จะนำไปใช้งานนั้นมีความแตกต่างไปด้วย นอกจากนั้นแม้แต่ในกรณีที่ใช้เทคนิคเดียวกันแต่ ค่าพารามิเตอร์ในการประกอบฟิล์มมีความแตกต่างกัน ก็มีผลทำให้สมบัติของฟิล์มแตกต่างกันด้วย หลังจากการเตรียมฟิล์มแล้ว ก็ยังต้องมีการนำฟิล์มไปประกอบอุปกรณ์ตรวจวัด ซึ่งสามารถเลือกเทคนิค ต่างๆ เช่น การตรวจวัดการสั่นสะเทือนของผิวฟิล์ม การตรวจวัดการดูดซับแสงของฟิล์ม หรือ การ ตรวจวัดค่าการนำไฟฟ้าของผิวฟิล์มเมื่อถูกกับโมเลกุลที่จะทำการตรวจวัด

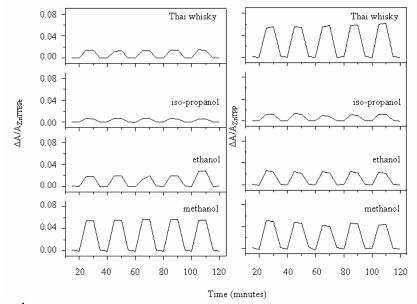
ผลจากการจำลองโมเลกุลทำให้เข้าใจเป็นครั้งแรกว่า อันตรกริยาที่ทำให้ฟิล์มเรียงตัวกันนั้นไม่ ได้มาจาก pi-pi interactions เพียงอย่างเดียวตามที่เคยเข้าใจกัน หากแต่มาจากพันธะไฮโดรเจนระหว่าง น้ำกับโมเลกุลพอร์ไพรินด้วย ดังนั้นการประกอบฟิล์มบางโมเลกุลด้วยวิธี Langmuir-Blodgett จะ สามารถควบคุมสัณฐานวิทยาของฟิล์มบางโมเลกุลได้ดีกว่าวิธีเคลือบปั่น ซึ่งจะมีการเปรียบเทียบด้วย การทดลองต่อไป

รูปที่ 7 ซ้าย – การจำลองชั้นฟิล์มบาง Langmuir-Blodgett ของโมเลกุลพอร์ไพริน; ขวา – ร่องรอยการเคลื่อนที่ของโมเลกุลในชั้นฟิล์มบาง เมื่อเพิ่มความเข้มข้น เรียง จากบนมาล่าง

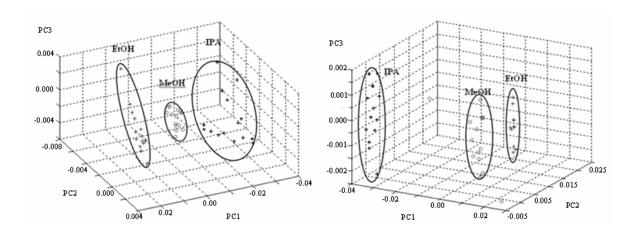


รูปที่ 8 อันตรกริยาระหว่างแอลกอฮอล์ต่างชนิดกับโมเลกุลเซ็นเซอร์

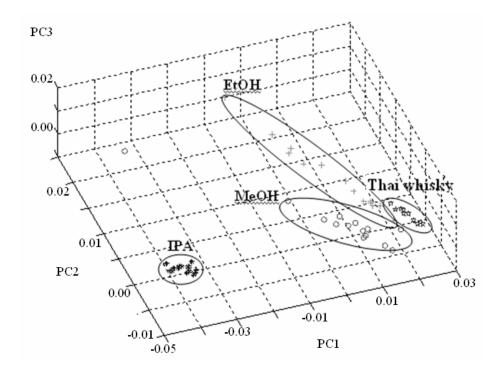
การศึกษาอันตกริยาระหว่างวัสดุเซ็นเซอร์กับอัลกอฮอล์ชนิดต่างๆ ได้แก่ methanol, ethanol, iso-propanol พบว่าสารเซ็นเซอร์มีอันตรกริยากับ methanol มากที่สุด และกับ ethanol และ iso-propanol รองลงไปตามลำดับ ระยะทางระหว่างโลหะตรงกลางของโมเลกุลเซ็นเซอร์กับอัลกอฮอล์อยู่


ระหว่าง 2.5-2.9 อังสตรอม โดย methanol เข้ามาใกล้มากที่สุด และ ethanol กับ iso-propanol ออกห่าง มากขึ้นตามลำดับ จากความรู้ตรงนี้นำมาสู่ความเข้าใจในการทำงานระดับโมเลกุลของเซ็นเซอร์ว่าเป็น อย่างไร

ในการประกอบเซ็นเซอร์จะต้องทราบพารามิเตอร์ในการประกอบ เช่น วิธีการปั่นเคลือบ จะต้อง ทราบว่าจะใช้ตัวทำละลายชนิดใด ใช้ความเข้มข้นเท่าใด และอัตราการหมุนปั่นเท่าใด จึงจะได้ฟิล์มที่มี ความหนาเหมาะสม ซึ่งผู้วิจัยได้ทำการทดลองจนได้พารามิเตอร์ดังกล่าว และนำไปผลิตฟิล์มเซ็นเซอร์ ซึ่งทดลองใช้งานทดสอบวัดความต่างของแอลกอฮอล์ โดยพบว่าฟิล์มบางที่กระทบแอลกอฮอล์ต่างชนิด กัน จะมีอันตรกริยากับแสงแตกต่างกัน โดยส่วนที่ค่อนข้างเห็นชัดคือ charge transfer band ที่ระหว่าง 700-800 nm

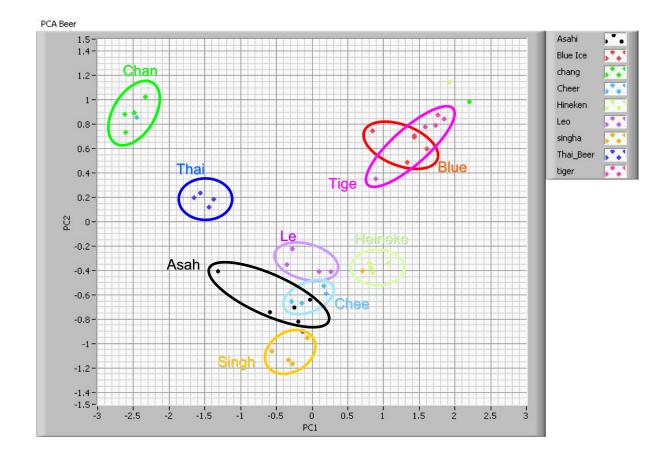

รูปที่ 9 การเปลี่ยนแปลง UV-Vis spectra ของฟิล์ม phthalocyanine เมื่อกระทบกับ methanol (บนซ้าย) ethanol (บนขวา) และ iso-propanol (ล่าง)

ได้สร้าง sensor chamber ขึ้น 2 ชนิด คือ chamber ที่ใช้ในการวัดไอโมเลกุลโดยวิธีวัดการ ดูดกลืนแสง UV-Visible และ chamber ที่ใช้ในการวัดไอโมเลกุลโดยวิธีวัดค่าการนำไฟฟ้า โดย chamber ดังกล่าวใช้ก๊าซไนโตรเจนเป็นตัวนำพาไอโมเลกุลมาสู่ chamber ที่ใช้วัด



รูปที่ 10 ผลการทดสอบความเป็นเซ็นเซอร์ของโมเลกุลพอร์ไพริน 2 แบบ

ได้นำฟิล์มบางที่ประกอบได้ไปประยุกต์ใช้งานในการจำแนกกลิ่นอัลกอฮอล์ รวมไปถึงเหล้าขาว ของไทย พบว่ามีความสามารถเป็นเซ็นเซอร์ได้ ผลการทดลองนี้ทำให้นักสังเคราะห์โมเลกุลที่ร่วมงาน ด้วยดีใจมาก เนื่องจากมันได้เผยถึงโอกาสที่จะนำโมเลกุลของท่านเหล่านั้นไปต่อยอด เพื่อใช้งานทั้ง ทางด้านวิชาการและเชิงพาณิชย์



รูปที่ 11 ผลการจำแนกอัลกอฮอล์ด้วยเซ็นเซอร์ฟิล์มบางที่ทำจากโมเลกุลพอร์ไพริน เปรียบเทียบกัน 2 แบบ

รูปที่ 12 ผลการจำแนกอัลกอฮอล์ชนิดต่าง ๆ ออกจากเหล้าขาวไทย

ได้พัฒนาซอฟท์แวร์เพื่อประมวลผลการทำงานของเซ็นเซอร์รวม โดยนำมาใช้ควบคุม sensor chamber ที่ได้สร้างขึ้นมาจากเซ็นเซอร์วัดก๊าซจำนวน 4-8 หัววัด จากนั้นได้ลองนำซอฟท์แวร์ ไปใช้แยกแยะกลิ่นของกาแฟกึ่งสำเร็จรูปจำนวน 8 ชนิด และเบียร์จำนวน 9 ชนิด ผลเบื้องต้น สามารถแยกแยะและจดจำกลิ่นของผลิตภัณฑ์เหล่านั้นได้

รูปที่ 13 แสดงระบบเซ็นเซอร์และซอฟท์แวร์ที่ได้พัฒนาขึ้นซึ่งนำมาแยกแยะเบียร์จำนวน 9 ตราสินค้า ผลเบื้องต้นพบว่าสามารถแยกแยะเบียร์ได้ชัดเจนจำนวน 6 กลุ่ม

จากภาพข้างบนจะเห็นได้ว่าเซ็นเซอร์ที่สร้างขึ้นมานี้สามารถแยกกลิ่นเบียร์ โดยเฉพาะ เบียร์ ช้าง และเบียร์ไท มีกลิ่นที่เฉพาะเจาะจง มีความแตกต่างจากเบียร์ยี่ห้ออื่นอย่างชัดเจน ส่วนเบียร์สิงห์ก็มี กลิ่นแยกออกมาจากกลุ่มของเบียร์ไฮเนเก้น เบียร์ลีโอ ในขณะที่เบียร์ไทเกอร์กับเบียร์บลูไอซ์มีกลิ่นที่ แยกจากกันไม่ออก นี่เป็นเพียงผลเบื้องต้นจากการศึกษา ซึ่งจะมีการปรับปรุงการทดลองอีก

5. สรุปผลงานที่ได้จากโครงการวิจัยนี้ (Output)

ผลงานที่ได้รับการตีพิมพ์

- Y. Kanintronkul, T. Srikhirin, C. Angsuthanasombat and T. Kerdcharoen, "Insertion behavior of the Bacillus thuringiensis Cry4Ba insecticidal protein into lipid monolayers", *Archive of Biochemistry and Biophysics* 442 (2005) 180.
- S. Krongsuk, T. Kerdcharoen*, A. Borodin and M. Kiselev, "Computer Simulation Study
 of Porphyrazine Monolayer at the Water-Gas Interface: Structure and Molecular
 Orientation", Journal of the Korean Physical Society 52 (2008) 1657.
- C. Wongchoosuk, A. Udomvech and T. Kerdcharoen, "The geometrical and electronic structures of open-end fully functionalized single-walled carbon nanotubes", Current Applied Physics, (2008) in press.
- A. Udomvech, T. Osotchan and T. Kerdcharoen, "Theoretical Investigation of Lithium Atoms Insertion into the Ultra-Small Diameter Carbon Nanotubes", Journal of the Korean Physical Society 52 (2008) 1350.
- C. Wongchoosuk, S. Krongsuk and T. Kerdcharoen, "Theoretical Investigations on the Tip-Functionalized Carbon Nanotubes Interacting with Water", International Journal of Nanoparticles, (2008) in press.

การเสนอผลงาน ในที่ประชุมวิชาการนานาชาติ

- Y. Kanintronkul, T. Srikhirin, C. Angsuthanasombat and T. Kerdcharoen, "Adsorption of the Bacillus thuringiensis Cry4Ba toxin at lipid membrane-water interface: model studies towards nanodevice implications", FEBS Journal 272 (2005) 377.
- Yodsoi Kanintronkul, Chonticha Suwattanasophon, Issara Sramala, Chanan Angsuthanasombat, Toemsak Srikhirin, Teerakiat Kerdcharoen, "The Toxicity of Wild-type and Mutants (N166D and N166I) of Bacillus thuringiensis Cry4Ba Pore-forming Protein as Explained by Molecular Dynamics Simulation at the Protein-Membrane-Water Nanoscale Interface", Proceeding of the International Conference on Nanoscience and Nanotechnology (ChinaNANO 2007), 4-6 June 2007, Beijing, China.

- Anurak Udomvech, Teerakiat Kerdcharoen, "Adsorption of Li2 on 4 Å Single Walled Nanotubes as Studied by Density Functional Theory", Proceeding of the International Conference on Nanoscience and Nanotechnology (ChinaNANO 2007), 4-6 June 2007, Beijing, China.
- T. Maturos, T. Srikhirin, T. Osotchan, R. Traiphol and T. Kerdcharoen, "MOLECULAR ENGINEERING OF POLYFLUORENE-ANTHRACENE CONDUCTIVE POLYMER: SYNTHESIS, SPECTROSCOPY, DEVICE FABRICATION AND QUANTUM MOLECULAR MODELING", Proceeding of The 1st International Workshop on Functional Materials and The 3rd International Workshop on Nanophysics and Nanotechnology 2006, 6-9 December 2006, Saigon-Halong Hotel, Halong City, Vietnam.
- Anurak Udomvech, Tanakorn Osotchan, Teerakiat Kerdcharoen, "THEORETICAL INVESTIGATION OF LITHIUM ATOMS INSERTION INTO THE ULTRA-SMALL DIAMETER CARBON NANOTUBES", Proceeding of The 1st International Workshop on Functional Materials and The 3rd International Workshop on Nanophysics and Nanotechnology 2006, 6-9 December 2006, Saigon-Halong Hotel, Halong City, Vietnam.
- Sriprajak Krongsuk, Teerakiat Kerdcharoen, Alexander Borodin and Michael Kiselev, "Computer Simulation Study of Porphyrazine Monolayer at the Water-Gas Interface: Structure and Molecular Orientation", Proceeding of The 1st International Workshop on Functional Materials and The 3rd International Workshop on Nanophysics and Nanotechnology 2006, 6-9 December 2006, Saigon-Halong Hotel, Halong City, Vietnam.
- N. Chabasri, T. Srikhirin, S. Leetacheewa, C. Angsuthanasombat, T. Kerdcharoen, "Penetration of Insecticidal Toxin Cry4Ba into Lipid Layer: Temperature Effect Study", Proceeding of the 1st International Conference on Applied Science, 5-7 November 2006, Vientiane, Laos, Laos Journal on Applied Science 1 (2006) 27.
- C. Wongchoosuk, A. Udomvech, T. Kerdcharoen, "Open-ended Functionalized Single-Walled Carbon Nanotubes: a Quantum Mechanics Study of the Effects of Tubule Length and Functional Groups", 1st International Conference on Applied Science, 5-7 November 2006, Vientiane, Laos, Laos Journal on Applied Science 1 (2006) 75.

บทความเผยแพร่สาธารณะ

- ได้เขียนบทความเรื่อง Molecular Machinery ลงในนิตยสาร Update เดือนตุลาคม 2548 และ พฤศจิกายน 2548
- ได้เขียนบทความเรื่อง Nano Construction ลงในนิตยสาร Update เดือนมกราคม 2550

ต้นแบบสิ่งประดิษฐ์

ต้นแบบระดับห้องปฏิบัติการระบบตรวจวัดโมเลกุลสำหรับเครื่องดื่มประเภทมีแอลกอฮอล์ เช่น เบียร์ ไวน์ วิสกี้ ซึ่งตรวจวัดการปลอมปนของเมทานอล โดยจะพัฒนาต่อเพื่อเป็นต้นแบบ ภาคสนามหรือต้นแบบเชิงพาณิชย์ ซึ่งจะขอทุนวุฒิเมธีวิจัยเพื่อนำมาต่อยอด

ภาคผนวก

Available online at www.sciencedirect.com

Archives of Biochemistry and Biophysics 442 (2005) 180-186

www.elsevier.com/locate/yabbi

Insertion behavior of the *Bacillus thuringiensis* Cry4Ba insecticidal protein into lipid monolayers

Yodsoi Kanintronkul^a, Toemsak Srikhirin^{a,*}, Chanan Angsuthanasombat^b, Teerakiat Kerdcharoen^{a,*}

Department of Physics, Center of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
 Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand

Received 25 June 2005, and in revised form 3 August 2005 Available online 29 August 2005

Abstract

Toxicity mechanisms of *Bacillus thuringiensis* Cry insecticidal proteins involve membrane insertion and lytic pore formation in lipid bilayers of the target larval midgut cell membranes. The *B. thuringiensis* Cry4Ba mosquito-larvicidal protein has been shown to be capable of permeabilizing liposome vesicles and of forming ion channels in planar lipid bilayers. Here, the membrane interaction of the 65-kDa activated Cry4Ba protein with the lipid monolayers, comprising dipalmitoyl phosphatidylcholine, dioleoyl phosphatidylethanolamine, and cholesterol (Chol), was studied using Langmuir–Blodgett technique. The interactions of the Cry4Ba protein with the lipid monolayers were measured from the surface pressure versus area isotherms of the protein–lipid monolayers. The increase in the mean molecular area was demonstrated as an incorporation of the protein into lipid monolayers. The insertion of the Cry4Ba protein was monitored by measuring as an increase of the surface pressure at constant molecular area. For a given monolayer, the membrane insertion of the Cry4Ba reduced as the initial surface pressure increased. The Cry4Ba protein showed a strong preference of an insertion towards a Chol monolayer. In addition, the mixed monolayers of Chol showed an enhanced effect on the insertion kinetics of Cry4Ba into lipid films, suggesting its involvement in the modulation of the protein insertion. These findings provide the first evidence that the Cry4Ba protein is capable of inserting itself into lipid monolayers, depending on the packing density of the monolayers. Our results also indicate that only a limited part of the protein is likely to be involved in the insertion.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Bacillus thuringiensis; Insecticidal protein; Langmuir-Blodgett; Membrane insertion; Protein-lipid interaction

Bacillus thuringiensis (Bt) is a Gram-positive bacterium which produces intracellular crystalline inclusions during sporulation. These inclusions consist of one or more insecticidal proteins known as Cry and/or Cyt δ -endotoxins which have been used as potential biocontrol agents, an alternative to chemical insecticides [1]. For instance, B. thuringiensis subsp. israelensis produces 130-kDa Cry4Ba δ -endotoxins, which are highly toxic to

To date, the tertiary structures of five different Cry proteins, Cry1Aa, Cry2Aa, Cry3Aa, Cry3Bb, and Cry4Ba have been determined by X-ray crystallography [3–7]. All the known structures display a high degree of overall similarity with a three-distinct domain organization. The N-terminal domain (domain I) is a bundle of seven α -helices in which the central helix (α 5) is relatively hydrophobic and is encircled by six other amphipathic helices. Of particular interest, this helical domain has been proved to be responsible for membrane insertion, leading to formation of the ion-leakage [8–13]. Domain II consists of

the larvae of disease-carrying mosquitoes, such as the *Aedes* and *Anopheles* species [2].

^{*} Corresponding authors. Fax: +662 2015843. *E-mail addresses:* sctsk@mahidol.ac.th, sctkc@mahidol.ac.th (T. Srikhirin).

three anti-parallel β -sheets. This domain is similar to antigen-binding regions of immunoglobulins, and has been shown to be responsible for receptor binding [14,15]. Domain III contains two anti-parallel β -strands. The function of this domain is still not clear [6,16].

The *Bt* Cry proteins are presented as inactive protoxin inclusions. Upon ingestion by susceptible larvae, the protoxin inclusions are solubilized in the larval midgut and activated by midgut proteases. It is believed that the activated proteins first bind to a specific receptor located on apical membranes of midgut epithelial cells. Subsequently, the proteins insert into the lipid membrane and disrupt the permeability of the midgut cell membranes, resulting in a net influx of ions and water that lead to osmotic lysis of the cell [17,18]. However, the underlying molecular basis of this toxicity process, especially in the step of membrane insertion and lytic pore formation, is not yet clearly understood.

Currently, an umbrella model best describes molecular mechanisms of membrane insertion and pore formation of the Cry δ -endotoxins [9]. There is a lot of evidence supporting this model in which the $\alpha 4$ and $\alpha 5$ helices form a helical hairpin to initiate membrane penetration upon specific receptor binding [12,13,19]. Recently, atomic force microscopy (AFM) measurements suggested that the Cry1Aa and Cry4Ba pores are tetramer-like structures [20]. Although a number of studies on the protein–lipid interaction at the air–water interface have been published for several proteins [21–23], the research work concerning the nature of interaction between Cry proteins and the lipid membrane has not been clearly elucidated.

Protein-lipid monolayers have been widely used for investigating mechanisms occurring in biological membranes. Langmuir-Blodgett (LB) technique is an ideal method to mimic the behavior of biological membranes. Insecticidal properties of the Cry4Ba protein are primarily related to its interaction with lipid membranes. In the present study, we therefore employed the LB approach to understand the interaction of the Cry4Ba protein with various lipid monolayers at different given pressures. The results clearly showed that the Cry4Ba protein is able to penetrate into lipid monolayers, with distinctive insertion behavior depending on the nature of lipid compositions.

Materials and methods

Chemicals and solutions

Lipids used were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phos-

phoethanolamine (DOPE) and cholesterol (Chol) purchased from Avanti Polar Lipids, USA. DPPC, DOPE, and Chol stock solutions (20 mg/ml) were prepared in HPLC grade chloroform and stored at -20 °C under nitrogen. The freshly made solution was spread using a microsyringe on carbonate buffer prepared from MiliQ Millipore water (resistivity ≥ 18 M Ω cm) in a LB trough (K.S.V. Instrument, Finland).

Cry4Ba protein preparation

The Bt Cry4Ba protein was expressed as cytoplasmic inclusions in the Escherichia coli strain JM109 under control of the LacZ promoter. Cells were grown in a Luria–Bertani medium containing 100 μg/mL ampicillin until OD₆₀₀ reached 0.3–0.5. After addition of isopropyl-β-D-thiogalacto pyranoside (IPTG) to a final concentration of 0.1 mM, incubation was continued for another 4 h. E. coli cells expressing Cry4Ba were harvested by centrifugation, resuspended in distilled water, and finally disrupted in a French Pressure Cell at 10,000 psi. Protein concentrations of the partially purified protein inclusions were determined by using the Bradford-based protein microassay (Bio-Rad), with bovine serum albumin fraction V (Sigma) as a standard. Protoxin inclusions were solubilized in 50 mM Na₂CO₃, pH 9.0, at 37 °C for 1 h.

The stability of protein was tested by digesting with trypsin (L-1-tosylamide-2-phenylethyl chloromethyl ketone-treated, Sigma) at enzyme/toxin ratio of 1:20 (w/w) in 50 mM Na₂CO₃, pH 9.0, at 37 °C for 16 h. Purification of the 65-kDa trypsin-treated Cry4Ba protein was accomplished using a size-exclusion FPLC system (Superose 12/HR10 column, Amersham Pharmacia Biotech) eluted with carbonate buffer (50 mM Na₂CO₃, pH 10.5).

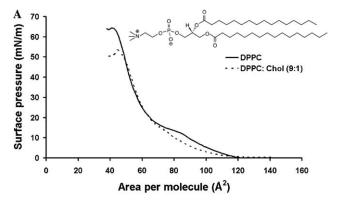
Monolayer and Langmuir-Blodgett experiments

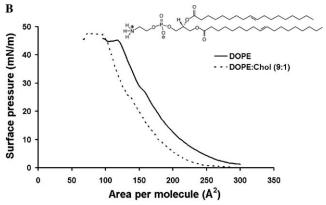
The experiment was performed by using KSV2000 (KSV, Finland). The surface pressure-area isotherms were obtained by monitoring a surface pressure as a function of a reduction in molecular area. The surface pressure was measured by Wilhelmy plate method using a platinum plate connected to a microbalance as described previously [21]. Before starting the experiment, the trough was cleaned successively with ethanol and followed by rinsing with deionized water (resistivity $>18.0 \text{ M}\Omega \text{ cm}$). Carbonate buffer (pH 9.0) was used as the subphase throughout this study. For monolayer preparation, the synthetic lipids (DPPC, DOPE, and Chol) were spread on the aqueous subphase using micropipette. The temperature of the subphase was kept constant at 25 °C. Each experiment was repeated at least three times to ensure reproducibility of the data.

For characterizing the isotherms of mixed protein—lipid monolayers, the protein was injected into subphase

 $^{^1}$ *Abbreviations used:* DPPC, 1,2-dipalmitoylphosphatidylcholine; DOPE, 1,2-dioleoyl-*sn*-glycero-3-phosphoethanolamine; LB, Langmuir–Blodgett; π –A, surface pressure–molecular area.

and the lipid solutions were then spread on the aqueous subphase. To ensure complete mixing of the film component at the interface and to allow for sufficient equilibration, monolayers at air-buffer interface were rested 3 h before a compression at 1 cm/min. The trough was thermostated by a water circulating bath at a temperature of 25 °C. The isotherms were represented by plotting the surface pressure versus the area per molecule of lipids (DPPC, DOPE, or Chol). An increase in the mean molecular area after adding the protein was interpreted as being due to the incorporation of the protein into the lipid monolayers.


The experimental detail of the protein insertion has already been reported [24]. In this study, we monitored the interaction of Cry4Ba with lipids using a constant surface area assay. If part of the protein inserts into the lipid monolayers, the surface pressure will increase. The lipid stock solution was gently deposited at the air-buffer interface. After 10 min for the evaporation of the solvent, the films were compressed by moving the barrier at a rate 1 cm/min and equilibrated for 2 h at desired initial surface pressure, π_i (10, 15, or 20 mN/m). The 4.35 nM Cry4Ba protein was subsequently injected into the subphase just beneath the lipid monolayers from the opposite side of the barrier. The increase of surface pressure was recorded automatically as function of time. To ensure that the increase surface pressure is due to interaction of protein with lipid membrane and not an artifact of the injection protocol, we have performed control experiments where blank solution was injected into subphase, and it did not alter initial pressure.


Results and discussion

Isothermal compression of mixed Cry4Ba/DPPC, Cry4Ba/DOPE, and Cry4Ba/Chol monolayers

The Langmuir–Blodgett technique becomes known as desirable model systems for investigating the role of protein–lipid interactions in the function and organization of biological cell membranes [24–33]. In this study, two synthetic phospholipids (DPPC and DOPE) were chosen as model components since they are more relevant to the phospholipids found in the insect cell membranes [34,35]. Moreover, Chol which is a primary component in biological membranes was also used in our studies.

The most important indicator of the monolayer properties of an amphipathic molecule is given by measuring the isotherms that displayed by plotting surface pressure versus the area per molecule $(\pi-A)$. The compression isotherms of DPPC, DOPE, and Chol are shown in Fig. 1. The isotherms of the pure lipids are in agreement with those published earlier [30,33,36]. It was observed

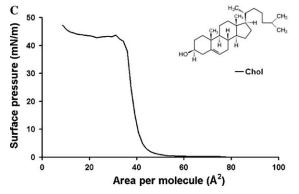


Fig. 1. Surface pressure–area isotherms of pure and mixed lipid monolayers. Molecular structures of DPPC (A), DOPE (B), and Chol (C) and their surface pressure versus area per molecule (π –A isotherm) at 25 °C in carbonate buffer, pH 9.0.

that the phase behaviors of the monolayers are mainly determined by both physical and chemical properties of the lipid molecules. Base on their chemical structure, DPPC and DOPE are glycerophospholipids, in which the hydrophobic regions are composed of two fatty acids joined to glycerol and both of the fatty acyl chains of DPPC and DOPE are saturated and unsaturated, respectively.

In this study, all the experiments were carried out at 25 °C. At the initial compression, π –A isotherm of DPPC shows liquid expanded (LE) phase (Fig. 1A). At the plateau, these two phases, LE and liquid condensed (LC) phases are co-existing. The film gradually

transform into LC phase as the area occupied per molecule is reduced. The estimated area occupied per molecule is 60 Å²/molecule for the LC phase and 110 Å² for the LE phase. The molecular packing of DPPC monolayer can also be controlled by changing the temperature of the subphase [24]. However, a detail experiment was not performed in this study. A percent area reduction at constant surface pressure was monitored as function of time, creep test, to check the stability of the film. DPPC forms a relative stable monolayer where the observed area reduction is around 5–7 percent over 3 h (Fig. 2A) for both LC and LE phase.

In contrast to DPPC, the DOPE isotherm consists of only a single phase (LC) and a more loosely packed film (Fig. 1B). The kinks in unsaturated fatty acids due to the presence of carbon–carbon double bonds prevent tight packing. This gives rise to an increase in the mean molecular area from $60~\text{Å}^2/\text{molecule}$ to $200~\text{Å}^2/\text{molecule}$ cule. Regardless of its molecular packing, DOPE also forms a stable film where its area reduction is less than five percent (Fig. 2B).

Chol shows the coexistence of LE and LC phases even at high surface area. The observed area occupied per molecule of Chol is $40 \text{ Å}^2/\text{molecule}$. After compression, they exhibited a LC phase and then underwent to a collapsed state (Fig. 1C), similar to previous results obtained by others [36]. The area reductions are at 10, 14, and 24 percent at the surface pressure of 10, 15, and 20 mN/m, respectively (Fig. 2C).

The mixed monolayer of DPPC, DOPE, and Chol were also investigated. For the mixed monolayer DPPC/Chol (9:1), they form a stable monolayer with a slight reduction of the mean molecular area of the LC phase and a reduction of the collapse pressure (Fig. 1A). The mixed monolayer DOPE/Chol (9:1) shows no change in its isotherm, except for a slight reduction of an average area occupied per molecule (Fig. 2A). This is due to the nature of the mixed monolayer where the area occupied per molecule of the Chol is less than DOPE. The area reduction as a function of time for the both mixed monolayers is less than five percent (data is not shown).

The interactions between the Cry4Ba protein and the lipid monolayers (DPPC, DOPE, and Chol) were examined by the compression isotherms of the mixed protein–lipid monolayers. It is noteworthy to mention that upon spreading the Cry4Ba protein into the surface of the subphase, the protein showed a mean molecular area of about 3800 Ų (Fig. 3) which is approximately 10-time lower than the unit cell (34,225 Ų) obtained from its crystal structure [37]. This might indicate that only the hydrophobic part of the protein molecule could stay at the interface while the hydrophilic part tended to disperse into the subphase. In the absence of the lipid, it is possible that some structural change may take place at the air–water interface. The exact nature of the pure

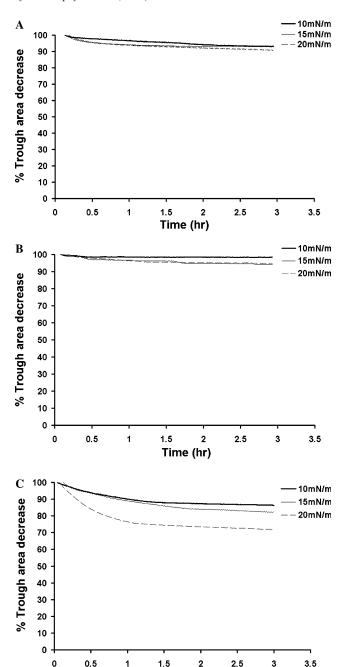


Fig. 2. Stability of lipid monolayers at various pressure. Percent trough area decrease versus time (h) of lipid monolayers (DPPC, DOPE, and Chol) at various pressures (10, 15, and 20 mN/m).

Time (hr)

protein at the air-water interface still needs to be investigated.

For studying the membrane interaction property of Cry4Ba, the protein (0.3, 0.6, and 1.2 nmol) was injected into the subphase and rested for 3 h prior to a compression at 1 cm/min. The Cry4Ba protein possesses amphipathic characteristics, and thus its hydrophobic part is likely to be adsorbed to the lipid monolayers. The effect of the protein on the structure of lipid monolayers was

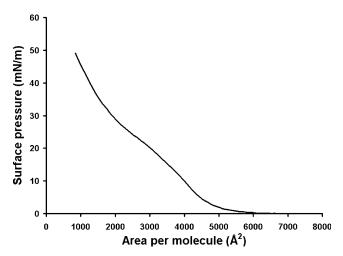


Fig. 3. Surface behaviour of pure Cry4Ba monolayers. The Cry4Ba π –A isotherm was obtained by gradually spreading the protein on the surface of carbonate buffer, pH 9.0 at 25 °C.

thereby represented by an expansion of the mean molecular area. The isotherms were shifted to a larger area per molecule with increasing amounts of protein for all lipid monolayers as shown in Fig. 4. These increases arose from the area occupied by the Cry4Ba protein molecules inserted into lipid monolayers. As can be seen that the mixed Cry4Ba/DPPC, Cry4Ba/DOPE, and Cry4Ba/ Chol monolayers exhibited transitional behavior compared to what was displayed by either a single protein or a single lipid component. It has been proposed that the interface between lipid and water is actually a region of 10 Å thickness composed of lipid head groups and water molecules [38]. Thus, to be stably inserted in a lipid film, the surface of a protein must possess a region that would interact favorably with the interfacial region of the lipid monolayers. Our studies suggest that only a certain part of the Cry4Ba protein is involved in the insertion to the lipid monolayers where it preferentially interacts with the monolayers. This is consistent with a small increase in the mean molecular area when in the presence of the protein compared to the pure protein at the interface.

Insertion of Cry4Ba to DPPC, DOPE, Chol, and their mixed monolayers

In these experiments, the insertion ability of Cry4Ba into lipid monolayers was studied in the presence of zwitterionic lipids (DPPC, DOPE, and Chol) at three initial surface pressures equal to 10, 15, and 20 mN/m, that is different lipid-packing densities. The Cry4Ba protein (4.35 nM) was injected at a constant area to the subphase beneath the spread lipid monolayers. The increase in surface pressure ($\Delta\pi$) was thereafter monitored until it reached a maximal value, usually within 5 h. Recently, it has been demonstrated that the molecules interacting

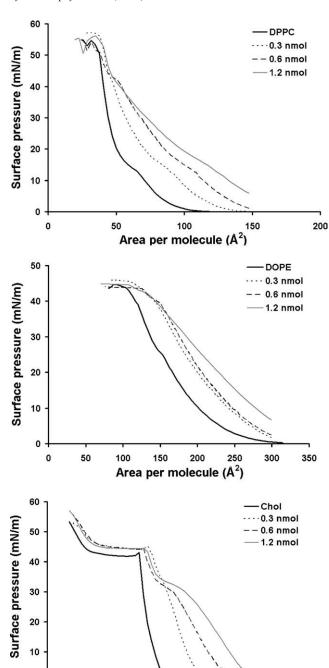


Fig. 4. Surface pressure—area $(\pi - A)$ isotherms of Cry4Ba-lipid mixed monolayers. $\pi - A$ Langmuir isotherms of Cry4Ba-lipid monolayers. Monolayers were formed from DPPC, DOPE, and Chol. Compression isotherms for pure lipid (—). Compression isotherms with increasing amount of Cry4Ba protein into subphase for 3 h; 0.3 (···), 0.6 (---), and 1.2 nmol (—).

Area per molecule (A2)

0

solely with the lipid head groups without insertion into lipid monolayers do not affect the surface pressure [24,25,27,29]. Therefore, the magnitude of the surface pressure change can be used to compare the strengths of protein–lipid interactions [24–27,29]. Table 1 shows

Table 1 Values of maximum overpressure $(\Delta\pi)$ measured in the film DPPC, DOPE, and Chol versus the various initial pressure of the monolayer (π_i) , after injection of the 4.35 nM Cry4Ba protein in subphase (Na_2CO_3) at 25 °C for 5 h

$\pi_i \; (mN/m)$	DPPC $(\Delta \pi)$	DOPE $(\Delta \pi)$	CH (Δπ)
10.00	2.1	3.50	8.00
15.00	1.65	1.80	6.60
20.00	1.00	1.75	2.17

that the increase of surface pressure was greater with lower initial pressure of lipid film, suggesting that Cry4-Ba was mainly inserted into the LE phase. At the lower surface pressure, the lipid packing is likely to be loosely packed (more fluidity), this would allow for better insertion of the proteins into the lipid monolayers. With the same concentration used of Cry4Ba in the subphase, the kinetics and extent of surface pressure changes were strongly affected by the lipid compositions of the monolayers. It showed distinctive insertion behavior upon the type of lipid monolayers in the order of Chol > DO-PE > DPPC. However, no increase in surface pressure was observed without addition of the protein (Fig. 5). Traditionally, there are two types of interactions between proteins and lipid molecules, depending on monolayer structures [26,30]. For the first type, proteins interact with charged phospholipids via electrostatic interactions. This interaction usually exerts a higher surface activity which becomes evident from the more additive surface pressure increases. The second type involves protein interaction with zwitterionic phospholipids via hydrophobic interactions, so that the complexes become less surface active. In our studies, the interactions between the lipid monolayers and the Cry4Ba protein are conceivably hydrophobic interactions, as neutral lipid molecules were used.

Although the lipid monolayer structure itself is relatively stable, the individual phospholipid and sterol

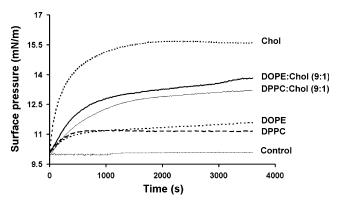


Fig. 5. Insertion profile of the Cry4Ba protein into lipid monolayers π –t curves of the monolayer insertion of the Cry4Ba protein after injection underneath various lipid monolayers; DPPC, DOPE, Chol, DPPC/Chol (9:1) and DOPE/Chol (9:1), which were spread at an initial surface pressure of 10 mN/m.

molecules have great freedom of motion within the plane of the membrane. The degree of fluidity depends on lipid compositions and temperature. In particular, the sterol content of a membrane is an important determinant of fluidity as a living cell controls the membrane fluidity by regulating the level of Chol in the membrane. In this study, the influence of the Chol content of the monolayers in insertion behavior was further confirmed by performing experiments with DPPC and DOPE in the presence of Chol at ratio (9:1). At initial pressure of 10 mN/m, the $\Delta \pi$ of DPPC/Chol (9:1) and DOPE/Chol (9:1) increased to 3.2 and 3.8 mN/m, respectively, within 1 h after injection of the Cry4Ba protein into subphase as shown in Fig. 5. These results revealed that the Chol content influenced the rate of Cry4Ba insertion into the lipid monolayers. It is possible that the rigid planar structure of the steroid nucleus, inserted between fatty acyl side chains, would prevent the highly ordered packing of the phospholipid tails, and thus fluidizes the monolayers. The increase in membrane fluidity would likely allow for more protein insertion into the monolayers. It should be noted that an increase in pressure in DOPE monolayers were relatively higher than in DPPC monolayers. A lower increase pressure observed in DPPC may be possibly caused by the saturated hydrocarbon straight-chains which can pack well into a paracrystalline array, but the kinks in unsaturated hydrocarbon side chains of DOPE would interfere this packing, preventing the formation of this paracrystalline solid state of the membrane.

In conclusion, this work reveals for the first time that the 65-kDa Cry4Ba protein is capable of inserting itself into LB films, supporting its insecticidal activity. Additionally, the degree of penetration of the protein molecule into lipid monolayers was found to largely depend on the nature of lipids, the initial surface pressure and the packing density of the lipid films. Further investigation of more detailed insertion behavior and molecular organization within lipid membranes of the Cry4Ba mosquito-larvicidal protein and other related toxins are of great interest, since this would shed light on the general principles that underlie protein–protein interactions within the membrane bilayers.

Acknowledgments

We are indebted to Prof. I Ming Tang for critical reading of the manuscript. We are also grateful to Mrs. Somsri Sakdee for technical assistance. This work was financially supported by the Faculty of Graduate Studies of Mahidol University (Grant No. 002) to Y.K. and the Thailand Research Fund in cooperation with the Commission on Higher Education (Grant No. RMU 4880008).

References

- [1] A.I. Aronson, W. Beckman, P. Dunn, Microbiol. Rev. 50 (1986) 1–24.
- [2] C. Angsuthanasombat, W. Chungjatupornchai, S. Kertbundit, P. Luxananil, C. Settasatian, P. Wilairat, S. Panyim, Mol. Gen. Genet. 208 (1987) 384–389.
- [3] P. Boonserm, D.J. Ellar, Acta Crystallogr. D. Biol. Crystallogr. 59 (2003) 591–594.
- [4] N. Galitsky, V. Cody, A. Wojtczak, D. Ghosh, J.R. Luft, W. Pangborn, L. English, Acta Crystallogr. D. Biol. Crystallogr. 57 (2001) 1101–1109.
- [5] P. Grochulski, L. Masson, S. Borisova, M.P. Carey, J.L. Schwartz, R. Brousseau, M. Cygler, J. Mol. Biol. 254 (1995) 447–464
- [6] J.D. Li, J. Carroll, D.J. Ellar, Nature 353 (1991) 815-821.
- [7] R.J. Morse, T. Yamamoto, R.M. Stroud, Structure (Camb.) 9 (2001) 409–417.
- [8] E. Gazit, Y. Shai, Biochemistry 32 (1993) 3429-3436.
- [9] E. Gazit, D. Bach, I.D. Kerr, M.S. Sansom, N. Chejanovsky, Y. Shai, Biochem. J. 304 (1994) 95–902.
- [10] E. Gazit, Y. Shai, J. Biol. Chem. 270 (1995) 2571-2578.
- [11] D. Gerber, Y. Shai, J. Biol. Chem. 275 (2000) 23602-23607.
- [12] Y. Kanintronkul, I. Sramala, G. Katzenmier, S. Panyim, C. Angsuthanasombat, Mol. Biotechnol. 24 (2003) 11–20.
- [13] L. Masson, B.E. Tabashnik, Y.B. Liu, R. Brousseau, J.L. Schwartz, J. Biol. Chem. 274 (1999) 31996–32000.
- [14] M.K. Lee, T.H. You, A. Curtiss, D.H. Dean, Biochem. Biophys. Res. Commun. 229 (1996) 139–146.
- [15] H. Lu, F. Rajamohan, D.H. Dean, J. Bacteriol. 176 (1994) 5554– 5559.
- [16] F. Rajamohan, M.K. Lee, D.H. Dean, Prog. Nucleic Acid Res. Mol. Biol. 60 (1998) 1–27.
- [17] B.H. Knowles, D.J. Ellar, Biochim. Biophys. Acta 924 (1987) 509–518.

- [18] M.E. Whalon, B.A. Wingerd, Arch. Insect Biochem. Physiol. 54 (2003) 200–211.
- [19] P. Uawithya, T. Tuntitippawan, G. Katzenmeier, S. Panyim, C. Angsuthanasombat, Biochem. Mol. Biol. Int. 44 (1998) 825–832.
- [20] V. Vie, N.V. Mau, P. Pomarede, C. Dance, J.L. Schwartz, R. Laprade, R. Frutos, C. Rang, L. Masson, F. Heitz, C.L. Grimellec, J. Membr. Biol. 180 (2001) 195–203.
- [21] I.E. Lopis, G. Brezesinski, H. Mohwald, Chem. Phys. Lipids 131 (2001) 71–80.
- [22] A. Rosengarth, A. Wintergalen, H.J. Galla, H.J. Hinz, V. Gerke, FEBS Lett. 438 (1998) 279–284.
- [23] L. Dziri, K. Puppala, R.M. Leblanc, J. Colloid, Interface Sci. 194 (1997) 37–43.
- [24] E. Canay, K.Y. Lee, Biophys. J. 87 (2004) 1732-1740.
- [25] R.A. Demel, Subcell. Biochem. 23 (1994) 83-120.
- [26] L. Raghda, C.M. Stephane, J.P. Chauvet, L.F.B. Laurence, Eur. J. Biochem. 269 (2002) 2238–2246.
- [27] J.Z. Martin, T. Heimburg, Biophys. J. 81 (2001) 2458-2472.
- [28] C. Antonio, V. Luis, V. Marisela, P.G. Jesus, Biophys. J. 86 (2004) 308–320.
- [29] L. Raghda, L.F.B. Laurence, Biochem. J. 382 (2004) 987-994.
- [30] L. Dubreil, V. Vie, S. Beaufils, D. Marion, A. Renault, Biophys. J. 85 (2003) 2650–2660.
- [31] Y. Saka, T. Mita, J. Biol. chem. (Tokyo) 123 (1998) 798-805.
- [32] M.R. Lance, C. Washington, S.S. Davis, Pharm. Res. 13 (1996) 1008–1014.
- [33] B.M. Discher, W.R. Schief, V. Vogel, S.B. Hall, Biophys. J. 77 (1999) 2051–2061.
- [34] C.A. Georgia, S. Mohammed, J. Exp. Biol. 205 (2002) 3623-3630.
- [35] K. Marheineke, S. Grunewald, W. Christie, H. Reilander, FEBS Lett. 441 (1998) 49–52.
- [36] K.G. Raj, K.A. Suresh, Eur. Phys. J 14 (2004) 35-42.
- [37] P. Boonserm, P. Davis, D.J. Ellar, J. Li, J. Mol. Biol. 348 (2005) 363–382.
- [38] M.C. Wiener, S.H. White, Biophys. J. 61 (1992) 434-447.

Computer Simulation Study of a Porphyrazine Monolayer at a Water-Gas Interface: Structure and Molecular Orientation

Sriprajak Krongsuk* and Teerakiat Kerdcharoen[†]

Physics Department and Center of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

Alexander Borodin and Michael Kiselev

Institute of Solution Chemistry, Akademicheskaya St. 1, 153045, Ivanovo, Russia

(Received 17 July 2007)

Molecular dynamics simulations were employed to study a porphyrazine (PzH_2) monolayer at a water-gas interface. Five different surface densities, corresponding to a number of PzH_2 molecules of 10, 15, 20, 25 and 30 per an area of $3.77 \times 3.77 \text{ nm}^2$, were simulated at a constant volume and temperature (NVT-ensemble). The structure and the molecular orientation of the PzH_2 monolayer were investigated. The results revealed that increasing number of PzH_2 molecules affected not only the monolayer structure but also the layered structure of water. The presence of several PzH_2 orientations indicated that this monolayer was highly inhomogeneous.

PACS numbers: 68.30.R, 68.30.Hj, 68.15.E

Keywords: PzH₂ monolayer, Molecular dynamics, Density profiles, Surface densities, Orientation

I. INTRODUCTION

Langmuir-Blodget (LB) films of porphyrins and their related compounds have attracted much attention from both experimental and theoretical researchers [1–5] due to their potential for technological applications. For example, they are used as materials for electronics devices such as gas sensors and optical data memories [3]. The LB films, in general, resulted from a monolayer formation of porphyrins on a water surface, which can be subsequently transferred onto a solid substrate. Therefore, information on the monolayer structure at the waterair interface is necessary for producing a good LB film. Experimental methods are still limited to providing detailed information on the molecular structure and dynamic properties. Computer simulations are now contributing more to the investigation of monolayer systems because not only can they provide a clear picture of the structure at the molecular level, but also such information is comparable to the experimental data.

Porphyrazine (PzH_2) has a structure similar to that of the free-base porphyrin, but has different donor atoms at the meso positions (Figure 1). In the past decade, a number of experimental studies [6–12] have addressed mono-

layer films of porphyrin and its derivatives, but only a few have been done on the PzH_2 system [4,5,13,14]. In recent years, Valkova *et al.* [5] have studied the formation conditions for a copper porphyrazine (CuPz) monolayer at the air-water interface by using the LB technique. This study indicated that molecular assemblies strongly de-

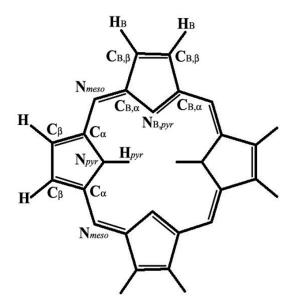


Fig. 1. Porphyrazine geometry and definition of its atom types.

^{*}Permanent Address: Physics Department, Faculty of Science, Khon Kaen University, 123 Mittaparp Road, Khon Kaen 40002, Thailand;

 $^{^\}dagger \text{E-mail: teerakiat@yahoo.com; Fax: } +66\text{-}2\text{-}201\text{-}5843$

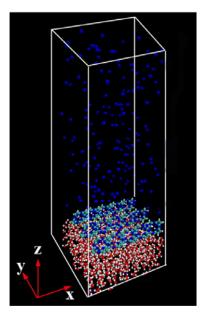


Fig. 2. Schematic representation of the initial configuration for the PzH_2 monolayer.

pended on the experimental conditions (i.e., the initial coverage and the surface concentrations). The molecular structure and the orientation of the PzH_2 monolayer have also been investigated by using a molecular dynamic simulation technique [4]. This simulation revealed that the PzH_2 monolayer was highly inhomogeneous and all possible orientations of PzH_2 were observed. However, the monolayer structure turned out to depend strongly on the number of PzH_2 monolayers at the interface. So far, such information is still not available. Therefore, simulations of PzH_2 monolayer with different surface densities were carried out in this study.

II. DETAILS OF CALCULATIONS

The PzH₂ geometry, as optimized by the density functional theory (DFT) method, was used throughout this study. The simple point charge (SPC) [15] model was employed to represent the water molecule. The potential energy model describing the intermolecular interaction is composed of Lennard-Jones and Coulomb terms and the resulting pair potential energy has the form

$$U_{pair} = \sum_{i} \sum_{j} \left\{ 4\varepsilon \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{r_{ij}} \right\}.$$
(1)

Here, r_{ij} is the distance between atoms i and j, q is the atomic charge and σ and ε are Lennard-Jones parameters. These parameters are taken from the Optimized Potential for Liquid Simulations (OPLS) [16] force field.

Molecular dynamic simulations of PzH₂ monolayers with five different surface densities corresponding to a

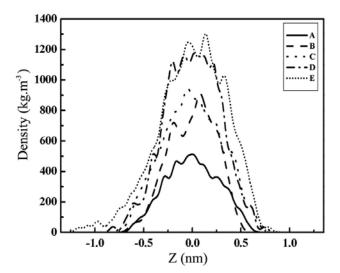


Fig. 3. Density profiles of the PzH_2 molecules for the five systems.

number of PzH₂ molecules of 10, 15, 20, 25 and 30, respectively, were carried out at constant volume and temperature (NVT -ensemble). All five systems were simulated in the same rectangular box (3.7712×3.7712) \times 10.542 nm³), containing 864 water and 216 nitrogen molecules and under the same conditions (i.e., initial configuration and a temperature of 300 K). The schematic representation of the PzH₂ monolayer at the water-gas interface is depicted in Figure 2. and the zaxis was chosen to be perpendicular to the interface. The SPC water and PzH₂ geometries were constrained using the SHAKE algorithm [17]. A cutoff radius of 1.85 nm for non-bonded interactions and periodic boundary conditions in three dimensions were employed. All simulations were equilibrated for 4.5 ns, followed by a 1.5 ns simulation for data collection. The simulations were performed using GROMACS software [18,19].

III. RESULTS AND DISCUSSION

1. Monolayer Structure

To investigate the interfacial behaviors of the PzH_2 monolayer for all five systems, we calculated the density profiles of PzH_2 molecules as a function of the z-coordinates and the results are shown in Figure 3. To identify the interface position (z_i) between the water and the PzH_2 molecules, we calculated the averaged z-positions (z_0) of PzH_2 molecules via the Eq. (2) and then defined z_i as $z_i = z_0 - 0.5$

$$Z_0 = \frac{\int \rho(z)zdz}{\int \rho(z)dz} \tag{2}$$

Here, $\rho(z)$ is the density profile of PzH₂ molecules and the numerical value of 0.5 is estimated from half the

Table 1. The molecular area per molecule (A) and the averaged hydrogen bond number for each PzH₂ nitrogen group.

System	A		<N _{h b} /PzH ₂ >	
	(nm^2)	N_{meso}	$N_{B,pyr}$	N_{pyr}
A	1.42	1.23 ± 0.16	1.25 ± 0.13	0.13 ± 0.10
В	0.95	1.54 ± 0.13	1.25 ± 0.09	0.12 ± 0.07
\mathbf{C}	0.71	1.35 ± 0.11	0.36 ± 0.07	0.08 ± 0.05
D	0.56	1.45 ± 0.07	0.39 ± 0.04	0.03 ± 0.03
E	0.47	1.59 ± 0.17	0.07 ± 0.04	0.43 ± 0.05

PzH₂ diameter. For a systematic comparison, the averaged position, z_0 , for the five systems has been shifted to zero. In Figure 3, for the three lower concentrations (systems A, B and C), the PzH₂ density profiles are increasing with the surface densities. In the case of the two higher concentrations, the increasing number of PzH₂ molecules yields a widening of the density peaks. These characteristics show that a new layer of PzH₂ is created and that some PzH₂ molecules move out from the initial monolayer. It is interesting that the PzH₂ density for system B is narrower than that for the other systems and that its maximum peak is nearly the same as that of system C. This result reveals that the molecular packing of PzH₂ molecules for such a system is the most stable. Considering system A, the PzH₂ density peak is too low and quite broad, which indicates that a stable monolayer does not form at such a low density. Experimental data [5] also indicated that the copper porphyrazine (CuPz) started to form a monolayer film at a molecular area of 1.25 nm². Based on the molecular areas calculated, as shown in Table 1, system A is clearly seen to have a higher molecular area (1.42 nm²) in accord with the experiment. It can be confirmed that the PzH₂ monolayer does not exist for system A (the lowest surface concentration). However, a multilayer of such molecules can be formed not only depending on the surface concentrations but also depending on the surface pressure [5].

2. Water Structure and Hydrogen Bonding

The water structure at the interfacial region (i.e., water molecules lying next to the interface position) can be examined by using a density profile plot as shown in Figure 4. The water densities for all systems significantly decrease from the bulk density value as the number of PzH_2 molecules is increased. This behavior demonstrates the existence of "guest" water molecules, as reported in previous publications [4]. An increase in the number of PzH_2 molecules is clearly seen to affect not only the water density at the interface region but also the layered water structure.

The characteristics of hydrogen bonding between water and PzH_2 molecules can be investigated by means

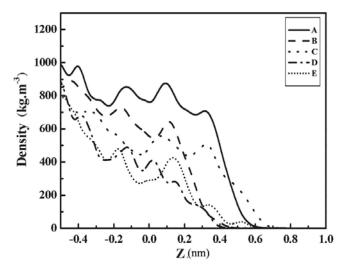


Fig. 4. Density profiles of water molecules lying above the interface position for all five surface densities.

of a hydrogen bond analysis. To determine the existence of hydrogen bonds, one uses geometrical criteria for donor and acceptor atoms (i.e., $r \leq 0.35$ nm, $\alpha \leq 60^{\circ}$). In our models, N atoms of PzH₂ are considered to be the acceptors, which are classified into three groups, N_{meso}, N_{B,pyr} and N_{pyr}, corresponding to their atomic charges (see Figure 1). The Nmeso group forms significantly more hydrogen bonds than the N_{B,pyr} and the N_{pyr} groups. The averaged values of the H-bonds are given in Table 1. Taking into account that the number of hydrogen bonds between N_{meso} and water increases with increasing density of PzH₂ molecules, one can come to a conclusion that the hydrogen bonds network plays a crucial role in the formation of the monolayer.

3. Molecular Orientations

To characterize the overall orientations of the PzH₂ molecules at the interface, we calculated the probability distributions, $P(\phi)$, of the angle ϕ (tilt angle) between the normal vector perpendicular to the molecular plane and the vector parallel to the z-axis and the results are displayed in Figure 5 for all systems. At the lowest concentration (system A), PzH₂ molecules are preferentially oriented with the tilt angles ranging from 60° to 90°. For system B, four pronounced peaks centered at 5°, 25°, 51° and 62°, respectively are observed. This means that some PzH₂ molecules preferentially lie nearly parallel to the water surface ('face on' orientation) and the rest are preferentially tilted with respect to the water surface ('edge on' orientation). These characteristics can be explained by noting that for the two lower concentrations (systems A and B), PzH₂ molecules have more space to occupy on the surface; consequently, they have several possible orientations. In addition, the tilted angles of 51°

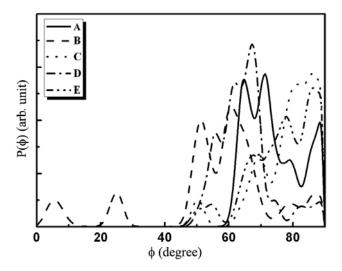


Fig. 5. Probability distributions of the tilted angle of PzH₂ orientations at the water-gas interface for the five different surface densities.

and of 62° for system B are assumed to correspond to the β - and the α -form of crystalline phthalocyanine [20] as proposed in a previous simulation [4]. For the three higher concentrations (systems C, D and E), the tilted angles start to be observed from 45° to 90°. Their maximum peaks are centered near 85°, except for system D in which its maximum peak is centered at 68°. The fact that the peaks appear near 70° for the three higher concentrations indicate that molecular orientation likes the α form of phthalocyanine are observed. These results are confirmed by experimental data on copper porphyrazine [5], for which molecular tilt angle ranging from 65° to 72° are reported for the higher surface concentrations $(N_0 > 6 \times 10^{-7} \text{ mole.m}^{-2})$. The several peaks that appear for the three systems suggest that a new layer is created due to some PzH₂ molecules being pushed out from the initial layer.

IV. CONCLUSION

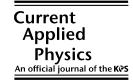
Using molecular dynamics simulation techniques, the molecular structures and orientations of the PzH_2 molecules at the air-water interface have been investigated for different surface densities. This study reveals that an increasing number of PzH_2 molecules affect the structure of the PzH_2 monolayer and the layered structure of water. The water molecules near the interface region play a major role in the stability of such a film by forming hydrogen bonds with the PzH_2 molecules. The PzH_2 molecules show several orientations for all five surface densities, indicating that such monolayer films are highly inhomogeneous.

ACKNOWLEDGMENTS

This work is financially supported by the National Synchrotron Research Center (GRANT 1-2548/PS02). Fellowships from the Royal Golden Jubilee Program given to S. K. (PHD/0162/2546) and from the Thailand Research Fund in cooperation with the Commission on Higher Education given to T. K. (RMU4880008) are acknowledged.

REFERENCES

- [1] J. R. Koo, H. S. Lee, Y. Ha, Y. H. Choi and Y. K. Kim, Thin Solid Films 438-439, 123 (2003).
- [2] J. M. Pedrosa, C. M. Dooling, T. H. Richardson, R. K. Hyde, C. A. Hunter, M. T. Marty and L. Camacho, Langmuir 18, 7594 (2002).
- [3] T. H. Richardsona, C. M. Doolinga, O. Worsfolda, L. T. Jonesa, K. Katob, K. Shinboc, F. Kanekoc, R. Treggoningd, M. O. Vysotskyd and C. A. Hunterd, Thin Solid Films 393, 259 (2001).
- [4] A. Borodin and M. Kiselev. Pure Appl. Chem. 76, 197 (2004).
- [5] L. Valkova, N. Borovkov, M. Pisani and F. Rustichelli, Thin Solid Films 401, 267 (2001).
- [6] H. Chou, C. T. Chen, K. F. Stork, P. W. Bob and K. S. Suslick, J. Phys. Chem. 98, 383 (1994).
- [7] S. Yamada, K. Kuwata, H. Yonemura and T. Matsuo, J. Photoch. and Photobio. A: Chem. 87, 115 (1995).
- [8] X. Qian, Z. Tai, X. Sun, S. Xiao, H. Wu, Z. Lu and Y. Wei, Thin Solid Films 284-285, 432 (1996).
- [9] D. J. Qian, C. Nakamura and J. Miyake, Thin Solid Films 397, 266 (2001).
- [10] R. Paolesse, L. Valli, C. Goletti, C. D. Natale, A. Froiio, A. Macagnano, G. Bussetti, P. Chiaradia and A. Damico, Mat. Sci. Eng. C 22, 219 (2002).
- [11] A. Boguta, D. Wrobel, A. Bartczak, R. Swietlik, Z. Stachowiak and R. M. Ion, Mat. Sci. Eng. B 113, 99 (2004).
- [12] Y. Zhou, B. Wang, M. Zhu and J. G. Hou, Chem. Phys. Lett. 403, 140 (2005).
- [13] D. Lamoen and M. Parrinello, Chem. Phys. Lett. 248, 309 (1996).
- [14] E. J. Baerends, G. Ricciardi, A. Rosa and S. J. A. van Gisbergen, Coord. Chem. Rev. 230, 5 (2002).
- [15] W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. 110, 1658 (1996).
- [16] J. Böcker, E. Spohr and K. Heinzinger, Z. Naturforsch 50a, 611 (1995).
- [17] J. P. Ryckaert, G. Ciccotti and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977).
- [18] H. J. C. Berendsen, D. V. D. Spoel and R. V. Drunen, Comp. Phys. Comm. 91, 43 (1995).
- [19] E. Lindahl, B. Hess and D. V. D. Spoel, J. Mol. Mod. 7, 306 (2001).
- [20] I. Kumano and D. S. Gakkaishi, Electrophoto. 22, 111 (1984).


ARTICLE IN PRESS

Available online at www.sciencedirect.com

Current Applied Physics xxx (2008) xxx-xxx

www.elsevier.com/locate/cap www.kps.or.kr

The geometrical and electronic structures of open-end fully functionalized single-walled carbon nanotubes

Chatchawal Wongchoosuk a, Anurak Udomvech a,b, Teerakiat Kerdcharoen a,c,*

^a Department of Physics and Center of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand ^b Department of Physics, Faculty of Science, Thaksin University, Songkhla 90000, Thailand ^c NANOTEC Center of Excellence, Mahidol University, National Nanotechnology Center, Thailand

Received 14 June 2007; received in revised form 7 March 2008; accepted 11 March 2008

Abstract

We have investigated the geometrical and electronic structures of open-end single-walled carbon nanotubes (SWNTs) having chemically modified tips, using semi-empirical AM1 and density functional theory methods. The hydroxyl (-OH), carboxyl (-COOH) and amide (-CONH₂) functional groups were used to saturate the open-ends of nanotubes. The effects of functional groups were studied by comparison with the pristine tubes, of which the tubular lengths vary from two to ten unit-cells (40 Å). The results show that the C-C bond lengths of all model tubes are only slightly different, and the behavior of converging bond lengths in COOH- and CONH₂-SWNTs is very similar to the pristine tube. Tip functionalization alters the frontier orbitals of the pristine tube, but these effects seem to rapidly decrease as the tubule becomes longer. In general, it can be concluded that the geometrical and electronic structures of pristine tubes after tube-end "full" functionalization will be preserved, hence supporting that more real-world "partially" functionalized SWNTs can be used in the same way as the pristine version in most application areas. © 2008 Elsevier B.V. All rights reserved.

PACS: 31.15.ae; 31.15.E-; 31.15.bu; 73.22.-f; 81.07.De

Keywords: Functionalized carbon nanotube; DFT; Electronic structure

1. Introduction

In recent years, the unique properties of single-walled carbon nanotubes (SWNT) have become widely known, e.g., chemical and thermal stability, extremely high tensile strength and elasticity, and high conductivity [1-3]. Because of its remarkable electronic and mechanical properties, SWNT is one of the best candidate materials to use in various industrial applications [4]. However, there are some intrinsic properties that limit its use in many applications. For instances, the pristine carbon nanotube is not

E-mail address: sctkc@mahidol.ac.th (T. Kerdcharoen).

chemical approaches, manipulation and preparation of nanocomposite materials. To overcome this problem, functionalization is one effective means for modifying properties of the pristine tubes so as to be appropriate for solution processing [7,8]. Unfortunately, functionalization of SWNTs may also lead to unwanted modification of the physical and chemical properties of SWNTs that are essential for intended applications. The ability to solubilize carbon nanotubes with intact physico-chemical properties would aid in their purification, followed by easier solution processing that will eventually lead to the most efficient uses of such materials. The first chemical synthesis of soluble SWNTs was reported in 1998 [9,10]. The open-ends of soluble SWNTs were terminated by carboxylic acid groups (-COOH). Such groups were con-

soluble in water or common solvents [5,6], which hinders

1567-1739/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.cap.2008.03.003

Corresponding author. Address: Department of Physics and Center of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand. Fax: +662 2015843.

verted into acylchloride groups by treatment with thionylchloride [9,10]. The long-chain amine, e.g., octadecylamine, was subsequently added to form amide functionalities [10]. The resulting SWNTs can be soluble in common organic solvents, such as chloroform, dichloromethane, aromatic solvents (e.g., benzene, toluene, chlorobenzene, 1,2-dichlorobenzene), CS2 and water [9-14]. In spite of many successful experiments on the soluble SWNTs, effects of functional groups on the geometrical and electronic structure of pristine SWNTs are not yet clearly understood due to absence of a reliable theoretical model. Therefore, studying the geometrical and electronic structures of individual nanotubes before and after functionalization is necessary in order to ascertain whether these properties have been affected. So far, most papers report the effects of only one functional group, i.e., COOH, at the end [15] and at the sidewall of nanotubes [16]. In the real situation, it is possible that there are several functional groups concurrently attached to the nanotube end and sidewall. In this research, we have explored an extreme case, where all open bonds at the tips are saturated with functional groups, or so-called "fully functionalized" SWNT. Three functional groups: hydroxyl (-OH), carboxyl (-COOH) and amide (-CONH₂) are chosen in order to study their effects on the geometrical and electronic properties of nanotubes.

2. Model and methods

The OH–, COOH– and CONH₂-terminated SWNTs (Fig. 1) were investigated by semi-empirical and first-principles calculations. The zigzag (9,0) tube was chosen because its edges are more reactive than those of the armchair tube [17], thereby supportive to our model where the tube edges are saturated by functional groups. Effects of the functional end groups were studied by comparing with

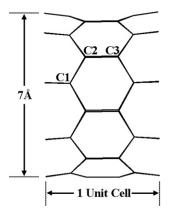


Fig. 2. Definition of C1–C2 and C2–C3 bonds of a 1 unit-cell (1UC) SWNT.

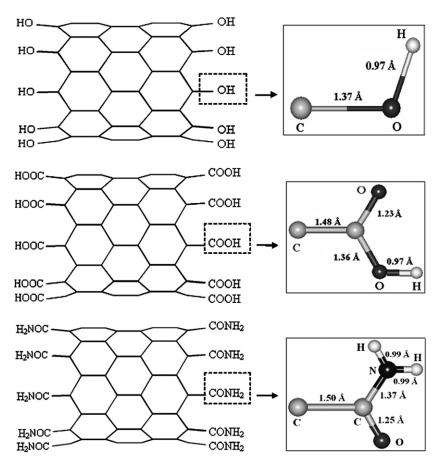


Fig. 1. Model geometries of the (a) OH- (b) COOH- and (C) CONH2-terminated (9,0) SWNTs. The insets show average bond lengths.

Please cite this article in press as: C. Wongchoosuk et al., The geometrical and electronic structures of open-end ..., Curr. Appl. Phys. (2008), doi:10.1016/j.cap.2008.03.003

Table 1
Comparison of some geometrical and electronic properties of one unit-cell OH-SWNT calculated at different levels of theory (see definition of C1–C2, C2–C3 in Fig. 2)

	MM	AM1	HF/3-21G*	HF/6-31G*	B3LYP/3-21G*	B3LYP/6-31G*
C1-C2 (Å)	1.356	1.418	1.404	1.409	1.415	1.418
C2-C3 (Å)	1.346	1.449	1.464	1.474	1.460	1.465
HOMO (eV)	_	-6.305	-4.790	-4.471	-3.692	-3.394
LUMO (eV)	_	-1.589	0.355	0.867	-2.609	-2.417
δE (eV)	_	4.716	5.145	5.338	1.082	0.977

Table 2 Dependence of C_1 – C_2 (in {}) and C_2 – C_3 (in []) bond lengths on the tubular length of H, OH, COOH and CONH₂-terminated (9,0) SWNT as obtained from geometry optimization using AM1 Method (see definition of C1–C2, C2–C3 in Fig. 2)

Number of unit-cells	H-terminated		OH-terminated		COOH-terminated		CONH ₂ -terminated	
	Terminal	Middle	Terminal	Middle	Terminal	Middle	Terminal	Middle
2	{1.411}	{1.420}	{1.422}	{1.420}	{1.423}	{1.418}	{1.423}	{1.418}
	[1.440]	[1.431]	[1.434]	[1.429]	[1.440]	[1.429]	[1.439]	[1.429]
3	{1.411}	{1.424}	{1.423}	{1.424}	{1.423}	{1.426}	{1.423}	{1.425}
	[1.439]	[1.428]	[1.434]	[1.427]	[1.439]	[1.427]	[1.439]	[1.427]
4	{1.411}	{1.425}	{1.423}	{1.425}	{1.424}	{1.425}	{1.423}	{1.425}
	[1.439]	[1.426]	[1.433]	[1.426]	[1.439]	[1.426]	[1.439]	[1.426]
6	{1.411}	{1.425}	{1.423}	{1.426}	{1.423}	{1.426}	{1.424}	{1.426}
	[1.439]	[1.425]	[1.433]	[1.426]	[1.439]	[1.426]	[1.439]	{1.426}
8	{1.411}	{1.425}	{1.426}	{1.431}	{1.423}	{1.426}	{1.425}	{1.426}
	[1.439]	[1.425]	[1.427]	[1.415]	[1.439]	[1.425]	[1.439]	[1.425]
10	{1.412}	{1.425}	{1.425}	{1.431}	{1.423}	{1.426}	{1.425}	{1.426}
	[1.439]	[1.425]	[1.427]	[1.415]	[1.439]	[1.425]	[1.440]	[1.425]

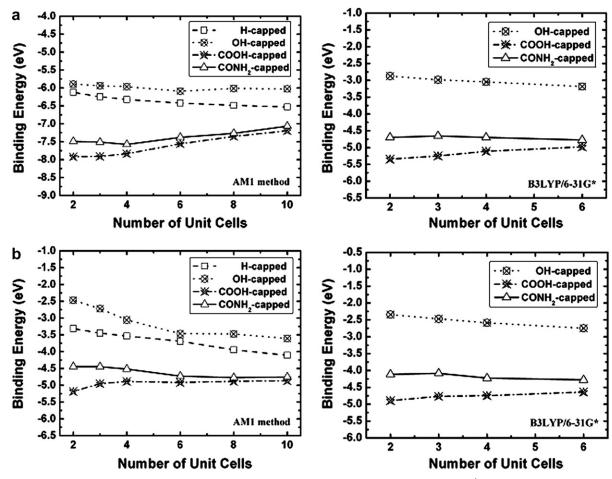


Fig. 3. (a) HOMO (b) LUMO energies based on AM1 (left) and B3LYP/6-31G* (right).

Please cite this article in press as: C. Wongchoosuk et al., The geometrical and electronic structures of open-end ..., Curr. Appl. Phys. (2008), doi:10.1016/j.cap.2008.03.003

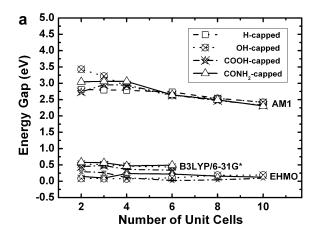
the pristine tube (whose edges are saturated by hydrogen atoms). The tubular lengths of all models vary from two to ten unit-cells (~8–40 Å, 72–360 carbon atoms). Definition of a one unit-cell is exhibited in Fig. 2. A semi-empirical method based on the Austin Model 1 (AM1) Hamiltonian [18] at the Restricted Hartree Fock level [19] within GAMESS04 package [20] was used to prepare fully optimized structures of all types and lengths. In AM1 method, it is an assumption that orbitals from two neighboring atoms are orthogonal and only valence electrons are considered. The AM1 valence (val) Hamiltonian based on the Born–Oppenheimer approximation can be written in the following form:

$$H_{\text{val}} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>1}^{N} \frac{1}{r_{ij}}$$
 (1)

where M is the number of nuclei. i and j denote each of the N electrons in the system.

The basis sets employed in the semi-empirical method are specially optimized minimal basis sets composed of the Slater-type orbitals (STO),

$$\Phi_{\text{STO}}(\zeta, n, l, m : r, \theta, \phi) = Nr^{n-1} e^{-\zeta r} Y_{\text{lm}}(\theta, \phi)$$
 (2)


where N is a normalization constant. ζ is the Slater exponent. r, θ , and ϕ are spherical coordinates, and $Y_{\rm lm}$ represents the angular momentum.

The results from other methods, such as molecular mechanics calculation using MM3 [21] force filed, ab initio Hartree-Fock and density functional theory (DFT) calculations [22] on one unit-cell of OH-terminated SWNT were compared in order to verify the quality of the AM1 method. The all-electron Gaussian-type basis sets, 3-21G* and 6-31G*, in which the valence shell is described by splitting functions, including the polarization functions for hydrogen atoms, were employed for quantum mechanical calculations. The C-C bond lengths of all tubes were measured and reported. The electronic structures, such as the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), energy gap, and orbital shape were investigated using the AM1 method. Becke3 and Lee-Young-Parr composite exchange-correlation function (B3LYP) and the 6-31G* basis set were employed to investigate the electronic structure of nanotubes with lengths up to six unit-cells. Extended Hückel molecular orbital (EHMO) method [23] was also performed for comparison.

3. Results and discussion

The geometrical and electronic properties of one unitcell OH-terminated SWNT after energy optimization at different levels of theory are given in Table 1. For the purposes of discussing the geometry of nanotubes, C–C bond lengths including C1–C2 and C2–C3 (see Fig. 2) that lie on the circumference and parallel with the tube axis, respectively, were reported. From the average bond lengths in

Table 1, we have observed that the AM1 optimized structure is in agreement with B3LYP/3-21G* within a resolution of 0.01 Å. On the other hand, the optimized structure obtained by AM1 is also close to the result calculated by B3LYP/6-31G*, despite B3LYP/6-31G* level having usually been found to be much more reliable on the average bond lengths [24]. Therefore, in accordance with a previous study by Stobinski et al. [25], we can assume that the AM1 method is good enough for approximation of the carbon nanotube's geometry. From Table 1, the differences in C-C bond lengths obtained from all methods, except for MM3, are within the range of 0.01–0.04 Å. Hence, the molecular mechanics is not an appropriate method to predict the geometry of this system, corresponding to our previous results on the pristine SWNT [26]. For electronic properties, it was shown that the AM1 and HF methods are rather poor in describing LUMO, leading to overestimation of the HOMO-LUMO energy gap in comparison with the B3LYP values. Therefore, HOMO and LUMO from AM1 method will be used only for qualitative purposes, for example, comparing between the OH-, COOHand CONH2-terminated SWNTs with the pristine nanotubes, as also suggested by the previous study [26].

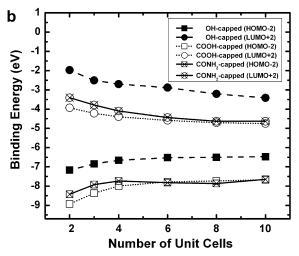


Fig. 4. (a) Energy gap based on AM1, B3LYP/6-31 G^* and EHMO of H-, OH-, COOH- and CONH₂-terminated SWNTs. (b) Comparison of the delocalized frontier orbitals of the functionalized structures.

Effects of the functional groups and tubule lengths on the geometrical properties are given in Table 2. Such groups cause differences in the C–C bonds located at the terminal ends and at the middle cylinder. For the pristine tubes at all lengths, the C1–C2 and C2–C3 bond lengths located at the terminal ends are around 1.411 and 1.440 Å, respectively. In other words, the local geometry at the terminal ends does not depend on the tubule length. In contrast, the C-C bond lengths located at the middle cylinder are affected by tubule lengthening from 1 up to 4 unit-cells. Beyond such tubular length, a converging value of 1.425 Å for the C–C bonds is finally established. The above-mentioned behavior and tendency are also applicable to the functionalized SWNTs. In particular for the

COOH– and CONH₂-SWNTs, the middle cylinder of such tubes has the same converging C–C bond length as the pristine tube (1.425–1.426 Å), albeit the carbon bonds at the immediate vicinity of the functional groups become slightly elongated (from 1.411 to 1.424 Å). It can be said that functionalization does not introduce noticeable structural deformation to SWNT. It is noteworthy that the average C–C bond length of a perfect SWNT with sp² hybridization is 1.42 Å, and full functionalization causes bond length distortion within a 0.02 Å limit.

Fig. 3a and b shows that functionalization alters HOMO and LUMO energies. In comparison with the H-terminated tube, the hydroxyl group destabilizes HOMO and LUMO, while the carboxylic and amide groups stabi-

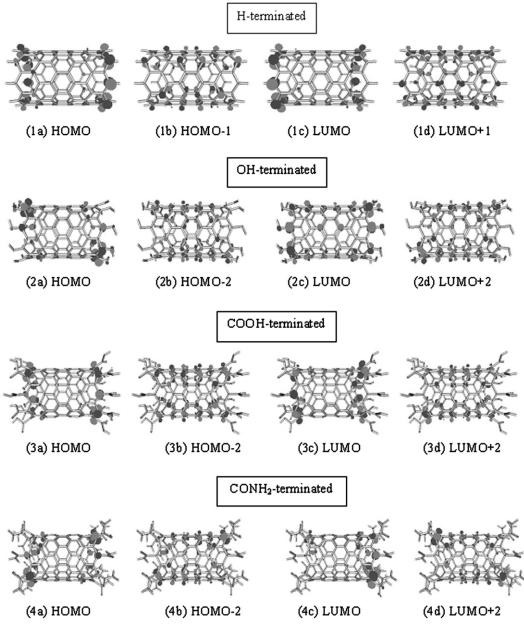


Fig. 5. Side views of 3D-isosurface plots of selective occupied molecular orbital and unoccupied molecular orbital calculated using AM1 method.

Please cite this article in press as: C. Wongchoosuk et al., The geometrical and electronic structures of open-end ..., Curr. Appl. Phys. (2008), doi:10.1016/j.cap.2008.03.003

lize them. Because the carboxylic and amide groups share a similar carbonyl group, their respective energy levels are more correlated. Interestingly, although AM1 overestimates the HOMO energy, it can reproduce LUMO and the same ordering of energy levels obtained from different functional groups, comparative to those of DFT. Such results confirm that AM1 is an effective tool for qualitative study of functionalized nanotubes. Fig. 4a plots the HOMO-LUMO energy gap versus tubule length based on the AM1, DFT and EHMO methods. All levels of theory predict a decreasing energy gap. For sufficiently long tubes, the energy gaps become converged to an approximately similar value (2.3–2.4 eV at AM1 level) regardless of how the tube-ends are functionalized. It can be said that the functional groups do not disturb the sp² hybridization of a nanotube, so that eventually the energy gap is still preserved [27]. In general, the realistic energy gap should locate between the extreme values obtained from AM1 (overestimated) and EHMO (underestimated), making DFT a better choice for obtaining such a value. Since DFT is more time-consuming and resource-intensive, it was however used as a complementary method to AM1 in this study. Based on this concept, the finite-length open-end functionalized (9,0) SWNTs are small-gap semiconducting, for which they will become metallic when the length is great enough [28–30].

The energy gap shown in Fig. 4a is rather illusive since a previous study reported that HOMO and LUMO in an open-end H-terminated SWNT are defected states caused by the capping hydrogen atoms [26]. This study also proposed a more sensible way to represent the energy gap in terms of the delocalized states. Fig. 5 visualized the molecular orbitals of selective frontier states, using Facio version 10.3.1 package [31]. In all model tubes, HOMO and LUMO are localized at the terminal ends of the tubes. To compute the energy gap, the most frontier delocalized states should be considered. For the pristine tube, HOMO-1 and LUMO+1 (Fig. 5-1b and 5-1d) are relevant, whereas functionalization shifts the frontier delocalized states downward/upward to HOMO-2 (Fig. 5-2b, 5-3b and 5-4b) and LUMO+2 (Fig. 5-2d, 5-3d and 5-4d), respectively. The new plot of energy gap versus tubule length as shown in Fig. 4b, reveals a converging value of 2.9 eV for all functionalized nanotubes. Although the new energy gaps are higher than the original HOMO-LUMO gap, they are independent of the chemical groups and can represent the real electronic characteristics of the functionalized SWNTs.

4. Conclusion

So far, most previous studies report the effects of only one functional group, i.e., -COOH, at the end and at the sidewall of carbon nanotubes. In the present work, we have explored an extreme case, where all hydrogen caps are replaced with functional groups (-OH, -COOH and -CONH₂) or so-called "fully functionalized" SWNTs. The

results suggest that the low-cost AM1 method in conjunction with DFT can be an effective tool for studying functionalized carbon nanotubes. In conclusion, the "full" functionalization at the open-ends of finite-length SWNTs do not significantly change the geometrical and electronic properties of the original pristine nanotubes, supporting a notion that more real-world "partially" functionalized SWNTs can be used in the same way as the pristine version in most application areas.

Acknowledgements

This project is supported by the National Electronic and Computer Technology Center (NECTEC). Career Development Grants from the Thailand Research Fund in cooperation with the Commission on Higher Education given to T.K. (RMU4880008) are acknowledged.

References

- R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60 (1992) 2204.
- [2] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381 (1996) 678.
- [3] M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Annu. Rev. Mater. Res. 34 (2004) 247.
- [4] M. Terrones, Annu. Rev. Mater. Res. 33 (2003) 419.
- [5] W.A. Scrivens, J.M. Tour, J. Chem. Soc. Chem. Commun. (1993) 1207.
- [6] R.S. Ruoff, D.S. Tse, R. Malhotra, D.C. Lorents, J. Phys. Chem. 97 (1993) 3379.
- [7] D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Chem. Eur. J. 9 (2003) 4000.
- [8] Y.P. Sun, K. Fu, Y. Lin, W. Huang, Acc. Chem. Res. 35 (2002) 1096.
- [9] J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Science 282 (1998) 95.
- [10] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science 280 (1998) 1253.
- [11] W. Huang, Y. Lin, S. Taylor, J. Gaillard, A.M. Rao, Y.P. Sun, Nano. Lett. 2 (2002) 231.
- [12] W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.P. Sun, Nano. Lett. 2 (2002) 311.
- [13] M.A. Hamon, H. Hu, P. Bhowmik, S. Niyogi, B. Zhao, M.E. Itkis, R.C. Haddon, Chem. Phys. Lett. 347 (2001) 8.
- [14] J.L. Bahr, E.T. Mickelson, M.J. Bronikowski, R.E. Smalley, J.M. Tour, Chem. Commun. (2001) 193.
- [15] T. Kar, B. Akdim, X. Duan, R. Pachter, Chem. Phys. Lett. 423 (2006) 126.
- [16] M.V. Veloso, A.G.S. Filho, J.M. Filho, S.B. Fagan, R. Mota, Chem. Phys. Lett. 430 (2006) 71.
- [17] C. Kim, K. Seo, B. Kim, N. Park, Y.S. Choi, K.A. Park, Y.H. Lee, Phys. Rev. B 68 (2003) 115403.
- [18] M.J.S. Dewar, E.G. Zoebish, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.
- [19] C.C.J. Roothan, Rev. Mod. Phys. 23 (1951) 69.
- [20] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14 (1993) 1347.
- [21] N.L. Allinger, Y.H. Yuh, J.H. Lii, J. Am. Chem. Soc. 111 (1989) 8551.
- [22] Y. Kumeda, Y. Fukuhiro, T. Taketsugu, T. Hiramo, Chem. Phys. Lett. 333 (2001) 29.
- [23] R.J. Hoffmann, J. Chem. Phys. 39 (1963) 1397.

ARTICLE IN PRESS

C. Wongchoosuk et al. | Current Applied Physics xxx (2008) xxx-xxx

- [24] W. Koch, M.C. Holthausen, A Chemist's Guide to Density Functional Theory, second ed., Wiley-VCH,, Weinheim, 2001.
- [25] L. Stobinski, J. Peszke, H.M. Lin, Rev. Adv. Mater. Sci. 5 (2003) 363.
- [26] A. Udomvech, T. Kerdcharoen, V. Parasuk, Y. Tantirungrotechai, T. Osotchan, Int. J. Nanosci. 2 (2003) 141.
- [27] R. Saito, M. Fujita, G. Dresselhaus, Phys. Rev. B 46 (1992) 1804.
- [28] W.Z. Liang, X.J. Wang, S. Yokojima, G.H. Chen, J. Am. Chem. Soc. 122 (2000) 11129.
- [29] S. Erkoc, L. Turker, Physica E 4 (1999) 192.
- [30] M.S. Dresselhaus, G. Dresselhaus, R. Saito, Solid State Commun. 84 (1992) 201.
- [31] M. Suenage, J. Comput. Chem. Jpn. 4 (2005) 25.

7

Theoretical Investigation of Lithium-Atom Insertion into Ultra-Small Diameter Carbon Nanotubes

Anurak Udomvech

Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand and Department of Physics, Faculty of Science, Thaksin University, Songkhla 90000, Thailand

Teerakiat Kerdcharoen*

Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand and NANOTEC Center of Excellence at Mahidol University, National Nanotechnology Center, Thailand

(Received 15 July 2007)

Computations of Li intercalation into ultra-small single-walled carbon nanotubes have been carried out within the framework of the first-principles density functional calculation. The energy and the structural properties of two Li atoms as a function of distance along the longitudinal axis of (3,3), (4,2) and (5,0) nanotubes have been calculated. We found that Li atoms could be easily pulled into the interior of (3,3) and (4,2) nanotubes whereas a small energy barrier existed at the open-mount of (5,0) tube. The zigzag (5,0) nanotube allows Li-Li to localize near the tube center, forming a Li₂ cluster inside the nanotube. In contrast, Li atoms prefer to locate near the open mounts of the armchair (3,3) tube. In case of a (4,2) nanotube, no preferential location is found, as described by the flat potential energy profile. The intercalated atoms affect the geometric parameters at the central region more than the rest of the nanotube. These results provide evidence that chirality plays a crucial role in Li-tube interactions, especially for ultra-small nanotubes, which suggests that appropriate tubule chiralities are needed if efficient anode materials are to be used in Li batteries.

PACS numbers: 71.20.Tx, 73.43.Cd, 73.63.Fg

Keywords: Carbon nanotubes, Li-battery, Computational modeling, Chirality

I. INTRODUCTION

The carbon nanotube (CNT) [1] has attracted much attention as a potential candidate for nanoscale devices. Particularly, single-walled carbon nanotubes (SWCNTs) have become one of the most studied materials due to their unique properties [2-5]. An individual SWCNT can be thought of as a rolling up of a flat graphene sheet [6]. Recently, SWCNTs with precise diameters and lengths were synthesized and fabricated [7-9]. These carbon nanotubes had a diameter of ~ 4 Å and were perfectly arranged in a closely-packed hexagonal lattice [10–12]. The adsorption property of CNTs provides opportunities for applications such as hydrogen and gas storage [13], gas sensors [14], catalysts [15] and Li-ion batteries [16]. In the case of Li-ion batteries, the key role for increasing the stored energy density lies in improving the electrode materials. The CNT is a prospective candidate for use in Li-ion batteries because the large number of nanoscale sites available for intercalant atoms on the CNT exceeds those found on the commonly used graphite electrode,

 LiC_6 [17]. For instance, higher lithium capacity up to $\text{Li}_{1.6}\,\text{C}_6$ and $\text{Li}_{2.7}\,\text{C}_6$ has been achieved in a SWCNT [18]. A theoretical capacity is predicted with enhanced lithium density up to LiC_2 [19].

In the present work, we have studied the intercalation of two lithium atoms inside an ultra-small -diameter SWCNT. Intuitively, ultra-small-diameter SWCNTs are ideal anode materials for Li-ion batteries. The unusually high surface-volume aspect ratio could extend the storage capacity beyond those of presently known anode materials. The ultra-small 4-Å-diameter carbon nanotubes have three possible chiralities, armchair (3,3), zigzag (5,0) and chiral (4,2). As a result, investigation of lithium intercalation into these structures is necessary to understand the effects of chirality. The first-principles density functional calculation was chosen to investigate the energies and the structural properties.

II. COMPUTATIONAL DETAILS

In the present work, the Kohn-Sham density functional theory was used. The generalized gradient approxima-

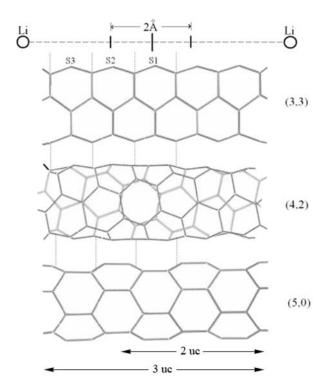


Fig. 1. Model of two Li atoms intercalated along the longitudinal axis inside ultra-small-diameter SWCNTs.

tion of Beck's three-exchange parameters (B3) [20] and local and non-local correlation potentials of Lee, Yang and Parr (LYP) [21] were chosen using 6-31G(d) and 3-21G Gaussian basis sets. For the investigation of the potential energy profile of inserting two Li atoms into the nanotubes, three models of the Li₂@SWCNT structures were proposed. The first model is denoted by "rigid Li₂@SWCNT/6-31G(d)," for which the interaction energies are calculated at the 6-31G(d) level based on the Li-free SWCNT geometry optimized at the 3-21G level. This model could save much computational power because it neglects geometrical relaxation of the nanotubes upon Li's insertion. The second model, as denoted by "B3LYP/3-21G//B3LYP/3-21G," represents the interaction energies calculated at the 3-21G level based on the optimized Li₂-tube geometry obtained at the same level of theory. The third model, as denoted by "B3LYP/6-31G(d)//B3LYP/3-21G," is similar to the second model, for which the energy profile is calculated at 6-31G(d) level but by using the optimized structure obtained at the 3-21G level. Usage of various types of model should reveal the dependency of the results on the computational models.

In principle, Li intercalation refers to the adsorption of Li atoms or ions into the interior and/or at the exterior side-walls of CNTs. In the present work, we are interested in the intercalation process that brings two lithium atoms into the nanotube's interior. For such small-diameter nanotubes, Li atom is assumed to be lo-

cated at the center of the tube, as suggested by our previous study of the (6,0) nanotube [22]. Figure 1 defines the pathway for moving two Li atoms along the longitudinal axis of the nanotubes. In the calculations, two Li atoms were moved symmetrically along this path from each end of the nanotube into the interior. The high symmetry of Li₂ intercalation helps reduce computation time. The finite-length models (see Figure 1) with the nominal formulae $C_{66}H_{12}$, $C_{72}H_{12}$ and $C_{80}H_{10}$ were chosen to represent the (3,3), (4,2) and (5,0) ultra-smalldiameter SWCNTs, respectively. The rims of all nanotubes were saturated by hydrogen atoms. The unrestricted spin wave functions were used. The interaction energy, ΔE , of the system is defined by subtracting the sum of the total energy of the Li-free nanotube and the energies of the isolated Li atoms from the total energy of the whole complex.

III. RESULTS AND DISCUSSION

1. Energetic Properties

The potential energy profiles obtained from the DFT/B3LYP calculation of all models are shown in Figure 2, which demonstrate the energy change as two Li atoms move through each open-mount of the SWC-NTs. All models predict that Li atoms are stabilized inside the carbon nanotubes, although some models exhibit a potential barrier at the entrance of the tube's mount due to the repulsion by the hydrogen atoms capped at the tubule ends, i.e., the fixed-2Li@SWCNT model and the B3LYP/6-31G(d)//B3LYP/3-21G model of (4,2) and (5,0) nanotubes. In general, all models reproduce the same potential energy shape, although the 3-21G overestimates the potential energy. compatibility of the potential curves generated from the "rigid Li₂@SWCNT/6-31G(d)" and the B3LYP/6-31G(d)//B3LYP/3-21G models suggests that the rigid structural model, instead of relaxed ones, can be used to reproduce the potential energy surface for Li-intercalated nanotubes in order to minimize the computational resources.

In the case of the fully optimized B3LYP/6-31G(d) //B3LYP/3-21G model, the potential energy of the full relaxation models (circle-solid line) has a shape analogous to that of Liu and Chan [23]. The energy profile inside the fully relaxed (3,3) and (5,0) nanotubes have a slight energy fluctuation. For the (3,3) tube (Figure 2(a)), there is a potential well when Li atoms are located near each open-mount. In contrast, the (5,0) tube (see Figure 2(c)) reveals a preferential binding energy when Li-Li is close to the nanotube center. The intercalated (4,2) nanotube (Figure 2(b)) has a rather flat energy curve, in which the potential well does not exist at the mount, contrary to Liu's result in which the po-

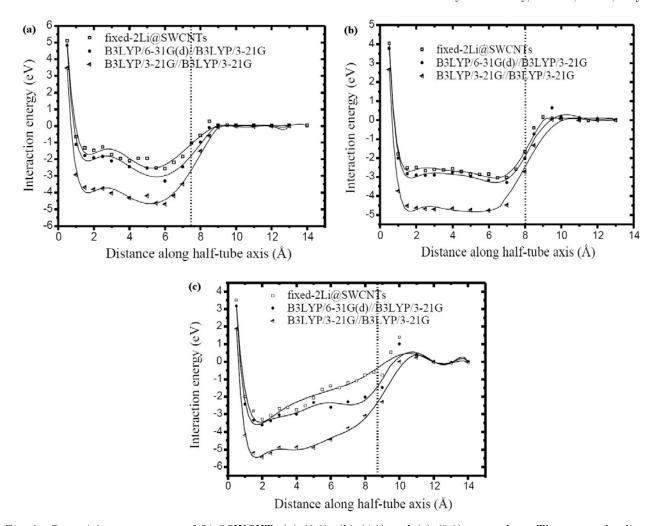


Fig. 2. Potential energy curves of Li_2 @SWCNT: (a) (3,3), (b) (4,2) and (c) (5,0) nanotubes. The square-dot line, the solid-circle line and the black-white triangle line represent the rigid 2Li@SWCNT, the B3LYP/3-21G//B3LYP/3-21G model and the B3LYP/6-31G(d)//B3LYP/3-21G model. The vertical dash lines mark the nanotube edge.

tential well was found. Such variances may arise from the PW91 functional employed in Liu's case.

Since the Li-Li interaction inside the (3,3) tube has a rather long-range Coulomb repulsion compared to the others tubes, such chirality might not be a good candidate for a Li host because Li atoms can reside with less packing. In contrast, the (5,0) nanotube has shown the formation of a Li cluster inside the tube. Each Li binds strongly when it is facing the hexagonal ring with a Li-Li distance of about 4 Å. Such a potential energy shape (Figure 2(c)) is useful for drawing Li atoms into the tube, allowing more packing than the (3,3) chirality. The charge-screening effect from the nanotube allows Li atoms to come more closely together than bare Li atoms [24].

The above-mentioned results provide good reasons for the utilization of ultra-small-diameter nanotubes as anode materials for Li batteries: (i) (3,3) nanotube may not be suitable because Li prefers to localize near tubemounts, (ii) a (5,0) tube may be used as host material in a battery or to make a single atomic chain (or nanowire) due to highly-packed cluster formation and (iii) Li will follow a charge-discharge cycle and reversibility very well in a (4,2) nanotube, more than it dose in the other two nanotubes due to the flat potential inside the nanotube.

2. Structural Properties

In this section, we discuss the structural properties of the bare and the Li₂-intercalated nanotubes. For convenience, we divide the structure of the nanotube into different sections (S1-S4), as depicted in Figure 1. Table 1 compares the average C-C bond lengths (bl_{av}) with the LDA results from Yanga et al. [25] and Liu and Chan [26] The periodic LDA calculation of isolated 4-Å-diameter SWCNTs is in agreement with our results within a range of 0.01-0.02 Å. Each section has different bl_{av} values with a relationship S2 >S1 >S3 for

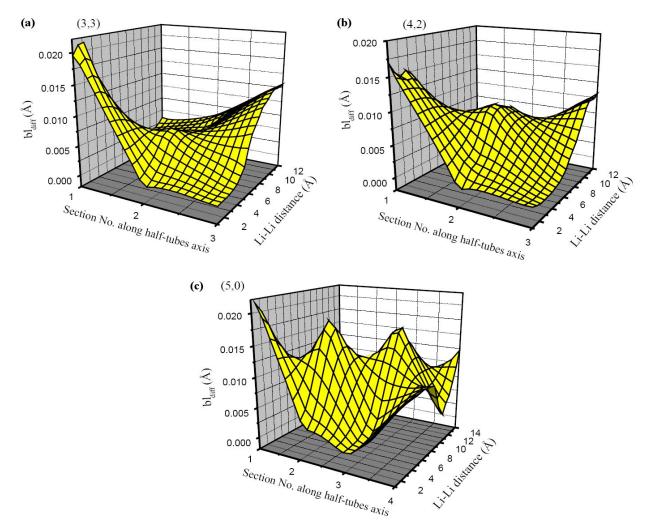


Fig. 3. Relative change of the C-C bond length difference (bl_{diff}) of two intercalated Li atoms inside SWCNTs compared to the average C-C bond length (bl_{av}) of pristine (a) (3,3), (b) (4,2) and (c) (5,0) nanotubes.

Table 1. Average C-C bond length (bl_{av}) of pristine (3,3), (4,2) and (5,0) nanotubes calculated by using the B3LYP/3-21G level. S1, S2, S3 and S4 indicate sections of the nanotube along the tube axis (see model in Figure 1). The average C-C bond length (bl_{av}) obtained from the B3LYP/ 6-31G(d) calculation is shown in $[\ldots]$.

		bl_{av}	$\mathrm{bl}_{av}(\mathrm{\mathring{A}})$ f	rom LDA		
	S1	S2	S3	S4	Ref. 34 ^a	Ref. 35 ^b
(3,3)	1.435	1.445	1.426		1.422	1.435
	[1.431]	[1.443]	[1.426]			
(4,2)	1.435	1.438	1.430		1.425	1.430
	[1.436]	[1.436]	[1.428]			
(5,0)	1.440	1.441	1.438	1.438	1.419	1.425
	[1.439]	[1.440]	[1.437]	[1.428]		

^a The structure of the 4-Å-diameter SWCNTs inside the AFI single crystal [34].

all types of nanotubes. The average C-C bond length of the pristine tubes obtained by using the $6\text{-}31\mathrm{G}(d)$ basis set is in agreement that obtained by using the $3\text{-}21\mathrm{G}$ basis to a 0.002-Å resolution. Therefore, the $3\text{-}21\mathrm{G}$ basis set should be sufficient for describing the geometry and should justify the nanotube models employed in this work.

To demonstrate the effects of Li-intercalation on the nanotube geometry, we have plotted the bond-length difference (bl_{diff}) between the intercalated and the pristine tubes in Figure 3. The plot shows that the nanotubes expand their geometry slightly in the proximity of Li's location. For instances, Li will cause a strain at the terminal section when it starts to enter the tube and this strain moves together with the Li, as shown by the diagonal ridge of the 3-D plot where Li is located. Thus, such a geometrical distortion is more expressed in the (5,0) than the (4,2) and the (3,3) chiralities (see Figures 3(a)-(c)). This could be the reason that the Li₂-intercalated (5,0) nanotube has a quite fluctuating potential profile (Fig-

^bThe structure of the isolated 4-Å-diameter SWCNTs [35].

ure 2). Again, the (4,2) chirality has shown its advantage as a Li host over other types of ultra-small-diameter SWNTs.

IV. CONCLUSIONS

This study supports the notion that the chirality plays a crucial role in Li-tube interactions, especially for ultrasmall nanotubes, which affects the suitability of each kind of chirality as an anode material in Li batteries. The results lead to a conclusion that the (4,2) nanotube is the most suitable candidate among all chiralities as an efficient anode materials, based on the following special characteristics:

- 1. If we consider the energy profile inside the nanotubes, Li can bind with the (4,2) nanotubes more strongly than it can bind with the (5,0) and the (3,3) chiralities. The flat potential energy curve inside the (4,2) nanotube allows loading and de-loading of Li atoms during the charge-discharge process to happen easily. In contrast, the local minima existing in the (5,0) and the (3,3) chiralities are a disadvantage for reversibility.
- 2. Loading of Li atoms into carbon nanotubes can cause strain to the nanotubes' geometry. The (4,2) and (3,3) nanotubes were found to have less geometrical distortion than the (5,0) nanotube.

It must be noted, however, that the above-mentioned hypotheses are based on limitations posed by the intercalation model, which involves only two Li atoms. A further investigation, which extends this model to a higher level, is in progress.

ACKNOWLEDGMENTS

This work was financially supported via a Networked Laboratory grant from the National Nanotechnology Center. Career Development grants from the Thailand Research Fund in cooperation with the Commission on Higher Education given to T. K. (RMU4880008) are acknowledged. The authors express their gratitude to Prof. I. M. Tang for high-performance computing and reading the manuscript.

REFERENCES

- [1] S. Iijima, Nature (London) **354**, 56 (1991).
- [2] Z. Tu and Ou-Yang, Phys. Rev. B 65, 233407 (2002).
- [3] M. Meyyappan, Carbon Nanotubes Science and Applications (CRC Press, Florida, 2005).
- [4] A. A. Farajian, B. I. Yakobson, H. Mizuseki and Y. Kawazoe, Phys. Rev. B 67, 205423 (2003).
- [5] P. Avouris, Chem. Phys. 281, 429 (2002).
- [6] R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1999).
- [7] Z. K. Tang, H. D. Sun, J. Wang, J. Chen and G. Li, Appl. Phys. Lett. 73, 2287 (1998).
- [8] H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu and O. Zhou, Phys. Rev. Lett. 88, 015502 (2002).
- [9] Z. M. Li, J. P. Zhai, H. J. Liu, I. L. Li, C. T. Chan, P. Sheng and Z. K. Tang, Appl. Phys. Lett. 85, 1253 (2004).
- [10] C. Marin, M. D. Serran, N. Ya and A. G. Ostrogorsky, Nanotechnology 14, L4 (2003).
- [11] M. Hulman, R. Pfeiffer and H. Kuzmany, New J. Phys. 6, 1 (2004).
- [12] Y. F. Mei, G. G. Siu, Ricky K. Y. Fu, P. K. Chu, Z. M. Li, J. P. Zhai, H. J. Liu, Z. K. Tang, C. W. Lai and H. C. Ong, Appl. Phys. Lett. 87, 213114 (2005).
- [13] A. C. Dillon and M. J. Heben, Appl. Phys. A 72, 133 (2001).
- [14] S. Peng and K. Cho, Nanotechnology 11, 57 (2000).
- [15] J. A. Nisha, M. Yudasaka, S. Bandow, F. Kokai, K. Takahashi and S. Iijima, Chem. Phys. Lett. 328, 381 (2000).
- [16] J.-M. Tarascon and M. Armand, Nature 414, 359 (2000).
- [17] N. Li, C. R. Martin and B. Scrosati, J. Power Source 97-98, 240 (2001).
- [18] M. Winter, J. O. Besenhard, M. E. Spahr and P. Novah, Adv. Mater. (Weinheim, Ger.) 10, 725 (1998).
- [19] J. Zhao, A. Buldum, J. Han and J. P. Liu, Phys. Rev. Lett. 85, 1706 (2000).
- [20] A. D. Beck, J. Chem. Phys. 98, 5648 (1993).
- [21] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 38, 785 (1998).
- [22] A. Udomvech, T. Kerdcharoen and T. Osotchan, Chem. Phys. Lett. 406, 161 (2005).
- [23] H. J. Liu and C. T. Chan, Solid State Comm. 125, 77 (2003).
- [24] Unpublished data in which the bare Li-Li interaction is given by using B3LYP/6-31G(d) calculation.
- [25] X. P. Yanga, H. M. Weng and J. Dong, Eur. Phys. J. B 32, 345 (2003).
- [26] H. J. Liu and C. T. Chan, Phys. Rev. B 66, 115416 (2002).

Theoretical investigations on the tip-functionalised carbon nanotubes interacting with water

Chatchawal Wongchoosuk

Department of Physics and Center of Nanoscience and Nanotechnology, Faculty of Science Mahidol University Payathai, Bangkok 10400, Thailand E-mail: boy nanotube@yahoo.com

Sriprajak Krongsuk

Department of Physics, Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand E-mail: sprajakk@yahoo.com

Teerakiat Kerdcharoen*

NANOTEC Center of Excellence Mahidol University National Nanotechnology Center, Thailand

Fax: +662 2015843

*Corresponding author

Abstract: Interactions between single-walled carbon nanotubes (SWNTs) and water molecules were studied using first principle calculations and molecular dynamics simulations. The SWNTs were modelled by varying the diameter ranging from the chiral vector (6, 0) to (9, 0) and by modifying the tube ends terminated with hydroxyl (–OH) and carboxyl (–COOH) functional groups. Water and SWNT molecules were modelled using the SPC model and a flexible model based on the OPLS force field respectively. The first principle NBO charges were used for describing the tube-water electrostatic interactions. The results indicate that the movement of water into the COOH-SWNT is rather different from the pristine and OH-functionalised nanotubes. Water molecules prefer to localise around the SWNT's tips than other parts. Hydrophilic behaviour of functionalised SWNT is improved over the pristine tube in agreement with experiments. The COOH-SWNT also shows the confinement of water molecules that may be useful for H₂O transport.

Keywords: Carbon Nanotube; CNT; Single-Walled Carbon Nanotube; SWNT; functionalisation; molecular dynamics; first principle; water orientations.

Reference to this paper should be made as follows: Wongchoosuk, C., Krongsuk, S. and Kerdcharoen, T. (xxxx) 'Theoretical investigations on the tip-functionalised carbon nanotubes interacting with water', *Int. J. Nanoparticles*, Vol. X, No. Y, pp.000–000.

Comment [ID1]: Author: Please confirm which address to use. Other entry: Department of Physics and Center of Nanoscience and Nanotechnology, Faculty of Science Mahidol University Payathai, Bangkok 10400, Thailand

2

Biographical notes: Chatchawal Wongchoosuk was born in Hat Yai in Songkhla Province, Thailand in 1983. He received his BSc with first class honours from Prince of Songkla University in 2005 and MSc from Mahidol University in 2007 on Physics with his thesis titled Molecular design of functionalised carbon nanotubes. At present, he is a PhD student and a Researcher of Center of Nanoscience and Nanotechnology at Mahidol University. His current research interests involve electronic noses, carbon nanotube sensors and molecular computational simulation.

Sriprajak Krongsuk was born in Amnatcharoen Province, Thailand in 1974. He received his BSc degree in Physics from the Khon Kaen University in 1997. He gained his MSc and PhD in Physics in 2001 and 2006, respectively at Mahidol University. At present, he is a Member of the Physics Department, Faculty of Science, Khon Kaen University. His research interests include molecular simulations and modeling of the nanoscale system and first principle calculations of semiconductor materials.

Teerakiat Kerdcharoen was born in Chachoengsao Province, Thailand in 1968. He received BSc and MSc in Chemistry from Chulalongkorn University in 1990 and 1992, respectively. As an Exchange Student supported by the Austrian government, he received his PhD in Physical Chemistry from University of Innsbruck in 1995. Presently, he is a Faculty Member of Mahidol University. His research interests cover the topics of organic electronics ranging from theoretical modeling of materials to fabrication of devices such as chemical sensors

Introduction

Carbon nanotubes (CNT) were first discovered in 1991 by Iijima (1991). After that discovery, research on CNT reaches a critical mass in many areas of physics and chemistry. Because of its remarkable electronic and mechanical properties, CNT is one of the best candidate materials for use in various applications including biosensors, nanocomposites and gas storage (Terrones, 2003). CNTs can also be employed as a simple model for biological channels to study the transport of various molecular species through cell membrane (Roux and Karplus, 1994; Fu et al., 2000). A common aspect of these applications involves the interaction of CNT with the surrounding medium and more specifically the surrounding water molecules. However, in general, it was found that the pristine CNTs are insoluble in water and common solvents (Scrivens and Tour, 1993; Ruoff et al., 1993) which hinders ordinary chemical approaches and preparation of nanocomposite materials. In the biological viewpoint, the insolubility of pristine CNTs also makes them highly toxic (Bianco et al., 2005). To overcome this obstacle, many approaches were employed to functionalise CNTs such as adding surfactants or hydrophilic groups (i.e., hydroxyl (OH), carboxyl (COOH) and aliphatic amines) to the open ends of nanotubes which is defined as tip functionalisation (Huang et al., 2003; Tasis et al., 2003; Riggs et al., 2000). After the tip functionalisation, these tubes are able to solubilise and become well-dispersed in common solvents since such functional groups can prevent the aggregation of CNTs and increase chemical interactions between the tubes and their environment.

From a theoretical point of view, quantum mechanics (QM) and molecular dynamics (MD) simulations have been widely used for studying the behaviour of CNTs with water molecules at the atomic level. For example, Walther et al. (2001) examined hydrophobic behaviour of a pristine CNT by investigating the structural properties of surrounding water using MD simulations (Walther et al., 2001; 2004; Werder et al., 2001). Hummer et al. (2001) explored whether CNT could be used as a molecular channel to transport water by tuning the local channel polarity and solvent conditions (Mashl et al., 2003; Zhu and Schulten, 2003). Lu et al. (2005) employed density functional theory to map the potential energy surface of armchair (6,6) CNT interacting with a water molecule. Although several computational and theoretical studies have been reported in the literature on the pristine tube-water interaction, study on behaviour of the tip functionalised tube-water interaction is rather limited. A work by Zheng et al. (2005) on MD simulations of sidewall functionalised tube-water interaction reported that COOH group assists in the transport of water into the CNT inner wall. It was found that water molecules easily enter into the hydrophilic COOH-SWNT but encounter a difficulty to flow through the tube.


Although the tip-functionalised CNTs exist in the real experiments, theoretical works aimed to explain the behaviour of such systems are scarce. In the present study, the behaviours of water interacting with functionalised CNTs have thus been addressed by using first principles calculations and MD simulations. The goal of this work is to lay down fundamental understanding of the hydration structures, the orientation of water molecules around the tip-functionalised tubes, the diameter size effect and hydrophobic-hydrophilic behaviour.

2 Method and technical details

2.1 QM of nanotube-water interaction

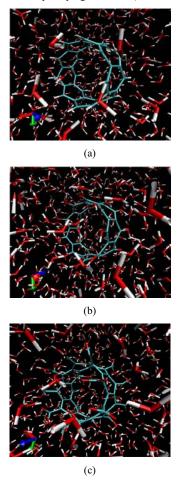
The cyclacene structure (single-walled CNT or SWNT having a length of one unit-cell as shown in Figure 1) was used throughout this study to represent CNT. Size dependency was studied by varying the diameter ranging from the chiral vector (6,0) up to (9,0). Both open ends of SWNTs were terminated by hydrogen atoms to avoid the boundary effects from the dangling bonds. Functionalisation was modelled by chemically modifying the open-ends of the (9,0) SWNT with hydroxyl (-OH) and carboxyl (-COOH) functional groups. The geometries of all model tubes were fully optimised based on the semi-empirical AM1 method (Dewar et al., 1985) using the GAMESS software (Schmidt et al., 1993). Interactions of model SWNTs with one water molecule were studied based on the density functional theory B3LYP using 6-31G* basis set (Kumeda et al., 2001) (denoted by B3LYP/6-31G*). Potential energy surfaces based on a longitudinal trajectory of water into the nanotube's centre (Figure 1) having various orientations (Figure 2) were calculated. On such trajectory, the water's oxygen atom was moved along the tube axis z and the hydrogen atoms were symmetrically placed giving the water molecule a fixed orientation. At first, the smallest (6,0) SWNT was chosen for studying the effect of water orientation on the tube-water interactions. Then, the effects of diameter size and functional group on the tube-water interactions were investigated respectively.

Figure 1 Definition of the longitudinal trajectory for a water molecule interacting with SWNT (see online version for colours)

Note: The water having a fixed orientation was placed at various positions along the tube

Figure 2 The orientations around an inertial axis of a water molecule (see texts) (see online version for colours)

2.2 MD simulation of nanotubes in water


The hydration structure and hydrophobic-hydrophilic behaviour of the functionalised SWNTs have been studied using MD technique within GROMACS software package (Berendsen et al., 1995). The open-ended (9,0) SWNTs terminated with hydrogen (H-SWNT), hydroxyls (OH-SWNT) and carboxylic (COOH-SWNT) were simulated in aqueous environment. The structures of all functionalised SWNTs employed in the simulations were obtained by geometry optimisations based on the semi-empirical AM1 method. B3LYP/6-31G** was employed to compute atomic NBO charges (Glendening et al., 1996) for describing the tube-water electrostatic interactions. Hence, the AM1 method is good enough for geometry optimisation of the nanotubes (Udomvech et al., 2003) while the B3LYP/6-31G** level was found to be more reliable for charge calculation (Koch and Holthausen, 2001). The simulations were performed at the constant volume and temperature in a rectangular box containing one SWNT and 871 water molecules (see Figure 3). Therefore, total number of atoms in the simulation box is 2,667, 2,685 and 2,721 for the H-SWNT, OH-SWNT and COOH-SWNT systems, respectively. SWNTs were represented by a flexible model based on OPLS force field (Jorgensen and Tirado-Rives, 1988) as well as the SPC water model (Teleman et al., 1987). The SWNT-water and water-water interactions were given by a sum of the Lennard-Jones and Coulomb potentials.

$$V_{LJ}(r_{ij}) = 4\varepsilon_{ij} \left[\left[\frac{\sigma_{ij}}{r_{ij}} \right]^{12} - \left[\frac{\sigma_{ij}}{r_{ij}} \right]^{6} \right] + \frac{q_i q_j}{r_{ij}}$$

$$(1)$$

Here, ε and σ are Lennard-Jones parameters, and q_i and q_j represent the charges on atom i and atom j, respectively.

Figure 3 The simulation snapshots of (a) H-SWNT, (b) OH-SWNT and (c) COOH-SWNT in water at 298 K visualised by the program VMD (see online version for colours)

Source: Humphrey et al. (1996)

Initially, water molecules and a SWNT were placed in the rectangular box having a dimension in x-, y- and z-axis of 3.00 nm to reproduce the water density of 1 g/cm 3 . All simulated systems were controlled via a temperature coupling bath to maintain the temperature at 298 K. Density control was achieved by Berendsen et al. (1984) pressure coupling. The box was scaled every time step. In consequence, the volume of the system was adjusted in the equilibration phase to match the desired density of water. After equilibration, the system was run for 1,000 picoseconds with a time step of 0.5 fs. Trajectories were stored every 100-time step for subsequent analyses.

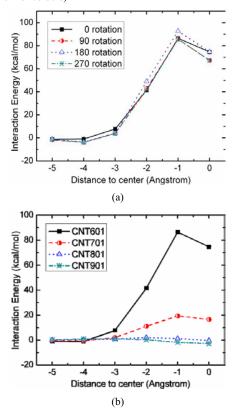
3 Results and discussion

3.1 Interaction energy

After geometrical optimisation using the AM1 method, the average C-C bond lengths of all tubes, including the tip-functionalised ones, are nearly the same and close to the C-C bond length in the perfect nanotube with sp² hybridisation (1.42 Å) (see Table 1). It thus confirms that adsorption of molecular entities at the tips of an open-ended tube does not bring about any structural distortion to the tube, in contrast to adsorption at the sidewall that strongly affects the tube structure (Park et al., 2005), e.g., weakening the C-C bond to a ~1.52 Å length. The HOMO-LUMO energy gaps of all model tubes exhibit the small-gap semi-conducting properties. The COOH-SWNT has the smallest energy gap while the H-SWNT has the largest one. It can be seen that such functional groups somewhat affect the HOMO-LUMO energy gap of the short tube.

Table 1 The average C-C bond-lengths obtained from geometry optimisation and electronic properties of H-, OH- and COOH-SWNTs calculated by B3LYP/6-31G* method

System	C-C (Å)	HOMO (eV)	LUMO (eV)	$E_{gap}(eV)$
H-SWNT	1.417	-3.734	-2.630	1.104
OH-SWNT	1.424	-2.774	-1.859	0.915
COOH-SWNT	1.424	-5.704	-4.884	0.820


The single point calculations with B3LYP/6-31G* method were performed to find the total energy of each system. In order to evaluate the interactions between these model tubes and water molecule, the interaction energies are evaluated via the equation:

$$E_{int} = E(SWNT-water) - E(SWNT) - E(water)$$
(2)

where E(SWNT–water) denotes the total energy of the model SWNTs (pristine or functionalised) presented with one water molecule. E(SWNT) represents the total energy of the model tubes and E(water) for the water molecule.

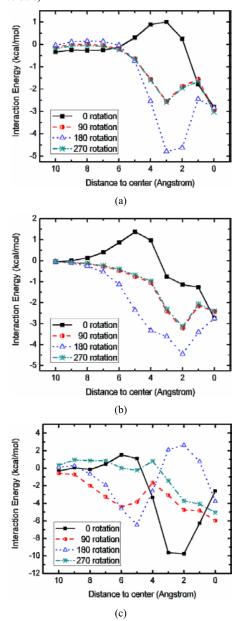

The effect of water orientation on the tube-water interactions of (6,0) H-SWNT was demonstrated in Figure 4(a). It was found that the water molecule encounters a difficulty to move into the (6,0) H-SWNT, which has a diameter size of 4.8 Å, in agreement with a previous study on H_2O adsorption inside the 4 Å armchair and chiral CNTs using LDA and GGA methods (Agrawal et al., 2007). E_{int} is in a range of 85–90 kcal/mol at the tip of nanotubes. For such a small-diameter tube, it seems that the orientation of water has no effect on the water-tube interactions since the large repulsive interactions dominate the potential energy surface. Therefore, investigation of the effect of water orientation on the tube-water interactions using larger diameter nanotubes would be more informative. The potential energy surfaces for SWNTs with varying diameter interacting with a water molecule are displayed in Figure 4(b). The potential energy barrier appears to decrease rapidly when the diameter size of CNT increases. From the results, water molecule can enter into a pristine tube only when the tube diameter is larger than 7.0 Å. Therefore, the (9,0) SWNT was chosen for studying the tube-end functionalisation and a water molecule was varied in its orientation.

Figure 4 Potential energy surface for (a) (6,0) SWNT interacting with a water molecule that rotates along the centre of mass and (b) SWNTs with varying diameter interacting with a water molecule having fixed orientation at various positions along the z-tube axis (see online version for colours)

The interactions of functionalised SWNTs with a water molecule were displayed in Figure 5. In case of H-SWNT [see Figure 5(a)], when a water molecule moves into the tube with 0° orientation, the H-SWNT has a slight potential barrier in the range of 2–4 Å from the centre of nanotube. The potential barriers reduce when the water molecule interacts with the tube in other orientations. The behaviour of OH-SWNT as shown in Figure 5(b) is rather similar with H-SWNT but the potential barrier moves to a farther distance from the tube. However, such energy barrier is not high enough to hinder water entrance into the interior of H- and OH-SWNTs at room temperature. The water molecule prefers to occupy in front of the open ends of H- and OH-SWNTs with the 180° orientation. Specifically for COOH-SWNT [see Figure 5(c)], there is a deep potential well ($\sim 10 \text{ kcal/mol}$) in front of the tubule open end that can localise the water molecule with 0° orientation in contrast to the H- and OH-SWNTs. As a result, tip functionalisation by COOH functional group affects the penetration of water molecule inside the CNT. In the latter case, the terminal ends will be solvated by water.

Figure 5 Potential energy surface for (a) H-SWNT (b) OH-SWNT and (c) COOH-SWNT interacting with a water molecule that rotates along the centre of mass (see online version for colours)

Note: All nanotubes have (9,0) configuration.

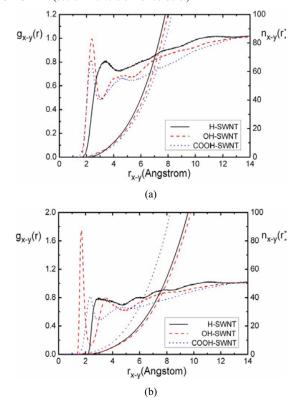
3.2 Hydration shell and hydrophobic-hydrophilic behaviour

The hydration structure of functionalised SWNTs can be extracted from the MD simulation data in terms of atom-atom radial distribution function analysis (RDF), $g_{X-Y}(r)$ which represents the probability of finding an atom of type y in a spherical volume of radius r around the central atom of type x as defined in the following equation:

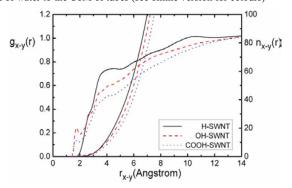
$$g_{X-Y}(r) = \frac{1}{\langle \rho_Y \rangle_{local}} \frac{1}{N_X} \sum_{i \in X}^{N_X} \sum_{j \in Y}^{N_Y} \frac{\delta(r_{ij} - r)}{4\pi r^2}$$
(3)

where $<\rho_Y>_{local}$ denotes the particle density of type Y averaged over all spheres around particles X.

In order to evaluate the average y atoms number in a spherical volume of radius r around the central atom of type x, the corresponding running integration numbers, $n_{X-Y}(r)$, are calculated by using the integration of RDF,


$$n_{X-Y}(r) = 4\pi \rho_0 \int_0^r r'^2 g_{X-Y}(r') dr'$$
 (4)

where ρ_0 is the density number of y atoms.


The RDFs, $g_{X-Y}(r)$ and their corresponding running integration numbers, $n_{X-Y}(r)$, from the tips of each tube (H atoms of each tube) to the H and O atoms of water molecules are shown in Figure 6(a) and 6(b), respectively. From Figure 6(a), only one RDF peak was found for H-SWNT which positions at 3.47 Å, whereas for OH-SWNT and COOH-SWNT it appears two RDF peaks. The first sharp and the second shoulder peaks position at 2.39 and 4.83 Å for OH-SWNT, 2.35 and 4.75 Å for COOH-SWNT, respectively. From Figure 6(b), the RDF peaks position at 3.01 Å, 1.67 Å and 2.33 Å for H-SWNT, OH-SWNT and COOH-SWNT, respectively. These results indicate that water molecules prefer to localise at the tips of the functionalised tube (OH-SWNT and COOH-SWNT) closer than that of the pristine tube (H-SWNT). The functional groups increase the interactions between the tube and water molecules at the tips of nanotube. Therefore, the probability of finding water molecules surrounding the functionalised tube is higher than that of the pristine tube. The number of water molecules surrounding the tips of both OH-SWNT and COOH-SWNT can be calculated using equation (4) as shown in Figure 6(a) and 6(b) $(n_{\chi-\chi}(r))$. Integration of the RDF up to the minima of the first peaks at 3.07 and 2.41 Å corresponds to four hydrogen and one oxygen atoms of water for OH-SWNT. In case of COOH-SWNT, the minima of the first peaks position at 3.03 and 2.87 Å corresponds to two hydrogen and three oxygen atoms of water. It implies that the H atoms of water turn toward the tips of OH-SWNT whereas directing the O atoms of water toward the tips of COOH-SWNT. The results are in good agreement with potential energy surface obtained by first principles calculations above.

The RDF plot for the centre of mass (CoM) of water toward CoM of each model tube is displayed in Figure 7. H-SWNT does not yield any sharp peak whereas tip-functionalised tubes show one little sharp peak at 1.7 Å. The peaks of all functionalised tubes indicate that water molecules can occupy more closely to the centre of nanotube. The functionalised groups may help to confine the water inside the hydrophobic tube's interior.

Figure 6 RDFs, $g_{x-y}(r)$, and their corresponding running integration numbers, $n_{x-y}(r)$, from (a) H atoms and (b) O atoms of water molecule to the H atoms of H-SWNT, OH-SWNT and COOH-SWNT (see online version for colours.)

Figure 7 RDFs, $g_{x-y}(r)$, and their corresponding running integration numbers, $n_{x-y}(r)$, from the CoM of water to the CoM of tubes (see online version for colours)

Based on the overall characteristics of RDF peaks in Figures 6 and 7, one can conclude that water molecules favour to bind to the tips of tubes and the interactions between the water molecules with pristine tube are rather weak in comparison with the functionalised ones.

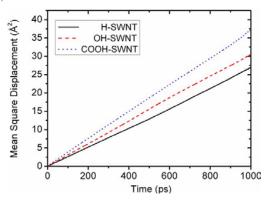
The average number of tube-water and water-water hydrogen bonds were calculated and given in Table 2. In case of the functionalised tubes, it was found that the average number of water-water hydrogen bonds decreases whereas that of tube-water hydrogen bonds increases, comparing to the pristine tube. Hydrogen bonding is a special type of attractive interactions that exists between certain chemical groups of opposite polarity in which the donor-acceptor distance is within 3.5 Å range and the orientation of the O-H donor bond is within 60° aligned to the acceptor oxygen (Jeffrey, 1997). It means that after functionalisation, the water molecule has more attractive interactions with such tubes. The hydrophilic behaviour has an increasing trend depending on the functional groups.

 Table 2
 Average number of hydrogen bonds for tube-water and water-water

CNT type	Number o	of H-bonds
CNT type	Tube-water	Water-water
H-CNT	_	1501.09
OH-CNT	23.29	1463.04
COOH-CNT	23.77	1435.08

The mean square displacement (MSD) of CNTs in aqueous environment can be computed as follows:

$$MSD(t) = \left\langle \left(r_i(t) - r_i(0) \right)^2 \right\rangle \tag{5}$$


where r_i is the CoM coordinates of the CNTs.

The MSD of model tubes was shown in Figure 8. However, the motion of CNTs can be explained in terms of the diffusion constant (D) which is calculated by the slope of the MSD fitted from time 100 to 900 picoseconds using the Einstein relation (Zhou and Lu, 2007):

$$D = \frac{1}{6t} \lim_{t \to \infty} (MSD(t))$$
 (6)

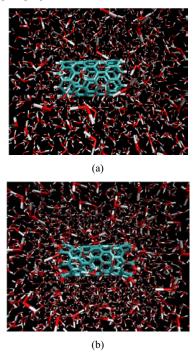
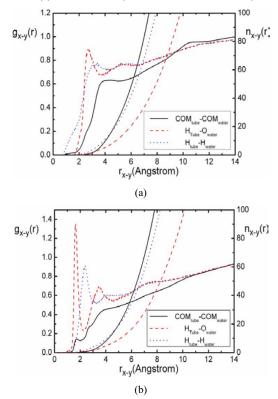

The diffusion constants of H-, OH- and COOH-SWNT are 4.44×10^{-5} , 5.13×10^{-5} and 6.07×10^{-5} cm²/s⁻¹, respectively. These results suggest that the diffusivity develops with the tip modification by OH and COOH functional group. In consequence, the tip functionalised SWNT is a better dispersion in water than the pristine tube is, corresponding with the experimental results (Huang et al., 2003; Tasis et al., 2003; Riggs et al., 2000).

Figure 8 MSD versus time of model CNTs in aqueous environment (see online version for colours)

To affirm the accuracy of using one unit cell for representing model SWNTs, the hydration structure of H- and COOH-SWNTs having 14-Å tubular length was additionally simulated in 2,032 water molecules as shown in Figure 9.

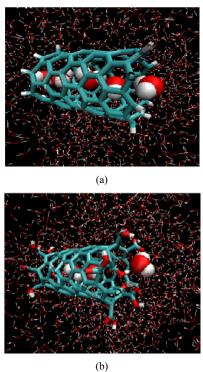
Figure 9 The simulation snapshots of 14-Å long (a) H-SWNT and (b) COOH-SWNT in water visualised using the program VMD (see online version for colours)



Source: Humphrey et al. (1996)

The $g_{X-Y}(r)$ and $n_{X-Y}(r)$ from the tips and CoM of 14-Å long H-SWNT and COOH-SWNT to CoM, O and H atoms of water molecules are displayed in Figure 10(a) and 10(b), respectively.

From Figure 10, it can be seen that the RDF plots of both 14-Å long H- and COOH-SWNT are in agreement with the shorter model SWNTs. Based on the first peak, $g_{\text{H-O}}$ and $g_{\text{H-H}}$ for 14-Å long H-SWNT appear at 2.71 and 3.39 Å and their corresponding numbers are 3.8 O and 13 H atoms, respectively. For 14-Å long COOH-SWNT, it shows the two layers of hydration shells around the tips of nanotube. The orientation of water around the tip of 14-Å long SWNT is similar to those of the shorter model SWNTs. As a result, one unit cell can be used to represent the nanotube having three unit cells (14-Å long) as well.


 $\begin{array}{ll} \textbf{Figure 10} & RDFs, \ g_{x-y}(r) \ \text{and corresponding running integration numbers,} \ n_{x-y}(r), \ \text{for 14-Å long (a)} \\ & \text{H-SWNT and (b) COOH-SWNT (see online version for colours)} \end{array}$

To observe water orientation inside the tubes, the simulation snapshots of 14-Å long H-SWNT and COOH-SWNT were investigated as displayed in Figure 11(a) and 11(b), respectively. Water molecules are seen to move into and out of the H-SWNT during the time of observation. The average number of water molecules inside the H-SWNT is about five and these water molecules line up to a single line. The transport behaviours of water

in H-SWNT are in accordance with the study of water dynamics inside armchair CNT by Zhou and Lu (2007). Specifically for COOH-SWNT, two water molecules were confined inside the tubes for the whole period of the simulation. These finding may imply that COOH-SWNT will be useful in nano-encapsulation or H_2O storages.

Figure 11 The simulation snapshots showing the orientation of water molecule inside
(a) H-SWNT and (b) COOH-SWNT visualised using the program VMD (see online version for colours)

Source: Humphrey et al. (1996)

4 Conclusions

14

The interactions between various SWNTs and water molecules have been studied using first principle calculations and MD simulations. Based on a study of potential energy surface using QM calculation, it was found that the movement and orientation of water molecule into the COOH-SWNT are rather different from H- and OH-SWNTs while the diameter of nanotube also plays an important role. The water molecule can enter into a pristine zigzag nanotube when the tube diameter is larger than 7.0 Å. The results from MD simulations indicate that the hydration shell of functionalised nanotubes is located at $\sim 2-3$ Å from the tube edges while the hydration shell of the pristine system is located

farther at \sim 3–4 Å. The water molecules prefer to surround the tips of nanotubes rather than the sidewall. In the functionalised systems, the number of tube-water hydrogen bonds is higher than that in the pristine system whereas the number of water-water hydrogen bonds has the opposite trend. From this study, it can be concluded that the hydrophilic behaviour of functionalised SWNT is improved over the pristine tube, in agreement with previous experimental works. In addition, the tip functionalisation using COOH functional groups can confine water molecules in the CNT.

Acknowledgements

This work was supported by the National Nanotechnology Center and Mahidol University. Teerakiat Kerdcharoen expresses his gratitude to the Thailand Research Fund (RMU4880008) for a research career development grant.

References

- Agrawal, B.K., Singh, V., Pathak, A. and Srivastava, R. (2007) 'Ab initio study of H₂O and water-chain-induced properties of carbon nanotubes', *Physical Review B*, Vol. 75, pp.195421.
- Allen, M.P. and Tildesley, D.J. (1987) Computer Simulation of Liquids, Oxford University Press, USA.
- Berendsen, H.J.C., van Postma, J.P.M., Gusteren, W.F., DiNola, A. and Haak, J.R. (1984) 'Molecular dynamics with coupling to an external bath', *Journal of Chemical Physics*, Vol. 81, pp.3684–3690.
- Berendsen, H.J.C., van der Spoel, D. and van Drunen, R. (1995) 'GROMACS: a message-passing parallel molecular implementation', *Computer Physics Communications*, Vol. 91, pp.43–56.
- Bianco, A., Kostarelos, K. and Prato, M. (2005) 'Applications of carbon nanotubes in drug delivery', Current Opinion in Chemical Biology, Vol. 9, pp.674–679.
- Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P. (1985) 'AM1: a new general purpose quantum mechanical molecular model', *Journal of the American Chemical Society*, Vol. 107, pp.3902–3909.
- Fu, D., Libson, A., Miercke, L.J.W., Weitzman, C., Nollert, P., Krucinski, J. and Stroud, R.M. (2000) 'Structure of a glycerol-conducting channel and the basis for its selectivity', *Science*, Vol. 290, pp.481–486.
- Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E. and Weinhold, F. (1996) NBO 4.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI.
- Huang, J-E., Li, X-H., Xu, J-C. and Li, H-L. (2003) 'Well-dispersed single-walled carbon nanotube/polyaniline composite films', *Carbon*, Vol. 41, No. 14, pp.2731–2736.
- Hummer, G., Rasaiah, J.C. and Noworyta, J.P. (2001) 'Water conduction through the hydrophobic channel of a carbon nanotube', *Nature*, Vol. 414, pp.188–190.
- Humphrey, W., Dalke, A. and Schulten, K. (1996) 'VMD-visual molecular dynamics', *Journal of Molecular Graphics*, Vol. 14, pp.33–38.
- Iijima, S. (1991) 'Helical microtubules of graphitic carbon', Nature (London), Vol. 354, pp.56-58.
- Jeffrey, G.A. (1997) An Introduction to Hydrogen Bonding (Topics in Physical Chemistry), Oxford University Press, USA.
- Jorgensen, W.L. and Tirado-Rives, J. (1988) 'The OPLS (optimized potentials for liquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin', *Journal of the American Chemical Society*, Vol. 110, pp.1657–1666.

Comment [ID2]: Author: Please cite the reference in the text or delete from the list if not required.

- Koch, W. and Holthausen, M.C. (2001) A Chemist's Guide to Density Functional Theory, 2nd ed., Wiley-VCH, Weinheim.
- Kumeda, Y., Fukuhiro, Y., Taketsugu, T. and Hirano, T. (2001) 'Theoretical study of nanotube growth in terms of frontier density distribution', *Chemical Physics Letters*, Vol. 333, pp.29–35.
- Lu, D., Li, Y., Ravaioli, U. and Schulten, K. (2005) 'Empirical nanotube model for biological applications', *Journal of Physical Chemistry B*, Vol. 109, pp.11461–11467.
- Mashl, R.J., Joseph, S., Aluru, N.R. and Jakobsso, E. (2003) 'Anomalously immobilized water: a new water phase induced by confinement in nanotubes', *Nano Letters*, Vol. 3, pp.589–592.
- Park, H., Zhao, J. and Lu, J.P. (2005) 'Distinct properties of single-wall carbon nanotubes with monovalent sidewall additions', *Nanotechnology*, Vol. 16, pp.635–638.
- Riggs, J.E., Guo, Z., Carroll, D.L. and Sun, Y-P. (2000) 'Strong luminescence of solubilized carbon nanotubes', *Journal of the American Chemical Society*, Vol. 122, pp.5879–5880.
- Roux, B. and Karplus, M. (1994) 'Molecular dynamics simulations of the gramicidin channel', *Annual Review of Biophysics and Biomolecular Structure*, Vol. 23, pp.731–761.
- Ruoff, R.S., Tse, D.S., Malhotra, R. and Lorents, D.C. (1993) 'Solubility of C60 in a variety of solvents', The Journal of Physical Chemistry, Vol. 97, pp.3379–3383.
- Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and Montgomery, J.A. (1993) 'General atomic and molecular electronic structure system', *Journal of Computational Chemistry*, Vol. 14, pp.1347–1363.
- Scrivens, W.A. and Tour, J.M. (1993) 'Potent solvents for C60 and their utility for the rapid acquisition of 13C NMR data for fullerenes', *Journal of the Chemical Society, Chemical Communications*, pp.1207–1209.
- Tasis, D., Tagmatarchis, N., Georgakilas, V. and Prato, M. (2003) 'Soluble carbon nanotubes', Chemistry – a European Journal, Vol. 9, pp.4000–4008.
- Teleman, O., Jonsson, B. and Engstrom, S. (1987) 'A molecular dynamics simulation of a water model with intramolecular degrees of freedom', *Molecular Physics*, Vol. 60, pp.193–203.
- Terrones, M. (2003) 'Science and technology of the 21st century: synthesis, properties and applications of carbon nanotubes', *Annual Review of Materials Research*, Vol. 33, pp.419–501.
- Udomvech, A., Kerdcharoen, T., Parasuk, V., Tantirungrotechai, Y. and Osotchan, T. (2003) 'Electronic structure of the finite-sized single-walled carbon nanotubes', *International Journal of Nanoscience*, Vol. 2, pp.141–152.
- Walther, J.H., Jaffe, R.L., Halicioglu, T. and Koumoutsakos, P. (2001) 'Carbon nanotubes in water: structural characteristics and energetics', *Journal of Physical Chemistry B*, Vol. 105, pp.9980–9987.
- Walther, J.H., Jaffe, R.L., Kotsalis, E.M., Werder, T., Halicioglu, T. and Koumoutsakos, P. (2004) 'Hydrophobic hydration of C60 and carbon nanotubes in water', *Carbon*, Vol. 42, pp.1185–1194.
- Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Noca, F. and Koumoutsakos, P. (2001) 'Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes', Nano Letters, Vol. 1, pp.697–702.
- Zheng, J., Lennon, E.M., Tsao, H-K., Sheng, Y-J. and Jiang, S. (2005) 'Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient', *The Journal of Chemical Physics*, Vol. 122, pp.214702.
- Zhou, X-Y. and Lu, H-J. (2007) 'The structure and dynamics of water inside armchair carbon nanotube', Chinese Physics, Vol. 16, pp.335–339.
- Zhu, F. and Schulten, K. (2003) 'Water and proton conduction through carbon nanotubes as models for biological channels', *Biophysical Journal*, Vol. 85, pp.236–244.