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Abstract
Project Code: RMU4880012
Project Title: Theoretical study of various types of Josephson junctions
Investigator: Dr. Puangratana Pairor
E-mail Address: pairor@sut.ac.th
Project Period: 3 years

Erosion of nodal Fermi spheres in nonequilibrium d-wave superconductors, tunneling
spectroscopy and spin transport of metal-Rashba system and superconductor-Rashba system, and
Josephson tunneling between two YBCO grains were studied in this research project. It was found that
when a d-wave superconductor that has been driven out of equilibrium by an optical pulse, in the high
density limit for the photoinjected quasiparticles, the decay rate dn/ dt is found to vary as n5/2, which
differs from the n2 form commonly adopted in phenomenological models of the relaxation dynamics. In
the low density limit, the decay is exponential.

For the junction of metal-Rashba system, the energy spacing between two distinct features in
the conductance spectrum can be used to directly measure the Rashba energy. Also, the interfacial
scattering greatly affects the spin polarization of the conductance in metal, but hardly affects that in the
Rashba system.

The tunneling conductance spectrum of superconductor-Rashba system depends strongly on 1)
the strength of Rashba spin-orbit coupling (RSOC), 2) the potential barrier and 3) the mismatch of
electron effective masses. The influence of the RSOC, potential barrier and mismatch of electron
effective mass are associated and also depends on the Fermi levels of the Rashba system. Andreev
reflection amplitude at the superconducting gap energy is always increased with the RSOC strength, but
is unaffected by the change in the potential barrier. The effect of the mismatch effective mass and the
potential barrier are not always equivalent as it was believed.

Lastly, the free energies of both untwinned and twinned systems of orthorhombic symmetry are
studied in order to derive the Josephson tunneling between two YBCO grains. A model based on the
Ginzburg-Landau theory and the idea of twinning is introduced to describe the anomalous dependence

of the critical current on an external magnetic field in a YBCO asymmetric grain boundary.

Keywords: tunneling spectroscopy; josephson junctions; superconductor; Rashba spin-orbit

coupling;spin transport
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Literature search

Calculation of erosion of nodal Fermi spheres

in nonequilibrium d-wave superconductors

Preparation of a manuscript for publication
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Literature search

Calculation of tunneling spectroscopy and

spin transport of metal-Rashba system

Calculation of tunneling spectroscopy of
superconductor-Rashba system (for both s-

wave and d-wave superconductors)
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Preparation of a manuscript for publication

for metal-Rashba system

Literature search and calculation of

Josephson tunneling between two YBCO

grains

Preparation of two  manuscripts for
publication for superconductor-Rashba
system (both for s-wave and d-wave

superconductors)

Preparation of a manuscript for publication

for Josephson tunneling between two YBCO

grains
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Erosion of nodal Fermi spheres in nonequilibrium d-wave superconductors

M. F. Smith*
National Synchrotron Research Center, Nakhon Ratchasima, Thailand, 30000

P. Pairor
School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 30000
(Received 3 October 2005; revised manuscript received 15 November 2005; published 29 December 2005)

The relaxation of a d-wave superconductor that has been driven out of equilibrium by an optical pulse is
investigated. We consider a simple model for the low-energy nonequilibrium state, one in which the unpaired
quasiparticles form Fermi spheres near the gap nodes, and calculate the decay rate of the quasiparticle popu-
lation due to phonon-assisted recombination. In the high density limit for the photoinjected quasiparticles, the

decay rate dn/dt is found to vary as n>?

, which differs from the n? form commonly adopted in phenomeno-

logical models of the relaxation dynamics. In the low density limit, the decay is exponential. From numerical
estimates, we determine that phonon-assisted recombination could play an important role over the picosecond
time scales of current interest. We compare our results to pump-probe optical experiments on high 7 cuprates
and find reasonable agreement for the decay rate in underdoped YBCO for low laser intensity.

DOI: 10.1103/PhysRevB.72.212513

Over the last several years, there have been numerous
reports of femtosecond-resolved optical pump-probe mea-
surements on high 7. cuprates in the superconducting
state.' The data have revealed intriguing properties of the
picosecond dynamics, including unusual dependence on laser
intensity, temperature and doping. For example, recent mea-
surements on BSCCO (Ref. 8) uncovered a change in the
qualitative behavior, of both the initial optical response and
its subsequent decay, that occurs suddenly as a function of
doping at a value close to that giving optimal 7. Such data
could have far-reaching implications for the study of the high
T phase diagram. In order to interpret them, some under-
standing of the nonequilibrium state of the d-wave system
that occurs shortly after the arrival of the pump pulse is
needed.

There is recent theoretical work aimed at understanding
the dynamics of high T~ superconductors in the nonequilib-
rium state induced by a laser pulse.'®"!3 The initial response
of the system to a visible photon involves interband transi-
tions and high-energy electron-electron intraband scattering
in the strongly correlated system. In order to make some
progress, people usually assume that after a sequence of fast
high-energy relaxation processes, the system is left with a
nonequilibrium distribution of low-energy (i.e., nodal) qua-
siparticles and phonons, the decay of which is governed by
slower equilibration mechanisms. Of these slow relaxation
rates, the conduction of heat out of the system by phonons
that escape into the substrate and the recombination of qua-
siparticles into Cooper pairs are expected to be important. If
the former rate is slowest, then heating is the only long-term
effect of the pump laser (this is referred to as the 7" model
and the strong bottleneck regime).'®!# If the latter process is
slowest, then the phonons and quasiparticles can achieve a
common temperature while there remains an excess number
of unpaired electrons. In a d-wave superconductor at a suf-
ficiently low temperature, this corresponds to the presence of
Fermi spheres of quasiparticles surrounding each node, de-
scribed by Fermi distributions with a nonzero chemical po-
tential w(7) (this is called the u” model'"!® and the weak

1098-0121/2005/72(21)/212513(4)/$23.00

212513-1

PACS number(s): 74.25.Gz, 74.40.+k, 74.72.—h

bottleneck regime). The final relaxation is the erosion of the
Fermi spheres because of quasiparticle recombination and
the return to the true equilibrium wu(e0)=0.

The two slow relaxation rates described above may be
competitive in high T~ superconductors over time and tem-
perature scales of interest. Nevertheless, it is important to
characterize the dynamics expected when one or the other of
these relaxation processes is dominant.

In this paper, we consider the " model and study the
decay of the nonequilibrium quasiparticle population due to
phonon-assisted recombination. We obtain a rate equation
that governs the population decrease (or, equivalently, the
collapse of the nodal Fermi spheres), and estimate the time
scale over which the decay occurs. The quasiparticle number
is found to obey dn/dt>—n>? in the limit that the Fermi gas
at the nodes is degenerate (i.e., u(f)>kgT). In the nondegen-
erate limit, which is expected for vanishing pump intensity,
the decay is exponential with a time constant that is propor-
tional to 773, The latter behavior has been observed in un-
derdoped YBCO samples for very low laser intensity,’ and
the time constant that we calculate is in reasonable agree-
ment with the measured value. Our results suggest that
phonon-assisted recombination can play an important role in
the dynamic optical response over picosecond time scales for
T<T, which contradicts earlier work! claiming that the re-
combination lifetime is of the order us at low measurable
temperatures.

We begin by obtaining an equation that governs the time
evolution of the nodal Fermi sphere. The equation depends
on the recombination lifetime for a single quasiparticle,
which we calculate next. Finally, we determine the photoex-
cited quasiparticle density and compare our results to recent
data before concluding.

In order to derive the rate equation for the nodal quasi-
particle population, one may consider the lowest-order con-
tribution of phonon-assisted recombination to the inverse
lifetime of a quasiparticle with momentum k and a given
spin, which is given by the Golden Rule as

©2005 The American Physical Society
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7 =27 ga(K) Ly fior (1 + 1) Swg — Ex — Eyr), (1)
k/

where q=k+k’, and g, Ey is the phonon, quasiparticle en-
ergy, and gq(k) is the electron-phonon matrix element. The
Fermi and Bose functions are written as fy and ny, respec-
tively (note that fi = f(E,) always refers to the Fermi func-
tion with g included) and Ly, = (i —viaue)® is a BCS
coherence factor. Equation (1) is valid only in the clean limit,
that is when kgT> v, where 7 is the constant impurity scat-
tering rate of nodal quasiparticles. The total reduction in the
population of quasiparticles due to such recombination is
2ol kTﬂl-

An expression similar to Eq. (1), but with different occu-
pation factors, holds for the rate of quasiparticle creation
(phonon-induced pair breaking). By taking the difference of
pair recombination and creation, one obtains the net recom-
bination rate of quasiparticles as

—=—[1-e2 fir. )

The explicit u-dependence of Eq. (2) accounts for the pres-
ence of photoinjected quasiparticles: When u=0, the quasi-
particles are in chemical equilibrium with the condensate and
there is no net recombination.

If both T and w are significantly smaller than the gap
maximum A, then Eq. (2) can be written as

e - [degioro, o
where the recombination lifetime 77!(¢) is the average of 7
over the energy contour Eg=e. Starting from Eq. (3), the
number of quasiparticles n will be written in the conven-
tional units of 4NyA,, where N, in the normal-state density
of states. Also, we use 2A¢=v,k;, where k is the length of
the wave vector from the Brillouin zone center to the node
and v,, which is the slope of the gap along the Fermi surface
at the node, will always be the quantity for which experimen-
tal estimates are obtained.

The total number of quasiparticles in a CuO, plane 7 is
related to the chemical potential u by

1 [~ 1
n=—2f dee———— (4)
AgJo

eﬁ(f_,u) +1 :

Taking the time derivative of this equation and comparing it
to Eq. (3), we find that

dp 11— B

dt - T in(1+ P | P69 (@79, )
which is the desired equation of motion for the collapse of
the Fermi sphere. The degenerate (nondegenerate) limit is
the lowest-order term in wu/kgT (kgT/ ).

In obtaining Eq. (5), we assumed that the recombination
rate du/dt is either much faster or much slower than the time
variation of the temperature d7/dt. In either case, recombi-
nation tends to relax the quasiparticle distribution toward a
Fermi function with u=0 and temperature 7. However, only
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in the latter case will the value of T correspond to the mea-
sured temperature of the substrate 7. The time-dependent
part of the quasiparticle population is given by

1
e Ao% [fi(ie. T) = £(0,T)]. (6)

In this paper, we refer to én as the number of photoexcited
quasiparticles even though this terminology is not accurate
when T# T,.

Before proceeding, we address two possible concerns
with the model. First, since phonons emitted by recombina-
tion can break pairs, one might expect that a nonequilibrium
phonon distribution needs to be considered for consistency.
For small u/kgT, the entire system is close to equilibrium so
this effect is higher order in w/kgT. For large w/kgT, it can
be neglected, since it is far more probable that a phonon
emitted from recombination will be absorbed in quasiparticle
scattering than in pair breaking. To see this, one may con-
sider that for large w/kgT quasiparticles fill the states with
energy less than w and an emitted phonon has energy be-
tween 0 and 2u. Scattering can occur for arbitrary phonon
energy since quasiparticles are available at the Fermi surface.
Pair breaking requires a minimum energy of 2u in order for
there to be unfilled states to accept the created quasiparticles,
which leaves no phase space for single-phonon recombina-
tion creation at 7=0. The rate for pair breaking is clearly
higher order in kzT/p in the degenerate limit, so it is not
unreasonable to assume that the phonons are in equilibrium
(at the instantaneous temperature 7). Second, we are consid-
ering phonon-assisted recombination but not quasiparticle-
quasiparticle recombination processes (i.e., Auger-type pro-
cesses that, at low energy, are equivalent to recombination
with emission of a spin fluctuation).'®!” Several authors, e.g.,
Refs. 6 and 11, have pointed out that quasiparticle-
quasiparticle recombination cannot dissipate energy from the
system and thus cannot relax it to true equilibrium. However,
it could relax a u"-distribution toward a 7" distribution, and
give a transient response due to a difference in the optical
properties of these models.!' Although both processes may
contribute, we consider only the phonon-assisted process for
simplicity. Some aspects of quasiparticle-quasiparticle re-
combination have been treated previously.'?

We now use Eq. (1) to calculate 7(€) in the clean limit,
and its dependence on u, and insert it into Eq. (5). (We also
study the dirty limit by calculating the electron self-energy
evaluated to lowest order in the electron-phonon interaction
with a constant scattering rate vy included for electrons,
which is appropriate when u<<kzT<<7, see Ref. 18.)

The momentum integral in Eq. (1) can be simplified by
considering the energy-conserving &-function. For u+kgT
< wp, where wj, is the Debye frequency, only processes in-
volving acoustic phonons and quasiparticles at opposite
nodes are possible (all others are suppressed by a factor
e P@p=w) The condition for energy conservation in the op-
posite node-acoustic phonon case is illustrated in Fig. 1. The
fact that v,,v>c,, where c; is the speed of sound for any
acoustic mode, implies that energy conservation can only be
satisfied if the phonon wave vector has a large component in
the direction normal to the CuO, plane. To a good approxi-

on=
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FIG. 1. Low-energy phonon-assisted recombination in d-wave
superconductors viewed along the (001) and (110) directions. A
quasiparticle, with wave vector k and energy €, recombines with a
quasiparticle k' and emits a phonon q. To conserve energy and
momentum, ¢ and k' must lie on the surface of the cone. The cone
is narrow (it has slopes v,/c, and v,/c, along and into the page), so
the phonon wave vector is nearly parallel to the k, axis. The figure
is approximate.

mation, the phonon energy can be taken to be wq=cq,]|.
(The argument implies that for large Bu the nonequilibrium
distribution of phonons emitted from recombination is un-
usual since phonons propagate along nearly the same line.)
This simplification makes trivial the integrals along the in-
plane energy contours.

We calculate 7 '(€) using the procedure described above
and the electron-phonon matrix element from Ref. 17 and
obtain

7(e) = ]%Fz(kf)'[oo dxx(x+ €)f(X)[1 +n(e+x)], (7)
0Cs ~Jo

where «, is the c-axis lattice constant and Fz(kf) is a constant
with the dimensions of energy:

&7

2MNe?

F (k) = (8)
M is the mass of the unit cell, N is the total number of unit
cells, and g is the electron-phonon coupling energy, (which is
equal to the derivative of a hopping matrix element ¢, in the
effective single-band Hamiltonian, with respect to bond
length multiplied by the lattice constant). The dimensionless
factor 7]2 comes from the electron-phonon matrix element,
we estimate that 77 is of order 1072 (this is discussed in a
footnote in Refs. 19 and 20).

In the degenerate limit u> kgT, the integral in Eq. (7) is
equal to u*(w/3+€/2). After substituting this value into Eq.
(5), evaluating the integral for u>kzT, and expressing the
result in terms of quasiparticle number, one obtains

dn 2A
- —==—p", > kpT, 9
dr 3” M B 9

which has the solution

n(0)

on(t)=n(t)= W,

w>kgT.  (10)

The relaxation is similar to, but distinguishable from,

second-order kinetics for which dn/dto«—n?.

The time constant A~! is given by
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FIG. 2. (Color online) The population of photoexcited quasipar-
ticles n in the degenerate limit, given by Eq. (10). The normalized
curves correspond to different values of the initial population 1(0).
In the top curve n(0)=ny=0.004; and the rest, in descending or-
der, are for &n(0)=2n¢, 5ny, 10ny, and 20n,. Superconductivity
breaks down at roughly 40n, (according to Ref. 10).

_
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Using experimental values for cuprates (the main variation
between different cuprate materials comes from the gap mag-
nitude), we obtain A~'=1-10 fs.

For sufficiently long times, the condition u> kT must be
violated. After this, the spread of the quasiparticles in k
space is no longer affected by wu. During this final stage of
relaxation, recombination occurs between one of the few re-
maining photoexcited quasiparticles and one of the much
larger number of thermal quasiparticles [if w(r=0)<<kgT,
then this is the only stage of relaxation in our model]. Re-
peating the calculations above for u<<kzT, we find that the
nonequilibrium quasiparticle population follows:

on(t) = n(0)e™™ " u<kyT, (12)
where the time constant is given as
3 [kgT)?
= _(i) A. (13)
In(2)V8\ Ay

All of the preceding results are for the clean limit 7y
<kpT, p. In the dirty nondegenerate limit, the result is Eqgs.
(12) and (13) with one of the powers of (kzT/A) replaced
by (y/240)In(Aq/ y).

We will briefly compare our results to recent experiments
by making the tentative assumption that the differential re-
flectance AR/R, measured at optical frequency, decays with
time in proportion to the number of remaining
quasiparticles.'!3 For high pump intensity ® and low tem-
perature, the degenerate limit, Eq. (10), may be achieved. In
Fig. 2, we plot n in the degenerate limit, as given by Eq.
(10). We have chosen values for n(0) (see caption of Fig. 2)
such that the evolution occurs over the time scale probed by
recent experiments, which is 10 ps, and have used #=0.1.
The behavior is qualitatively similar to that seen in the opti-
cal response of underdoped cuprates,® but the observed decay
rate is proportional to n(0) rather than n*2(0). This discrep-
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ancy might point to the importance of a phonon-heat bottle-
neck, i.e., of the d7/dt term discussed above, for high-
intensity measurements.'?

For low intensity, we expect that the nondegenerate limit,
Egs. (12) and (13), is valid. In measurements made on
ortho-I1 YBCO, Segre et al.® observed that the low-intensity
decay rate is proportional to 7°, in agreement with Eq. (13).
If we use Ay=66 meV for Ortho-II (Ref. 21) and 7?=0.1,
then our result for the decay rate matches that extracted from
the data. This value of 77 is larger by a factor of 10 than the
rough estimate given above, but is not an implausible
value.!” This is suggestive that, for low enough pump inten-
sity, phonon-assisted recombination may determine the time
evolution of the optical response on the picosecond time
scale.

The fact that our low-T recombination lifetime is orders
of magnitude smaller than that calculated by Feenstra'
should be discussed. Feenstra claimed that, because the qua-
siparticle velocity is larger than the sound velocity, energy
momentum cannot be conserved in recombination processes
involving acoustic phonons and quasiparticles at opposite
nodes (which results in exponentially slow recombination at
low T). This conclusion is only true if the phonons are con-
strained to propagate along the CuO, plane. For in-plane
phonons, energy momentum is conserved when the phonon-
wave vector is zero, i.e., when both quasiparticles lie exactly
at the nodes, but cannot be conserved if quasiparticles are
displaced from the nodes in any direction, since the quasi-
particle energy increases more quickly than the phonon en-
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ergy. However, if the emitted phonon propagates along the ¢
axis, then it can carry away energy without any change in the
in-plane momentum. (The quasiparticles can have any mo-
mentum along the ¢ axis since they are assumed to be con-
fined in real space.) By bending the phonon wave vector
away from the c¢ axis, energy conservation involving
phonons and opposite-node quasiparticles is satisfied, as in
Fig. 1. Thus, in a correct treatment in which phonons propa-
gating out of the CuO, plane are considered, the lifetime for
low-temperature quasiparticle recombination in equilibrium
is found to be of the order 10—100 ps at 10 K, as above.

In summary, we have studied the effect of phonon-
assisted recombination on the relaxation of a d-wave super-
conductor in a low-energy nonequilibrium state. The time
evolution of the nodal Fermi sphere, which contains the pho-
toexcited quasiparticles prior to recombination, has been cal-
culated in both the degenerate and nondegenerate limits.
There is good agreement between the result for the nonde-
generate limit and observations made on underdoped YBCO
with low laser intensity. The degenerate limit results may be
useful toward understanding high-intensity data, although it
is likely that the effects of laser heating and the associated
phonon heat bottleneck are important in this case. Here, our
work may complement phenomenological rate-equation ap-
proaches in which terms associated with both phonon heat
conduction and recombination are included.'?
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Abstract

We theoretically studied the in-plane tunneling spectroscopy of the hybrid structure composed
of a metal and a two-dimensional electron gas with Rashba spin-orbit coupling. We found that the
energy spacing between two distinct features in the conductance spectrum can be used to directly
measure the Rashba energy. We also considered the effect that varying the probability of spin-
conserving and spin-flip scattering at the interface has on the overall conductance. Surprisingly,
an increase in interface scattering probability can actually result in increased conductance under
certain conditions. Particularly, in the tunneling regime, an increase in spin-flip scattering proba-
bility enhances the conductance. It is also found that the interfacial scattering greatly affects the

spin polarization of the conductance in metal, but hardly affects that in the Rashba system.
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I. INTRODUCTION

Structural inversion asymmetry of the confining electrostatic potential results in an in-
trinsic spin-orbit coupling of electrons in a two-dimensional (2D) electron gas (EG), which

can be described by the Rashba Hamiltonian: [1-3]
_Q

2m*

where 7is 2D momentum, m* is the electron effective mass, j is the direction perpendicular

H = —Aj - (Fx ) (1)

to the plane of motion, A is the spin-orbit coupling parameter, which can be tuned by
applying an external gate voltage perpendicular to the 2D plane, and the components of &
are the Pauli spin matrices. The spin-orbit interaction lifts the spin degeneracy and causes
the original parabolic energy spectrum to split into two branches: Ej | = % + hAAk, where
k is the magnitude of the wave vector. The density of states of this system is the same as
that of the 2D free electron gas for all energies higher than the crossing point of the two
branches. However, at the bottom of the band, the density of states has E~% van Hove
singularity because the minus branch has an annular minimum for k£ = ky = m*\/h instead
of a single-point minimum as in the free electron gas. These properties lead to interesting
phenomena, like the spin hall effect (see e.g. Ref. 4 for a review), and to applications in
spintronics (see e.g. Ref. 5 for a review).

The Rashba effect has been seen in many systems like semiconductors, semiconductor
heterostructures, and surface alloys. Several techniques have been used to study the spin-
split states in these systems, for example, electron spin resonance, the Shubnikov-de Haas
oscillations, angle-resolved photoemission, and scanning tunneling spectroscopy. Electron
spin resonance was one of the first techniques to confirm the existence of the Rashba spin-
split states in bulk semiconductors with the absence of inversion symmetry in the crystal
structure [6, 7]. From magneto-transmission of far infrared radiation, electron spin resonance
signal can be detected and used to obtain the Rashba parameter.

The Shubnikov-de Haas oscillations|8, 9] is another technique used to measure the Rashba
parameter in semiconductor systems. The presence of the spin splitting at the Fermi energy
leads to beating in the oscillations and the Rashba energy can be deduced from the position
of the beating node. However, this technique tends to provide an overestimate of the Rashba
energy, because it is done in the presence of magnetic field and hence includes the effect of

the Zeeman spin splitting.[10]



Angle-resolved photoemission spectroscopy and scanning tunneling microscopy are used
in surface alloys. The former technique is utilized mainly to obtain the energy dispersion and
the Fermi surface map, from which the effective mass, the magnitude of the band splitting,
and hence the Rashba spin-orbit coupling energy, E\ = h*k2/(2m*), can be extracted.[11-
15] In the latter technique, the electric current is driven through a sharp tip perpendicular
to the 2D plane and the differential conductance (dI/dV') spectrum can be obtained. One
can deduce the Rashba energy by fitting the dI/dV spectrum to the local density of states
of the 2DEG.[16] In both cases, to obtain information about the Rashba spin-orbit coupling,
extensive data fitting is needed.

In this article, we propose a way to measure the spin-splitting energy more directly from
experimental data, using in-plane tunneling spectroscopy. In this technique, the Rashba
energy equals the energy difference between two features in the conductance spectrum. The
required condition for the measurement is that the energy resolution of the tunneling spectra
is at least of the order of the Rashba energy itself. This condition can be easily achieved in
modern tunneling measurements.[17]

An intriguing property of 2DEG with Rashba spin-orbit interaction is spin-dependent
transport. Many theoretical investigations have shown that both electric and spin transport
in hybrid structures between the Rashba system and various materials, like metals,[18-20]
ferromagnets,[20-23] and superconductors,[24] are affected by the strength of the spin-orbit
coupling,[18-24] the inequality of the effective masses,[18, 19, 22, 23] and the transparency of
the interface.[21, 22, 24] However, in these previous studies, only spin-conserving interfacial
scattering was considered.

In principle, one can introduce interfacial spin-flip scattering in these systems by em-
bedding magnetic impurities in the insulating layer, or at the interface. The interaction
between the tunneling electrons and localized spins can give rise to spin-flip tunneling [25—
29]. The equations describing the spin-up and spin-down spin states in the presence of spin-
flip scattering are coupled, and one expects interesting consequences of this. For instance,
in the study of the tunneling conductance spectrum of a semiconductor/superconductor
junction,[30] the non-spin-flip scattering, when present alone, is found to suppress the An-
dreev reflection process and hence the subgap conductance as expected. However, when the
spin-flip potential scattering is also present at the interface, their combined effect surpris-

ingly enhances the subgap conductance.[30]



Here, we also consider how the scattering potential barrier affects both the conductance
spectrum and the spin polarization of the conductance of a junction consisting of a metal
and a Rashba system. As in previous work by Zutic and Das Sarma [30], we find that
the conductance spectrum, which is usually suppressed in the presence of the interfacial
scattering, can be enhanced by the combined effect of both types of scattering. We also
find that the spin polarizations of conductance of the metal and the Rashba system are not
equal. The spin polarization in the latter depends weakly on interfacial scattering, while
that in the former is greatly affected. This suggests that a spin imbalance in the Rashba
system is robust against variation in the quality of the junction interface.

This article is organized as follows: in the next section, we describe the theoretical method
and assumptions. In Section III, we provide the results and discussion. Our conclusions are

presented in the last section.

II. METHOD OF CALCULATION AND ASSUMPTIONS

We represent our junction by an infinite 2D system which lies on xz plane, where the metal
and the Rashba system occupy the x < 0 and x > 0 region respectively. The two regions are
separated by a flat interface at x = 0. The interfacial scattering is modeled by a Dirac delta
function potential. [31] We consider ballistic transport in our junction. In the one-band

effective-mass approximation, we describe our system by the following Hamiltonian:

1
H=1{p h+V IT+H : 2
(pzmmp VG, z)) + Hle) )
Each term is the 2 x 2 matrix acting on spinor states. p = —ih (fc% + 2%). The effective

mass m(z) is position-dependent, i. e., [m(z)]™' = m™'O(—x) + (m*)'O(x), where m and
m* are effective electron masses in the metal and the Rashba system respectively, and ©(x)
is the Heaviside step function. V'(z, z) is also a position-dependent function and is modeled

by the expression

V(z,z) = Hi(z) + EoO(x) — EpO(—2) (3)

where H represents the scattering potential at the interface, Fy is the energy difference be-
tween the Fermi level and the bottom of the plus branch (see FIG. 1), and Er = h?¢%/(2m)

is the Fermi energy of the metal. We assume that Er is much larger than Fy. The diagonal



0 Rashba system

FIG. 1: The top sketches are the energy contours of the electron in the metal (left) and the Rashba
system (right). The angles 6 and ¢ are defined as those between the x axis and the momenta of
electrons in the metal and the Rashba system respectively. The dashed line that crosses both sides
shows the momentum states with the same k,. The dotted line is the line of the maximum value
of k., which defines the maximum incident angle 6,,. The lower sketches are the corresponding
energy spectra (E vs the magnitude of momentum). Ef and Ey are the metal Fermi energy and

the off-set energy of the Rashba system respectively.

elements of H, Hy; and H|| correspond to the non-spin-flip scattering potential character-
izing the quality of the junction, while H;; = H); describe spin-flip scattering. [30] The

Rashba Hamiltonian is written as [32]
M) = 2 - M) (7 x @) + (7% 7) A(@) (4)

where A\(z) = \O(x).
From the Hamiltonian, one can obtain the eigenstates and eigenenergy for the electrons
in each region as follows. In the x < 0 region, the energy spectrum is
]‘,—LZ q2
E(q)=———Er ()

2m
where ¢ = \/q2 + ¢? is the magnitude of the 2D momentum of the electrons. In the x > 0
region, the eigenenergy is obtained as
h2

Ei(k) - 2m*

[(k £ ko)* — k3] + Eo (6)



where k = \/k2 + k2 is the magnitude of the 2D momentum and ky = m*A/h. FIG. 1 shows
the energy spectra and energy contours of the excitations in both sides of the junction.
The wave function of the electrons with energy F in the metal is written as a linear
combination of incident momentum state and a reflected state of the same energy and k..
Because electron spins are not polarized in metal, there are two equally likely incident spin
states, opposite in direction to each other, with the spin quantization axis arbitrary. Any
choice of two incident states with opposite spin orientations will lead to the same result
for total conductance spectrum. Here, for simplicity we choose the spins of the incident
electrons be along the z-axis. The two corresponding electron wave functions in the metal

are written as:

1] . b , ,
‘115\14)(@2) = gitsw 4 | | migew | gikz
0 b1}
01 . b . .
\Ifg\?(x,z) = eitsw 4 | 21| migew | gikz (7)
1 ba)

where the b;, are the amplitudes of reflection of electrons with spin ¢ for incident state with
spin-up (¢ = 1) and spin-down (i = 2). ¢, = gcosf and k, = ¢sinf, where 6 is the angle

between ¢ and the x axis. The magnitude of the momentum, ¢, depends on energy as

4=/ 75 (B + B) (8)

Similarly, in the Rashba system, the wave function is obtained as a linear combination of

two outgoing eigenstates of the same energy and k,:

Pr+
X Ccos “E- -
T
\Dg%)s(% z) = Cit _ f, . ek
+sin %
. g&k7
sin ~&— . .
+ i S02 ezkz T ezkzz (9)
CcOos “k—

2

where ¢ = 1,2 refer to the wave functions of the Rashba system corresponding to the two
cases of spin orientations of incident electrons, .+ are the angles between k* and the z
axis. For E > Ey, ¢;y and ¢;_ are the transmission amplitudes of electrons to plus and
minus branch respectively. When E < Ejy, ¢;; and ¢;_ refer to the transmission amplitudes

of electrons to states with smaller and larger k£ of the minus branch respectively. The upper



and lower signs in the first term of Eq. (9) are for £ < E; and E > E, respectively.
kE = k* cos o+ and k, = k¥ sin ¢+, where the magnitudes of the momenta, k%, depend on

energy as

_ 2m*
I k:o—l—\/k:g—l—F(E—Eo) (10)

K= 4 (ko - \/k§ + 2;';* (B — Eo)) (11)

Again, in Eq. (11) the upper and lower signs are for F < Fy and E > FEj respectively. The

relationship between the angles ¢+ and 6 is
k* sin g+ = gsin. (12)

We can obtain the probability amplitudes b;, b;, ¢;+ and ¢;— from the following matching

conditions that ensure probability conservation. [32]

\Ifg&)(x =0,2) = \Ilg%(x =0,2) = \I/g), (13)

m 8\115;?5 8\115\? .m (i)
— 2 2| = (2qrZ —i—k Z) vy, 14
(m* ox ox » ( ar Zm* 07 0 (14)

where Z = mH/(h*qr). The diagonal elements of Z will henceforth be referred to as
Zy = Zy and Z; = 7|, while the off-diagonal element will be denoted by Zp = Z;| = Z|;.
In what follows the spin flip term Zr will be responsible for the enhancement of a feature
at the branch-crossing point in the conductance spectrum.
The particle current density along the x direction is obtained from
1

72 =3 V@) + (@00@) V). (15)

where W(x) is the spinor wave function, and v, = dz/dt = i [H(x),Z] /h. From the current

density, the reflection and transmission probabilities can be obtained:

Riy = |bal” (16)
Ry = |by|” (17)
kt + kg cos
T = 2 ot () (18)
m o
k. — ko cosp, -
To— e () (19)
m Qe



where R;;, R;| are the reflection probabilities to spin-up and spin-down states, and 7}, T;_
are the corresponding transmission probabilities. Also, the upper and lower signs in T}, are
for F < Ey and E > Ej respectively. As mentioned earlier, the matching conditions ensure
that Ry + Ry + Tpy + Tj- = L.

Since the electric current is independent of z, we consider the electric current density in
the metal for simplicity. It can be written as a function of applied voltage V' as follows.

2

jeeV)= > ev.y (1—Ri—Ry)

qz >07QZ =1

< [f (E(q) —eV) = [ (E(q))] (20)

where e is the electron charge, v, is the x component of the electron group velocity, and
f(FE) is Fermi distribution function. The sum over the spins of incident electron assumes
that both are equally probable in metal.

By changing the integration variable and setting temperature to zero for simplicity, one
can obtain the expression for the electric current as

2 eV O
Je(eV) = %£2ZF/O dE/‘9 df cos @

2
E
XA 1+ — 1-Ryy — R; 21
YL+ g 20 R = R) 1)

where £? is the area of the metal and 0, is the maximum angle of the incident electrons
from the metal (see FIG. 1): 6,, = sin"'(k~(E)/q(E)). Thus, the differential conductance
G(V) =dj¢/dV at zero temperature is

e L2qp [ eV
G(V)= 7 o /_emdecosm/l—i-E—F

x Z (1= Ry — Riy) (22)

The finite temperature will smear the features in the conductance spectrum but will not
change their positions (assuming that the strength of the Rashba spin-orbit coupling does
not depend on temperature).

In order to investigate the spin imbalance due to the tunneling current in both metal
and Rashba system, we consider the spin polarization of conductance P(E) defined as the

difference in the number of spin carriers crossing a plane normal to z in unit time, normalized
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FIG. 2: (color online) The plot on the left is the conductance spectrum in the case where the
energy band of the Rashba system is partly occupied (Ey = —0.075Ef) and on the right is the
plot in the case where the band is unoccupied (Ey = 0.05EF). The derivative of the conductance
spectrum on the right (dG/dV) is shown in the inset. Z and Zp are set equal to zero. m/m* = 10
and kg = 0.05¢F.

to the total particle current at energy F:

Ygs0q. Uy = dny)
Z;x>0,qz (ja’c)ﬁ + jg,l) 7

P(E) = (23)

where j% is the particle current density with spin o. The >~ indicates that the summations
are over ¢,,q, with a specific value of energy E. In metal, this spin polarization of the

conductance can be written in terms of the reflection probabilities as

B ff;”m de cos@Z?zl (—Rit + Ry))

Pu(E) = :
w(E) J% df cos§ 37 (1— Ry — Ray)

(24)

and in the Rashba system it can be written in terms of the transmission probabilities as

_ ffgionm d cos0Y 7, (Tiy cos g — Ti cos @y )

Prs(E
rs(E) ffg@m df cos 037 (Tyy + Tp-)

(25)

As can be seen, P(FE) measures the relative difference in the net number of the carriers with

spin-up and spin-down.



III. RESULTS AND DISCUSSION

In this section, we discuss the effect of the interfacial scattering on the differential con-
ductance spectra and the spin polarization of the conductance on each side of the junction.
In all plots, for the purpose of illustration, we set m/m* = 10 and kg = 0.05¢r, which
corresponds to typical experimental values in metal/Rashba system junctions. The main
results are not affected by the choice of these parameters.

Two conductance plots for two values of Ey are shown in FIG. 2. Positives values of Ej
means the energy spectrum of the Rashba system is unoccupied and the positive eV across
the junction will cause the current to flow from the metal to the Rashba system. As can be
seen, when the energy spectrum of the Rashba system is partly occupied (Ey = —0.075EF),
the results are identical in shape to those in the unoccupied case (Ey = +0.05EF), but the
applied voltage eV across the junction has to be negative. There are two main features at
the voltage corresponding to the bottom and the branch-crossing of the energy band. The
distance between them depends on F), which is the quantity of interest. The value of Fj is
not important, i. e., changing Ej causes a rigid shift in energy, and will henceforth be set
equal to zero.

We do not consider the spin filtering interface. That is, we set the non-spin-flip scattering
strength 7, = Z; = Z. It is well-known that the difference in Z, and Z; will cause a spin-
filtering effect. That is, a higher Z, will make the transport of the spin-up electrons less
favorable and vice versa. This effect cannot be seen in the conductance spectrum and will

not be considered in this article.

A. Differential conductance spectra

In all conductance plots, the conductance is in units of ¢2£2qr/(27h). The conductance
spectra G with different Zp in different limits of Z are shown in FIG. 3. Junctions with
metallic contacts are characterized by Z < 1, whereas those in the tunneling limit are
characterized by Z > 1. In general, the conductance is zero until the applied voltage
reaches eV = —F),, which is the bottom of the band of the Rashba system. The conductance
increases suddenly with large initial slope that decreases steadily until a second feature: the

kink occurring at eV = 0, which is the crossing point of the two branches of the band. After
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FIG. 3: (color online) Differential conductance spectra G for different Zp in the case where (a)

Z =0, (b) Z=0.5,and (c) Z = 2.0.
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this point, the conductance increases approximately linearly. In the presence of Zp, there
occurs a discontinuity in the conductance at eV = 0. The height of the jump depends on both
Z and Zp. This energy difference between the onset and the discontinuity in the slope of the
conductance spectrum can be used to determine directly the Rashba energy E. Note that this
conclusion is not an artifact of this simple model (delta-function interface scattering, etc.).
It should be generically true, because it is due to switching from transmission of electrons
into only the - branch to transmission of electrons into both branches of the Rashba system.

In addition to the influence on the discontinuity at eV’ = 0, the interfacial scattering af-
fects the overall conductance spectrum as well. For metallic contacts, the spin-flip scattering
suppresses the conductance as expected. However, in the intermediate and the tunneling
limits, the results are rather surprising. As can be seen in FIG. 3(b) when Z = 0.5, the
increase in Zp from zero to a small value (less than 0.5) does not affect the conductance
much. Only when Zp is increased beyond 0.5, does the conductance get suppressed. When
Z is high, e. g. Z =2.0 as in FIG. 3(c), the conductance spectrum can be enhanced by the
increase in Zp up to a value Z7,, after which the spectrum becomes suppressed. Z7, is found
to depend strongly on Z.

One can see the effect on the conductance spectrum of spin-flip scattering more clearly
by considering plots of the conductance G as a function of Zg for energies just below and
just above 0. In FIG. 4, G< = G(—¢) and G~ = G(+J), where §/E, = 0.8, are plotted as
a function of Zp for different values of Z. For small Z, both G~ and G< decrease with Zp
as expected. However, this trend starts to change when Z is higher than 0.5. That is, both
G~ and G*< increase with Zp and reach a maximum value at Z}. (as indicated by arrows in
FIG. 4), after which they decreases with Zp. Notice that Z}. is a little smaller for G< than
for G~ and is approximately equal to Z. It should be noted that a similar dependence of

both G~ and G< on Z can also be seen, if one plots G~ and G< as a function of Z instead.

B. Spin polarization of conductance

The plots of the spin polarizations of the conductance in both metal and Rashba system
as a function of energy are shown in FIG. 5. The spin polarizations of the conductance of
the two sides are very different. In Rashba system, it is always negative, whereas in the

metal it is positive when the spin-flip scattering is not strong. This may be understood by
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FIG. 4: Differential conductance G(eV') plotted as a function of the spin-flip barrier height Zr at
a constant energy eV slightly below [upper panel, denoted by G<(Zr)] and slightly above [lower
panel, denoted by G~ (ZF))] the energy corresponding to the crossing of the Rashba-split bands.
The arrows indicate the values of Zj., where the maximum differential conductances G~ and G<

occur, for Z = 1.0 (thick arrows) and 2.0 (dashed-dotted arrows).

considering the density of states of the Rashba system.

The density of states of the minus branch is larger than that of the plus branch. As we
can see from FIG. 6, because the spins of the transmitted states of the minus branch are
mostly pointing down, it is not surprising that the spin polarization of the conductance in
the Rashba system is negative. As for the metal side, because more spin-down states are
transmitted into the Rashba system, the spin polarization of the conductance is positive.

The interfacial scattering does not affect the spin polarization of the conductance in
the Rashba system as much as in the metal. The increase in either Z or Zp seems to
slightly change the magnitude of the spin polarization of the conductance. However, in
metal the interfacial scattering potential affects the spin polarization of the conductance a
great deal. For a particular value of Z, the increase in Zr can cause the spin polarization

of the conductance in metal to change sign.
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Spin polarization of conductance

Spin polarization of conductance

FIG. 5: The plots of the spin polarization of the conductance in metal and Rashba system (RS)

as a function of energy when Z is (a) 0 and (b) 0.5.

IV. CONCLUSIONS

According to the results from our simple model, one can directly use in-plane tunneling
conductance spectrum to measure the Rashba energy of a system with the Rashba spin-
orbit coupling. The energy difference between the onset and the discontinuity in slope of
the conductance spectrum is equal to the Rashba energy. Both features are found to be

robust against variation in the quality of the junction.
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FIG. 6: Density of states of each branch of the 2DEG with the Rashba spin-orbit coupling. The
contour plots on the left and on the right are those in the case where £ < Ey and F > Ej
respectively. When FE > Ej, the outer contour is that of - branch and the inner one is that of +
branch. When E < Ej, both energy contours belong to the - branch. The arrows represent the

spin direction of the states with positive v,.

Experimentally, to be able to measure the Rashba energy, the required energy resolution
is at least of the order of the Rashba energy itself and the temperature is low enough in order
that both features are visible. The Rashba energies in semiconductor-based heterostructures
such as InAs, InGaAs, GaN and InSb, are of order 1 - 3 meV, [33-40] whereas those of surface
alloys like Li/W(110), Pb/Ag(111), and Bi/Ag(111) can be as large as 200 meV. [16, 41-43]
These conditions can be readily met in modern tunneling measurements. [17]

We also found that as the current is driven through the system, an imbalance of spin in
both sides occurs. The spin polarization of the conductance in the metal is found to depend
strongly on both types of the interfacial scattering and can disappear when the barrier is
in the tunneling regimes. On the contrary, in the Rashba system the spin polarization of
the conductance is always present and only slightly affected by interfacial scattering. This
finding suggests that the spin imbalance caused by current flow in the system with the

Rashba spin-orbit coupling is robust against variation in the quality of the junction as well.
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Abstract

We theoretically studied spin-dependent charge transport in two-dimensional electron gas/s-
wave superconductor (2DEG/S) junctions. It was found that the tunneling conductance depends
strongly on 1) the strength of RSOC, 2) the potential barrier and 3) the mismatch of electron
effective masses. The influence of the RSOC, potential barrier and mismatch of electron effective
mass are associated and also depends on the Fermi levels of the 2DEG. We found that Andreev
reflection amplitude at the superconducting gap energy is always increased with the RSOC strength,
but is unaffected by the change in the potential barrier. One can use the Andreev reflection at the
superconducting gap to measure the strength of RSOC. In the other hand, can use gate voltage
controlling Andreev reflection at the gap. The effect of the mismatch effective mass and the

potential barrier are not always equivalent as it was believed.

PACS numbers: 73.40.Ns, 73.40.Gk, 73.23.-b, 72.25.Dc, 72.25.Mk



I. INTRODUCTION

In the past decade, spintronics has received much attention because of its potential ben-
efit electric devices[l]. For example, interesting in spin-dependent transport were stud-
ied in a ferromagnet/normal metal (F/N) junction[2-6] and in ferromagnet /superconductor
(F/S) junction[7, 8]. Two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling
(RSOC) is among the systems of interest. RSOC is known to lift the spin degeneracy of
2DEG. This system can be potentially used as a part of the spin-polarized field-effect tran-
sistor (Spin-FET)[9], spin interference device[10] and spin filters[11, 12]. In general, RSOC is
present in the system with structure breaks inversion symmetry[13, 14| as in I1I-V semicon-
ductor heterostructure. For example, InGaAs/InAlAs, GaSb/InAs/GaSb, GaAs/AlGaAs,
InAs/AlISb, InAl/ AlISb [15-20]. The electron-spin splitting in Rashba system has been
studied through the measurement of Shubnikov-de Haas (SdH) oscillations[15, 16, 18]and
weak antilocalization [20][20]. The former the spin splitting is deduced from SdH oscillations
frequency and the beating node position. The latter, the magnitude of RSOC is extracted
from applied gate voltage which inducing a crossover between weak localization and antilo-
calization. In both techniques, the experimental results need extensive data fitting to obtain
the information about RSOC. One of the most advantage of Rashba system to realizing spin
devices is the control of RSOC strength by applying a gate voltage perpendicular to the 2D
plane[21-23]. RSOC is also expected to affect the charge transport in 2DEG/S junctions as
in the case of the exchange field in F/S junction. However, only a few works have been done
on these junctions. It is desirable to extend the study for incorporating the effect of RSOC in
these junctions for better understanding of Rashba system. Recently, Yokoyama et al. were
interesting in the effect of RSOC on the subgap conductance spectra in comparison to that
of exchange field in ferromagnet. They found that the effect of RSOC on the conductance
depends on the potential barrier and the results are essentially different from the previously
predicted in F/S junction[24]. In their work, the Fermi level of 2DEG is usually considered
to be much higher than the Rashba energy. They did not show explicitly the effect of the
different in the electron effective mass of both side of junction. Since 2DEG with RSOC
is usually found in a semiconductor, in which the Fermi level can be varied by adjusting
the density of carrier. In present work, in addition to study the effect of RSOC, mismatch

effective mass and the insulating potential barrier at the interface, the level of the Fermi



FIG. 1: (a) The sketch of energy dispersion of the 2DEG with RSOC (b) The energy contours of
the plus and minus branches. kT and k~ are the wave vectors of the same k,. The thick arrows

show the direction of the spins for each k -state along the energy contours.

energy of the 2DEG are also considered.
This article is organized as follows. In the next section, we describe the theoretical
method and assumptions. We then provide the results and discussion in Section 3. The

conclusion is given in the last section.

II. METHOD OF CALCULATION AND ASSUMPTIONS

The spin degeneracy splitting of 2DEG can be described by the Rashba Hamiltonian [14]:

~9
H:QP—W—AE.(gxﬁ) (1)

where A\ represents the strength of RSOC, or known as Rashba parameter, m* is effective
mass of the electron in 2DEG,p is momentum,d is the Pauli matrices and 3 is the direction
perpendicular to the 2D plane. The Rashba spin-orbit coupling cause the usual parabolic
+ hA\k where (see Fig. 1). In

~2k2

energy spectrum to split into two branches: E* = DT
this work, we defined our system as an infinite 2D system, which lies on xz plane(electrons
confined in the y direction), where the 2DEG and superconductor occupy the x < 0 and
x > 0 region respectively. The 2DEG and superconductor are separated by a flat interface at
, which is modeled by a Dirac delta function potential[25]. We consider a ballistic transport

in our junction.



The Schrodinger equations describing the system is written as

Ho + Hpy + Hgé(x) 0 AO(z) 0

0 Ho+ Hg| + Hsd(x) ) A 0 A6(=) \I/(‘T,Z) = E\Ij(lC,Z) (2)

AO(z) 0 —Ho+ Hpry — Hgé(x) 0
0 AO(z) 0 —Ho+ Hp| — Hgé(x)

where [:_70 is free electron Hamiltonian and H r11is Rashba Hamiltonian (term with spa-
tially varying coefficients that contain the momentum operator have to be symmetrized to

ensure that hybrid Hamiltonian is Hermitian)[26]. That is,

Hy = ]527711(33)33 — ErsO(z) — EroppcO(—1)
F[RT % (@( 2)(0-1)Pe — Te(2)Dz) + (02(1)Pe — 01(12)152)@(_30)))
Ay = 3 (6(=2)(0: 2P:) + (0me = O212)p=)O(—2))).
where p is a momentum operator in 2D,m%x) = -70(—2) + ;.O(2) is the effective mass of

the system (m* in 2DEG and m in the superconductor). ¥(z, z) is a four-component wave
Uy
. \Ijel . . . .
function ¥(z,z) = . From the Hamiltonian, one can obtain the eigenenergy and
\Ith
‘I/h !
eigenstates for electron and hole in each region as follows. In the z < 0 region, the energy

spectrum is £ = /& + A? | where &, = N;fj — Epg and A is the superconducting gap

energy. In o < 0 region, the energy spectrum are: E+ = 2;5* (¢ £ qO)2 — ;jgj Eropre for
electrons and E* = Froppa — %(q + qo)? = ™A 3ls0 represent

the strength of Rashba spin-orbit coupling in unit of momenttum.
The wave function of quasiparticle in superconductor can be written as a combination of

the four outgoing eigenstates of the same energy and k, :

[ U+ 0
A 0 A U+
Ug(x >0,2) = cretkt Foegeter | | 4
0 U+
L — U+ 0
U_— 0 |
o 0 . U_j— ,
dlefzkz T + dzefzkz x k ezkzz (3)
0 V_f—
— V- 0 ]




where c¢1, ¢, di and dy are the amplitudes of the four transmissions. R
\/%’L(EF +VE?2 - A?%) kT = \/ZN—Z”(EF —VE? — A?), u and vy are the electron-like and

hole-like quasiparticle amplitudes and are defined as
E+&
U =
VIE+&F 1A,
Ay
JE+el+1ap

(4)

(5)

Vi —

so that |ug|® 4 |ue]* = 1.

In 2DEG, we consider the two cases of difference Fermi level. The first one is when Fermi
level lies above the crossing point of 2DEG (Ej) and the second one is when Fermi level lies
below Ey. The sketch of excitation energy of 2DEG/S junction depict in Fig. 2. Similarly,
in 2DEG, the wave function is obtained as a linear combination of an incoming eigenstate,
two normal reflected states and two Andreev reflected states of the same energy and k, ,

which different for different Fermi level. The wave function of the first case (Er > Ep) is as

follows:
| cos 0 0
T
, —sin o 0 o 0
Voppa(r < 0,2) = el 71 + ae'® + age'2®
0 —sin gy oS Py
- 0 —COos — sin gy
sin ¢ cosoy \ |
, — COS : sin .
+b1€—zqrw 901 + bge—zq;m Spl 6Zkzz (6)
0 0
0 0 |
for an incident electron from plus branch of 2DEG. In case of electron is injected from minus
singy
+
. . . .+ COSPy "
branch only the first term of the wave function is modified to be "1 ® p=73 (¢
0
0

is an incident angle see Fig. 2(b)), a; and ay are the Andreev reflection amplitudes, b; and
by are the normal reflection amplitudes. The x-components of the momenta ¢~ and ¢, "~

are defined as follows.



g = \/(—qO+ \/q§+ (B + Bp))* = k2, 45 = \/(qo + \/CJ% + 22 (E + Bp))? — k2,

@ = ¢ (—t0+ /a8 + 2 (~B + Bp))? — k2, g5 = J (G0 + /8 + 22 (—E + Ep))2 — 2

The wave function for of the second case(Epr < Ejy) is

cos ] 0 0
—iq+1: sin S01+ —iq, T 0 Q5 T 0
Voppa(z <0,2) = e + aje + aqe'2
0 — COS ] COS Py
i 0 —sin ] —sin py
sin pf cosgl \ |
+ oot
, cos , sin ,
+blezq1+x Y1 + ngfzq;a: Y1 ezkzz, (7)
0 0
0 0 ]

for an incident electron with wave vector ¢. When incoming electron comes from state

cospy
ot
. + . . . joT 2 S1NPg
with ¢; the first term of the wave function is modified to be e' . Note
0

0
that the wave function of this case is satisfied the energy higher than the crossing, be-

low the crossing, the AR term with momentum ¢, in equation (7) is modified to be

0
- 0
a;e'i’® . The x-components of the momenta and in this case are as fol-
coSpy

— — siny;

lows. ¢ = \/(QO — \/qg + (B — Fy))? — k2 for all Es,

G = \/(CJO + \/qg + 22°(E — Ey))% — k2 for all E’s,

q = \/(—Clo + \/qg — I(F + Ey))? — k2 for all E > Ej,

q = \/(QO — \/qg — (B + Ey))2 — k2 for all E < Ej,

= \/(Qo + \/qg — 2(F + Ey))? — k2 for all E’s.



We obtain the Andreev reflection, normal reflection and transmission amplitudes a;, as,
b1, by, c1, co , dy and dy from the following matching conditions that ensure probability

conservation[27].

\Ifs(.’lj' = O) = \IJQDEg<O) = \IJ(O), (8)
8\115 m 8\1/2DEG . m
— om0+ ————— |a=0-= (2k —q0)¥(0), 9
o o — e EDEC | (ks + i) U(0) )
where z = NQ”inSS is the unitless parameter that characterizes the strength of the potential
1 000
) ) ) 0-100
barrier, kr is the Fermi wave vector of the superconductor, oy =
0-100
0 001

We find the current across the junction as a function of an applied voltage is

2
hppa-s = gy | [ dhedBua(1+ A+ 4y = By~ B)J(E~ V) = F(E)),  (10)

472

where A;, Ay, By and B, are the Andreev reflection and normal reflection probabilities. v,
is the x component of group velocity of the incoming electron and f(F) is the Fermi-Dirac
distribution function.

The Andreev reflection, normal reflection and transmission probabilities of each cases are
defined as

Casel: Er > Ej

Ao la1(2) |2 [~y o) Fa0(cos> 07 ) =5in° 0] )))]
1(2)

q;r ~+qo(cos? goir —sin?2 gof )

Bi=| b 2, By = |b2|* [~ a3 +a0(cos> g5 —sin’p7))]
! Ly =2 a7 +4o(cos?p] —sin¢T)

C _ ey (o) 1€xkT ]2
1(2) rm><E(qf+qo(0052gof—sin2tpr)

D _ Idy 2y 12| —Erk™|?
1(2) Tm X E(q] +qo(cos2pf —sin2pT)’



for electron from plus branch. When incoming electron from minus branch the divisor

term corresponding to the group velocity of injection electron ,q; + qo(cos®p] — sin®p]) is

1[=¢) —qo(cos® o} —sinl o} ))]
a3 —qo(cos2p3 —sinp])

By =| by |%. The subscript 1(2) indicates the state corresponding to plus and minus branches

modified to be g3 — qo(cos?p; — sin*py ) . Therefore, B; = o1 and

respectively.

Case 2 : Er < Ej

A e ?[£475) Fao(cos ) —sin® o] )]
1(2) —q +qo(cos2p] —sin2p])

By =|b ’2 B |b2|[—g3 +4q0(cosp3 —sin?¢] )]
1 1 Y 2 _* 2+ _ 2 F
q7 +qo(cos?p] —sin?p])

kT2

c12)*[€k
C _ le1(2)
1(2) T X E(—gy +qo(cos2p] —sin2¢])

Doy — |dy () I*| =€k~ ]2
1(2) Tm X E(—q] +qo(cos2pf —sin2p] )’

for incident electron with ¢;. When incoming electron from the state with ¢, the divisor

term corresponding to the group velocity of injection electron, —q; + qo(cos®p] — sinp7)

: : . b |2[gt = 2,  _ginlpt
is modified to be ¢f — qo(cos?p} — sin®p}) . Therefore, By = ! 1|q£rq17q0q(‘i2(;021§178;;¢§)2 M and

By =| by |>. The subscript 1(2) indicates the state with wave vector qi(q) respectively.

The conductance at zero temperature is, thus

dl>spEG—s . L?e?
dV — 4rxh

G(eV) = /d/ﬂz(l + A1+ Ay — By — By) (11)

III. RESULTS

In this section, we discuss the effect of the RSOC strength (go), the potential barrier (z)

and the different in electron effective masses (r,, = =) on differential conductance spectra

m*

in two cases of Fermi level, i.e. Fr > Eyand Er < Ey, Fy is energy at the crossing branches
of 2DEG. We concentrate the conductance spectra of the energy range between zero to the
superconducting gap energy (A = 0.01Eg). In all conductance plots, the conductance is
in the units of % . First we consider the differential conductance as a function of bias

voltage V for different value of gy in Fig. 3. In the range of interested gy, we found the



FIG. 2: The sketch of excitation energy of 2DEG/S junction.

difference in the effect of gy on the conductance below the gap between the two cases of
Fermi level. In the first case, the tunneling conductance is suppressed by q0 in Andreev
limit (z = 0), while in tunneling limit (z = 1), go turn to slightly enhance the conductance.
For Fr < Ej, the conductance is increased with increasing ¢o. In addition to the peak at
the gap, there is a feature at the voltage corresponding to the position of £y (the arrows in
the right column).

In order to more careful study the effect of ¢g below the energy gap, we plot the conduc-
tance as a function of ¢y for different value of z at eV = 0 in Fig. 4 and 5. It is shown that
the effect of gy associated with z, r,, as well as the Fermi level. As shown in Fig. 4, when
Er > Ey and r,, = 1 (the left column) RSOC suppress the conductance for z = 0, and the
conductance is increased up to a critical value and then decreased for z = 0.7. For z = 1,
RSOC turn to enhance the conductance. The effect of RSOC on the conductance at zero
voltage for rm = 10 shown in the right column. When z = 0, ¢ suppress zero conductance
similar to z (Fig. 7(b)). For finite z, gyalmost not affect the conductance for the range of
small go. The dimension of the range is increased as z increase. Beyond the range, gy enhance
the conductance up to critical value then the conductance is decreased. For Er < Ey (Fig.
5), it is found that in both cases of r,,, the conductance at zero voltage is enhanced with
RSOC up to a critical value of each z. When q0 is higher than that value, the conductance

is decreased. For r,, = 1 this critical value of ¢qq is very different for different value of z.
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FIG. 3: The conductance spectra as a function of bias voltage V for different value of q0. The left
column is for Er > Ejy and the right column for Er < Ey. The upper row is for z = 0 and the

lower row for z = 1. The arrows in the right column indicate the position of Ejy.

While r,, = 10, this critical value is slowly forward shifted.

Fig. 6 shows the plots of differential conductance as a function of q0 for eV = A. We
found that q0 always increased the conductance in both cases of Fermi level and r,, especially
when Er < Ej, the conductance more linearly dependence on q0 and almost not depends
on 7,,. The conductance at the energy gap does not change by changing z as shown in
Fig. 7. The independence of conductance on z at the superconducting gap was also found in
ferromagnet /S (F/S) junction, previous work by Igor Zutic[28]. In their work, they suggested
to use the conductance at the energy gap measure the spin polarization. However, the spin
polarization does not linear depend on RSOC strength as it does on the exchange energy
of F. In order to measure the spin polarization of 2DEG/S junction, we suggest to include
the spin polarization P by decomposing the current in equation (10)( section 2 ) into two
part [ = (1 — P)I, + PI,, where (1 — P)I, is the fully unpolarized part and P1I, is the fully

polarized part [29]. However, in 2DEG/S junction, even when z = 0 the conductance at

10



FIG. 4: The conductance spectra as a function of ¢y at eV = 0 for different value of z when

Er > Ey, 1y, =1 in the left column and 7, = 10 in the right column.

zero bias voltage can not measure directly the spin polarization as in metal-ferromagnet /S
junction[29] due to Andreev reflection in 2DEG/S junction depends on q0 and r,, as well.
To extract the spin polarization, fitting the experimental data with four parameter (P, z, qo
and r,,) in the above extend model is needed.

Fig. 7 (b) shows the plots of differential conductance for fixed gy (¢o = 0.2kp) at eV =0
and as a function of z for Fr > Ej. A similar dependence of conductance on z when Er < Ej
also be seen. Fig. 8 is the plots of conductance as a function of r,,. It is found that the
effect of z and r,, are not always equivalence as in most work believed. When Er > Ey, r,,
suppress the conductance both at eV = 0 and A , while z can not suppress the conductance
at eV = A (Fig. 7). Moreover, when Er < Ey, the effect of r,,, at eV = 0 similar to that of

q0 but at eV = A the influence of r,, on the conductance similar to that of z.

11
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FIG. 5: The conductance spectra as a function of ¢y at eV = 0 for different value of z when

Er < Ey. (a)rym, = 1(b) my, = 10.
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FIG. 6: The conductance spectra as a function of q0 at eV = Afor r,, = 1 and 10. (a) Er > Ej
(b) Er < Ep

IV. CONCLUSION

We have examined the effect of the strength of RSOC, the potential barrier, and the
mismatch of electron effective masses on the tunneling conductance of 2DEG/S junction.
The influence of RSOC, potential barrier and mismatch of electron effective mass on the
conductance are mostly associated and depends on the Fermi levels of the 2DEG as well.

We found that the tunneling conductance at the superconducting gap which reflected to AR

12
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FIG. 7: (a) The conductance spectra as a function of bias voltage V for different value of z. (b)

The conductance spectra as a function of z at eV = 0 and A .
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FIG. 8: The conductance spectra as a function of r,,, at eV =0 and A (a) Er > Ey (b) Er < Ep.

is enhanced by the RSOC strength, but is unaffected by the change in the potential barrier.
These results give possibility to controlling AR at the superconducting gap by gate voltage
and to measure the RSOC strength by AR amplitude at the gap. The effect of the mismatch
effective mass and the potential barrier are not always equivalent. When Er < Ej, the effect

of the different in electron effective masses is similar to that of RSOC strength.
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Abstract

The tunneling conductance spectrum of a junction of two-dimensional electron
gas (2DEG) with Rashba spin-orbit coupling (RSOC) and a d-wave superconductor is
theoretically studied. The spectrum shows strong dependence on junction orientation.
The effects of RSOC strength and potential barrier on the tunneling conductance are
different for different Fermi levels of the 2DEG.
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I. INTRODUCTION

In the past decade, spintronics has received much attention because of its potential benefit
electric devices [1]. Two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling
(RSOC) is among the systems of interest. RSOC is known to lift the spin degeneracy of 2DEG.
This system can be potentially used as a part of the spin-polarized field-effect transistor [2], spin
interference device [3] and spin filters [4, 5]. In general, RSOC is present in the system with
structure breaks inversion symmetry [6, 7]. Recently, 2DEG-superconductor junction was studied
by T. Yokoyama and co-workers. [8] They considered s-wave superconductor. They found the
tunneling conductance of the junction is suppressed by RSOC for low insulating barriers while for

high insulating barriers the RSOC is almost not effect the conductance.

In this paper, we are interested in the charge transport of a junction consisting of 2DEG and a
cuprate superconductor. The gap symmetry of cuprate superconductors is d-wave.[9] The sign
change in the gap function leads to a zero-bias conductance peak in the conductance spectrum. [10,
11] It is therefore interesting to see how the characteristics of 2DEG with RSOC will affect this
feature. In particular, the effect of RSOC, potential barrier, different Fermi levels of the 2DEG,

and the junction orientation will be examined.
I1. ASSUMPTIONS AND METHOD OF CALCULATION

The 2DEG/d-wave superconductor (2DEG/D) junction is modeled as an infinite 2D system.
The geometry of the junction is depicted in Fig. 4.1. The potential barrier of 2DEG/D junction is
represented by a delta-function potential of strength Hs. The superconducting gap is assumed to be

zero in the 2DEG and to be spatially constant with a dasz -wave symmetry in the

2

superconductor.
That is, the superconducting gap depends on wave vector k as follows:

A(G;) = A, cos[2(6, —a)], 1)

where 6, is the angle between wave vector k and the interface normal vector, and « is the angle
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between the a-axis of the d | .. “wave superconductor and the interface normal vector. This
at-

angle specifies the orientation of the junction, for example, {100} junction is equivalenttoax =0.

The Hamiltonian of our 2DEG/D junction is

A, +H,,, +H5(x) 0 AB(X) 0
0 H +H,, +HS(X) 0 AB(X)
0 Ry R R : — E : ,
AB(X) 0 —H, +H_, —H5(x) 0 vxz)=Epx2)
0 AB(X) 0 —H, +H,_, —H5(x) )

where I—A|0 and HARN are the Hamiltonian of the free electron and Rashba Hamiltonian of electron

and/or hole with spin up and spin down respectively. That is,

~ 1 .
Hy = pm P—Eq sO(X) — Ep ,pecO(—X)

A A ~ o ~ o
HRT = E (®(_X)(Gz(11) Py — Oy12) pz) + (Uz(ll) Py~ Oy12) pz)®(_x))

~ A - . 5 5
Hy, = 9 (O(=X)(022) Py = Fx12) ) (020 P — Oa) P, )O(X))

where p is a momentum operator in 2D, L = 1* O(-x) +£®(x) is the effective mass of the
m(x) m m
system (m" in 2DEG and m in the superconductor). y(x,z) is a four-component wave function
Ver
y(x2)=| "
Y
Vi

The wave function of the superconducting side is the combination of the four transmitted

excitations. That is,

u 0 u,_ 0
ot 0 ot u + L 0 I u7k7 .
v, (x>0,2) =| ce"™" +ce™| " |wde™ +de™ et
0 v 0 v o
K" -k
—v 0 —v 0
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where c,, c,, d;and d, are the amplitudes of the four transmissions. u, and v, are the
E+¢
2 2
JE+af +ja

electron-like and hole-like quasiparticle amplitudes and are defined as u, =

A
and v, = k

JE+&f +[af

k in normal state. The relation between E, & and A, (6) is

E, =& +45(0) (4)

Since the energy range of interest is in order of meV, which is the order of the maximum

. E is the quasiparticle energy and &, is the electron energy of state

superconducting gap and is usually smaller than the Fermi energy of the superconductor, so the

approximation k* =k~ =k, cos@ is used. Also, 8, =7z-6,..

In article, 2 cases of different Fermi levels of the 2DEG are considered: (1) above the
crossing of the two branches and (2) at the crossing. Also, the effect of the ratio of the effective
mass on the conductance spectrum will not be considered. The ratio will be set to 10 throughout

the article.
I1l. RESULTS AND DISSCUSSION

The conductance spectrum of 2DEG/D junction is dependent on the orientation of the
junction as that of metal/D junction [11]. In all the following plots the conductance spectra is

normalized by the conductance at eV = 0.02E. . In the case where the Fermi level is located above

the crossing, Fig. 1 shows the tunneling conductance spectra of {100} junction (« =0). Unlike
metal/D junction, there occurs a feature at the voltage less than the maximum gap of the d-wave
superconductor. The position of this feature depends on the magnitude of the RSOC. In fact, it
moves towards the peak at the maximum gap as the strength of RSOC is increased. This feature is
not robust against the potential barrier, i.e., it gets smeared out as the potential barrier is larger.
This feature also exists in the conductance spectrum of the junction small with non-zero « (see
Figs. 2(b) and 3). Its position moves toward zero energy as « is increased (see Fig. 3). The shape
of this feature is different from that of 2DEG/S junction due to the dependence on wave vector of

the d-wave superconducting gap which different from that of s-wave superconductor.

4
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2DEG/D junction case 1: r, = 10, z=0,0a=0

— q,=0
—- g,=01k,

l = g, =02k, |
- q, =03k,

Normalized conductance

L 1 L . | L
1] 0.005 0.01 0.015 0.02

2DEG/D junctioncase 1 11, =10,2=03, =0

—_ = 0
—= =01k,

l s, = 0.2k,
15 e y=03k

b)

Normalized conductance

0 0005 0.01 nms 0oz

eVIE,

Il
=]

2DEG/D junction case 1 : ro= 10, z=2,

2 T T T T T T

Normalized conductance

L n 1 1 g
0 0.005 0.01 0015 0.02

Fig. 1 The conductance spectra of 2DEG/D junction with various q, where ¢ =0, r, =10 (8).z =

0, (b) z=0.3 (c) z = 2. The arrows indicate the feature at eV< A
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2DEG/D junction case 1: 1 =10, g, = 0.3k, «=0

2 T T T
L z=0 _
-==-2=03
''''' z=05
P e gl

Normalized conductance

: | : | .
% 0.005 0.01 0.015 0.02
eVIE,
2DEG/D junction casel:r_ =10, q,=0.3k_, . =71/16

m 0 F
2 T T T ‘
i z=0 1
18 -—— 2=03 .
-= 2=053
128 C—— = Z:l I

Mormalized eonductance

| 1 | 1 |
0 0.005 0.01 0.015 0.02

0.6 :

eVIE,

Fig. 2 The conductance spectra of 2DEG/D junction with various z,, r, =10 (a). =0

-
(0) a= 7.
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2DEG/D junction case 1 : ro= 10, g, = 03 kF z=0

draft

2 : : ‘

1.8 -—- o=n/l6

B oo=712
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\
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Fig. 3 The conductance spectra of 2DEG/D junction with various« , z =0, r, =10 and

Qo = 0.3k

As shown in Fig. 4, the potential barrier decreases the normalized conductance at the bias

voltage below the maximum gap similar to that in the spectrum of M/D junction.

2DEG/D junction casel:r _=10,q,=0.1k, 2DEG/D junction casel: r =10, g, =04k, 0=0

Normalized conductance

MNormalized conductance

054 o

0 1 | 1 )
] 0.005 om 0.015 0.02 0

0.005 0.01 0015 0.02

eViE,
ev/e, '

Fig. 4 The conductance spectra of 2DEG/D junction with various z =0, 0.3,1and 2, « =0, rn

=10 (a) q, =0.1k-. (b) g, =0.4k..
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In the spectrum of junctions with « away from zero, there occurs a zero-bias
conductance peak (ZBCP), which is the signature of the surface bound states of the d-wave

superconductor. Fig. 5 shows the plots of normalized conductance vs bias voltage of the {110}
(a= %) junction with various values of RSOC strength (qo). It is found that in the Andreev limit

Qo enhances the height but decreases the width of ZBCP (Fig. 5(a)). In the tunneling limit, qo
reduces the height of the peak but does not affect its width (Fig. 5(b)). Fig. 6 contains the plot of
normalized conductance for different value of potential barrier. It is found that the height of
ZBCP is increased with z, whereas its width is decreased for small go. When qo is big, the

potential barrier does not affect the width of ZBCP.

The effect of the RSOC and the potential barrier on ZBCP in the conductance spectrum

of junction with « :% is the same as in that of {110} junction (see Figs. 7 and 8). There is a

peak occurring at eV = A, cos2«a , where :% as also seen in M/D junction [12].
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2DEG/D junction case 1 : 1 = 10, z= 0,00 = /4
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3 —_ qD--O ]
e q0=(.)‘]k}7
§ q0=9'2kF
--- q,=03k,

Normalized conductance

0.015 0.02

Moroalized conductance

Fig. 5 The conductance spectra with various RSOC, « :%, (@ z =0 (b). z= 2. The inset

is the close up plot of the conductance spectra near eV =0
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2DEG/D junction casel: r_ =10, q, = 0.1k, o = /4
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Fig. 6 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1 and 2,

a:%, rm =10 (a) g, = 0.1k, . (b) q, = 0.4k .
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2DEG/D junction case 1 :r_=10,z=0, a =7/8

Normalized conductance
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(b)

Fig. 7 The conductance spectra with various RSOC, «a = % (@ z=0(b). z=2. The arrows

indicate the feature at eV = A, cos2« . The inset is the close up plot of the conductance spectra

neareV =0
11
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2DEG/D junction casel: r_ =10, q, = 0.1k, o =7/8
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Fig. 8 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1 and 2,

a =% , 'm=10 (a) g, =0.1k:. (b) g, =0.4k.. The inset is the close up plot of the conductance

spectra near eV =0
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In the case where the Fermi level lies at the crossing, for the {100} junction, in the
Andreev limit the normalized conductance at zero bias voltage is decreased with g, (see Fig. 9(a)).
In the tunneling limit, the conductance at zero voltage is increased with qo and then later is
decreased with qo (see Fig. 9(b)). Fig. 10 contains the plots of normalized conductance for
different values of potential barrier for a fixed qo. It is found that for small qo potential barrier

suppresses the conductance at zero voltage, while for big qo the potential barrier can enhance it.

The conductance spectra for different values of qo of junctions with o =% and « =%

are shown in Figs. 11 and 12. In the Andreev limit, the effect of go on ZBCP is the same as in the
previous case where Eg is located above the crossing, that is, it enhances the height of ZBCP.
However, in the tunneling limit, the increase in g can cause the height of ZBCP to decrease and

after a critical value of qp the height start to increase.

Figs. 13 and 14 contain the plots of conductance spectra of the junction with « :% and

a =% for different values of z. It is found in junction with both orientations that as the potential

barrier is increased, the height of ZBCP is increased for small qo, while for big qo the height of
ZBCP is almost unchanged.

13
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2DEG/D junctioncase 2 :r,_=10,z=0,x=0
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Fig. 9 The conductance spectra with various RSOC,a=0,(a)z=0(b).z=1
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2DEG/D junction case2: ro= 10, q,= O.H{F, a=0
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Fig. 10 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1 and 2,
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a=0,rn=10 (a)q, =0.1k-. (b) q, =0.4k.
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2DEG/D junction case 2 : r = 10,z=1, =m/4
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Fig. 11 The conductance spectra with various RSOC, « = % @z=0{m)z=1 (c)z=2
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Fig. 12 The conductance spectra with various RSOC, « :%, (@z=0(m)z=1(c)z=2
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2DEG/D junction case 2 : r = 10, q,= O.lkF, o =74
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Fig. 13 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1 and 2,
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2DEG/D junction case2: r = 10, q, = 0.1k, & =7/8
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Fig. 14 The conductance spectra of 2DEG/D junction with various z =0, 0.5, 1 and 2,

T

a=— =0, =10 (a)g,=0.1k-. (b) q,=0.4k. The inset is the close up plot of the

conductance spectra near eV =0
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IV CONCLUSIONS

The tunneling conductance spectra of 2DEG/D junction show strong dependence on
junction orientation. In junction with {100} orientation, a peak near the maximum gap of the
d-wave superconductor is present in the conductance spectra. In junction away from {100}, there
occurs a ZBCP, which is the signature of the surface bound states of d-wave superconductor [10,
11]. It is found that the effects of RSOC strength and potential barrier on the tunneling
conductance are different for different Fermi levels of the 2DEG.

When the Fermi level lies above the crossing of the two branches, there occurs a peak at
finite bias voltage but less than the maximum gap in {100} junction. The position of this feature
depends on the magnitude of the RSOC. However, this feature is not robust against the barrier
potential, i. e. it disappear when the barrier potential is in the tunneling limit. The normalized

conductance at the bias voltage below the maximum gap is decreased by the potential barrier. In
the junction with « :% and « :%, RSOC enhance the height but decrease the width of ZBCP

in Andreev limit. In the tunneling limit, RSOC reduce the height of the peak but does not affect
its width. It is found that the height of ZBCP is increased with the barrier potential, whereas its
width is decreased for small RSOC. When RSOC is big, the barrier potential does not affect the
width of ZBCP.

In the case where the Fermi level of the 2DEG lies at the crossing, for the {100}
junction, the normalized conductance at zero bias voltage is decreased with RSOC in the
Andreev limit. In the tunneling limit, the conductance at zero bias voltage is increased with
RSOC and then later is decreased with RSOC. It is found that for small RSOC, potential barrier

suppress the conductance at zero bias voltage, while for big RSOC, the potential barrier can
enhance it. In the junction with « =% and « =%, the effect of RSOC on ZBCP in Andreev

limit is the same as in the case where Fermi level lies above the crossing, that is, it enhances the
height of ZBCP. However, in the tunneling limit, the increase in RSOC strength can cause the

height of ZBCP to decrease and after a critical value of RSOC the height start to increase. It is

found in the junction with both « :% and « :% orientations that the barrier potential increases

20
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the height of ZBCP for small RSOC, while for RSOC is big the height of ZBCP is almost not
affected.
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I. INTRODUCTION

YBCO(YBayCu3O7_s) is one of the high-T. cuprate materials which have startled con-
densed matter physicists for years[l]. There has been a question of what mechanisms make
these materials have very high transition temperatures to the superconducting states and
are responsible for their superconducting properties. It is well-known that in conventional
superconductors isotropic s-wave pairing of electrons gives rise to superconductivity. How-
ever, in high-T,. materials because of their complicated crystal structures, the situation is
more subtle. There are a number of experimental results suggesting that d-wave pairing
occurs in high-T, superconductors. It has been challenging to investigate the symmetry of
the superconducting state both theoretically and experimentally.

The Josephson effect, one of the distinctive phenomena occurring in superconductors, can
help study the symmetry of the order parameter. Without the aid of microscopic theories,
the Josephson effect can be understood by the Ginzburg-Landau theory[2]. According to
this theory, see for example in Ref. [3-5], the order parameter symmetry of a supercon-
ducting system determines the Josephson tunneling. From a study of Josephson tunneling
experiments, it has been concluded that the order parameter of YBCO can be thought of
as a combination of d,2_,2 and s— wave components[5, 6]. To reach this conclusion, it is
necessary to investigate the free energy of the system.

As will be discussed in Section II, the crystal symmetry of YBCO plays an important role
in identifying the Ginzburg-Landau free energy[7]. The crystal structure of superconducting
YBCO is orthorhombic, but since the two basis vectors @ and b defining the basal plane
are orthogonal and have almost the same magnitude, the symmetry of the order parameter
is often described in terms of the symmetry of a tetragonal system. Furthermore, YBCO
crystals are often twinned. Hence, this report will discuss the free energy of tetragonal and
orthorhombic systems, and of orthorhombic systems with twins.

After the discussion of the free energy, in Section III the expression for the Josephson
current density across the junction between two YBCO crystals will be examined, followed
by the Josephson tunneling through an asymmetric 45° grain boundary in a YBCO film. In
several experiments, an anomalous dependence on an applied magnetic field of the critical
current across the grain boundary has been observed|8, 9]. This anomalous dependence can

be described by a model based on the idea of an s— and d— wave combination of the order



parameter and the idea of twinning. This model will be presented in Section III B. Finally,

the conclusion will be summarized in Section IV.

II. GINZBURG-LANDAU FREE ENERGY AND ORDER PARAMETER SYM-
METRY

The Ginzburg-Landau theory, although phenomenological, is very successful in describing
superconductivity, at least on macroscopic scales. This theory is based on the Landau theory
of second-order phase transitions. The transition from the normal to the superconducting
state is a phase transition of this kind. According to the Landau theory, a symmetry of a
system is spontaneously broken on the way across its transition point. The system can be
characterized by an order parameter, ¢;, which is zero in the normal state and nonzero in
the superconducting state. In a conventional superconductor, it is gauge symmetry which
is broken below the transition point. In an unconventional system, in addition to gauge
symmetry, some other symmetries such as point group operations, lattice group operations,
and spin rotation symmetries may be broken|[7].

The main starting point of the Ginzburg-Landau theory of superconductivity is the so-
called Ginzburg-Landau free energy. When dealing with the free energy of a superconducting
system, there are three symmetry groups which are necessarily considered. The first one is
U(1), the group of global gauge transformations which transform 1; — €*®¢;. The second
one is 7', the group of time-reversal transformations ¢; — 7. The last one is Gy, the group
of the crystal symmetry of the system. If the superconducting state does not break the lattice
translation symmetry, the group Gy becomes the point group of the crystal alone[7], and the
order parameter will then transform as one of the irreducible representations (or symmetry
types) of that point group. Each irreducible representation of the point group corresponds
to a basis function in real space with the same transformation properties. In addition, the
number of complex components of the order parameter is given by the dimensionality of the
irreducible representation to which the order parameter belongs. However, under the group
G, G =GyxU(1) x T, no matter how the order parameter transforms, the free energy must
be invariant.

From the microscopic theory of the condensation of Cooper pairs, there are two possible

spin pairing states, namely singlet and triplet. Owing to strong spin-orbit coupling, for



singlet states only the even parity irreducible representations whereas for triplet states only

the odd parity irreducible representations occur|7].

A. Orthorhombic and Tetragonal Systems

YBCO is an orthorhombic but nearly tetragonal crystal, believed to have a singlet super-
conducting state[11]. Therefore, in this section the order parameters and the free energies
of orthorhombic and tetragonal systems with singlet pairing will be discussed.

From the character table for an orthorhombic system in Table 1(a), the orthorhombic
group has only one-dimensional irreducible representations. Thus, the order parameter of
this system has only one complex component. Since only even parity irreducible representa-
tions can occur in a strong spin-orbit coupling system with singlet pairing states, the order

parameter should belong to one of the following representations: A4, Byg4, By, or Bay.



TABLE 1 Character tables for (a) the Dsyy, point group and (b) the Dy, point group.

Dy, basis Representation E C5 CY Cy i iCj iCY iC3

uz? + vy? Ay, 111 11 1 1 1
Ty By, 1 1-1-11 1 -1 -1
Tz By, 1-1 1-11 -1 1 -1
Yz Bs, 1-1-1 11 -1 -1 1
(a)
TYZ Aqy 1 11 11 -1 -1 -1
z By, 1 1-1-1-1 -1 1 1
y B, 1-1 1-1-1 1 -1 1
T Bs, 1-1-1 1-1 1 1 -1
Dy, basis  Representation F Cy 2Cy 2C% 2CY i iCy 2iCy 2iCY 2iCY
z? + Ay 11 1 1 11 1 1 1 1
ry(z? — y?) Ay 11 1 -1 -11 1 1 -1 -1
2% — 2 By, 11 -1 1 -11 1 -1 1 -1
Ty By, 11 -1 -1 11 1 -1 -1 1
(b) (xz,y2) E, 22 0 0 02 -2 0 0 0
ryz(a? — y?) Aty 11t 1 1 1-1 -1 -1 -1 -1
z Agy 11 1 -1 -1-1 -1 -1 1 1
TYZ By, 11 -1 1 -1-1 -1 1 -1 1
2(2? —3?) B 11 -1 -1 1-1 -1 1 1 -1
(z,y) E, 22 0 0 02 2 0 0 0




Let 1) denote the order parameter. According to Table 1(a), if, for example, 1) belongs to
Ayy, ¥ will transform under the Dy, point group operations like the basis uz? + vy?, where
x, y are the coordinate axes in the basal plane and u, v are arbitrary constants.

Because the free energy must be invariant under overall gauge transformations, time
reversal, and the D, point group operations, the free energy density can be expanded in

terms of ¢ (to fourth order) and its derivatives as
2

h
F() = ol + Bl + Ko| Dot [P + Ky |Dyoo P + KDy + o (1)
where D, = —iha% + le—:'Aq, (g =z, y, or z) and h is a magnetic field (h = V x A).
Table 1(b) shows the character table for the tetragonal point group Dy,. In this case,
there are two possibilities for the number of complex components of the order parameter:
one and two. Again, only even parity irreducible representations are of interest. If the order

parameter transforms like uz? +vy?, zy(z? —y?), 2% — y?, or xy under the Dy point group,

the free energy density has the form:
2

h
F(§) = ol + Bl + Koy [ Dop® + [ Dy ] + K| D24 + o= (2)

according to its invariance under overall gauge transformations, time reversal, and the Dy,
point group operations.

The free energy is different, when the order parameter transforms like the F, representa-
tion basis under the Dy, point group operations. Let (1)1, 1) represent the order parameter

transforming like (zz,yz). Then, the free energy density of the system becomes

W, 2) = alln? + [of’] + Bi(Wi02)? + c.c] + Baln [Pihal* + Bs[|tn|* + [1ha]']
+ Koy | Dathr|* + | Dyto]?] + Kyl Dytr | + | Dyth]’]

FE[|D.n |* + | Dathol?] + K, [(Dyth)* (Dyio) + c.c]
2

L (D) (Do) + ] + o )

according to its invariance under overall gauge transformations, time reversal, and the Dy,

point group operations.

B. Symmetry Type of YBCO Order Parameter

The YBCO crystal structure has orthorhombic symmetry. As discussed in the previ-

ous section, under the orthorhombic point group operations, the order parameter of an



orthorhombic singlet state transforms as one of the following basis functions representing
the first four irreducible representations of the group : uz? + vy?, vy, zz, yz.

When the Josephson effect between YBCO and a conventional superconductor, such
as Pb, is considered, it can be determined to which irreducible representation the YBCO
order parameter belongs[5]. In experiments on the Josephson junction between YBCO and
a conventional superconductor[12-14], nonzero Josephson currents along all three principal
axes of YBCO were observed. Assuming the Josephson current is determined by the bilinear
terms of the interface free energy, it can be concluded[5] that the YBCO order parameter
transforms like the function uz? 4+ vy?. In other words, the YBCO order parameter belongs

to the Aj, representation. Since uz?® 4+ vy? can be written as s(a? + y?) + d(z? — y?), where

s = 2 and d = %52, the YBCO order parameter can be considered a sum of s— and
dy2_,2—wave components. Note that in this way the orthorhombic symmetry type of the
order parameter is expressed in terms of representations of the tetragonal point group.

Let v, and 1, be the s— and d—wave components, respectively and v, =
1) |€¥(Pat0sa) ahy = |ahg|e’®t, where ¢4 is the phase of 1)4; and ¢y is the relative phase between

s and 1. From Ref.[15], the YBCO free energy has the form :

1 1
f(ws>¢d) = Ozs|¢5’2 + ad’wd‘z + O‘(wswz + C'C') + §ﬁswj8|4 + §ﬁd|wd’4
+Ba| s P [0al* + (Bilvos|* + Baltal®) (W5t + c.c.)

h2
FOE 4 ee) -5 SN (D) (Dath) + 5 ()
a  A\p

(0%
UOW

where o € x,y,z and \,u € d,s.

C. Free Energy Density of Twinned Crystal

Twinning is a defect which often occurs in YBCO and other orthorhombic crystals. The
sizes of twin domains are in the range of 50 - 300 nm[16]. A twin boundary between any
two twins is a plane of reflection symmetry of the underlying crystal as depicted in Fig. 1.
In a YBCO crystal, there are two possible twin orientations, normal to the [110] and [110]

directions.



ot | Do

Twin boundary
FIG. 1: A twin boundary acts as a reflection plane.

From Eq.(4), for a spatially uniform order parameter, the Ginzburg-Landau free energy

for each twin orientation in the absence of a magnetic field is given by[6]

FWstha) = aulths]® + aaltra)® + (—1) a(psp) + c.c.) + %&I%I‘l + %ﬁd|@/}d|4
84| P|val® + (1) (Ba|tbs]? + Boltbal®) (s + c.c.)
+Bo (V2T + c.c.) (5)

where € € 1,2 represents one of the two twin orientations. By minimizing, the free energy
with respect to %, it is found that i), can be written in terms of ¥ : 1, = (—1)E+1a%wd[6].

Therefore, the interaction energy between twin 1 and 2 can be written as

fi2 = B(¥jva + c.c.). (6)

If B > 0, then ¥g = Y49, 51 = —14, and the twin boundary is called odd. If B < 0,
then g1 = —a2, ¥s1 = s, and the twin boundary is called even[6]. However, from the
interpretation of Josephson tunneling experiments on twinned crystals, the superconducting

state is seen to have odd symmetry[5, 6].

III. JOSEPHSON TUNNELING BETWEEN TWO YBCO CRYSTALS

The Ginzburg-Landau free energy density of an orthorhombic superconducting system
presented in the previous section is now used to derive the Josephson effect between two

YBCO crystals, as depicted in Fig. 2.



FIG. 2: The geometry of the Josephson junction between two YBCO crystals.
A. Josephson Current Density Between Two Orthorhombic Systems

From Eq.(4), it is seen that in an orthorhombic system like YBCO the free energy density,
f, can be separated into three parts: the bulk terms f, = a|ts]? + ag|va)® + a(sh +c.c.) +
50 [0s| 5. 8alal * Baltos [P [al* + (B s>+ Balhal*) (b A-c.c.) +Bo (297" +c.c.), the gradient
terms fyqq = %Za ZML #ﬂ(Daw,\)*(Dawu), and the field term f;, = g. By minimizing
the free energy density with respect to A, and letting 1 and 2 denote the left and the
right sides of the junction, respectively, the expression for the current in the a-direction is

obtained as

. afgradl
For
fgradl Z Z aw)\l)*<Daw,u1>7 (8)
o g MYy 1
the current on the left side becomes
1 |e*|
o= =3 3 04 (Dathr) + . )
M ALl

When considering the Josephson tunneling, the interface free energy per unit area, fr, must

be taken into account. In general, the interface free energy per unit area is

=) Gan(d) (W5 tn + cc), (10)

A1,A2

where G\ x2(n) is real and depends on the unit vector normal to the junction, n. Therefore,

minimizing fgrqq1 + fr with respect to 93, yields the boundary condition

za:z ann Na(Data1) +ZGA1A2 Jthne = 0. (11)




From Egs.(9) and(11), the expression for the current in the direction of 7 is

|6f:| Z G () (13 ¥2 + c.c.). (12)

A1,A2

A-j=—

Let vy; = |¢)\j‘€(¢dj+¢>‘jdj), where ¢q,q, = 0, P54, = ¢sq Which is the relative phase between
s— and d,2_,2— components, and j € 1,2. Substituting v, from the definition into Eqs.(10)
and (12), the relation between the current and the interface free energy is obtained as

D, o O

27Tcn = 3_gz5’ (1?))

where &5 = ‘Z—C‘ =2.07x 1077 G and ¢ = ¢y, — dq, -

B. Josephson Current Across Asymmetric 45 Grain Boundary

Generally, Eq.(13) can be applied to any Josephson junction where ¢ is the phase differ-
ence between the order parameters of both sides of the junction[2, 5]. In the case that both

superconductors are conventional (s-wave like), f; has the form

Po

fr= _2_7rcjc Cos ¢, (14>

where j. is the maximum current density flowing through the junction. In an external
magnetic field, the result for the maximum (or critical) current across the junction, I, as a
function of the external flux, ®, is[11]

=l (19
where Y and Z are the length and thickness of the junction. This gives the usual Fraunhofer
diffraction pattern as illustrated in Fig. 4(a). (See more details of the calculation of I. in
section I11B 2.)

In the case that both superconductors are not conventional, the result for the critical
current could be different. This report focuses only on the result for an asymmetric 45°
grain boundary in a YBCO film where the grain boundary acts as a barrier. Figs. 3(a) and
(b) depict the 45° grain boundary.

As mentioned earlier, the measured patterns of the critical current across the 45° grain

boundary as a function of a magnetic field are different from those of conventional systems,

see for example in Fig. 4(b). They have quite distinctive characteristics[8-10]:
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FIG. 3: An asymmetric 45° grain boundary. The diagram shows the two principal axes and d—wave

components on both sides of the junction.

1. they are, though anomalous, fairly symmetric,

2. they show oscillatory behaviors up to fluxes > 10®,,

3. the maximum I, can be obtained for h, # 0,

4. at h, = 0 the critical current may have any value between maximum and zero, and

5. the magnetic field rarely suppresses /. to zero.

A pattern of this sort implies that the pure s—wave model fails to explain the behaviour
in YBCO crystals, and so does the pure d—wave model as will be shown next. If the order
parameter was pure d—wave, the interface free energy per unit area of the grain boundary

would be
Jr= A(¢21¢d2 + C.c.) (16)

where A is constant. Under a rotation of 7 about the x-axis (see Fig. 3(b)), ¥55" = —t¢a
and Y5 = 142, but fr is expected to be invariant; hence, A is zero. This result means that

the currents across the junction would be also zero.

1. Josephson Current Density

As mentioned previously, the 45° grain boundary is a very special case, because the
Josephson critical current across the boundary is expected to vanish according to the pure
d—wave model. Now it will be shown that the nonzero critical current and its dependence on
an external field can be explained, using the idea of mixed s— and d— wave superconductivity

and the twinning effect.

11
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FIG. 4: The critical current across a junction of two conventional superconductors as a function of
magnetic flux is shown in (a), while in (b) an example of a measured pattern of I, across the 45°

grain boundary in a YBCO film vs an applied magnetic field H from Ref. 8 is shown.

Let 1 be the order parameter of YBCO, which is mixed s— and d— wave. Owing to the
odd symmetry of the twin boundaries, ¢ changes sign at each twin boundary[17]. In other
words, the phase of the order parameter changes by 7 at each twin boundary. Suppose there
is a system as in Fig. 5. To obtain the Josephson current density across the grain boundary
of the system, it is important to identify the interface free energy, which is not zero in this

case. The interface free energy per unit area of the system is

fr= —%jccosqﬁ ,O0<y<ry (17)
— 2 j.cos(¢p—m) ,rY <y<Y

12
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FIG. 5: shows a system which has two twins on one side and one twin on the other side.

where ¢ is the phase difference between ¢); and vy, and 0 < r < 1 (the definitions of )y, 11,
and 19 are shown in Fig. 5). Therefore, according to Eq.(13) the Josephson current density
is given by
i = Jesing 0<y<rY (18)
—Jesing ,rY <y <Y.

Generally, it is possible for both sides of the grain boundary to contain twins as shown in
Fig. 6(a). However, in the calculation of the interface free energy per unit area, the system
which has twins on both sides can be replaced by another with only one side having twins.
Fig. 6(b) illustrates the idea. Both systems in Fig. 6(b) have the same interface free energy
per unit area. Therefore, if a real system of an asymmetric 45° grain boundary containing
m total twins on both sides is replaced with an assumed system of n twins on one side and
one twin on the other, the interface free energies for both systems are the same and so is

the Josephson current density, which is given by

.

Jesing 0<y<nrY
—Jesing ,rY <y <rY
Je =1 Jesing ,rY <y <r3Y (19)

—Jesing ,r, 1Y <y<Y

where 0 < r; < 1 and r; < riqq.
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FIG. 6: (a) A 45° grain boundary system with both sides contains twins. (b) Two different systems
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of 45° grain boundary with twins. Both of them have the same interface free energy.

2. Critical Current as a Function of Applied Magnetic Flux

In an applied magnetic field, in the London approximation ¢ becomes[11]

¢ =0+ KY, (20)

where g is the phase difference between v, and v, kK = %’;(d + 2\)h, where d is the width
of the Josephson junction, A is the YBCO penetration depth, and h, is an applied field.

Therefore, the total current through the junction is equal to

1://%@@. (21)

Substituting j, from Eq.(19), the current yields

1= ]T[COS Yo + (—1)" cos(yo + KY) +2 D (=1 cos(yo + rixY)]. (22)

i=1
To find the critical current, maximize I with respect to 7. Using % = %, the expression
for I, is obtained

n—1

[(1+ (—1)" cos(2r®/Pg) + 2> _(—1)" cos(rim®/Py))

i=1

| JeZY
C I 2nd /D,
n—1

+((—1)"sin(27®/P) + 22(—1)isin(mc1>/q>o))2]% | . (23)

i=1
For each value of n with random sets of r;, several results from Eq.(23) are depicted in Fig.
7.

From the model, the same number of twins n, for different sets of r;, can lead to different
results as shown in the figure. It can be seen that the higher the number of twins, the less

the curve tends to fall as the external field is increased.
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n=4; rn= 0.1, r,= 0.3, rg= 0.8 n=_§, r= 0.125i,i=1,2,..,7
24(o¥2) 24(o¥2)
15 154

D/,

FIG. 7: shows some results of n = 1, 2, 4, and 8. Except n = 1, the results for a couple sets of r;

. . . P 21 .
for each n are shown. For each graph, the units of x-axis and y-axis are g and Y7 respectively.
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IV. CONCLUSION

The anomalous dependence on an applied magnetic field of the Josephson critical current
across an asymmetric 45° grain boundary in YBCO film can be described by a model based
on the Ginzburg-Landau theory of superconductivity and the twinning effect. The fact that
the order parameter symmetry of YBCO is orthorhombic and belongs to the A;, irreducible
representation leads to the conclusion that the YBCO superconducting state can be thought
of as a combination of s— and d,2_,2—wave components. Based on this conclusion, the free
energy density of a twinned system can be derived. Because of the odd symmetry of the
superconducting state under reflection in a twin boundary, the order parameter of a twinned
system changes sign at each twin boundary. From the interface free energy of the junction
between two twinned YBCO grains at 45°, the Josephson current density can be derived,
and from there the expression for the critical current across the junction as a function of an
applied magnetic flux can be obtained. It turns out that the pattern of the critical current
depends on the density and the size distribution of twins. The results show a quite good

qualitative agreement with experimental data.
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