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Buckling is an important failure mode of thin-walled structures subjected to 

compressive loading. Usually, plots of an applied compressive load versus a 

deformation parameter such as out-of-plane displacement or in-plane strains have 

been employed as a tool to identify the buckling load. In this study, a method utilizing 

the vibration correlation technique is introduced as an indirect method to determine a 

buckling load of rectangular thin plates. By comparing the governing equations of 

buckling and vibration problems, it is theoretically shown that square of the natural 

frequency of flexural vibration of plate is linearly varied with the applied in-plane 

load. Moreover, the natural frequency approaches zero when the applied compressive 

load approaches the buckling load of plate. Due to plate’s imperfections, several 

studies showed that out-of-plane displacement is typically observed as soon as the in-

plane compressive load is applied. To avoid the effects of premature out-of-plane 

deformation, it is proposed in this study that the buckling load be identified using the 

natural frequencies of plates under tensile loading. The buckling load is determined 

from an extrapolation of the vibration data to the in-plane load at which square of the 

natural frequency approaches zero. An experimental investigation using a custom-

made test frame was conducted to verify the accuracy of the proposed method. A set 

of specimens under a uniaxial loading condition was tested for natural frequencies 

using an impact test method. Aluminum and stainless steel specimens with CCCC, 

CCCF and CFCF boundary conditions were included in the experiment. The measured 

buckling load was determined from the plot of the square of a measured natural 

frequency versus an in-plane load.  The buckling loads from the measured vibration 

data match the numerical solutions very well. For specimens with well-defined 

boundary conditions, the average percentage difference between buckling loads from 

VCT and numerical solutions is -0.18 % with a standard deviation of 5.05 %. In 

conclusion, buckling load of rectangular thin plates can be experimentally identified 

with acceptable accuracy using the vibration data in the tensile loading region. This 

approach is very useful especially for structures with unknown or imperfect boundary 

conditions where analytical or numerical solutions to the problem are not available.  
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Executive Summary 

  

Buckling of thin-walled structures is one of the important topics in the field of 

structural engineering. Buckling problem of thin plates can be investigated using 

theoretical, numerical or experimental approaches. Usually, experimental study is 

conducted to validate theoretical or numerical solutions. Several studies reported a 

moderately high degree of discrepancy of experimental buckling loads compared with 

theoretical or numerical solutions. Imperfection of plate and boundary condition of the 

specimens are frequently mentioned as sources of the inconsistency. Additionally, 

techniques used to identify buckling load are also referred as a candidate source of 

discrepancy. In the experiment, the buckling load of plates can be identified using 

various kinds of plots; for example: 1) a plot of in-plane loads vs. out-of-plane 

displacement; 2) a plot of in-plane loads vs. end-shortening; and 3) a plot of in-plane 

loads vs. difference of surface strains. These static methods utilize the change of the 

slope of the curve in pre-buckling and post-buckling regions to identify buckling load. 

The difficulties of identifying the buckling load using a static test method is that there 

is a need to draw two lines in the pre-buckling and post-buckling regions to identify 

the buckling point. The obtained buckling load using these techniques depends on 

personal judgment, and could be a cause of error. So, there is a requirement to 

investigate an alternative method. In this study, vibration parameter of thin plate is 

utilized along with vibration correlation technique to determine buckling load and 

mode of thin plate. The project classifies into three mains sections; verifying the 

accuracy of vibration measurement, deriving the relationship between vibration and 

buckling behaviors, and verifying the derived relationship using experimental method. 
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In the first part, the similitude theory is employed to vibration of plate 

problems. This similitude theory is used to derive the scaling law which is used as a 

tool to verify the accuracy of the measured natural frequency. The scaling law is used 

because of the difficulty of setting the boundary condition of the test specimens such 

that they are similar to the theoretical boundary conditions. The experimental results 

showed that most of the experimental natural frequencies of the prototypes match 

those of from the scaling law. Uncertainties of the experiments in boundary condition 

and thickness are believed to be the sources of the discrepancy. Therefore, with a 

careful experimental setup, the measured natural frequency is efficiently accurate and 

reliable to use as a data for buckling load identification.   

The second part of the project is to derive the relationship between vibration 

and bucking behavior of plates. By considering the governing equations of the 

vibration and buckling problems, it is shown that square of the natural frequency of 

the loaded plate is linearly varied with the applied load. The natural frequency is 

increased with the tensile load and decrease with the compressive load. This 

relationship is determined without a need to solve the differential governing equations, 

so it is applicable for plates with any boundary conditions. It is also shown that the 

square of the nature frequency approaches zero when the in-plane load approaches the 

buckling load. The derived relationship is verified by theoretically solving the 

vibration and buckling problems of specimens with combinations of boundary 

conditions. The Ritz method is employed to determine natural frequency of the loaded 

plate and buckling load of plate. In the process, vibration mode shape and buckling 

mode are also obtained. From the study, the predicted buckling load and mode from 

the vibration data are corresponded to the theoretical solution very well.  
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In the final part of the project, experimental verification was performed on a 

custom-made compression test frame. The test frame is capable of applying a uniform 

tensile and compressive load to a rectangular specimen, and supporting the specimen 

with clamped and free boundary conditions. Specimen was loaded and tested for 

natural frequencies. Both aluminum and stainless steel specimen with CCCC, CCCF 

and CFCF boundary conditions are included in the specimen. The measured vibration 

data is plotted against the in-plane load to determine the buckling load and buckling 

mode. Square of the measured natural frequency is linearly varied with the applied 

load as expected. The experimental results show that all buckling modes obtained 

from VCT agree with numerical solutions very well, while most of the measured 

buckling loads conform to the numerical solutions. Buckling loads of CCCC stainless 

steel specimens were not well indicated using the proposed technique. The 

imperfection of boundary conditions of this group of specimens is believed to be a 

considerable factor in the high percentage difference between the measured and 

numerical buckling loads. If the experiments of stainless steel specimens with CCCC 

boundary condition are excluded, the average of the percent difference between 

measured buckling loads and numerical solutions is -0.18% with the standard 

deviation of 5.05%. The experimental study demonstrates the accuracy and reliability 

of using vibration data in the tensile-loading range to determine the buckling load. 

Boundary conditions of the specimen have a considerable effect on the precision of 

the measured buckling load. The proposed technique of identifying buckling load of 

plate has an advantage over the static methods for the fact that this method does not 

need human’s judgment to draw two lines in the pre- and post- buckling regions.  
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Chapter 1. Introduction 

 

 Buckling load is one of the important parameters which should be considered in 

the design of thin or slender structures subjected to compressive loading. Buckling 

behavior of several engineering structures such as columns, plates, frames, and shells has 

been continuously investigated in the past several decades. Among several types of 

structure, a thin plate is one of the most important types of structure used in engineering 

applications. Mainly, the stability problem of plate is investigated using theoretical, 

numerical and experimental approaches. The theoretical method is applicable to a limited 

type of problems where a closed-form solution is possible. For more complicated 

structures, the numerical methods such as a finite element method are required. Solutions 

from both theoretical and numerical methods are generally verified with the experimental 

results. Experimental method involves in a number of costly and time consuming 

processes, however, imperfections and complicated effects of the problem are naturally 

included. For an experimental study of buckling of plate, identification of the buckling 

point is an important process, since it directly affects the accuracy of the measurement. In 

the experiment, the buckling load of plates can be identified using various kinds of plots; 

for example: 1) a plot of in-plane loads vs. out-of-plane displacement; 2) a plot of in-

plane loads vs. end-shortening; and 3) a plot of in-plane loads vs. difference of surface 

strains. These methods which may be classified as static methods utilize the change of the 

slope of the curve in pre-buckling and post-buckling regions to identify buckling load. 

However, these approaches have a drawback for the fact that it is required to draw two 

lines in the pre- and post- buckling regions to get the buckling load. Drawing these lines 

might be a cause of error due to human bias. So, there is a need to explore an alternative 

method of buckling load identification.  
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In this study, the relationship between buckling and vibration behavior of thin 

plates is investigated. The relationship between applied in-plane load and the natural 

frequency of plates is derived from the differential governing equations of both problems. 

The derived relationship, which is applicable to thin plates with any boundary conditions, 

is numerically verified by simulating a plot of the derived relationship. Because of the 

premature curvature, which is usually detected even before the specimen has buckled, it is 

proposed in this study that the buckling load be determined from the vibration data of a 

plate subjected to tensile loading. A test frame, capable of applying tensile and 

compressive loading to a specimen, was prepared. A series of vibration tests was 

performed to determine the natural frequencies of the plates. The vibration data, along 

with the derived relationship, are used to predict the buckling load. Experimental 

buckling loads are compared to the numerical solutions to verify the proposed technique. 

In this study, numerical solutions is served as benchmark solutions, and determined using 

the Ritz method using beam functions as basis function.  

  In summary, objectives of this study may be itemized as follows: 

1. To derive the relationship between vibration and buckling of plate in order to use 

the vibration data to identify the buckling load 

2. To verify the accuracy of vibration measurement and determine the cause of error 

that might encounter during the experiment                   

3. To determine the buckling load of plate using vibration correlation technique 

using vibration data in the tensile loading range.  

In this report, literature reviews concerning buckling and vibration of thin plate, 

similitude concept, and vibration correlation technique used to identify buckling load are 

presented in chapter 2. The fundamental concepts of mechanics of composite plates are 

outlined in the next chapter. Chapter 4 presents a study on an accuracy of the vibration 
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measurement. Scaling law for vibration a thin plate problem used as a concept for 

vibration experiment is described. The experiment demonstrated accuracy of vibration 

measurement is outlined in the second half of the chapter. The next chapter presents the 

vibration correlation technique used to identify buckling load of plates. The relationship 

between vibration parameter and buckling parameter is derived and verified with the 

known solutions. This technique is employed in chapter 6 where experimental study is 

explained. Experimental setup, specimens and experimental procedures are described 

along with extensive experimental result. This report concludes in chapter 7 with some 

discussions and conclusions of the present study. The outputs of the project are also 

presented in the Appendix at the end of this report. 



Chapter 2. Literature Review 

 

 This chapter gives a review of previous studies on some topics related to this 

research project. The general buckling behaviors of thin plate are described in the first 

part of this chapter, including reviews of the studies available in the literature. Then, the 

similitude theory and scaling law for vibration problem are presented. Finally, the 

vibration correlation technique used in bucking problem is outlined and reviewed.  

 

2.1 Buckling of plate 

 Besides tensile or compression failures, buckling is another mode of failure that 

involves stability of structures. It usually happens in slender elements such as beams, 

columns, or plates. This study focuses on buckling of plates; so only plate structures are 

of interest herein. A panel subjected to uniaxial or biaxial compressive loading will 

buckle if compressive stress at any point is sufficiently high. A plate under compression-

tension biaxial loading may also buckle. Buckling phenomenon may even arise from 

more complicated loading conditions such as non-uniform tensile loading, shear loading, 

moisture, or exposure to elevated temperatures. 

 The buckling phenomenon can be described from a plot of the out-of-plane 

displacement at a specific point, usually at the point of maximum out-of-plane 

displacement, against in-plane load. In classical linear buckling theory, when in-plane 

load increases from zero, out-of-plane displacements are assured to remain zero until the 

critical load is reached. Buckling of plates can be investigated using analytical and 

numerical analysis. Analytical solution of the buckling of composite plates requires a 

solution of the governing equations. These equations are only solvable in a few simple 
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cases, such as a specially orthotropic rectangular plate with simply supported boundary 

conditions. A closed-form solution for a specially orthotropic plate, i.e. either 

unidirectional or a symmetric cross-ply panels, is thoroughly derived by Whitney [1]. 

Mode shape transitions are also graphically presented. Several studies on buckling of 

composite plates using the Ritz method are available. In 1986, Lagace et al. [2] employed 

the Ritz method to study the effect of mechanical couplings on buckling behavior. They 

concluded that those mechanical couplings, especially stretching-bending couplings, 

cause out-of-plane displacement prior to buckling in unsymmetric laminates. This 

phenomenon significantly reduces the critical buckling load. An experimental verification 

was also performed. The Ritz method was demonstrated, by Narita and Leissa [3], to be 

accurate for symmetric laminates if enough number of terms (more than 100 terms) were 

used. A double sine series was used to approximate the out-of-plane displacement. 

Convergence studies and contour plots of buckling mode shape were also presented. 

However, the in-plane displacements were ignored in the strain energy function. Similar 

approximate function and analysis method were used by Chai and Hoon [4] to study the 

buckling of generally laminated plates. The results agreed with the exact solution for 

symmetric crossply, antisymmetric crossply, and antisymmetric angle-ply. The effect of 

mechanical couplings, D16 and D26, on buckling load was shown to be an important factor 

in the analysis.  

There have been several experimental studies on buckling of composite plates 

using different measurement techniques appeared during the past two decades. Chai, 

Hoon, and Chin [5] experimentally confirmed the buckling behavior determined from the 

Ritz method using laser-based holography and strain gauges. Chai, Banks, and Rhodes [6] 

used a linear variable differential transformer (LVDT) to measure the out-of-plane 

deflection to study the buckling of simply supported plates under uniaxial loading. The 
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results correlated well with finite element solutions and other available studies [7, 8]. 

Discrepancies between -7% and 11% of experimentally determined buckling loads were 

reported. Another experimental method for monitoring out-of-plane displacement is the 

shadow moiré technique. This experiment method was used by Tuttle, Singhatanadgid, 

and Hinds [9] to observe the whole-field out-of-plane deflections of composite plates 

under tension-compression biaxial loading. Experimental buckling modes were well 

compared with predictions obtained numerically based on the Galerkin method. As 

expected, buckling loads increased as the transverse tensile loads were increased. Almost 

all of the previous studies indicated several difficulties in setting up the experimental 

conditions, such as loading conditions and boundary conditions, which are comparable to 

the conditions assumed in the analysis. These factors are the common sources of 

discrepancy between measurement and prediction. 

 

2.2 Similitude theory and scaling law 

The similitude theory has been applied to many problems in the field of structural 

engineering, including vibration and buckling problems of plates. Simitses [10] applied 

similitude transformation to the bending, buckling, and vibration of laminated plates. The 

derived scaling laws were successfully employed to the problem with appropriate 

similarity requirements between model and prototype systems. Rezaeepazhand et al. [11] 

demonstrated a procedure for deriving a scaling law for the frequency response of 

laminated plates. Both Simitses and Rezaeepazhand derived scaling laws from the closed-

form solutions of the problems. Alternatively, scaling laws can be derived directly from 

the governing equation of the problems. In references [12-14], the authors derived the 

scaling laws for the vibration and buckling behaviour of laminated rectangular plates. In 

those studies, similitude transformation was applied to the governing equations of the 
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problems directly. Besides the scaling law, the similarity requirements were also 

obtained. An advantage of this approach is that a solution of the governing equations is 

not required. The obtained scaling laws were verified with the theoretical solution and 

found to be exact for complete similitude cases. Partial similitude cases were also 

investigated and recommended. It was also found that the scaling laws were independent 

of boundary conditions. This implies that, for a problem with complicated boundary 

conditions, the behavior of the prototype can be predicted from the experimental results 

of the corresponding scaled model given that the boundary conditions of both systems are 

identical. This concept is especially beneficial for problems where the boundary 

conditions cannot be numerically modeled in the numerical solutions but can be built in 

the scaled model. 

In addition to a simple-supported rectangular thin plate, the similitude theory was 

moreover applied to the elastically restrained flat plates subjected to dynamic loads by 

Wu [15]. The author showed that the geometric, kinematic and dynamic similarities must 

be satisfied to assure the complete similitude. A similar concept was also applied to the 

dynamic analysis of rectangular plates under a moving load line [16]. Both complete and 

partial similitude cases were presented. An agreement between the theoretical vibration 

response of the full-scale prototype and the prediction from the solution of the scale 

model was obtained. Wu et al. [17] employed the similitude concept with a more complex 

structure where a scale model and the scaling law were utilized to determine the vibration 

characteristics of a full-size crane structure. 

2.3 Vibration correlation technique 

 Buckling load is one of the important parameters which should be 

considered in the design of thin or slender structures subjected to compressive loading. 

Buckling behavior of several engineering structures such as columns, plates, frames, and 
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shells has been continuously investigated in the past several decades. Among several 

types of structure, a thin plate is one of the most important types of structure used in 

engineering applications. Mainly, the stability problem of plate is investigated using 

theoretical, numerical and experimental approaches. The theoretical method is applicable 

to a limited type of problems where a closed-form solution is possible. For more 

complicated structures, the numerical methods such as a finite element method are 

required. Solutions from both theoretical and numerical methods are generally verified 

with the experimental results. Experimental method involves in a number of costly and 

time consuming processes, however, imperfections and complicated effects of the 

problem are naturally included. For an experimental study of buckling of plate, 

identification of the buckling point is an important process, since it directly affects the 

accuracy of the measurement. In the experiment, the buckling load of plates can be 

identified using various kinds of plots; for example: 1) a plot of in-plane loads vs. out-of-

plane displacement; 2) a plot of in-plane loads vs. end-shortening; and 3) a plot of in-

plane loads vs. difference of surface strains. These methods which may be classified as 

static methods utilize the change of the slope of the curve in pre-buckling and post-

buckling regions to identify buckling load. The plots mentioned above and other static 

methods are properly summarized in Ref. [18].  There are several studies employed the 

static methods to identify the buckling load of plates. Chai et al.[19] verified the 

theoretical buckling load of composite plates using the experimental method. Buckling 

load was determined from the intersection of the tangents drawn in the pre-buckling and 

post-buckling slopes of the load versus membrane strain curve. The discrepancies 

between the experimental and theoretical solutions between -7 % and +11 % were 

reported. Tuttle et al. [20] determined buckling loads of composite panels from the plots 

of applied in-plane load vs. out-of-plane displacement, and compared the experimental 
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results to numerical predictions obtained using a Galerkin method. Although the average 

percentage error between the measured and predicted buckling loads is low, the standard 

deviation of the percentage error is as high as 15%. The difficulties of identifying the 

buckling load using a static test method were documented. In particular, drawing two 

lines in the pre-buckling and post-buckling regions to identify the buckling point 

depended on personal judgment, and could be a cause of error. To use the experimental 

result as a benchmark solution, the method used to identify buckling load must be 

accurate and reliable. 

There is a need for an alternative approach to experimentally identify the buckling 

load of a plate. In this paper, the vibration correlation technique (VCT) is explored and 

modified to determine buckling load of a plate. The VCT is a nondestructive testing 

utilizing the measured vibration data. This concept has been applied to buckling problems 

in the past with a variety of amount of success.  Lurie and Monica [21] showed that the 

square of the frequency of the lateral vibration of a thin plate with simple supports on all 

edges is linearly related to the end load. They also conducted some experiments on 

elastically restrained columns, rigid-joint trusses, and thin flat plates. The authors 

reported that VCT was successfully employed to predict the buckling load of only 

columns and trusses. For flat plates, because of the initial curvature, the buckling load 

cannot be predicted by the proposed method. However, Chailleux et al. [22] later showed 

that with a carefully designed experimental setting, VCT can be used to determine the 

buckling load with satisfactory accuracy. The experimental dynamical curved is linear in 

the low load region, such that it is possible to extrapolate the data to obtain the buckling 

load. Segall and Springer [23] proposed a dynamic method to determine linear buckling 

loads of elastic rectangular plates. With an integral equation representation of the elastic 

stability, the proposed technique does not require the application of an in-plane load. A 
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few studies [24-26] concerning the use of vibration data to investigate buckling behavior 

can be found in the literature.   

 

  



Chapter 3. Mechanics of composite material 

 

 In this chapter, fundamental principles of mechanics of composite materials are 

summarized. The basic equations of theory of composite plate are reviewed. Then, the 

governing equations of buckling and vibration problems are derived.  

3.1 Mechanic of composite plate 

 Fig. 3.1 shows the x-y-z coordinate system used in developing the laminates 

anisotropic plate. The midplane of the plate lies on the x-y plane of the coordinate system. 

The displacements at any points in x, y, and z directions, are u, v, w respectively. The 

following assumptions are made: 

1)  The plate is composed of orthotropic laminae bonded together with arbitrary 

directions of orthotropic axes measured with respect to x-y plane. 

2)  The thickness of the plate, h is much smaller than the length and width of the plate. 

3)  The displacements u, v, and w are small compared to the thickness. 

4)  The in-plane strains x, y, and xy are small compared to unity. 

5)  The transverse normal strain, z is negligible. 

6)  The transverse shear strains xz, and yz are negligible. 

7)  Tangential displacements u, and v are linear function of z. 

8)  Each orthotropic lamina obeys Hooke’s law. 

9)  The plate thickness is constant. 

10) There is no shear stress, xz, and yz on the surface z = h/2 

 

z
 x y 

 

Fig 3.1 Coordinate system for laminated plate.  
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According to assumption 5 and 7, the displacements at an arbitrary point are 

described as  

            (3.1) 
u(x,y,z) = u (x,y)+ zF (x,y)

v(x,y,z) = v (x,y)+ zF (x,y)

w(x,y,z) = w (x,y)

o

o

o

1

2

where are the in-plane displacements of the mid-plane in x and y direction, 

respectively. is the transverse displacement of the mid-plane which is independent of 

coordinate z, as assumed in assumption 5. 

u voand

wo

o

 Using strain-displacement relationship, it can be shown that; 
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where  are the strains at the mid-plane which can be written as;   x
o

y
o

xy
o, and
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            (3.3) 

  x y x, ,and y  are the curvatures of the mid-plane surface which can be written as; 
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            (3.4) 

From Eq.(3.2) and the lamina stress-strain relationship, stresses in the laminated plate can 

be written as 
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where  Q
k
is the property of the kth lamina which is depended on the orientation of the 

orthotropic axes of each ply.  

 The stresses in laminated plate are related to the applied forces and moments as; 
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where ( , , )  x y xy k
 = stresses in the kth lamina 

  = applied forces per unit length.  N N Nx y xy, ,

 = applied moments per unit length.  M M Mx y xy, ,

 h = laminate thickness 

 

 Substitute stresses from Eq.(3.5) into Eq.(3.6), perform the integration and rewrite 

in form of matrix, 

           (3.7) 
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 Eq.(3.7), a so-called “constitutive equation” relates the applied forces and 

moments to the strains and curvatures of laminated plate. 
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3.2 The Buckling of Plate Governing Equations 

 The governing equations for buckling of a plate under in-plane loading can be 

derived by considering the infinitesimal element of plate as shown in Fig. 3.2. Fig. 3.2(a) 

shows the in-plane stress resultants, and the moment resultants. The transverse shear 

stress resultants are shown in Fig. 3.2(b). Since the buckled plate is under a static 

condition, the summation of forces along x and y direction must be equal to zero and can 

be written as;  

 





N

x

N

y
x xy  0            (3.8) 
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 Under buckling conditions, the in-plane stress resultants, Nx, Ny, and Nxy, will not 

lie on the x-y plane as shown in Fig. 3.2(a). Thus, the summation of forces in the z 

direction has to include the effects of these in-plane stress rotations. By summing of 

forces in the z direction and summing moments about the x and y axes, it can be shown 

that; 
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Eqs.(3.8)-(3.10) are the equations of motion in term of stress and moment 

resultants. The equations of motion in term of displacements which are more convenient 

to implement in further derivation can be determined by substituting the constitutive 

equation, Eq.(3.7), and strain displacement relations, Eq.(3.3), into the equations of 

motion in term of stress and moment resultants. Eq.(3.8)-(3.10) become; 
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 In the case of a simply supported, symmetric laminate (Bij = 0) plate, the out-of-

plane displacement, w disappears in the first two equations of motion. Only the last 

equation which contains the w term will be considered in the buckling analysis. If only in-

plane loads, Nx and Ny, are applied, Eq.(3.13) becomes; 
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 More specifically, the D16 and term D26 terms are zero for a specially orthotropic 

plate. The governing equation reduces to; 
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(b)  
Fig 3.2 Stress and moment resultants on the edges of the rectangular plate. 

 
 

3.3 Buckling of a Specially Orthotropic Plate 

 Buckling of a specially orthotropic plate is the simplest case compared to other 

kinds of composite plates. Uniform tension Ny and compression Nx are applied to a 

specially orthotropic plate as shown in Fig. 3.3. The behavior of this plate is governed by 

Eq. (3.15). For a simply supported plate, the boundary conditions can be written as; 
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Fig. 3.3 Uniform compression, Nx, and tension, Ny, loads 

 

 To solve Equation (3.15), it is assumed that the solution satisfies all boundary 

conditions such that; 

 w x y A
m x

a

n y

bmn( , ) sin sin
           (3.16) 

where ;  Amn is the maximum out-of-plane displacement of plate. 

m, n are positive integer number which represent the mode shapes 

exhibited by the buckled plate.  

 

Substituting the assumed solution, Eq.(3.16), into the governing equation (3.15) 

and making some simplifications, the buckling load Nx can be related to the transverse 

tension loading, Ny as follows; 
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where the load ratio, R
N

N
y

x

  

The load ratio is negative for tension-compression biaxial loading and equals to 

zero for uniaxial loading.  For a given value of Ny, there are infinite values of Nx which 

satisfy Eq.(3.17). The critical buckling load is the lowest value of Nx. The mode shape is 

determined from the corresponding values of m and n. 

In the case of uniaxial or tension-compression biaxial loading, the buckling load 

always corresponds to n=1 since there are second and fourth orders of n in the numerator 

but only second orders in the denominator. This leads to the conclusion that the mode 

shape in the direction along y-axis is a half sine curve. In contrast, m is not necessarily 

equal to 1 for the lowest value of Nx. It depends on the value of Dij and load ratio R. 

 
3.4 The Vibration of Plate Governing Equations 

 Using the equilibrium equations similar to the buckling problem, the governing 

equation for free transverse vibration of specially orthotropic plate can be written as [27]; 
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where W is the displacement in the out-of-plane direction, 0 is the mass density of the 

specimen, and D is the plate bending stiffness. 

 Assuming that the out-of-plane displacement is separable as a function of position 

and time, the governing equation is reduced to  
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where w is function of x and y only, i.e. w = w (x,y), and  is the frequency of the 

vibration. 

 The vibration equation, Eq. (3.19), can be solved if the boundary conditions of the 

plate are known. For simple-supported plates, the analytical closed form solution is 

  
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      (3.20) 

where mn are natural frequency of the plate in Hz, a and b are plate width and length, 

respectively, h is specimen thickness, m and n are positive integer. 



Chapter 4. Accuracy of vibration measurement 

 

 This chapter focuses on the accuracy of vibration measurement. To use the 

vibration data to identify the bucking load, it must be certain that the measured vibration 

parameters are reliable and accurate.  

4.1 Introduction 

 The vibration parameter requires to used in the buckling load identification is the 

natural frequency of the structure. This parameter can be measured using an impact 

testing. The objective of this chapter is to determine the accuracy of vibration 

measurement. Instead of comparing the measured natural frequency with the theoretical 

solution, this study utilizes the scaling law as a tool in the experimental study because it is 

very difficult to setup the experiment such that the boundary condition is similar to the 

theoretical one. By using the scaling law, it is certain that the boundary conditions of the 

model and prototype are very similar, if not identical.    

 The scaling law has been utilized in many engineering applications. The principle 

provides a powerful tool for engineers and scientists to replicate the behavior of the 

prototype using an appropriate scaled model. Similitude theory can be stated as [28]; “the 

sufficient and necessary condition of similitude between two systems is that the 

mathematical model of the one be related by a bi-unique transformation to that of the 

other.” For a prototype of interest, a scaled replica can be built to duplicate the behavior 

of the full-scale system. The experimental results on the model can be utilized to predict 

the behavior of the prototype. The similitude concept is thus very useful, especially, for 

problems with either a complex domain or complicated boundary conditions for which 

numerical solutions are not sufficiently accurate, if possible. If the prototype is perfectly 

replicated, the experiment result on the model can be scaled to predict the behavior of the 
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prototype with sufficient accuracy.   

 In this study, the scaling law for vibration problem is employed to predict the 

natural frequency of the prototype. This natural frequency is then compared with the 

experimental measurement. With this approach, the accuracy and reliability of the 

vibration measurement is determined.    

4.2 Scaling law for vibration of plate 

 Although the natural frequencies of thin plates with combinations of simple 

support, clamped support or free boundary conditions are available, they may not be 

practically appropriate for engineering structures which accurate natural frequencies are 

required. The boundary conditions of practical structures are usually non-classical ones 

such as elastically restrained or imperfect boundary conditions which are not easily 

modeled because the level of restraining is unknown. This is where the scaling law can be 

utilized to determine the vibration behavior of the structure or prototype of interest using 

the experimental results of the scaled model. The scaled model is either a scaled-down or 

scaled-up test specimen having complete similarity with the real structure. Although the 

boundary conditions of the prototype are not exactly known, they can be modeled in the 

scaled model using similar supports. Thus, the experimental results from the 

corresponding test specimen along with the scaling law can be used to predict the 

vibration behavior of the prototype. The derivation of the scaling law for vibration 

behavior is briefly derived in this section.  

 The scaling law for the vibration of rectangular isotropic plates is derived from the 

governing equation by comparing the governing equations of the model with that of the 

prototype. From both equations, the similitude invariant term, which leads to the scaling 
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law, is obtained. Let the variables of the prototype and their corresponding model 

variables be related to each other as follows: 
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where subscripted p refers to the prototype system and subscripted m refers to the model 

system, and Ci are the scaling factors of the i parameters. To derive the similitude 

invariant, the governing equations of the model and prototype are written as the 

following: 
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It should be noted that Eq.(4.2) can be written in the same form as Eq.(4.1) with subscript 

“p” instead of subscript “m.” However, the scaling factors are utilized so that the 

governing equations of both systems can be compared and simplified. Comparing both 

equations, the vibration behavior of the model and of the prototype are similar if groups 

of the scaling factors in Eq.(4.2) are all equal. This implies that Eq.(4.2) can be reduced to 

Eq.(4.1) when the scaling factor groups are canceled out. Thus, the similitude requirement 

is obtained as 

    
2

4 2 2 4

1 1 1

x x y y D

C C

C C C C C
    .           (4.3) 

By assuming that the model and prototype have a geometric similarity (Cx = Cy = Ca = 

Cb), the similarity requirement is simplified to 
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Eq.(4.4) is the similitude invariant of the vibration behavior of rectangular plates. This 

invariant can be reduced to the scaling law of plate natural frequency as 
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  This scaling law relates the natural frequencies of the model to that of the 

corresponding prototype. The derived scaling law is valid for a model-prototype pair with 

complete geometric similarity, i.e. Ca = Cb or both systems having the same aspect ratio. 

The scaling law can be verified with the theoretical solution shown in the previous 

section. The scaling law for the natural frequency of rectangular plate is verified, 

theoretically. The derived scaling law is applicable to a model and prototype pair with the 

same aspect ratio, although they are made of different materials.  

 

4.3. Experimental study 

 4.3.1 Experimental setup 

  Several samples of thin rectangular plates were tested to determine their first three 

natural frequencies. The specimens were composed of aluminum, structural steel and 

stainless steel rectangular thin plates. The boundary conditions of the test panels were a 

combination of the knife-edge support and free boundary conditions. The knife-edge 

support was employed to simulate the theoretically simple supported boundary condition. 

Schematic drawings of the specimens’ dimensions and boundary conditions are shown in 

Figure 4.1. The boundary of specimen supported by the knife-edge constraint is 

designated as “S,” while the free supported edge is represented by “F.” The boundary 

conditions of the specimens used in this study were SSSS, SFSS, SFSF, and SSFF, as 
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shown in the figure. The first and second letters represent the boundary condition on the y 

= 0 and y = b edges, respectively. Similarly, the last two letters symbolize the boundary 

conditions on the other edges. The specimens were mounted in the test setup and 

equipped with an impact hammer and an accelerometer as shown in Figure 4.2. The 

knife-edge support replicating the simply supported boundary condition was enforced by 

two stainless steel bars coupled on the specimen. The steel bars were machined in an 

inclined direction to form a knife-edge. With this support, the specimens were 

intentionally allowed to freely rotate but any out-of-plane displacement was restrained. 

The knife-edge supports were fixed with steel boxes with a number of machine screws. 

Additional machine screws were also used to push the knife-edge supports against the 

specimen surface. The assembly of steel boxes and knife-edge supports was also tested 

for natural frequency to confirm that their natural frequencies were not in the range of 

those of the specimens.  

S 
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SSSS 

 x

 y

 a 

 b

S 

F 

S S 

SFSS 
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F F 
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Figure 4.1 Schematic drawings of the rectangular test specimens 
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 Specimen  Knife-edge support 

 Accelerometer  Impact hammer 

 Steel Box  

Figure 4.2 Experimental setup with accelerometer and impact hammer 

 

  The vibration test for natural frequency was performed using an impact test [29, 

30]. Briefly, the specimens were excited by an impact hammer while the applied impulse 

was monitored by a dynamic signal analyzer. An accelerometer was placed on the 

specimen at a selected location to measure the plate response in terms of acceleration. It is 

recommended that the accelerometer should not be set on the node line of the vibration to 

avoid a low response signal. If the node line is unknown or uncertain, more than one 

measurement is recommended. In the present study, several pretests were conducted to 

determine a suitable location of the accelerometer. Besides the applied impulse from the 

impact hammer, the acceleration responses from the accelerometer were collected by a 

dynamic signal analyzer. The accelerations were recorded five times from five excitations 

of the impact hammer. These five sets of the acceleration data measured in the time 

domain were processed by a Fast Fourier Transform (FFT) algorithm using the dynamic 
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signal analyzer to obtain the response in the frequency domain. From the vibration 

response in the frequency domain, the natural frequencies of the specimen were identified 

from the peak of the response. Theoretically, there are infinite numbers of natural 

frequency; however, only the first three modes are of interest in this study. Figure 4.3 

shows examples of the vibration response measured in the frequency domain obtained 

from the dynamic signal analyzer for a 300300 mm2 aluminum plate with various 

boundary conditions. The measured natural frequencies in Hz for the first three modes of 

the specimen with SSSS boundary conditions are 149.0, 293.5, and 322.5 Hz, 

respectively. A response similar to those of shown in Figure 3 can be obtained from 

experiments with excitation and accelerometer located at various positions. Ideally, the 

measured natural frequencies are independent of the location of either excitation or 

accelerometer. From the experiments, varying the position of excitation and the location 

of the response measurement has a minimal effect on the measured natural frequencies. In 

this study, a minimum of 5 experiments were performed for each specimen and the 

experimental natural frequency was determined from the average of each measurement.  
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Figure 4.3 Vibration response in frequency domain of 300x300 mm2 aluminum plate 
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4.3.2 Experimental results 

  A set of the experiments were conducted in this study. The test specimens were 

nine aluminum plates with aspect ratios (a/b) of 1, 1.5, and 2 and a specimen nominal 

width b of 200, 250, and 300 mm, respectively. The natural frequencies of all the 

specimens with four combinations of boundary conditions were experimentally 

determined and used to validate the accuracy of the measurement.   

  The measured natural frequencies for the SSSS aluminum plates with nine 

different dimensions are presented in Table 4.1. In the table, the test specimens are 

classified into three groups: rectangular plates with aspect ratios of 1, 1.5, and 2. The 

experimental data showed that the natural frequencies decreased with plate size. Similar 

experimental results were obtained for aluminum specimens with other boundary 

conditions but are not presented here. The specimens shown in Table 4.1 were assumed to 

be a model or a prototype and used to validate the scaling law, as shown in Table 4.2. 

From the three specimens with an aspect ratio of 1, three pairs of models and prototypes 

were assigned to the test specimens. As shown in column 2 and 3 of Table 4.2, a 200200 

mm2 specimen was set as a model and used to model the 300300 mm2 prototype 

specimen. The other two model-prototype pairs were a 250250 mm2 model with 

200200 mm2 prototype and a 300300 mm2 model with 250x250 mm2 prototype. 

Specimens with aspect ratios of 1.5 and 2 were also assigned as models or prototypes in 

the same approach. In Table 4.2, column 5 and column 6 are the measured natural 

frequencies of the model and prototype, respectively. The next column labeled as 

“ Scaling ” presents the scaling natural frequencies of the prototypes. These scaling natural 

frequencies were determined from the scaling law shown in Eq.(4.5) using the measured 

natural frequencies of the model in column 5. The experimental and scaling natural 
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frequencies shown in column 6 and 7, respectively, were compared with each other. The 

percentage discrepancy of the scaling natural frequency shown in the last column was 

determined according to 

         .

.

% Dis 100%Scaling Exp

Exp

 



  .                 (4.6) 

 Table 4.1 Measured natural frequencies of the SSSS aluminum specimens 

Natural  Frequency  (Hz) Aspect 
Ratio 

Specimen 
size, a x b 

(mm.2) 1st Mode 2nd Mode 3rd Mode 

200x200 309.8 676.9 729.6 

250x250 196.7 409.0 444.6 1 

300x300 148.8 293.2 321.8 

300x200 221.2 376.3 580.7 

375x250 150.5 255.4 376.6 1.5 

450x300 99.6 171.4 257.4 

400x200 199.6 256.2 425.2 

500x250 132.4 173.6 275.5 2 

600x300 90.1 117.8 193.4 

 

  Most of the comparisons show a good agreement between the scaling and 

measured natural frequency. The average of the absolute values of percentage 

discrepancy for experiment on all 27 model-prototype pairs is 3.30% with a standard 

deviation of 4.05%. The minimum and maximum percentage discrepancies are -7.47% 

and +8.93%, respectively, while more than half of the comparisons have a percentage 

discrepancy within 3%. There was no significant difference in percentage discrepancy 

for each vibration mode or plate aspect ratio. The causes of discrepancy between the 

scaling and measured natural frequencies are probably related to the imperfections of the 
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boundary conditions and specimens. As described in the previous section, knife-edge 

supports of the test setup were controlled by several machine screws. In the experiments, 

the machine screws were tightened until the gaps between the specimen and support were 

invisible. Although it was desired to obtain identical boundary conditions for the model 

and its prototype, it was expected that the boundary conditions for each experiment would 

not be perfectly identical. Besides the imperfect boundary conditions, imperfections of 

specimens such as nonuniform thickness and the existence of plate curvature might be the 

cause of discrepancy between the scaling and measured behaviors. These two causes of 

error are classified as an experimental uncertainty which is typical in experimental study 

and is very difficult to completely eliminate.   
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Table 4.2 Measured and scaling natural frequencies for the SSSS aluminum specimens 

Prototype Aspect 
Ratio 

Model Prototype Mode Model 
Exp  Scaling  %Dis 

1 309.8 148.8 137.7 -7.47 

2 676.9 293.2 300.8 2.61 200200 300300 

3 729.6 321.8 324.3 0.77 

1 196.7 309.8 307.3 -0.79 

2 409.0 676.9 639.1 -5.59 250250 
 

200200 
 

3 444.6 729.6 694.7 -4.79 

1 148.8 196.7 214.3 8.93 

2 293.2 409.0 422.2 3.23 

1 

300300 
 

250250 
 

3 321.8 444.6 463.4 4.23 

1 221.2 99.6 98.3 -1.29 

2 376.3 171.4 167.2 -2.42 300200 
 

450300 
 

3 580.7 257.4 258.1 0.27 

1 150.5 221.2 235.2 6.31 

2 255.4 376.3 399.1 6.05 375250 
 

300200 
 

3 376.6 580.7 588.4 1.33 

1 99.6 150.5 143.4 -4.70 

2 171.4 255.4 246.8 -3.36 

1.5 

450300 
 

375250 
 

3 257.4 376.6 370.7 -1.58 

1 199.6 90.1 88.7 -1.54 

2 256.2 117.8 113.9 -3.34 400200 
 

600300 
 

3 425.2 193.4 189.0 -2.29 

1 132.4 199.6 206.9 3.64 

2 173.6 256.2 271.3 5.87 500250 
 

400200 
 

3 275.5 425.2 430.5 1.24 

1 90.1 132.4 129.7 -2.01 

2 117.8 173.6 169.6 -2.29 

2 

600300 
 

500250 
 

3 193.4 275.5 278.5 1.09 

  Another three comparable studies were performed on the same test specimens 

with boundary conditions of SFSS, SFSF, and SSFF. An inconsistency between the 
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scaling and measured natural frequencies of all comparisons in terms of percentage 

discrepancy is shown in Table 4.3. The last two rows of the table show the average of 

absolute values of percentage discrepancy and the standard deviation of the percentage 

discrepancy, respectively. The overall average and standard deviations of the percentage 

discrepancy were 4.90% and 6.46%, respectively. The histogram in Figure 4.4 represents 

the frequency distribution of the percentage discrepancy which revealed that the 

distribution of the percentage discrepancy closely resembles a normal distribution and the 

percentage discrepancies of 95 from 108 comparisons were in the range of  10 %. 

However, percentage errors for some pairs of model and prototype were slightly higher, 

especially for the experiments on the SFSF specimens. Eight values of percentage 

discrepancy from the experiments on this boundary condition resulted in a percentage 

discrepancy higher than 10%, compared with only four values and one value for SSFF 

and SFSS cases, respectively. The average of the absolute percentage discrepancy for 

SFSF specimens was 7.47% which is higher than those of other boundary conditions. The 

higher percentage discrepancy of the scaling law observed in specimens with SFSF 

boundary conditions was probably caused by the particular characteristics of these 

boundary conditions. For SFSF specimens, the free boundary condition was imposed on 

two adjacent edges of the plate, i.e. two adjacent edges were free to move, as shown in 

Figure 4.1. As a result, the specimen with this combination of boundary conditions tended 

to be slightly curved at the free corner because of its own weight. The degree of non-

flatness of the test specimens was probably different for specimens with different 

dimensions, that is, the size effect had an influence on the accuracy of the scaling law in 

this case. So, the model and prototype with these boundary conditions did not have a 

complete similarity, resulting in a slightly higher percentage discrepancy for these 

specific boundary conditions.  
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Table 4.3 Percentage discrepancy between scaling and measured natural frequencies 

SSSS SFSS Aspect 

Ratio 

Model Prototype 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

200200 300300 -7.47 2.61 0.77 -0.86 3.75 0.06 

250250 200200 -0.79 -5.59 -4.79 2.91 -2.62 2.19 

 

1 

300300 250250 8.93 3.23 4.23 -1.98 -1.03 -2.20 

300200 450300 -1.29 -2.42 0.27 7.26 2.83 6.84 

375250 300200 6.31 6.05 1.33 -11.91 -8.50 -5.50 

 

1.5 

450300 375250 -4.70 -3.36 -1.58 5.84 6.28 -0.95 

400200 600300 -1.54 -3.34 -2.29 3.94 2.75 2.57 

500250 400x200 3.64 5.87 1.24 2.06 1.00 -0.46 

 

2 

 600300 500x250 -2.01 -2.29 1.09 -5.73 -3.64 -2.06 

Average 3.30 3.62 

Standard deviation 4.05 4.63 

 

Table 4.3 Percentage discrepancy between scaling and measured natural frequencies 

(Continued) 

SFSF SSFF Aspect 

Ratio 

Model Prototype 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

200200 300300 -5.56 -2.12 -4.52 3.55 2.80 2.05 

250250 200200 1.37 0.45 -0.58 0.89 -4.90 -0.19 

 

1 

300300 250250 4.46 1.72 5.35 -4.28 2.30 -1.83 

300200 450300 -17.74 -10.07 -10.96 -9.00 -15.54 -0.86 

375250 300200 13.41 6.00 5.41 7.06 5.42 3.15 

 

1.5 

450300 375250 7.19 4.90 6.54 2.64 12.31 -2.21 

400200 600300 -11.22 -14.29 -9.69 -6.24 -12.66 -6.07 

500250 400x200 -6.78 -1.55 2.48 -3.51 8.36 5.92 

 

2 

 600300 500x250 20.84 18.51 8.06 10.54 5.67 0.52 

Average 7.47 5.20 

Standard deviation 9.46 6.64 
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Figure 4.4 Histogram of the percentage discrepancy between scaling and measured 

natural frequencies. 

 

4.4 Conclusions 

  From the experimental study, the scaling law provided reasonable accuracy for 

modeling a prototype using a model with different dimensions. Uncertainties of the 

experiments in boundary condition and thickness are believed to be the sources of the 

discrepancy. To obtain a decent prediction from the scaling law, the experiment on the 

model specimen should be carefully performed to assure near-complete, if not perfectly 

complete, similarity with the prototype. Therefore, with a careful experimental setup, the 

measured natural frequency is efficiently accurate and reliable to use as a data for 

buckling load identification. 

 

 



Chapter 5. Vibration correlation technique 

 

 In this chapter, the derived scaling law for buckling of rectangular composite 

plates is verified with the experiment results. A compressive test frame was designed and 

built to conduct a buckling test. The specimens which are classified as models and 

prototypes were tested for buckling load using a plot of applied load vs. out-of-plane 

displacement. The experimental buckling load of the model was substituted into the 

scaling law to predict the similitude buckling load of the prototype which was then 

compared to the experimental one. Ideally, the similitude and experimental buckling 

loads are identical if all of the similarity requirements are satisfied. 

 

5.1 Relationship between natural frequency and buckling load 

In this part, the relationship between buckling and vibration behavior of thin plate 

is investigated. The relationship between applied in-plane load and the natural frequency 

of plates are derived from the differential governing equations of both problems. The 

derived relationship is verified using a numerical method. This relationship also implies 

that buckling load of plate can be obtained from the vibration data of the loaded plates. 

So, an alternative method for buckling load identification using dynamic approach is 

proposed.    

  In this study, the vibration and buckling behaviors of a rectangular composite 

plate as shown in Fig. 5.1 are investigated. The buckling load of plate represented by xN  

is the in-plane load Nx at which buckling occurs. For vibration behavior, the natural 

frequencies of plate can be determined for a specimen with a given tensile or compressive 

load Nx.  
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Figure 5.1 A rectangular plate subjected to a uniaxial in-plane load 

 

 The governing equation for buckling and vibration of thin isotropic plate can be 

written as; 
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respectively.  

where w = Out-of-plane displacement 

   = Mass of plate per unit area 

  D = Plate flexural rigidity) 

      xN = Buckling load  

  Nx = Applied in-plane load  

       * = natural frequency of the plate with applied in-plane load Nx
 

It should be noted that xN  and Nx refer to the same in-plane load, however, xN  is the 

buckling load which must be a compressive load (negative value), while Nx is the applied 

in-plane load which can be either tension or compression.  
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 For a given rectangular plate, the relationship between the natural frequency and an 

applied in-plane load Nx can be determined by considering the governing equations, 

Eq.(5.1 and 5.2). For a specimen with a given boundary conditions, it is widely known 

that buckling mode and vibration mode of the plates are identical. Specifically, the out-of-

plane displacement of the buckled plate is identical to the out-of-plane displacement of 

one of the vibration mode. So, for a given specimen, the governing of the buckling 

problem can be rewritten as. 

     1 2 0xL w N L w               (5.3) 

where   
4 2 44 4
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Similarly, the governing of the vibration of loaded plates is written as; 

       *2
1 2 3 0xL w N L w L w              (5.4) 

where   3L w w  

It should be noted that the terms contained derivatives of w for both problems are the 

same because the buckling mode and vibration mode are identical. From Eq.(5.3), the 

buckling load of plate can be written as; 

  
 
 

1

2
x

L w
N

L w
               (5.5) 

Similarly, the natural frequency of plate with and without the applied in-plane load can be 

written as; 
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             (5.6) 
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and  
 
 

12

3

L w

L w
                 (5.7) 

where *  is natural frequency of a plate with applied load Nx, and  is natural frequency 

of a plate without applied load. From Eq.(5.7), ratio of the square of natural frequency of 

the loaded plate to that of the unloaded plate is written as; 

  
2*

1 x

x

N

N




 
  

 
               (5.8) 

Since buckling load xN  and natural frequency of the unloaded plate  is constant for a 

given specimen, it is concluded that square of the natural frequency of the loaded plate 

*2  is linearly varied with the applied load Nx. Since this relationship is derived from the 

governing, it is independent of boundary conditions.  

  From the linear relationship between *2 and Nx shown in Eq.(5.8), with the 

buckling load being a negative value, it is notice that the natural frequency of the plate 

increases with the applied tensile load. On the other hand, it is decreased with the applied 

compression. Moreover, if the applied load Nx equals the buckling load of the plate, the 

natural frequency *  theoretically equals zero. With this observation, ones can utilize the 

natural frequencies of the loaded plate to predict the buckling load of plate by plotting 

*2 versus the in-plane load Nx. The buckling load could be determined from the applied 

load Nx at which the natural frequency approaches zero. 

 

5.2 Numerical validation 

To numerically verify the VCT and the derived relationship shown in Eq. (5.8), a 

numerical simulation of the vibration and buckling of a plate was performed. The Ritz 

method with characteristic beam functions was used to solve the buckling and vibration 

problems. Detail information about the Ritz method which is beyond the scope of this 
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paper can be found in Ref.[31-36]. A 2-mm-thick aluminum plate with a dimension ab 

of 400x200 mm2 was chosen as a specimen. The plate was assumed to be simply 

supported on the loading edges and clamped supported on the other two edges. The 

buckling load of this specimen was numerically determined, and found to be 88.216 

kN/m with buckling mode (3, 1). The buckling mode of this specimen is graphically 

shown in Fig.5.2. This numerical solution serves as the theoretical solution for this 

simulation, and is used to validate the buckling load from VCT. Buckling load and mode 

determined from VCT requires the vibration data, i.e. natural frequencies and vibration 

mode shapes, of the plate subjected to in-plane loading. These vibration parameters of the 

loaded plated were also simulated from the Ritz method. The applied in-plane load was 

increased step by step in both tensile and compressive loading range. The square of the 

natural frequencies for the first six modes was plotted versus applied load, as shown in 

Fig. 5.3. The mode shape of each vibration mode is shown in Fig. 5.4. The relationship 

between *2 and Nx of a particular vibration mode is linear, as expected according to the 

derived relationship. The predicted buckling load can be determined by extrapolating the 

vibration data to the in-plane load at which the square of the natural frequency approaches 

zero. Trend lines of each vibration mode intercept the Nx axis at a different load level. The 

lowest compressive load is the buckling load, and its corresponding vibration mode shape 

is the predicted buckling mode. In this simulation, the predicted buckling is 88.216 kN/m 

and the buckling mode is mode (3, 1). VCT predicted buckling mode as mode (3, 1) 

because the trend line of this vibration mode intersects Nx axis at the lowest load 

compared to those of other vibration modes. The buckling load determined from the 

vibration data compares perfectly with the numerical solution. Similarly, the buckling 

mode determined from VCT is also identical to the buckling mode of the numerical 

solution. In conclusion, the squares of natural frequencies are linearly varied with the 
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applied in-plane load as expected from the relationship shown in Eq.(5.8). The natural 

frequency approaches zero as the in-plane compressive load approaches the buckling load 

of plate. The numerical simulation showed that buckling behaviors of a thin plate are very 

well predicted using VCT. The concept of using vibration parameters to identify buckling 

load and mode is theoretically verified. However, experimental study is required to 

determine the accuracy and reliability of the technique.  
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Figure 5.2 Buckling mode determined from the buckling problem 
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Figure 5.3 Square of the natural frequencies of an aluminum plate vs. applied loading.  
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Figure 5.4 Vibration mode shapes of the first six vibration mode.  
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Chapter 6. Experimental study 

Although the relationship between vibration and buckling behaviors of a thin plate 

is theoretically confirmed, the applicability of VCT as an experimental technique used to 

identify buckling load is needed to be investigated. A series of experiments was 

performed to determine the accuracy and reliability of the proposed technique. A set of 

aluminum and stainless steel plates was used; each plate was uniaxially loaded on a 

custom-made test frame. The experiment was then performed on the loaded specimens to 

determine natural frequencies and vibration mode shape. The vibration data was obtained 

for the specimens subjected to both tensile and compressive loading.  The measured 

natural frequencies and applied loading were then plotted, with results similar to those 

shown in Fig. 3. The predicted buckling load was identified using the VCT, i.e. the 

relationship derived previously.  

6.1 Experiment arrangement 

The test setup, shown in Fig. 6.1, was specifically designed to accommodate the 

loading configurations and vibration testing. The test frame is capable of applying both 

clamped and free boundary conditions to the specimens. The simple supported boundary 

condition is not included in the experiment because it is difficult to obtain a perfect 

simple support comparing with other two conventional boundary conditions. Both tensile 

and compressive loads can be applied on the specimens. In-plane loads are applied 

horizontally using a hydraulic cylinder pressurized with a hand pump. The hydraulic 

cylinder is mounted on the right end frame, which is fixed to the left end frame using two 

guided columns. A rectangular thin plate is mounted on the loading edges with clamped 

support between crosshead #2 and crosshead #3. For a tensile testing configuration as 

shown in Fig. 6.1, the hydraulic ram applies a compressive force against crosshead #1. 

Loads are monitored using a load cell mounted between crosshead #1 and the hydraulic 
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cylinder. Two linear bearings are embedded within the crossheads such that they can 

move linearly along two guided columns. The applied loading on crosshead #1 is 

transferred through two tension rods to crosshead #2. So, crosshead #2 is pushed and 

trend to move to the left hand side. On the contrary, crosshead #3 is blocked by two 

stoppers mounted on the guided columns, as shown in figure. With this loading 

configuration, a specimen which is clamped between crosshead #2 and crosshead #3 is 

stretched when the compressive load is applied by the hydraulic ram. In the case of a 

compressive testing, the test frame shown in Fig. 6.1 has to be modified as the following. 

Crosshead #1 and the tension rods are removed in the compressive testing configuration. 

Two stoppers which are used to block crosshead #3 in the tensile testing configuration are 

moved to the left-hand side of crosshead #2 to prevent the horizontal motion of the 

crosshead. A compressive load from the hydraulic ram is applied directly on crosshead 

#3, in this loading configuration. With this setup, the specimen is uniformly compressed 

between crosshead #2 and crosshead #3. So, the designed test frame is capable of 

applying both tensile and compressive loads to a thin plate with changeable loading 

configurations. 
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Figure 6.1 Experimental setup of a specimen with CCCC boundary condition 

 

Besides the loading mechanism, the test frame is also equipped with restrained 

devices to apply desired boundary conditions to the test samples. In Fig. 6.1, the clamped 

boundary conditions of the specimen are enforced by 20-mm.-thick rigid stainless steel 

bars, denoted as “clamped support.” For the unloaded edges, the clamped supports are 

mounted on the support holders, which are tightly clamped to the guided columns. 

Similarly, the rigid stainless steel bars are placed in the slot of the crossheads to assemble 

a clamped support on the loaded edges. On both loaded and unloaded edges, machine 

screws are used to push the steel supports against the specimen surface. To obtain a 

clamped support, machine screws are finger-tightened until the gap between the specimen 

and support is invisible. A clamped support on the unloaded edges of the specimen can be 

removed such that a free edge is formed on those boundaries. With the described 

constraint mechanism, the boundary conditions of a specimen are clamped support on the 
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loaded edges (on x = 0 and x = a), and either clamped or free edges on the unloaded edges 

(on y = 0 and y = b) 

6.2 Specimens and boundary conditions 

A series of experiment was performed on twelve thin isotropic plates with CCCC, 

CCCF and CFCF boundary conditions. The symbol “C” represents a clamped boundary 

condition, while “F” stands for a free boundary condition. The first and third letters 

symbolize the boundary condition on x = 0 and x = a, respectively. Similarly, the 

boundary conditions on y = 0 and y = b are represented by the second and forth letters, 

respectively. The specimens were prepared from 6061-T6 aluminum alloy and stainless 

steel AISI 304. The physical and mechanical properties of both materials are presented in 

Table 6.1. Nominal dimensions a×b of the specimen are 300x200, 200x200, and 150x200 

mm2. For each plate size, there were two specimens with different thicknesses. So, there 

were a total of six aluminum specimens and six stainless steel specimens. The aluminum 

and stainless steel specimens’ dimensions are summarized in the first three columns of 

Table 6.2 and Table 6.3, respectively. It should be noted that the actual size of a specimen 

is slightly larger than the nominal size because a small portion on the boundary of the 

specimen is clamped by the rigid stainless steel bar, and is not regarded as an effective 

area. The schematic dimensions of the specimens are presented in Fig. 6.2. A specimen 

was originally prepared to be a CCCC specimen. The width and height of the specimen 

are 40 mm larger than those of the nominal dimensions. A 20-mm-width area on all four 

edges is an area to be clamped by the support. In the schematic of a CCCC specimen 

shown in Fig. 6.2, the effective area or nominal area of the specimen is represented by a 

clear area of ab, whereas the dashed area is an area to be clamped by the support. After 

an experiment on a CCCC specimen is concluded, a clamped area on one of the unloaded 
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edges is cut off to form a CCCF specimen. So, the actual size of a CCCF specimen is 

slightly smaller than a CCCC specimen with the same nominal size. Finally, the other 

clamped area on the unloaded edges is removed to obtain a CFCF specimen. Thus, 

specimens with an equal nominal size but different boundary conditions are actually the 

same specimen.    

 Table 6.1 Properties of materials used in the experiments.  

Material 
Modulus of 
Elasticity, E 

(GPa) 

Poisson 
ratio, v 

Density,   
(kg/m3) 

Aluminum 6061-T6 70 0.33 2700 

Stainless steel AISI 304 193 0.30 8000 
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Figure 6.2 Nominal and actual dimensions of the specimens. 

 

6.3 Experiment procedures and data reduction 

 
In this study, the natural frequencies of a loaded plate are required data in order to 

predict the buckling behavior of the plate. Vibration testing was performed using an 

impact test, in which the specimen was excited by an impact hammer while the applied 

impulse was monitored by a dynamic signal analyzer. Acceleration response of the 

specimen was measured by an accelerometer placed on the specimen at a selected 

location. Acceleration data measured in the time domain were processed by a Fast Fourier 
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Transform algorithm using the dynamic signal analyzer to obtain the frequency response 

function (FRF). From the vibration response in the frequency domain, the natural 

frequencies of the specimen were identified from the peak of the response. Vibration 

mode shape was also obtained from an imaginary part of the response function. An 

overview of the vibration testing and modal analysis is beyond the scope of this paper; 

and the interested reader is referred to the articles by Avitabile [37]. Typical magnitude 

and imaginary part of the frequency response function are shown in Fig. 6.3.    
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Figure 6.3. Magnitude and imaginary parts of the frequency response of the CCCC 

stainless specimen No. 2 without an in-plane load. 

   

The experiment on a specimen was composed of two parts. The first part of the 

experiment was performed to verify the relationship shown in Eq.(5.8) and to determine 

the buckling mode of the plate. The specimen in this part of the experiment was loaded in 



 48

both tensile and compressive loading range. Natural frequencies of the specimen under 

unloaded, tensile-loaded and compressive-loaded conditions were determined, 

respectively. The square of the natural frequency was plotted against applied in-plane 

load. A typical relationship between *2  and Nx is presented in Fig. 6.4 which is the 

vibration behavior an aluminum specimen No.3 with CCCF boundary condition. Natural 

frequencies of vibration modes (1, 1), (1, 2) and (2, 1) are included in the plot. Numbers 

representing a vibration mode stand for a number of curves of an out-of-plane 

displacement in the x and y directions, respectively. Vibration mode shape is determined 

from the imaginary parts of the frequency response from several experiments. A plot of 

each mode shape is presented in Fig. 6.5. A symbol “-” and “+” represent the out-of-plane 

displacement in the different direction, and “0” indicate a zero displacement or a node 

line on the specimens. From Fig. 6.4, the buckling mode of the specimen was determined 

to be mode (1, 1), since the trend line of this mode intersects the Nx axis at the lowest 

value. It is observed that *2  varies linearly with the applied load in the tensile-loading 

range, as expected. The relationship between both parameters in the compressive-loading 

range is not as linear as the relationship in the tensile-loading range. This nonlinear 

relationship in the compressive-loading range was also observed in other specimens, and 

was also reported by Lurie and Monica [21]. This behavior is contradicted by the result 

from the numerical simulation shown in Fig. 5.3. It is speculated that the nonlinear 

behavior is a result of a premature curvature which develops before buckling of the 

specimen. For this reason, the buckling load was determined using only vibration data of 

the specimen subjected to tensile loading. So, the second part of the experiment 

emphasizes on determination of the buckling load.  After plotting the relationship of 

*2 vs. Nx similar to Fig. 6.4 and determining the buckling mode, the specimen was 

reloaded under increased levels of tensile loading. At each load level, a vibration test was 
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performed to determine the natural frequency of the loaded plate. Only the natural 

frequencies of the relevant mode shape, i.e. the buckling mode, were collected. A plot of 

*2  versus Nx in the tensile-loading range was generated and extrapolated to determine 

the measured buckling load. Because the measurement of natural frequency is very 

sensitive to boundary conditions, the experiment was repeated 20 times by loosening and 

re-tightening the machine screws on the clamped supports. An average of the measured 

buckling load is reported as the buckling load obtained from VCT. 
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Figure 6.4 Plot of *2  vs. Nx of the aluminum specimen No.3 with CCCF boundary 

condition. 
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Figure 6.5 Vibration mode shapes of the experiments shown in Fig. 6.4 

 

6.4 Experimental results and discussions. 

All twelve specimens were tested to determine natural frequencies for each 

vibration mode. For each vibration mode, square of the natural frequency was plotted 

against an applied load to determine buckling load and buckling mode.   

6.4.1 Buckling Mode 

Experimental buckling mode is determined from the vibration mode whose trend 

line intersects the Nx-axis at the lowest load level. For all specimens, buckling modes 

determined from the experiment correspond very well to the numerical solutions. The 

plots of *2 vs. Nx of all specimens are similar to that of the aluminum specimen No.3 

which is shown in Fig. 8. The relationship between both parameters is linear through out 

the tensile loading range and the low-load compressive loading range. In the high-load 

range, most of the experimental result showed that squares of the natural frequency are 

not linearly varied with the in-plane load. In Fig. 6.4, the nonlinear behavior is observed 

when the applied compressive load is higher than 30 kN/m, approximately. To investigate 
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the cause of this nonlinear behavior, the maximum out-of-plane displacement of the 

specimen subjected to compressive loading was measured and plotted, as shown in Fig. 

6.6. From the figure, it is noticed that the out-of-plane displacement is observed as soon 

as the compressive load is applied. In the low-load range, i.e. Nx is lower than 25 kN/m, 

the measured out-of-plane displacement is less than 0.3 mm. The out-of-plane 

displacement is pronounced when the applied load approaches 30 kN/m. From linear 

buckling theory, the out-of-plane displacement is not existed before the specimen has 

buckled. So, this out-of-plane displacement is considered as a premature deformation in 

the experiment which reflects the imperfections of the specimen or the test setup. The in-

plane compressive load level at which the square of natural frequency begins to be 

nonlinear corresponds very well with the load level where the out-of-plane displacement 

of the specimen is well-defined. Other specimens also exhibited a similar correlation 

between the load level where a distinct out-of-plane displacement is observed and the 

load level where a nonlinear behavior between *2 and Nx is observed. It is reasonable to 

draw a conclusion that *2  is not linearly varied with the in-plane load in the high 

compressive loading region because of the premature out-of-plane displacement 

developed in that load region. Therefore, the proposal to use the vibration data in the 

tensile loading range to identify buckling load is justified.  
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Figure 6.6 Plot of applied load vs. out-of-plane displacement of the specimen shown in 

Fig.6.4   

 

6.4.2 Buckling load 

The buckling loads determined from VCT for aluminum and stainless steel 

specimens are compared with the numerical solutions in Table 6.2 and 6.3, respectively. 

The experimental buckling load is determined from a plot of vibration data in the tensile 

loading range. In Table 6.2 and 6.3, dimensions of the specimens are presented in the first 

three columns. The next three columns compare experimental buckling loads of CCCC 

specimens with numerical solutions which are used as benchmark solutions. The last six 

columns show the experimental results of CCCF and CFCF specimens. It should be noted 

herein that the experimental result of the stainless steel specimen no.6 with CFCF is 

inapplicable because the specimen was permanently bended during the compressive test. 

It should be noted that each experimental buckling load presented in the tables is an 

average value from a set of 20 experiments. The discrepancy of the experimental buckling 

load from the benchmark solution is presented as percentage difference as shown in the 

column denoted by “% Diff.” An average and standard deviation of the percent difference 
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between experimental and numerical solutions of specimens with the same boundary 

conditions is shown in the bottom of the tables. Since the experimental buckling loads 

shown in the Tables are an average value from 20 experiments, standard deviations 

shown in the last row are calculated from 120 experiments for each set of boundary 

condition, except stainless steel specimens with CFCF boundary conditions which have 

only 100 experiments. For aluminum specimens shown in Table 6.2, the percent 

difference of the measured buckling loads from the benchmarks varies from -5.95 % to 

4.10 % . However, the averages of the percent discrepancy for specimens with the same 

boundary conditions shown at the bottom of the table are lower than 2 %. It is also 

observed that the average percent difference is independent of sizes, thickness and 

boundary conditions of the specimen. In general, the buckling load of an aluminum 

specimen obtained from VCT match the numerical solution very well.  On the other hand, 

measured buckling loads of stainless steel plates are not as well agreed with the numerical 

ones. From Table 6.3, percent discrepancies of the measured buckling loads of CCCF and 

CFCF specimens are comparable to those of aluminum plates. The average percent 

differences of buckling load for both boundary conditions are less than 1%.  However, an 

average percent different of 11.41 % for CCCC specimens is fairly high compared with 

those of other experiments. It is also noticed that the measured buckling load of a thicker 

plate deviates from the expected solution more than that of the thinner one. Specifically, 

the percent differences of the thicker plates (specimen No. 2, 4 and 6) which vary from 

13.45% to 16.15% are higher than those of the thinner plates (specimen No. 1, 3 and 5) 

which are less than 10%. 
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Table 6.2 Buckling load in kN/m of aluminum specimens compared to numerical solutions. 

CCCC CCCF CFCF 

Specimen 
No. 

Dimension 
(a×b) mm2 

Thickness,
mm 

Numerical 

Solution 

Exp. 

Measurement

% 

Diff 

Numerical 

Solution 

Exp. 

Measurement

% 

Diff 

Numerical 

Solution 

Exp. 

Measurement 

% 

Diff 

1 300 x 200 2.032 113.198 115.7014 2.21 34.01854 34.84576 2.43 23.52831 24.09362 2.40 

2 300 x 200 2.298 163.727 165.6002 1.14 49.20334 46.57304 -5.35 34.03061 34.19524 0.48 

3 200 x 200 1.765 89.483 89.01088 -0.53 40.72324 38.30099 -5.95 34.89764 33.70079 -3.43 

4 200 x 200 1.955 121.604 125.1282 2.90 55.34119 54.84334 -0.90 47.42444 46.76728 -1.39 

5 150 x 200 1.745 100.1397 101.0814 0.94 65.48127 64.8182 -1.01 60.17814 57.05806 -5.18 

6 150 x 200 1.976 145.4055 146.4931 0.75 95.08054 98.98151 4.10 87.38025 84.51399 -3.28 

   
Average 1.24   -1.11   -1.73 

   
Standard deviation 4.44   6.30   3.38 

 

 



CCCC CCCF CFCF 
Specimen 

No. 

Dimension 

(a×b) mm2 

Thickness,

mm 
Numerical 

Solution 

Exp. 

Measurement

% 

Diff 

Numerical 

Solution 

Exp. 

Measurement

% 

Diff 

Numerical 

Solution 

Exp. 

Measurement 

% 

Diff 

1 300 x 200 1.173 58.79079 62.52427 6.35 18.04255 18.9684477 5.13 12.27434 12.044275 -1.87 

2 300 x 200 1.389 97.61622 112.625 15.38 29.67785 28.4294318 -4.21 20.38031 20.558505 0.87 

3 200 x 200 1.110 60.0928 64.64974 7.58 27.517 28.3914568 3.18 23.51676 23.63024 0.48 

4 200 x 200 1.389 117.748 133.5815 13.45 53.91863 55.1761545 2.33 46.0803 46.689305 1.32 

5 150 x 200 1.124 72.25424 79.15339 9.55 47.4231 48.327375 1.91 43.54222 44.1669325 1.43 

6 150 x 200 1.406 141.423 164.2616 16.15 92.82115 87.3316045 -5.91 85.22511 N/A N/A 

   
Average 11.41   0.40   0.45 

   
Standard deviation 6.23   5.95   3.76 
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Table 6.3 Buckling load in kN/m of stainless steel specimens compared to numerical solutions. 
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Imperfection of boundary conditions 

From the experimental results of CCCC stainless steel specimens, it is speculated 

that the boundary condition of those specimens is significantly deviated from the 

theoretical one. For a clamped support, the specimen should be fixed with zero out-of-

plane displacement and zero slope on the boundary. After a careful consideration, it was 

hypothesized that the supports on the unloaded edges were vulnerable to be a cause of 

imperfection. These supports are restrained by two support holders which are clamped on 

the guided columns, as shown in Fig. 5. Preferably, the support holder may not rotate 

around the guided column, such that the specimen is tightly clamped by the clamped 

supports. However, if the bending moment on the specimen’s edge is sufficiently high, 

the support holder could be rotated by the reaction moment, resulting in a movement of 

the support in the out-of-plane direction. As a result, imperfection of the clamped 

boundary condition can be observed by monitoring the movement of the support bar on 

the unloaded edge.  An additional measurement was conducted on both aluminum and 

stainless steel specimens to investigate the perfection of the clamped boundary condition. 

Specimens number 1 and 2 were mounted on the test frame and loaded with tensile 

loading, similar to that of the vibration test to determine natural frequencies. A dial 

indicator was placed in the middle of a clamped support to monitor the motion of the 

support after the specimen was loaded with tensile loading. A Plot of the displacement in 

the out-of-plane direction of the support versus applied tension is presented in Fig. 11. In 

an ideal world, this displacement should not be existed at any load levels. However, this 

displacement could be detected if (a) the specimen is not perfectly flat, or (b) the tensile 

load is not uniformly applied. It should also be noted that nominal sizes of specimen No. 

1 and 2 are identical but specimen No. 1 is thinner than specimen No. 2. It is clearly seen 

that displacements of the support on the stainless steel plates are considerably higher than 
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those of on the aluminum plates. Furthermore, the displacement measured on a thinner 

plate is less than those of on a thicker plate. This out-of-plane displacement of the support 

indicates the imperfection of that support. So, with the test frame used in this study, it can 

be concluded that aluminum specimens are supported by a better clamped boundary 

condition on the unloaded edges than those of the stainless steel specimens. Similarly, a 

clamped support on a thinner specimen is closed to an ideal boundary condition than that 

of on a thicker specimen. Although all specimens are clamped with the same supports and 

comparable clamping force, they are probably not subjected to similar boundary 

conditions because of the difference of the plate’s bending stiffness. Bending stiffness of 

a stainless steel plate is higher than that of an aluminum plate, so does a thicker plate 

comparing with a thinner plate. Because of the imperfections of plates and loading 

conditions, such as pre-existed curvatures and uniformity of tensile loading, a specimen 

has a tendency to move in the out-of-plane direction. With an ideal boundary condition, 

all of this motion will be suppressed by the clamped support. It is confirmed in the 

additional measurement that the support can not perfectly restrain the specimen, as shown 

in Fig. 6.7. Specimens with lower stiffness, i.e. aluminum plates and thinner plates, are 

supported with a better clamped boundary condition. Thus, buckling loads of CCCC 

stainless steel specimens are not well predicted compared with those of other specimens 

because boundary conditions of these specimens are significantly diverged from an ideal 

boundary condition. In addition, a support on thinner specimens (specimen No. 1, 3 and 

5) assembles a near-ideal boundary condition than that of the thicker ones. This remark is 

supported by the plot in Fig. 6.7, and justifies the obtained percent differences of the 

CCCC stainless steel specimens.  

An imperfection of the clamped support, i.e., rotation of the support holder is 

encountered only on the unloaded edges. The clamped supports on the loaded edges are 
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mounted in crossheads #2 and #3 which are only allowed to move along two guided 

columns. With the described arrangement, both crossheads can not be rotated as long as 

the guided column remains straight, so the supports on these edges closely assemble an 

ideal clamped boundary condition. Therefore, the boundary conditions of the CFCF 

specimens were well setup, and the buckling loads of CFCF specimens are very well 

identified using VCT. For CCCF boundary conditions, although one of the unloaded 

edges is supported with a clamped boundary condition, experimental buckling loads from 

VCT still match the numerical solutions very well. The unloaded edges on CCCF 

specimens are clamped on one side and free on the other side. The free edge of these 

specimens is allowed to deform or bend; consequently, the bending moment on the other 

unloaded edges is probably not high enough to nullify a clamped boundary condition.  
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Figure 6.7 Plot of support displacement vs. in-plane tension of CCCC specimens 

 

It is noticed from the experimental results that all of the measured buckling loads 

of CCCC stainless steel specimens are higher than the theoretical ones, i.e. percent 

differences are positive. This observation is contradicted by the fact that the specimen is 

not perfectly clamped, so its buckling load should be lower than that of the numerical 
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solution. However, this contradiction is rational because the measured buckling load is 

obtained from the measured vibration data. Because of the diverged boundary conditions, 

the specimen is not perfectly restrained, so its boundary condition is somewhat between 

simple support and clamped support. Thus, the measured natural frequencies of the 

specimens subjected to tensile load are lower than those of the perfectly clamped 

specimen. The degree of divergence of the boundary conditions is greater when the 

specimen is loaded with higher in-plane load. As a result, the slope of the trend line of 

*2 vs. Nx is lower than expected and the intersection of the trend line with Nx-axis is 

further away from the origin than it should be. Therefore the buckling load obtained from 

VCT using vibration data in the tensile loading region is higher than the theoretical one. 

In conclusion, specimens used in this study are supported with either a clamped 

support or free boundary condition. The clamped boundary conditions on the loaded 

edges as well as the free boundary conditions on the unloaded edges were very well set 

up.  Imperfection of the clamped boundary condition on the unloaded edge was 

minimized if the boundary condition on the other edge was free boundary condition. The 

imperfection of the support was also decreased on an aluminum specimen because of the 

lower plate’s stiffness. With these remarks, only CCCC stainless steel plates were not 

well supported with an intended clamped boundary condition. This observation clarifies 

the fact that the measured buckling loads of these specimens from VCT are diverged from 

the numerical solutions. Buckling loads of other sets of specimens are accurately 

indicated using the proposed technique. 

      

Derivation the buckling load 

Although the average percent differences of the measured buckling loads from the 

numerical solutions are very low for most of the experiments with properly-prepared 
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boundary conditions. The standard deviations of the percent differences for each group of 

the specimens are, on the other hand, fairly high. The standard deviation for specimens 

with the same material and boundary condition is shown in the last row of Table 6.2 and 

6.3. Unlike an average of the percent discrepancy, the standard deviations in each case of 

the experiments are not noticeably different. For CCCC and CCCF specimens, the 

standard deviations of the percent difference are varied from 4% to 6.5% for both 

materials. The standard deviations of CFCF specimens are 3.38% and 3.76 % for 

aluminum and stainless steel plates, respectively. These deviations are moderately less 

than those of the specimens with CCCC and CCCF boundary conditions. The standard 

derivation of the percent difference indicates the precision or repeatability of the 

measurements. In the experiment, to obtain a buckling load, a specimen was clamped by 

tightening machine screws and tested for natural frequencies under an increasing tensile 

loading. Then, the supports on the specimen was loosened and retightened again for the 

next experiment. So, it is noticed that boundary conditions of the specimen for each 

measurement are not identical. Additional tests were conducted by repeating the 

experiment without loosening the machine screws, i.e. the same boundary conditions 

were maintained. The measured buckling loads were not significantly different. 

Therefore, a measured buckling load of one experiment deviates from those of other 

experiments because of the nonidentical boundary condition between each experiment. It 

is also notice that the boundary condition on the unloaded edges of a CFCF specimen is 

free or unsupported. So, the boundary condition on these edges is identical for all 

experiments. Accordingly, the boundary conditions of CFCF specimens are deviated from 

an experiment to another experiment less than those of specimens with other boundary 

condition. So, the standard deviations of percent difference of CFCF specimens are fairly 

less than those of the specimens with other boundary conditions.   
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The distribution of the percent differences of the experiments with proper-setting 

boundary conditions is presented as a histogram shown in Fig. 12. The experimental 

results of CCCC stainless steel plates are not included in the plot because of their ill-

defined boundary conditions. There are a total of 580 comparisons between the measured 

and numerical buckling loads. It is seen that the histogram assemble a very symmetric 

bell curve with the tip of the curve right around 0%. The average percent difference from 

580 comparisons is -0.18% with the standard deviation of 5.05%. A total of 397 

comparisons, or approximately 68%, have percent difference between measured and 

numerical buckling loads within 5%. In conclusion, the accuracy of using VCT with 

vibration data in the tensile loading region to identify a buckling load of plates is very 

well demonstrated. The precision or repeatability of the technique is fairly acceptable, 

given the fact that the boundary conditions of the specimen for each experiment in this 

study are not exactly identical. In practice, the precision of using the VCT can be kept at 

maximum if the boundary conditions of the specimen are suitably arranged. The 

advantage of using VCT is that the technique is applicable for specimens with any 

boundary conditions. As long as the specimen is supported in the vibration test in the 

same manner as that of in the buckling problem, the buckling load obtained from the VCT 

should be accurate and precise without knowing the boundary conditions of the specimen.                       
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Figure 12. Histogram of the percentage difference between measured and 

predicted  

      buckling loads of the experiment except CCCC of stainless steel 

 
6.5 Conclusions 

The relationship between the natural frequency and the buckling load of a 

rectangular thin plate is developed in this study. It is shown that the square of natural 

frequency of a loaded plate is linearly varied with the in-plane load. By comparing the 

governing equations of both problems, the natural frequency of the plate decreases to be 

zero when the applied in-plane load approaches the buckling load of plate. The derived 

relationship is utilized as a technique to identify the buckling load and buckling mode of 

the structure. Due to a premature curvature which usually develops before buckling, the 

use of vibration data in the tensile-loading range, where the premature curvature is 

negligible, is proposed in this study. To verify the accuracy of the technique, the 

experiment was performed on a test frame in which the specimen was loaded and tested 

for natural frequencies. Both aluminum and stainless steel specimen with CCCC, CCCF 

and CFCF boundary conditions are included in the specimen. The measured vibration 

data is plotted against the in-plane load to determine the buckling load and buckling 
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mode. Square of the measured natural frequency is linearly varied with the applied load 

as expected. The experimental results show that all buckling modes obtained from VCT 

agree with numerical solutions very well, while most of the measured buckling loads 

conform to the numerical solutions. Buckling loads of CCCC stainless steel specimens 

were not well indicated using the proposed technique. The imperfection of boundary 

conditions of this group of specimens is believed to be a considerable factor in the high 

percentage difference between the measured and numerical buckling loads. If the 

experiments of stainless steel specimens with CCCC boundary condition are excluded, 

the average of the percent difference between measured buckling loads and numerical 

solutions is -0.18% with the standard deviation of 5.05%. The obtained percent difference 

assembles a bell-shape normal distribution. The standard deviation of the percent 

difference is fairly high because of the variation of the boundary conditions from one 

experiment to another experiment. In conclusion, the experimental study demonstrates the 

accuracy and reliability of using vibration data in the tensile-loading range to determine 

the buckling load. Boundary conditions of the specimen have a considerable effect on the 

precision of the measured buckling load. The proposed technique of identifying buckling 

load of plate has an advantage over the static methods for the fact that this method does 

not need human’s judgment to draw two lines in the pre- and post- buckling regions. 

However, the boundary conditions of the specimen must be carefully set to get an 

accurate and precise measurement. The measured natural frequency of the specimen is 

sensitive to the boundary conditions and, hence, is a critical parameter in applying VCT 

to buckling of plate problem. 

 



Chapter 7. Discussions and Conclusions 

 

Buckling is one of the important failure modes of thin-walled structures, 

especially structures subjected to compressive load. There are mainly three approaches 

used to determine buckling load; i.e. analytical, numerical, or experimental approaches. In 

this project the experimental method is investigated. Several studies available in the 

literature compared experimental results with theoretical or numerical ones, and found a 

moderately high degree of discrepancy. Imperfection of plate and boundary condition of 

the experiment specimens are frequently cited as sources of the inconsistency. Also, the 

methods used to identify buckling load can be a source of discrepancy between the 

experimental result and the prediction. Usually, the static method, which is a plot some 

parameters such as out-of-plane displacement versus an in-plane load, requires some 

human judgments. That is it needs to draw two lines in the pre- and post- buckling 

regions to obtain the buckling load. Drawing these two lines could be a cause of error of 

the experimental buckling load. So, there is a need for an alternative approach of buckling 

load identification. In this study, a VCT is proposed as a technique which used the 

measured vibration data to identify buckling point of the structures. It is hypothesized that 

this approach might improve the accuracy of the measurement because there is no need to 

draw a line in the process so human error is avoided.  

Since VCT utilizes the vibration data, the measured natural frequency need to be 

certain and reliable, unless the obtained buckling load is vulnerable to further critical 

error. Thus, in the first part of the study, the accuracy of vibration measurement is 

investigated. Because of the difficulty of setting up the theoretical boundary conditions, 

the scaling law is employed to predict the natural frequency of the prototype using the 

measured vibration data from the model. It is concluded that the vibration measurement is 
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satisfactorily accurate to further use in buckling load problem. Boundary conditions of the 

specimens are proved to be the most significant factor which can affect the measured 

natural frequency. 

The second part of the study is focused on using VCT to identify the buckling 

load and mode of rectangular thin plate. The relationship between the natural frequency 

and the buckling load of a rectangular thin plate is developed. By comparing the 

governing equations of both problems, the natural frequency of the plate decreases to be 

zero when the applied in-plane load approaches the buckling load of plate. It is shown 

that the square of natural frequency of a loaded plate is linearly varied with the in-plane 

load. The derived relationship is utilized as a technique to identify the buckling load and 

buckling mode of the structure. Because of a premature curvature which usually develops 

before the specimen has buckled, the use of natural frequency in the tensile-loading range, 

where the premature curvature is negligible, is proposed in this study. The experimental 

investigation was performed to determine the accuracy and reliability of the technique. A 

test frame which can apply both tensile and compressive loads to the specimen was 

prepared and used in the experimental study. The measured vibration data is plotted 

against the in-plane load to determine the buckling load and buckling mode. Square of the 

measured natural frequency is linearly varied with the applied load as expected. The 

experimental results show that all buckling modes obtained from VCT agree with 

numerical solutions very well, while most of the measured buckling loads conform to the 

numerical solutions. There are some cases of the experiment that the measured buckling 

loads from VCT are not well agreed with the benchmark solution because the boundary 

conditions of the specimens are not closed to the ideal case. The experiment demonstrates 

the accuracy and reliability of using vibration data in the tensile-loading range to 

determine the buckling load. Similar to the case of vibration study, boundary conditions 
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of the specimen have a considerable effect on the precision of the measured buckling 

load. 

The proposed VCT used to identify buckling load of plate has an advantage over 

the static methods for the fact that this method does not need human’s judgment to draw 

two lines in the pre- and post- buckling regions. This technique is also appropriate for 

structures with imperfection or unknown boundary conditions. However, the boundary 

conditions of the specimen in vibration experiment must be carefully set to get an 

accurate and precise measurement. The measured natural frequency of the specimen is 

sensitive to the boundary conditions and, hence, is a critical parameter in applying VCT 

to buckling of plate problem.                
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Abstract 
 

This study investigates the use of a vibration correlation technique (VCT) to 

identify the buckling load of a rectangular thin plate. It is proposed that the buckling load 

is determined experimentally using the natural frequencies of plates under tensile loading. 

A set of rectangular plates was tested for natural frequencies using an impact test method. 

Aluminum and stainless steel specimens with CCCC, CCCF and CFCF boundary 

conditions were included in the experiment. The measured buckling load was determined 

from the plot of the square of a measured natural frequency versus an in-plane load.  The 

buckling loads from the measured vibration data match the numerical solutions very well. 

For specimens with well-defined boundary conditions, the average percentage difference 

between buckling loads from VCT and numerical solutions is -0.18 % with a standard 

deviation of 5.05 %. The proposed technique using vibration data in the tensile loading 

region is proven to be an accurate and reliable method which might be used to identify the 

buckling load of plates. Unlike other static methods, this correlation approach does not 
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require to draw lines in the pre-buckling and post-buckling regions, thus, bias in data 

interpretation is avoided. 

Keywords: buckling load, vibration, natural frequency, thin plate, experiment 

 
1. Introduction 
 

Buckling load is one of the important parameters which should be considered in 

the design of thin or slender structures subjected to compressive loading. Buckling 

behavior of several engineering structures such as columns, plates, frames, and shells has 

been continuously investigated in the past several decades. Among several types of 

structure, a thin plate is one of the most important types of structure used in engineering 

applications. Mainly, the stability problem of plate is investigated using theoretical, 

numerical and experimental approaches. The theoretical method is applicable to a limited 

type of problems where a closed-form solution is possible. For more complicated 

structures, the numerical methods such as a finite element method are required. Solutions 

from both theoretical and numerical methods are generally verified with the experimental 

results. Experimental method involves in a number of costly and time consuming 

processes, however, imperfections and complicated effects of the problem are naturally 

included. For an experimental study of buckling of plate, identification of the buckling 

point is an important process, since it directly affects the accuracy of the measurement. In 

the experiment, the buckling load of plates can be identified using various kinds of plots; 

for example: 1) a plot of in-plane loads vs. out-of-plane displacement; 2) a plot of in-

plane loads vs. end-shortening; and 3) a plot of in-plane loads vs. difference of surface 

strains. These methods which may be classified as static methods utilize the change of the 

slope of the curve in pre-buckling and post-buckling regions to identify buckling load. 

The plots mentioned above and other static methods are properly summarized in Ref. [1].  

There are several studies employed the static methods to identify the buckling load of 
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plates. Chai et al.[2] verified the theoretical buckling load of composite plates using the 

experimental method. Buckling load was determined from the intersection of the tangents 

drawn in the pre-buckling and post-buckling slopes of the load versus membrane strain 

curve. The discrepancies between the experimental and theoretical solutions between -7 

% and +11 % were reported. Tuttle et al. [3] determined buckling loads of composite 

panels from the plots of applied in-plane load vs. out-of-plane displacement, and 

compared the experimental results to numerical predictions obtained using a Galerkin 

method. Although the average percentage error between the measured and predicted 

buckling loads is low, the standard deviation of the percentage error is as high as 15%. 

The difficulties of identifying the buckling load using a static test method were 

documented. In particular, drawing two lines in the pre-buckling and post-buckling 

regions to identify the buckling point depended on personal judgment, and could be a 

cause of error. To use the experimental result as a benchmark solution, the method used to 

identify buckling load must be accurate and reliable. 

There is a need for an alternative approach to experimentally identify the buckling 

load of a plate. In this paper, the vibration correlation technique (VCT) is explored and 

modified to determine buckling load of a plate. The VCT is a nondestructive testing 

utilizing the measured vibration data. This concept has been applied to buckling problems 

in the past with a variety of amount of success.  Lurie and Monica [4] showed that the 

square of the frequency of the lateral vibration of a thin plate with simple supports on all 

edges is linearly related to the end load. They also conducted some experiments on 

elastically restrained columns, rigid-joint trusses, and thin flat plates. The authors 

reported that VCT was successfully employed to predict the buckling load of only 

columns and trusses. For flat plates, because of the initial curvature, the buckling load 

cannot be predicted by the proposed method. However, Chailleux et al. [5] later showed 
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that with a carefully designed experimental setting, VCT can be used to determine the 

buckling load with satisfactory accuracy. The experimental dynamical curved is linear in 

the low load region, such that it is possible to extrapolate the data to obtain the buckling 

load. Segall and Springer [6] proposed a dynamic method to determine linear buckling 

loads of elastic rectangular plates. With an integral equation representation of the elastic 

stability, the proposed technique does not require the application of an in-plane load. A 

few studies [7-9] concerning the use of vibration data to investigate buckling behavior can 

be found in the literature.   

In this study, the relationship between buckling and vibration behavior of thin 

plates is investigated. The relationship between applied in-plane load and the natural 

frequency of plates is derived from the differential governing equations of both problems. 

The derived relationship, which is applicable to thin plates with any boundary conditions, 

is numerically verified by simulating a plot of the derived relationship. Because of the 

premature curvature, which is usually detected even before the specimen has buckled, it is 

proposed in this study that the buckling load be determined from the vibration data of a 

plate subjected to tensile loading. A test frame, capable of applying tensile and 

compressive loading to a specimen, was prepared. A series of vibration tests was 

performed to determine the natural frequencies of the plates. The vibration data, along 

with the derived relationship, are used to predict the buckling load. Experimental 

buckling loads are compared to the numerical solutions to verify the proposed technique. 

 

2. Relationship between natural frequency and buckling load 

The vibration correlation technique utilizes the relationship between vibration 

parameters and buckling parameters. If the relationship between both parameters is 

established, the buckling behavior can be determined from the known or measured 



 76

vibration parameters. In this section, vibration and buckling behaviors of a thin plate are 

investigated and their relationship is derived. As shown in Fig. 1, a rectangular plate with 

a dimension of a×b, and subjected to a uniform uniaxial loading Nx
 is a system of interest. 

For a buckling problem, an applied in-plane load Nx is always a compressive load. The 

desired parameters to be determined are buckling load and buckling mode. The buckling 

load of a plate – represented by xN  – is the in-plane compressive load Nx at which 

buckling occurs, while the buckling mode is the out-of-plane configuration w of the 

buckled plate. In addition, natural frequencies and vibration mode shapes are two 

parameters to be determined in a vibration problem. The natural frequencies of a plate can 

be determined for a specimen with a given Nx. It should be noted that xN  and Nx refer to 

the same in-plane load; however, xN  is the buckling load which must be a compressive 

load (negative value), while Nx is the applied in-plane load which can be either tension or 

compression in the vibration problem. To derive the relationship between both 

phenomena, the governing equations of both problems are considered. The governing 

equations for buckling and vibration of a thin isotropic plate are written as: 

  
4 4 4 2

4 2 2 4 2
2 xNw w w w

x x y y D x

   
  
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0      (1) 
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4 2 2 4 2
2 0xNw w w w
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    
   
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 ,    (2) 

respectively. For a given plate with particular boundary conditions, it is widely known 

that the buckling mode is identical to one of the vibration modes. Specifically, the out-of-

plane displacement of the buckled plate is the same as the out-of-plane displacement of 

one of the vibration modes. So, the governing equation of the buckling problem can be 

rewritten as: 
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Similarly, the governing equation of the vibration of loaded plates is written as: 

       *2
1 2 3 0xL w N L w L w        (4) 

where  3

w
L w

D


 . 

It should be noted that the terms containing derivatives of w are the same for both 

problems because the buckling mode and vibration mode are identical. From Eq. (3), the 

buckling load of a plate can be written as: 

  
 
 

1

2
x

L w
N

L w
 .         (5) 

Similarly, the natural frequency of a plate, with the applied in-plane load Nx, can be 

determined from Eq. (4), and written as: 

  
   

 
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
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where * is the natural frequency of a plate with applied load Nx. It is noticed that the 

natural frequency of plate varies with the in-plane loading. For an unloaded plate, the 

natural frequency is easily described as: 

  
 
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L w
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  ,          (7) 

where   is the natural frequency of a plate without an applied load. By dividing Eq. (5) 

by Eq.(6) and utilizing Eq.(7), the ratio of the square of the natural frequency of a loaded 

plate to that of an unloaded plate is written as: 
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From the relationship shown in Eq.(8), the buckling load xN and the natural frequency of 

an unloaded plate   may be considered as a constant for a specific specimen. The 

variables in that equation are the natural frequency of the loaded plate * and the applied 

in-plane load Nx. Thus, the square of the natural frequency *2( ) varies linearly with the 

applied load Nx. With the buckling load being a negative value, it is observed that the 

natural frequency of the plate increases with the applied tensile load. On the other hand, it 

decreases with the applied compression. Moreover, if the applied load Nx equals the 

buckling load of the plate, the natural frequency *  theoretically equals zero. With this 

observation, the natural frequencies of the loaded plate can be utilized to predict its 

buckling load by plotting *2 versus the in-plane load Nx. The buckling load can be 

determined from the applied load Nx at which the natural frequency approaches zero. 

Since this relationship is derived from the governing equations, it is applicable to 

specimens with any boundary conditions. Besides conventional boundary conditions, this 

relationship is also applicable for thin plates with unknown or imperfect boundary 

conditions. As long as the vibration data is obtained from the specimen with boundary 

conditions of interest, the buckling load determined using VCT will be the buckling load 

of the specimen with those boundary conditions.   

 To numerically verify the VCT and the derived relationship shown in Eq. (8), a 

numerical simulation of the vibration and buckling of a plate was performed. The Ritz 

method with characteristic beam functions was used to solve the buckling and vibration 

problems. Detail information about the Ritz method which is beyond the scope of this 

paper can be found in Ref.[10-15]. A 2-mm-thick aluminum plate with a dimension ab 

of 400x200 mm2 was chosen as a specimen. The plate was assumed to be simply 

supported on the loading edges and clamped supported on the other two edges. The 

buckling load of this specimen was numerically determined, and found to be 88.216 
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kN/m with buckling mode (3, 1). The buckling mode of this specimen is graphically 

shown in Fig.2. This numerical solution serves as the theoretical solution for this 

simulation, and is used to validate the buckling load from VCT. Buckling load and mode 

determined from VCT requires the vibration data, i.e. natural frequencies and vibration 

mode shapes, of the plate subjected to in-plane loading. These vibration parameters of the 

loaded plated were also simulated from the Ritz method. The applied in-plane load was 

increased step by step in both tensile and compressive loading range. The square of the 

natural frequencies for the first six modes was plotted versus applied load, as shown in 

Fig. 3. The mode shape of each vibration mode is shown in Fig. 4. The relationship 

between *2 and Nx of a particular vibration mode is linear, as expected according to the 

derived relationship. The predicted buckling load can be determined by extrapolating the 

vibration data to the in-plane load at which the square of the natural frequency approaches 

zero. Trend lines of each vibration mode intercept the Nx axis at a different load level. The 

lowest compressive load is the buckling load, and its corresponding vibration mode shape 

is the predicted buckling mode. In this simulation, the predicted buckling is 88.216 kN/m 

and the buckling mode is mode (3, 1). VCT predicted buckling mode as mode (3, 1) 

because the trend line of this vibration mode intersects Nx axis at the lowest load 

compared to those of other vibration modes. The buckling load determined from the 

vibration data compares perfectly with the numerical solution. Similarly, the buckling 

mode determined from VCT is also identical to the buckling mode of the numerical 

solution. In conclusion, the squares of natural frequencies are linearly varied with the 

applied in-plane load as expected from the relationship shown in Eq. (8). The natural 

frequency approaches zero as the in-plane compressive load approaches the buckling load 

of plate. The numerical simulation showed that buckling behaviors of a thin plate are very 

well predicted using VCT. The concept of using vibration parameters to identify buckling 
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load and mode is theoretically verified. However, experimental study is required to 

determine the accuracy and reliability of the technique.  

 

3. Experimental Arrangement 

Although the relationship between vibration and buckling behaviors of a thin plate 

is theoretically confirmed, the applicability of VCT as an experimental technique used to 

identify buckling load is needed to be investigated. A series of experiments was 

performed to determine the accuracy and reliability of the proposed technique. A set of 

aluminum and stainless steel plates was used; each plate was uniaxially loaded on a 

custom-made test frame. The experiment was then performed on the loaded specimens to 

determine natural frequencies and vibration mode shape. The vibration data was obtained 

for the specimens subjected to both tensile and compressive loading.  The measured 

natural frequencies and applied loading were then plotted, with results similar to those 

shown in Fig. 3. The predicted buckling load was identified using the VCT, i.e. the 

relationship derived previously.  

Test frame 

The test setup, shown in Fig. 5, was specifically designed to accommodate the 

loading configurations and vibration testing. The test frame is capable of applying both 

clamped and free boundary conditions to the specimens. The simple supported boundary 

condition is not included in the experiment because it is difficult to obtain a perfect 

simple support comparing with other two conventional boundary conditions. Both tensile 

and compressive loads can be applied on the specimens. In-plane loads are applied 

horizontally using a hydraulic cylinder pressurized with a hand pump. The hydraulic 

cylinder is mounted on the right end frame, which is fixed to the left end frame using two 

guided columns. A rectangular thin plate is mounted on the loading edges with clamped 
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support between crosshead #2 and crosshead #3. For a tensile testing configuration as 

shown in Fig. 5, the hydraulic ram applies a compressive force against crosshead #1. 

Loads are monitored using a load cell mounted between crosshead #1 and the hydraulic 

cylinder. Two linear bearings are embedded within the crossheads such that they can 

move linearly along two guided columns. The applied loading on crosshead #1 is 

transferred through two tension rods to crosshead #2. So, crosshead #2 is pushed and 

trend to move to the left hand side. On the contrary, crosshead #3 is blocked by two 

stoppers mounted on the guided columns, as shown in figure. With this loading 

configuration, a specimen which is clamped between crosshead #2 and crosshead #3 is 

stretched when the compressive load is applied by the hydraulic ram. In the case of a 

compressive testing, the test frame shown in Fig. 5 has to be modified as the following. 

Crosshead #1 and the tension rods are removed in the compressive testing configuration. 

Two stoppers which are used to block crosshead #3 in the tensile testing configuration are 

moved to the left-hand side of crosshead #2 to prevent the horizontal motion of the 

crosshead. A compressive load from the hydraulic ram is applied directly on crosshead 

#3, in this loading configuration. With this setup, the specimen is uniformly compressed 

between crosshead #2 and crosshead #3. So, the designed test frame is capable of 

applying both tensile and compressive loads to a thin plate with changeable loading 

configurations. 

Besides the loading mechanism, the test frame is also equipped with restrained 

devices to apply desired boundary conditions to the test samples. In Fig.5, the clamped 

boundary conditions of the specimen are enforced by 20-mm.-thick rigid stainless steel 

bars, denoted as “clamped support.” For the unloaded edges, the clamped supports are 

mounted on the support holders, which are tightly clamped to the guided columns. 

Similarly, the rigid stainless steel bars are placed in the slot of the crossheads to assemble 
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a clamped support on the loaded edges. On both loaded and unloaded edges, machine 

screws are used to push the steel supports against the specimen surface. To obtain a 

clamped support, machine screws are finger-tightened until the gap between the specimen 

and support is invisible. A clamped support on the unloaded edges of the specimen can be 

removed such that a free edge is formed on those boundaries. With the described 

constraint mechanism, the boundary conditions of a specimen are clamped support on the 

loaded edges (on x = 0 and x = a), and either clamped or free edges on the unloaded edges 

(on y = 0 and y = b) 

Test specimens 

A series of experiment was performed on twelve thin isotropic plates with CCCC, 

CCCF and CFCF boundary conditions. The symbol “C” represents a clamped boundary 

condition, while “F” stands for a free boundary condition. The first and third letters 

symbolize the boundary condition on x = 0 and x = a, respectively. Similarly, the 

boundary conditions on y = 0 and y = b are represented by the second and forth letters, 

respectively. The specimens were prepared from 6061-T6 aluminum alloy and stainless 

steel AISI 304. The physical and mechanical properties of both materials are presented in 

Table 1. Nominal dimensions a×b of the specimen are 300x200, 200x200, and 150x200 

mm2. For each plate size, there were two specimens with different thicknesses. So, there 

were a total of six aluminum specimens and six stainless steel specimens. The aluminum 

and stainless steel specimens’ dimensions are summarized in the first three columns of 

Table 2 and Table 3, respectively. It should be noted that the actual size of a specimen is 

slightly larger than the nominal size because a small portion on the boundary of the 

specimen is clamped by the rigid stainless steel bar, and is not regarded as an effective 

area. The schematic dimensions of the specimens are presented in Fig. 6. A specimen was 

originally prepared to be a CCCC specimen. The width and height of the specimen are 40 
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mm larger than those of the nominal dimensions. A 20-mm-width area on all four edges is 

an area to be clamped by the support. In the schematic of a CCCC specimen shown in 

Fig. 6, the effective area or nominal area of the specimen is represented by a clear area of 

ab, whereas the dashed area is an area to be clamped by the support. After an 

experiment on a CCCC specimen is concluded, a clamped area on one of the unloaded 

edges is cut off to form a CCCF specimen. So, the actual size of a CCCF specimen is 

slightly smaller than a CCCC specimen with the same nominal size. Finally, the other 

clamped area on the unloaded edges is removed to obtain a CFCF specimen. Thus, 

specimens with an equal nominal size but different boundary conditions are actually the 

same specimen.    

Testing procedures  

In this study, the natural frequencies of a loaded plate are required data in order to 

predict the buckling behavior of the plate. Vibration testing was performed using an 

impact test, in which the specimen was excited by an impact hammer while the applied 

impulse was monitored by a dynamic signal analyzer. Acceleration response of the 

specimen was measured by an accelerometer placed on the specimen at a selected 

location. Acceleration data measured in the time domain were processed by a Fast Fourier 

Transform algorithm using the dynamic signal analyzer to obtain the frequency response 

function (FRF). From the vibration response in the frequency domain, the natural 

frequencies of the specimen were identified from the peak of the response. Vibration 

mode shape was also obtained from an imaginary part of the response function. An 

overview of the vibration testing and modal analysis is beyond the scope of this paper; 

and the interested reader is referred to the articles by Avitabile [16]. Typical magnitude 

and imaginary part of the frequency response function are shown in Fig. 7.      
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The experiment on a specimen was composed of two parts. The first part of the 

experiment was performed to verify the relationship shown in Eq.(8) and to determine the 

buckling mode of the plate. The specimen in this part of the experiment was loaded in 

both tensile and compressive loading range. Natural frequencies of the specimen under 

unloaded, tensile-loaded and compressive-loaded conditions were determined, 

respectively. The square of the natural frequency was plotted against applied in-plane 

load. A typical relationship between *2  and Nx is presented in Fig. 8 which is the 

vibration behavior an aluminum specimen No.3 with CCCF boundary condition. Natural 

frequencies of vibration modes (1, 1), (1, 2) and (2, 1) are included in the plot. Numbers 

representing a vibration mode stand for a number of curves of an out-of-plane 

displacement in the x and y directions, respectively. Vibration mode shape is determined 

from the imaginary parts of the frequency response from several experiments. A plot of 

each mode shape is presented in Fig. 9. A symbol “-” and “+” represent the out-of-plane 

displacement in the different direction, and “0” indicate a zero displacement or a node 

line on the specimens. From Fig. 8, the buckling mode of the specimen was determined to 

be mode (1, 1), since the trend line of this mode intersects the Nx axis at the lowest value. 

It is observed that *2  varies linearly with the applied load in the tensile-loading range, as 

expected. The relationship between both parameters in the compressive-loading range is 

not as linear as the relationship in the tensile-loading range. This nonlinear relationship in 

the compressive-loading range was also observed in other specimens, and was also 

reported by Lurie and Monica [4]. This behavior is contradicted by the result from the 

numerical simulation shown in Fig. 3. It is speculated that the nonlinear behavior is a 

result of a premature curvature which develops before buckling of the specimen. For this 

reason, the buckling load was determined using only vibration data of the specimen 

subjected to tensile loading. So, the second part of the experiment emphasizes on 
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determination of the buckling load.  After plotting the relationship of *2 vs. Nx similar to 

Fig. 8 and determining the buckling mode, the specimen was reloaded under increased 

levels of tensile loading. At each load level, a vibration test was performed to determine 

the natural frequency of the loaded plate. Only the natural frequencies of the relevant 

mode shape, i.e. the buckling mode, were collected. A plot of *2  versus Nx in the tensile-

loading range was generated and extrapolated to determine the measured buckling load. 

Because the measurement of natural frequency is very sensitive to boundary conditions, 

the experiment was repeated 20 times by loosening and re-tightening the machine screws 

on the clamped supports. An average of the measured buckling load is reported as the 

buckling load obtained from VCT. 

 

4. Experimental results and discussions. 

All twelve specimens were tested to determine natural frequencies for each 

vibration mode. For each vibration mode, square of the natural frequency was plotted 

against an applied load to determine buckling load and buckling mode.   

4.1 Buckling Mode 

Experimental buckling mode is determined from the vibration mode whose trend 

line intersects the Nx-axis at the lowest load level. For all specimens, buckling modes 

determined from the experiment correspond very well to the numerical solutions. The 

plots of *2 vs. Nx of all specimens are similar to that of the aluminum specimen No.3 

which is shown in Fig. 8. The relationship between both parameters is linear through out 

the tensile loading range and the low-load compressive loading range. In the high-load 

range, most of the experimental result showed that squares of the natural frequency are 

not linearly varied with the in-plane load. In Fig. 8, the nonlinear behavior is observed 

when the applied compressive load is higher than 30 kN/m, approximately. To investigate 
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the cause of this nonlinear behavior, the maximum out-of-plane displacement of the 

specimen subjected to compressive loading was measured and plotted, as shown in Fig. 

10. From the figure, it is noticed that the out-of-plane displacement is observed as soon as 

the compressive load is applied. In the low-load range, i.e. Nx is lower than 25 kN/m, the 

measured out-of-plane displacement is less than 0.3 mm. The out-of-plane displacement 

is pronounced when the applied load approaches 30 kN/m. From linear buckling theory, 

the out-of-plane displacement is not existed before the specimen has buckled. So, this 

out-of-plane displacement is considered as a premature deformation in the experiment 

which reflects the imperfections of the specimen or the test setup. The in-plane 

compressive load level at which the square of natural frequency begins to be nonlinear 

corresponds very well with the load level where the out-of-plane displacement of the 

specimen is well-defined. Other specimens also exhibited a similar correlation between 

the load level where a distinct out-of-plane displacement is observed and the load level 

where a nonlinear behavior between *2 and Nx is observed. It is reasonable to draw a 

conclusion that *2  is not linearly varied with the in-plane load in the high compressive 

loading region because of the premature out-of-plane displacement developed in that load 

region. Therefore, the proposal to use the vibration data in the tensile loading range to 

identify buckling load is justified.  

         

4.2 Buckling load 

The buckling loads determined from VCT for aluminum and stainless steel 

specimens are compared with the numerical solutions in Table 2 and 3, respectively. The 

experimental buckling load is determined from a plot of vibration data in the tensile 

loading range. In Table 2 and 3, dimensions of the specimens are presented in the first 

three columns. The next three columns compare experimental buckling loads of CCCC 
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specimens with numerical solutions which are used as benchmark solutions. The last six 

columns show the experimental results of CCCF and CFCF specimens. It should be noted 

herein that the experimental result of the stainless steel specimen no.6 with CFCF is 

inapplicable because the specimen was permanently bended during the compressive test. 

It should be noted that each experimental buckling load presented in the tables is an 

average value from a set of 20 experiments. The discrepancy of the experimental buckling 

load from the benchmark solution is presented as percentage difference as shown in the 

column denoted by “% Diff.” An average and standard deviation of the percent difference 

between experimental and numerical solutions of specimens with the same boundary 

conditions is shown in the bottom of the tables. Since the experimental buckling loads 

shown in the Tables are an average value from 20 experiments, standard deviations 

shown in the last row are calculated from 120 experiments for each set of boundary 

condition, except stainless steel specimens with CFCF boundary conditions which have 

only 100 experiments. For aluminum specimens shown in Table 2, the percent difference 

of the measured buckling loads from the benchmarks varies from -5.95 % to 4.10 % . 

However, the averages of the percent discrepancy for specimens with the same boundary 

conditions shown at the bottom of the table are lower than 2 %. It is also observed that 

the average percent difference is independent of sizes, thickness and boundary conditions 

of the specimen. In general, the buckling load of an aluminum specimen obtained from 

VCT match the numerical solution very well.  On the other hand, measured buckling 

loads of stainless steel plates are not as well agreed with the numerical ones. From Table 

3, percent discrepancies of the measured buckling loads of CCCF and CFCF specimens 

are comparable to those of aluminum plates. The average percent differences of buckling 

load for both boundary conditions are less than 1%.  However, an average percent 

different of 11.41 % for CCCC specimens is fairly high compared with those of other 
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experiments. It is also noticed that the measured buckling load of a thicker plate deviates 

from the expected solution more than that of the thinner one. Specifically, the percent 

differences of the thicker plates (specimen No. 2, 4 and 6) which vary from 13.45% to 

16.15% are higher than those of the thinner plates (specimen No. 1, 3 and 5) which are 

less than 10%. 

4.2.1 Imperfection of boundary conditions 

From the experimental results of CCCC stainless steel specimens, it is speculated 

that the boundary condition of those specimens is significantly deviated from the 

theoretical one. For a clamped support, the specimen should be fixed with zero out-of-

plane displacement and zero slope on the boundary. After a careful consideration, it was 

hypothesized that the supports on the unloaded edges were vulnerable to be a cause of 

imperfection. These supports are restrained by two support holders which are clamped on 

the guided columns, as shown in Fig. 5. Preferably, the support holder may not rotate 

around the guided column, such that the specimen is tightly clamped by the clamped 

supports. However, if the bending moment on the specimen’s edge is sufficiently high, 

the support holder could be rotated by the reaction moment, resulting in a movement of 

the support in the out-of-plane direction. As a result, imperfection of the clamped 

boundary condition can be observed by monitoring the movement of the support bar on 

the unloaded edge.  An additional measurement was conducted on both aluminum and 

stainless steel specimens to investigate the perfection of the clamped boundary condition. 

Specimens number 1 and 2 were mounted on the test frame and loaded with tensile 

loading, similar to that of the vibration test to determine natural frequencies. A dial 

indicator was placed in the middle of a clamped support to monitor the motion of the 

support after the specimen was loaded with tensile loading. A Plot of the displacement in 

the out-of-plane direction of the support versus applied tension is presented in Fig. 11. In 
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an ideal world, this displacement should not be existed at any load levels. However, this 

displacement could be detected if (a) the specimen is not perfectly flat, or (b) the tensile 

load is not uniformly applied. It should also be noted that nominal sizes of specimen No. 

1 and 2 are identical but specimen No. 1 is thinner than specimen No. 2. It is clearly seen 

that displacements of the support on the stainless steel plates are considerably higher than 

those of on the aluminum plates. Furthermore, the displacement measured on a thinner 

plate is less than those of on a thicker plate. This out-of-plane displacement of the support 

indicates the imperfection of that support. So, with the test frame used in this study, it can 

be concluded that aluminum specimens are supported by a better clamped boundary 

condition on the unloaded edges than those of the stainless steel specimens. Similarly, a 

clamped support on a thinner specimen is closed to an ideal boundary condition than that 

of on a thicker specimen. Although all specimens are clamped with the same supports and 

comparable clamping force, they are probably not subjected to similar boundary 

conditions because of the difference of the plate’s bending stiffness. Bending stiffness of 

a stainless steel plate is higher than that of an aluminum plate, so does a thicker plate 

comparing with a thinner plate. Because of the imperfections of plates and loading 

conditions, such as pre-existed curvatures and uniformity of tensile loading, a specimen 

has a tendency to move in the out-of-plane direction. With an ideal boundary condition, 

all of this motion will be suppressed by the clamped support. It is confirmed in the 

additional measurement that the support can not perfectly restrain the specimen, as shown 

in Fig. 11. Specimens with lower stiffness, i.e. aluminum plates and thinner plates, are 

supported with a better clamped boundary condition. Thus, buckling loads of CCCC 

stainless steel specimens are not well predicted compared with those of other specimens 

because boundary conditions of these specimens are significantly diverged from an ideal 

boundary condition. In addition, a support on thinner specimens (specimen No. 1, 3 and 
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5) assembles a near-ideal boundary condition than that of the thicker ones. This remark is 

supported by the plot in Fig. 11, and justifies the obtained percent differences of the 

CCCC stainless steel specimens.  

An imperfection of the clamped support, i.e., rotation of the support holder is 

encountered only on the unloaded edges. The clamped supports on the loaded edges are 

mounted in crossheads #2 and #3 which are only allowed to move along two guided 

columns. With the described arrangement, both crossheads can not be rotated as long as 

the guided column remains straight, so the supports on these edges closely assemble an 

ideal clamped boundary condition. Therefore, the boundary conditions of the CFCF 

specimens were well setup, and the buckling loads of CFCF specimens are very well 

identified using VCT. For CCCF boundary conditions, although one of the unloaded 

edges is supported with a clamped boundary condition, experimental buckling loads from 

VCT still match the numerical solutions very well. The unloaded edges on CCCF 

specimens are clamped on one side and free on the other side. The free edge of these 

specimens is allowed to deform or bend; consequently, the bending moment on the other 

unloaded edges is probably not high enough to nullify a clamped boundary condition.  

It is noticed from the experimental results that all of the measured buckling loads 

of CCCC stainless steel specimens are higher than the theoretical ones, i.e. percent 

differences are positive. This observation is contradicted by the fact that the specimen is 

not perfectly clamped, so its buckling load should be lower than that of the numerical 

solution. However, this contradiction is rational because the measured buckling load is 

obtained from the measured vibration data. Because of the diverged boundary conditions, 

the specimen is not perfectly restrained, so its boundary condition is somewhat between 

simple support and clamped support. Thus, the measured natural frequencies of the 

specimens subjected to tensile load are lower than those of the perfectly clamped 
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specimen. The degree of divergence of the boundary conditions is greater when the 

specimen is loaded with higher in-plane load. As a result, the slope of the trend line of 

*2 vs. Nx is lower than expected and the intersection of the trend line with Nx-axis is 

further away from the origin than it should be. Therefore the buckling load obtained from 

VCT using vibration data in the tensile loading region is higher than the theoretical one. 

In conclusion, specimens used in this study are supported with either a clamped 

support or free boundary condition. The clamped boundary conditions on the loaded 

edges as well as the free boundary conditions on the unloaded edges were very well set 

up.  Imperfection of the clamped boundary condition on the unloaded edge was 

minimized if the boundary condition on the other edge was free boundary condition. The 

imperfection of the support was also decreased on an aluminum specimen because of the 

lower plate’s stiffness. With these remarks, only CCCC stainless steel plates were not 

well supported with an intended clamped boundary condition. This observation clarifies 

the fact that the measured buckling loads of these specimens from VCT are diverged from 

the numerical solutions. Buckling loads of other sets of specimens are accurately 

indicated using the proposed technique. 

      

4.2.1 Derivation the buckling load 

Although the average percent differences of the measured buckling loads from the 

numerical solutions are very low for most of the experiments with properly-prepared 

boundary conditions. The standard deviations of the percent differences for each group of 

the specimens are, on the other hand, fairly high. The standard deviation for specimens 

with the same material and boundary condition is shown in the last row of Table 2 and 3. 

Unlike an average of the percent discrepancy, the standard deviations in each case of the 

experiments are not noticeably different. For CCCC and CCCF specimens, the standard 
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deviations of the percent difference are varied from 4% to 6.5% for both materials. The 

standard deviations of CFCF specimens are 3.38% and 3.76 % for aluminum and stainless 

steel plates, respectively. These deviations are moderately less than those of the 

specimens with CCCC and CCCF boundary conditions. The standard derivation of the 

percent difference indicates the precision or repeatability of the measurements. In the 

experiment, to obtain a buckling load, a specimen was clamped by tightening machine 

screws and tested for natural frequencies under an increasing tensile loading. Then, the 

supports on the specimen was loosened and retightened again for the next experiment. So, 

it is noticed that boundary conditions of the specimen for each measurement are not 

identical. Additional tests were conducted by repeating the experiment without loosening 

the machine screws, i.e. the same boundary conditions were maintained. The measured 

buckling loads were not significantly different. Therefore, a measured buckling load of 

one experiment deviates from those of other experiments because of the nonidentical 

boundary condition between each experiment. It is also notice that the boundary condition 

on the unloaded edges of a CFCF specimen is free or unsupported. So, the boundary 

condition on these edges is identical for all experiments. Accordingly, the boundary 

conditions of CFCF specimens are deviated from an experiment to another experiment 

less than those of specimens with other boundary condition. So, the standard deviations of 

percent difference of CFCF specimens are fairly less than those of the specimens with 

other boundary conditions.   

The distribution of the percent differences of the experiments with proper-setting 

boundary conditions is presented as a histogram shown in Fig. 12. The experimental 

results of CCCC stainless steel plates are not included in the plot because of their ill-

defined boundary conditions. There are a total of 580 comparisons between the measured 

and numerical buckling loads. It is seen that the histogram assemble a very symmetric 
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bell curve with the tip of the curve right around 0%. The average percent difference from 

580 comparisons is -0.18% with the standard deviation of 5.05%. A total of 397 

comparisons, or approximately 68%, have percent difference between measured and 

numerical buckling loads within 5%. In conclusion, the accuracy of using VCT with 

vibration data in the tensile loading region to identify a buckling load of plates is very 

well demonstrated. The precision or repeatability of the technique is fairly acceptable, 

given the fact that the boundary conditions of the specimen for each experiment in this 

study are not exactly identical. In practice, the precision of using the VCT can be kept at 

maximum if the boundary conditions of the specimen are suitably arranged. The 

advantage of using VCT is that the technique is applicable for specimens with any 

boundary conditions. As long as the specimen is supported in the vibration test in the 

same manner as that of in the buckling problem, the buckling load obtained from the VCT 

should be accurate and precise without knowing the boundary conditions of the specimen.                       

 

5. Conclusions 
 

The relationship between the natural frequency and the buckling load of a 

rectangular thin plate is developed in this study. It is shown that the square of natural 

frequency of a loaded plate is linearly varied with the in-plane load. By comparing the 

governing equations of both problems, the natural frequency of the plate decreases to be 

zero when the applied in-plane load approaches the buckling load of plate. The derived 

relationship is utilized as a technique to identify the buckling load and buckling mode of 

the structure. Due to a premature curvature which usually develops before buckling, the 

use of vibration data in the tensile-loading range, where the premature curvature is 

negligible, is proposed in this study. To verify the accuracy of the technique, the 

experiment was performed on a test frame in which the specimen was loaded and tested 
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for natural frequencies. Both aluminum and stainless steel specimen with CCCC, CCCF 

and CFCF boundary conditions are included in the specimen. The measured vibration 

data is plotted against the in-plane load to determine the buckling load and buckling 

mode. Square of the measured natural frequency is linearly varied with the applied load as 

expected. The experimental results show that all buckling modes obtained from VCT 

agree with numerical solutions very well, while most of the measured buckling loads 

conform to the numerical solutions. Buckling loads of CCCC stainless steel specimens 

were not well indicated using the proposed technique. The imperfection of boundary 

conditions of this group of specimens is believed to be a considerable factor in the high 

percentage difference between the measured and numerical buckling loads. If the 

experiments of stainless steel specimens with CCCC boundary condition are excluded, 

the average of the percent difference between measured buckling loads and numerical 

solutions is -0.18% with the standard deviation of 5.05%. The obtained percent difference 

assembles a bell-shape normal distribution. The standard deviation of the percent 

difference is fairly high because of the variation of the boundary conditions from one 

experiment to another experiment. In conclusion, the experimental study demonstrates the 

accuracy and reliability of using vibration data in the tensile-loading range to determine 

the buckling load. Boundary conditions of the specimen have a considerable effect on the 

precision of the measured buckling load. The proposed technique of identifying buckling 

load of plate has an advantage over the static methods for the fact that this method does 

not need human’s judgment to draw two lines in the pre- and post- buckling regions. 

However, the boundary conditions of the specimen must be carefully set to get an 

accurate and precise measurement. The measured natural frequency of the specimen is 

sensitive to the boundary conditions and, hence, is a critical parameter in applying VCT 

to buckling of plate problem.   
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Figure 1. A rectangular plate subjected to a uniaxial in-plane load Nx 
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Figure 2. Buckling mode determined from the buckling problem 
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Figure 3. Square of the natural frequencies of an aluminum plate vs. applied loading.  
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Figure 4. Vibration mode shapes of the first six vibration mode.  
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Figure 5. Experimental setup of a specimen with CCCC boundary condition subjected to tensile loading. 
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Figure 6. Nominal and actual dimensions of the specimens. 
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Figure 7. Magnitude and imaginary parts of the frequency response of the CCCC stainless 

specimen No. 2 without an in-plane load. 

 



 100

 

 

0

100

200

300

400

500

600

-50 -40 -30 -20 -10 0 10 20 30 40 50
  In-plane load Nx (kN/m) 

 *2 (103 Hz2) 

 Mode (1, 1) 

 Mode (2, 1)

 Mode (1, 2) 

 

Figure 8. Plot of *2  vs. Nx of the aluminum specimen No.3 with CCCF boundary 

condition. 

 

- - -
- --
- --

y

 x 

C C 

C 

F 

 Mode (1, 1)       

+ + +
0 00 
- - - 

y

 x 

C C 

 C 

 F 

 Mode (1, 2) 

+ 0 -
0 -+
0 -+

y

 x 

C C 

C 

F 

 Mode (2, 1)        

Figure 9. Vibration mode shapes of the experiments shown in Fig. 8. 
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Figure 10. Plot of applied load vs. out-of-plane displacement of the experimental results 
shown in Fig. 8.   
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Figure 12. Histogram of the percentage difference between measured and 

predicted buckling loads of the experiment except CCCC of stainless 

steel 

 

 

 Table 1. Properties of materials used in the experiments.  

Material 
Modulus of 
Elasticity, E 

(GPa) 

Poisson 
ratio, v 

Density,   
(kg/m3) 

Aluminum 6061-T6 70 0.33 2700 

Stainless steel AISI 304 193 0.30 8000 

 

 



 

Table 2. Buckling load in kN/m of aluminum specimens compared to numerical solutions. 

CCCC CCCF CFCF 

Specimen 
No. 

Dimension 
(a×b) mm2 

Thickness,
mm 

Numerical 

Solution 

Exp. 

Measurement

% 

Diff 

Numerical 

Solution 

Exp. 

Measurement

% 

Diff 

Numerical 

Solution 

Exp. 

Measurement 

% 

Diff 

1 300 x 200 2.032 113.198 115.7014 2.21 34.01854 34.84576 2.43 23.52831 24.09362 2.40 

2 300 x 200 2.298 163.727 165.6002 1.14 49.20334 46.57304 -5.35 34.03061 34.19524 0.48 

3 200 x 200 1.765 89.483 89.01088 -0.53 40.72324 38.30099 -5.95 34.89764 33.70079 -3.43 

4 200 x 200 1.955 121.604 125.1282 2.90 55.34119 54.84334 -0.90 47.42444 46.76728 -1.39 

5 150 x 200 1.745 100.1397 101.0814 0.94 65.48127 64.8182 -1.01 60.17814 57.05806 -5.18 

6 150 x 200 1.976 145.4055 146.4931 0.75 95.08054 98.98151 4.10 87.38025 84.51399 -3.28 

   
Average 1.24   -1.11   -1.73 

   
Standard deviation 4.44   6.30   3.38 

 

 

 

 



CCCC CCCF CFCF 
Specimen 

No. 

Dimension 

(a×b) mm2 

Thickness,

mm 
Numerical 

Solution 

Exp. 

Measurement

% 

Diff 

Numerical 

Solution 

Exp. 

Measurement

% 

Diff 

Numerical 

Solution 

Exp. 

Measurement 

% 

Diff 

1 300 x 200 1.173 58.79079 62.52427 6.35 18.04255 18.9684477 5.13 12.27434 12.044275 -1.87 

2 300 x 200 1.389 97.61622 112.625 15.38 29.67785 28.4294318 -4.21 20.38031 20.558505 0.87 

3 200 x 200 1.110 60.0928 64.64974 7.58 27.517 28.3914568 3.18 23.51676 23.63024 0.48 

4 200 x 200 1.389 117.748 133.5815 13.45 53.91863 55.1761545 2.33 46.0803 46.689305 1.32 

5 150 x 200 1.124 72.25424 79.15339 9.55 47.4231 48.327375 1.91 43.54222 44.1669325 1.43 

6 150 x 200 1.406 141.423 164.2616 16.15 92.82115 87.3316045 -5.91 85.22511 N/A N/A 

   
Average 11.41   0.40   0.45 

   
Standard deviation 6.23   5.95   3.76 
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Table 3. Buckling load in kN/m of stainless steel specimens compared to numerical solutions. 
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Abstract

A scaling law for the vibration response of rectangular plates along with a similarity requirement was derived and

validated with the experimental results in this study. The scaling law was derived from the governing equation of the

problem and was found to be exact after verifying with a closed-form solution. An experimental investigation was

conducted on several model and prototype specimens using an impact test method. The natural frequencies of the models

were substituted into the scaling law to obtain the scaling natural frequencies of the prototypes, which were then compared

with the measured natural frequencies. In the first part of the study, a total of nine aluminum rectangular plates with

various boundary conditions were tested for natural frequencies to determine the size effect on the accuracy of the scaling

law. From a total of 108 comparisons, the average percentage discrepancy of the scaling natural frequencies was 4.90%

with a standard deviation of 6.45%. Therefore, the scaling law is satisfactorily accurate for a pair of models and prototypes

of the same material but of different size. The other part of the study involved the investigation of the material’s effect on

the accuracy of the scaling law. The experimental results showed that, unlike theoretical verification, using model and

prototype systems with different materials resulted in an erroneous scaling natural frequency. The predicted natural

frequency was inaccurate in this case because the boundary conditions enforced by the supports on the models and

prototypes of different materials were significantly different. Consequently, the similarity requirement between the model

and prototype is violated in the case of this study. With an additional experiment, the scaling law was found to be

practically accurate for model–prototype pairs of different materials if their similitude requirements were fulfilled. The

possible sources of discrepancy of the scaling natural frequency include uncertainties of the experiment, incomplete

similarity of plate configurations and non-identical boundary conditions between the prototype and its model.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The similitude concept has been utilized in many engineering applications. The principle provides a
powerful tool for engineers and scientists to replicate the behavior of the prototype using an appropriate
scaled model. Similitude theory can be stated as [1]; ‘‘the sufficient and necessary condition of similitude
between two systems is that the mathematical model of the one be related by a bi-unique transformation to
that of the other.’’ For a prototype of interest, a scaled replica can be built to duplicate the behavior of the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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full-scale system. The experimental results on the model can be utilized to predict the behavior of the
prototype. The similitude concept is thus very useful, especially, for problems with either a complex domain or
complicated boundary conditions for which numerical solutions are not sufficiently accurate, if possible. If the
prototype is perfectly replicated, the experiment result on the model can be scaled to predict the behavior of
the prototype with sufficient accuracy.

The similitude theory has been applied to many problems in the field of structural engineering, including
vibration and buckling problems of plates. Simitses [2] applied similitude transformation to the bending,
buckling, and vibration of laminated plates. The derived scaling laws were successfully employed to the
problem with appropriate similarity requirements between model and prototype systems. Rezaeepazhand
et al. [3] demonstrated a procedure for deriving a scaling law for the frequency response of laminated plates.
Both Simitses and Rezaeepazhand derived scaling laws from the closed-form solutions of the problems.
Alternatively, scaling laws can be derived directly from the governing equation of the problems. In Refs. [4–6],
the authors derived the scaling laws for the vibration and buckling behavior of laminated rectangular plates.
In those studies, similitude transformation was applied to the governing equations of the problems directly.
Besides the scaling law, the similarity requirements were also obtained. An advantage of this approach is that
a solution of the governing equations is not required. The obtained scaling laws were verified with the
theoretical solution and found to be exact for complete similitude cases. Partial similitude cases were also
investigated and recommended. It was also found that the scaling laws were independent of boundary
conditions. This implies that, for a problem with complicated boundary conditions, the behavior of the
prototype can be predicted from the experimental results of the corresponding scaled model given that
the boundary conditions of both systems are identical. This concept is especially beneficial for problems where
the boundary conditions cannot be numerically modeled in the numerical solutions but can be built in the
scaled model.

In addition to a simple-supported rectangular thin plate, the similitude theory was moreover applied to the
elastically restrained flat plates subjected to dynamic loads by Wu [7]. The author showed that the geometric,
kinematic and dynamic similarities must be satisfied to assure the complete similitude. A similar concept was
also applied to the dynamic analysis of rectangular plates under a moving load line [8]. Both complete and
partial similitude cases were presented. An agreement between the theoretical vibration response of the full-
scale prototype and the prediction from the solution of the scale model was obtained. Wu et al. [9] employed
the similitude concept with a more complex structure where a scale model and the scaling law were utilized to
determine the vibration characteristics of a full-size crane structure.

In past studies, the scaling laws were usually verified using analytical or numerical solutions. An exact
agreement between the scaled solutions and theoretical solutions is always achieved for complete similitude
cases. This so-called numerical experiment demonstrates that the derived scaling laws are accurate
theoretically. However, its accuracy is not necessarily guaranteed when it is applied to practical engineering
problems. In the present study, the scaling law for the vibration response of thin isotropic plates was therefore
verified using experimental results of the model and prototype systems. The scaling law for the natural
frequency of rectangular aluminum plates was derived and used to predict the natural frequency of the
prototype system utilizing the experimental results of the model system. The accuracy of the scaling law was
determined by comparing the scaled natural frequencies with the measured ones. The limitations of employing
the scaling law for the vibration of thin plate problems are given along with some precautions in setting up the
experiment on the model system.

2. Natural frequency of rectangular plates

The classical differential governing equation for the vibration of isotropic rectangular thin plates can be
written as [10]

q4W ðx; y; tÞ

qx4
þ 2

q4W ðx; y; tÞ
qx2qy2

þ
q4W ðx; y; tÞ

qy4
þ

r
D

q2W ðx; y; tÞ
qt2

¼ 0, (1)

where W is the displacement in the out-of-plane direction, r is the mass density per unit area of the specimen,
and D is the flexural rigidity of the plate. Assuming that the out-of-plane displacement is separable as a
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function of position and time, i.e. W ðx; y; tÞ ¼ wðx; yÞTðtÞ, the governing equation is reduced to

q4w
qx4
þ 2

q4w
qx2qy2

þ
q4w
qy4
�

o2r
D

w ¼ 0, (2)

where w is function of x and y only and o is the natural frequency of the vibration.
With given boundary conditions, the vibration governing equation, Eq. (2), can be solved using either an

analytical or numerical method. For simple-supported plates, the analytical closed-form solution is possible by
assuming the out-of-plane displacement of the vibrated plate in the form of

wðx; yÞ ¼ wmn sin
mpx

a
sin

npy

b
, (3)

where a and b are the dimensions of plate in the x and y directions, respectively. By substituting the assumed
displacement function w(x,y) into the governing equation, the natural frequency of the plate is obtained and
written as

omn ¼
p
2a2

ffiffiffiffi
D

r

s
m2 þ

a2

b2
n2

� �
, (4)

where omn are the natural frequencies of the plate in Hz, m and n are positive integers. It should be noted that,
for plates with other boundary conditions, the natural frequencies are not available in the form of exact
analytical expression. The numerical or finite element methods are required for specimens with clamped or free
boundary conditions.

3. Scaling law for the vibration of plate

Although the natural frequencies of thin plates with combinations of simple support, clamped support or
free boundary conditions are available, they may not be practically appropriate for engineering structures
where accurate natural frequencies are required. The boundary conditions of practical structures are usually
non-classical ones such as elastically restrained or imperfect boundary conditions, which are not easily
modeled because the level of restraining is unknown. This is where the scaling law can be utilized to determine
the vibration behavior of the structure or prototype of interest using the experimental results of the scaled
model. The scaled model is either a scaled-down or scaled-up test specimen having complete similarity with the
real structure. Although the boundary conditions of the prototype are not exactly known, they can be modeled
in the scaled model using similar supports. Thus, the experimental results from the corresponding test
specimen along with the scaling law can be used to predict the vibration behavior of the prototype. The
derivation of the scaling law for vibration behavior is briefly derived in this section.

The scaling law for the vibration of rectangular isotropic plates is derived from the governing equation,
Eq. (2), by comparing the governing equations of the model with that of the prototype. From both equations,
the similitude invariant term, which leads to the scaling law, is obtained. Let the variables of the prototype and
their corresponding model variables be related to each other as follows:

xp ¼ Cxxm; yp ¼ Cyym; wp ¼ Cwwm; Dp ¼ CDDm,

op ¼ Coom; and rp ¼ Crrm,

where subscripted p refers to the prototype system and subscripted m refers to the model system, and Ci are the
scaling factors of the i parameters. To derive the similitude invariant, the governing equations of the model
and prototype are written as the following:

q4wm

qx4
m

þ 2
q4wm

qx2
mqy2

m

þ
q4wm

qy4
m

�
o2

mrm

Dm

wm ¼ 0, (5)

Cw

C4
x

q4wm

qx4
m

þ 2
Cw

C2
xC2

y

q4wm

qx2
mqy2

m

þ
Cw

C4
y

q4wm

qy4
m

�
C2

oCrCw

CD

o2
mrm

Dm

wm ¼ 0. (6)
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It should be noted that Eq. (6) can be written in the same form as Eq. (5) with subscript ‘‘p’’ instead of
subscript ‘‘m.’’ However, the scaling factors are utilized so that the governing equations of both systems can
be compared and simplified. Comparing both equations, the vibration behavior of the model and of the
prototype are similar if groups of the scaling factors in Eq. (6) are all equal. This implies that Eq. (6) can be
reduced to Eq. (5) when the scaling factor groups are canceled out. Thus, the similitude requirement is
obtained as

1

C4
x

¼
1

C2
xC2

y

¼
1

C4
y

¼
C2

oCr

CD

. (7)

By assuming that the model and prototype have a geometric similarity (Cx ¼ Cy ¼ Ca ¼ Cb), the similarity
requirement is simplified to

C2
oCrC4

b

CD

¼ 1. (8)

Eq. (8) is the similitude invariant of the vibration behavior of rectangular plates. This invariant can be
reduced to the scaling law of plate natural frequency as

o2
p ¼ o2

mCD

b4
mrm

b4
prp

. (9)

This scaling law relates the natural frequencies of the model to that of the corresponding prototype. The
derived scaling law is valid for a model–prototype pair with complete geometric similarity, i.e. Ca ¼ Cb or both
systems having the same aspect ratio. The scaling law can be verified with the theoretical solution shown in the
previous section. As shown in Table 1, rectangular aluminum plates with b ¼ 250mm and an aspect ratio, a/b,
of 1–3.5 are selected as models and used to predict the natural frequencies of the stainless steel prototypes with
a width b of 200 and 300mm, respectively. The model plates are assumed to be Al6061-T6 with E ¼ 68.9GPa,
v ¼ 0.35, density ¼ 2.71� 103 kg/m3, and plate thickness h ¼ 2mm, while the prototypes are stainless steel
with E ¼ 193GPa, v ¼ 0.27, density ¼ 7.86� 103 kg/m3, and plate thickness h ¼ 2mm. The fundamental
natural frequencies of the models determined from the analytical solution, Eq. (4), are shown in column 2.
These natural frequencies are substituted into the scaling law to predict the scaling natural frequencies of the
prototypes, as presented in the ‘‘oScaling’’ columns. The scaling frequencies are verified by the theoretical
solutions shown in column 3 and 5. The data confirms that the natural frequencies determined from the
scaling law and those from the closed-form solutions are identical.

Therefore, the scaling law for the natural frequency of rectangular plate is verified, theoretically. The
derived scaling law is applicable to a model and prototype pair with the same aspect ratio, although they are
made of different materials. However, it is not assured that the scaling law will be accurate in real applications.
The objective of the present study was therefore to validate the scaling law with the experiment results. Thus,
vibration experiment was performed to determine the natural frequencies of the model and prototype
Table 1

The fundamental natural frequencies in Hz for Al6061-T6 specimens

Aspect ratio (a/b) Aluminum model

b ¼ 250mm

Stainless steel prototype

b ¼ 200mm b ¼ 300mm

oTheory oScaling oTheory oScaling

1.0 156.2 233.4 233.3 103.7 103.7

1.5 112.8 168.5 168.5 74.9 74.9

2.0 97.6 145.9 145.8 64.8 64.8

2.5 90.6 135.4 135.4 60.2 60.2

3.0 86.8 129.6 129.6 57.6 57.6

3.5 84.5 126.2 126.2 56.1 56.1
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specimens. The measured natural frequencies of the models were then substituted into the scaling law to
predict the natural frequencies of the prototypes. Subsequently, the scaling frequencies of the prototype were
compared with the measured ones to determine the accuracy of the derived scaling law.

4. Experimental setup

Several samples of thin rectangular plates were tested to determine their first three natural frequencies. The
specimens were composed of aluminum, structural steel and stainless steel rectangular thin plates. The
boundary conditions of the test panels were a combination of the knife-edge support and free boundary
conditions. The knife-edge support was employed to simulate the theoretically simple-supported boundary
condition. Schematic drawings of the specimens’ dimensions and boundary conditions are shown in Fig. 1.
The boundary of specimen supported by the knife-edge constraint is designated as ‘‘S,’’ while the free
supported edge is represented by ‘‘F.’’ The boundary conditions of the specimens used in this study were SSSS,
SFSS, SFSF, and SSFF, as shown in the figure. The first and second letters represent the boundary condition
on the y ¼ 0 and b edges, respectively. Similarly, the last two letters symbolize the boundary conditions on the
other edges. The specimens were mounted in the test setup and equipped with an impact hammer and an
accelerometer as shown in Fig. 2. The knife-edge support replicating the simply supported boundary condition
was enforced by two stainless steel bars coupled on the specimen. The steel bars were machined in an inclined
direction to form a knife-edge. With this support, the specimens were intentionally allowed to freely rotate but
any out-of-plane displacement was restrained. The knife-edge supports were fixed with steel boxes with a
number of machine screws. Additional machine screws were also used to push the knife-edge supports against
the specimen surface. The assembly of steel boxes and knife-edge supports was also tested for natural
frequency to confirm that their natural frequencies were not in the range of those of the specimens.

The vibration test for natural frequency was performed using an impact test [11,12]. Briefly, the specimens
were excited by an impact hammer while the applied impulse was monitored by a dynamic signal analyzer. An
accelerometer was placed on the specimen at a selected location to measure the plate response in terms of
acceleration. It is recommended that the accelerometer should not be set on the node line of the vibration to
avoid a low response signal. If the node line is unknown or uncertain, more than one measurement is
recommended. In the present study, several pretests were conducted to determine a suitable location of the
accelerometer. Besides the applied impulse from the impact hammer, the acceleration responses from the
accelerometer were collected by a dynamic signal analyzer. The accelerations were recorded five times from
five excitations of the impact hammer. These five sets of the acceleration data measured in the time domain
were processed by a fast Fourier transform (FFT) algorithm using the dynamic signal analyzer to obtain the
response in the frequency domain. From the vibration response in the frequency domain, the natural
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Fig. 1. Schematic drawings of the rectangular test specimens.
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Fig. 2. Experimental setup with accelerometer and impact hammer.
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frequencies of the specimen were identified from the peak of the response. Theoretically, there are infinite
numbers of natural frequency; however, only the first three modes are of interest in this study. Fig. 3 shows
examples of the vibration response measured in the frequency domain obtained from the dynamic signal
analyzer for a 300� 300mm2 aluminum plate with various boundary conditions. The measured natural
frequencies in Hz for the first three modes of the specimen with SSSS boundary conditions are 149.0, 293.5,
and 322.5Hz, respectively. A response similar to those of shown in Fig. 3 can be obtained from experiments
with excitation and accelerometer located at various positions. Ideally, the measured natural frequencies are
independent of the location of either excitation or accelerometer. From the experiments, varying the position
of excitation and the location of the response measurement has a minimal effect on the measured natural
frequencies. In this study, a minimum of 5 experiments were performed for each specimen and the
experimental natural frequency was determined from the average of each measurement.

5. Experimental results

Two sets of the experiment were conducted in this study to determine the accuracy of the scaling law
using experimental measurements in two cases, i.e. (a) aluminum model and prototype of different sizes and
(b) equal-size model–prototype pairs composed of different materials. The former part of the study was
designed to investigate the size effect, while the material effect was studied in the latter part. To examine the
size effect, the test specimens were nine aluminum plates with aspect ratios (a/b) of 1, 1.5, and 2 and a
specimen nominal width b of 200, 250, and 300mm, respectively. The natural frequencies of all the specimens
with four combinations of boundary conditions were experimentally determined and used to validate the
scaling law. The other set of experiments involved tests on four groups of specimens, i.e. two groups of
aluminum, a group of structural steel and a group of stainless steel. The dimensions of the specimens in this set
of experiments were 300� 200mm2 and 375� 250mm2.

5.1. Size effect

For the first part of the experiment, the measured natural frequencies for the SSSS aluminum plates with
nine different dimensions are presented in Table 2. In the table, the test specimens are classified into three
groups: rectangular plates with aspect ratios of 1, 1.5, and 2. The experimental data showed that the natural
frequencies decreased with plate size. Similar experimental results were obtained for aluminum specimens with
other boundary conditions but are not presented here. The specimens shown in Table 2 were assumed to be a
model or a prototype and used to validate the scaling law, as shown in Table 3. From the three specimens with
an aspect ratio of 1, three pairs of models and prototypes were assigned to the test specimens. As shown in
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Fig. 3. Vibration response in frequency domain of 300� 300mm2 aluminum plate.
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Table 2

Measured natural frequencies of the SSSS aluminum specimens

Aspect ratio Specimen size, a� b

(mm2)

Natural frequency (Hz)

1st mode 2nd mode 3rd mode

1 200� 200 309.8 676.9 729.6

250� 250 196.7 409.0 444.6

300� 300 148.8 293.2 321.8

1.5 300� 200 221.2 376.3 580.7

375� 250 150.5 255.4 376.6

450� 300 99.6 171.4 257.4

2 400� 200 199.6 256.2 425.2

500� 250 132.4 173.6 275.5

600� 300 90.1 117.8 193.4

Table 3

The measured and scaling natural frequencies for the SSSS aluminum specimens

Aspect ratio Model Prototype Mode Model Prototype

oExp oScaling %Dis

1 200� 200 300� 300 1 309.8 148.8 137.7 �7.47

2 676.9 293.2 300.8 2.61

3 729.6 321.8 324.3 0.77

250� 250 200� 200 1 196.7 309.8 307.3 �0.79

2 409.0 676.9 639.1 �5.59

3 444.6 729.6 694.7 �4.79

300� 300 250� 250 1 148.8 196.7 214.3 8.93

2 293.2 409.0 422.2 3.23

3 321.8 444.6 463.4 4.23

1.5 300� 200 450� 300 1 221.2 99.6 98.3 �1.29

2 376.3 171.4 167.2 �2.42

3 580.7 257.4 258.1 0.27

375� 250 300� 200 1 150.5 221.2 235.2 6.31

2 255.4 376.3 399.1 6.05

3 376.6 580.7 588.4 1.33

450� 300 375� 250 1 99.6 150.5 143.4 �4.70

2 171.4 255.4 246.8 �3.36

3 257.4 376.6 370.7 �1.58

2 400� 200 600� 300 1 199.6 90.1 88.7 �1.54

2 256.2 117.8 113.9 �3.34

3 425.2 193.4 189.0 �2.29

500� 250 400� 200 1 132.4 199.6 206.9 3.64

2 173.6 256.2 271.3 5.87

3 275.5 425.2 430.5 1.24

600� 300 500� 250 1 90.1 132.4 129.7 �2.01

2 117.8 173.6 169.6 �2.29

3 193.4 275.5 278.5 1.09

P. Singhatanadgid, A. Na Songkhla / Journal of Sound and Vibration 311 (2008) 314–327 321
column 2 and 3 of Table 3, a 200� 200mm2 specimen was set as a model and used to model the 300� 300mm2

prototype specimen. The other two model–prototype pairs were a 250� 250mm2 model with 200� 200mm2

prototype and a 300� 300mm2 model with 250� 250mm2 prototype. Specimens with aspect ratios of 1.5 and
2 were also assigned as models or prototypes in the same approach. In Table 3, columns 5 and 6 are the
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measured natural frequencies of the model and prototype, respectively. The next column labeled as ‘‘oScaling’’
presents the scaling natural frequencies of the prototypes. These scaling natural frequencies were determined
from the scaling law shown in Eq. (9) using the measured natural frequencies of the model in column 5. The
experimental and scaling natural frequencies shown in columns 6 and 7, respectively, were compared with each
other. The percentage discrepancy of the scaling natural frequency shown in the last column was determined
according to

%Dis ¼
oScaling � oExp

oExp
� 100%. (10)

Most of the comparisons show a good agreement between the scaling and measured natural frequency. The
average of the absolute values of percentage discrepancy for experiment on all 27 model–prototype pairs is
3.30% with a standard deviation of 4.05%. The minimum and maximum percentage discrepancies are
�7.47% and +8.93%, respectively, while more than half of the comparisons have a percentage discrepancy
within 73%. There was no significant difference in percentage discrepancy for each vibration mode or plate
aspect ratio. The causes of discrepancy between the scaling and measured natural frequencies are probably
related to the imperfections of the boundary conditions and specimens. As described in the previous section,
knife-edge supports of the test setup were controlled by several machine screws. In the experiments, the
machine screws were tightened until the gaps between the specimen and support were invisible. Although it
was desired to obtain identical boundary conditions for the model and its prototype, it was expected that the
boundary conditions for each experiment would not be perfectly identical. Besides the imperfect boundary
conditions, imperfections of specimens such as non-uniform thickness and the existence of plate curvature
might be the cause of discrepancy between the scaling and measured behaviors. These two causes of error are
classified as an experimental uncertainty, which is typical in experimental study and is very difficult to
completely eliminate.

Another three comparable studies were performed on the same test specimens with boundary conditions of
SFSS, SFSF, and SSFF. An inconsistency between the scaling and measured natural frequencies of all
comparisons in terms of percentage discrepancy is shown in Table 4. The last two rows of the table show the
average of absolute values of percentage discrepancy and the standard deviation of the percentage
discrepancy, respectively. The overall average and standard deviations of the percentage discrepancy were
4.90% and 6.46%, respectively. The histogram in Fig. 4 represents the frequency distribution of the
percentage discrepancy, which revealed that the distribution of the percentage discrepancy closely resembles a
normal distribution and the percentage discrepancies of 95 from 108 comparisons were in the range of 710%.
However, percentage errors for some pairs of model and prototype were slightly higher, especially for the
experiments on the SFSF specimens. Eight values of percentage discrepancy from the experiments on this
Table 4

Percentage discrepancy between scaling and measured natural frequencies

Aspect

ratio

Model Prototype SSSS SFSS SFSF SSFF

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

1 200� 200 300� 300 �7.47 2.61 0.77 �0.86 3.75 0.06 �5.56 �2.12 �4.52 3.55 2.80 2.05

250� 250 200� 200 �0.79 �5.59 �4.79 2.91 �2.62 2.19 1.37 0.45 �0.58 0.89 �4.90 �0.19

300� 300 250� 250 8.93 3.23 4.23 �1.98 �1.03 �2.20 4.46 1.72 5.35 �4.28 2.30 �1.83

1.5 300� 200 450� 300 �1.29 �2.42 0.27 7.26 2.83 6.84 �17.74 �10.07 �10.96 �9.00 �15.54 �0.86

375� 250 300� 200 6.31 6.05 1.33 �11.91 �8.50 �5.50 13.41 6.00 5.41 7.06 5.42 3.15

450� 300 375� 250 �4.70 �3.36 �1.58 5.84 6.28 �0.95 7.19 4.90 6.54 2.64 12.31 �2.21

2 400� 200 600� 300 �1.54 �3.34 �2.29 3.94 2.75 2.57 �11.22 �14.29 �9.69 �6.24 �12.66 �6.07

500� 250 400� 200 3.64 5.87 1.24 2.06 1.00 �0.46 �6.78 �1.55 2.48 �3.51 8.36 5.92

600� 300 500� 250 �2.01 �2.29 1.09 �5.73 �3.64 �2.06 20.84 18.51 8.06 10.54 5.67 0.52

Average 3.30 3.62 7.47 5.20

Standard deviation 4.05 4.63 9.46 6.64
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Fig. 4. Histogram of the percentage discrepancy between scaling and measured natural frequencies.
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boundary condition resulted in a percentage discrepancy higher than 710%, compared with only four values
and one value for SSFF and SFSS cases, respectively. The average of the absolute percentage discrepancy for
SFSF specimens was 7.47%, which is higher than those of other boundary conditions. The higher percentage
discrepancy of the scaling law observed in specimens with SFSF boundary conditions was probably caused by
the particular characteristics of these boundary conditions. For SFSF specimens, the free boundary condition
was imposed on two adjacent edges of the plate, i.e. two adjacent edges were free to move, as shown in Fig. 1.
As a result, the specimen with this combination of boundary conditions tended to be slightly curved at the free
corner because of its own weight. The degree of non-flatness of the test specimens was probably different for
specimens with different dimensions, that is, the size effect had an influence on the accuracy of the scaling law
in this case. So, the model and prototype with these boundary conditions did not have a complete similarity,
resulting in a slightly higher percentage discrepancy for these specific boundary conditions.

Therefore, from the experimental study in the first part, the scaling law provided reasonable accuracy for
modeling a prototype using a model with different dimensions. Uncertainties of the experiments in boundary
condition and thickness are believed to be the sources of the discrepancy. To obtain a decent prediction from
the scaling law, the experiment on the model specimen should be carefully performed to assure near-complete,
if not perfectly complete, similarity with the prototype. The specimen size might slightly affect the precision of
the scaling law in case of SFSF specimens because the flatness of the model and prototype cannot be
maintained.

5.2. Material effect

The second part of the study was to determine the applicability of using a model with one type of material to
predict the vibration behavior of the prototype made from another type of material. Four types of specimen
including two types of aluminum specimen; called herein Aluminum-A and Aluminum-B, and the other two
groups of steel and stainless steel specimens were tested. All specimens are commercially available in form of
sheet metal. They were prepared and machined to the nominal dimensions of 300� 200mm2 and
375� 250mm2. The physical and mechanical properties of all the materials were experimentally determined
and are presented in Table 5. It should be noted that the mechanical properties of Aluminum-A and
Aluminum-B are more or less comparable and so are the properties of steel and stainless steel. Therefore, a
total of eight thin plates were tested in this part of the study. Since material effect was investigated in this
study, only specimens of the same size were assigned as a model–prototype pair. All specimens with four
different boundary conditions were tested for the first three natural frequencies. The test results were then
assigned as experimental natural frequencies of the model or the prototype. The accuracy of the scaling law
was determined by comparing the scaling and experimental natural frequencies in the same manner as the
previous study. Lists of the percentage discrepancies between both natural frequencies are shown in Table 6.
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Table 6

Percentage discrepancies between scaling and measured natural frequencies demonstrating the material effect

Model Prototype Specimen size,

a� b (mm2)

SSSS SFSS SFSF SSFF Avg.

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

Al-A Al-B 300� 200 �11.61 �4.67 �5.15 14.40 6.51 6.67 �11.72 6.12 �1.85 4.55 1.51 5.36 6.68

375� 250 �12.39 �1.71 �3.65 3.74 �4.28 �2.67 �8.44 �7.61 5.06 0.62 2.82 -1.77 4.56

Steel 300� 200 19.58 16.51 19.94 36.13 23.16 25.86 12.02 7.30 12.12 24.56 14.97 19.69 19.32

375� 250 26.84 27.68 18.63 21.57 14.04 18.60 19.94 7.45 16.24 33.47 20.87 23.96 20.77

Stainless steel 300� 200 22.11 23.80 22.48 34.08 27.18 29.63 12.37 11.87 19.42 33.50 22.67 29.91 24.09

375� 250 27.03 32.71 24.02 23.71 20.23 22.16 17.06 13.24 24.82 34.32 28.02 21.06 24.03

Al-B Steel 300� 200 35.29 22.22 26.45 18.99 15.63 17.99 26.89 1.12 14.23 19.14 13.26 13.61 18.74

375� 250 44.77 29.90 23.13 17.19 19.14 21.85 30.99 16.30 10.64 32.65 17.55 26.20 24.19

Stainless steel 300� 200 38.15 29.87 29.13 17.20 19.41 21.52 27.28 5.42 21.67 27.69 20.84 23.30 23.46

375� 250 44.99 35.01 28.72 19.25 25.61 25.51 27.85 22.56 18.81 33.49 24.51 23.24 27.46

Steel Stainless steel 300� 200 2.11 6.26 2.12 �1.51 3.26 2.99 0.31 4.26 6.51 7.18 6.69 8.53 4.31

375� 250 0.15 3.94 4.54 1.76 5.43 3.00 �2.40 5.39 7.38 0.64 5.92 �2.34 3.57

Table 5

Properties of materials used in the second part of the experiments

Material Thickness (mm) Mass density per area

(kg/m2)

Modulus of elasticity

(GPa)

Poisson ratio

Aluminum-A 1.81 5.10 62.3 0.316

Aluminum-B 1.42 3.63 58.0 0.320

Steel 1.95 15.29 197.0 0.346

Stainless steel 1.48 11.23 200.0 0.327
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The first two columns of the table are materials of the model and prototype, respectively, with the specimen
dimensions shown in column 3. The next twelve columns indicate the percentage discrepancies between the
scaling and measured natural frequencies. The last column shows the averages of absolute percentage
discrepancy for each pair of model and prototype. Clearly, the degree of discrepancy was separated into two
groups; the lower one and the higher one. The scaling natural frequencies were well correlated with the
measured ones for model–prototype pairs with the same type of material, i.e. a pair of Aluminum-A and
Aluminum-B or a pair of steel and stainless steel. The averages of absolute percentage discrepancy for these
model–prototype pairs were in the range of 3.57–6.68%. On the contrary, the scaling natural frequencies did
not match the corresponding experimental results well for a pair of model and prototype with different types
of material, for example, the Aluminum-A model and steel prototype or the Aluminum-B model and stainless
steel prototype. The average percentage discrepancies varied from 18.74% to 27.46%. These fairly high
percentage discrepancies are contradictory to the theoretical validation of the scaling law, shown in Table 1. It
is proved that the scaling law is theoretically precise although both model and prototype are composed of
different materials. These high percentage discrepancies can be explained by considering the boundary
conditions provided by the experimental setup. Although aluminum or steel plates were restrained by the same
knife-edge supports, they were probably not subjected to similar boundary conditions because of the
difference between the stiffness of the knife-edge supports and the stiffness of the test specimens. The knife-
edge supports which were used to simulate the simply supported boundary condition were made of stainless
steel with an elastic modulus of about 200GPa. Because of the comparable stiffness, when steel or stainless
steel specimens were mounted on the knife-edge support, an approximate simple support was achieved,
supposedly. On the other hand, it would seem that a near-clamped support was obtained for the experiments
of the aluminum plates due to the mismatch in stiffness between the specimen and the support. This hypothesis
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can be tested by comparing the experimental results of the SSSS specimens with the theoretical solutions, as
shown in Fig. 5. The experimental natural frequencies of all eight specimens with knife-edge supports on all
edges, i.e. SSSS specimens, were plotted and compared with the theoretical solutions. In the figure, the
experimental natural frequencies of the first three vibration modes of both 300� 200mm2 and 375� 250mm2

specimens with different materials are shown, labeled as ‘‘Exp’’. The theoretical natural frequencies of the
specimens with all edges simple supported and all edges clamped were also plotted, labeled as ‘‘Theory
(SSSS)’’ and ‘‘Theory (CCCC),’’ respectively. Obviously, all of the experimental natural frequencies of the
aluminum specimens (both Aluminum-A and Aluminum-B) were close to the theoretical solutions of the
CCCC specimens. In contrast, the experimental results of the steel and stainless steel specimens closely
approximated to the theoretical solutions of the SSSS specimens. Because of the greater stiffness of the
support, the aluminum specimens were probably not allowed to rotate as much as the steel specimens were,
although they were constrained by the same supports. Therefore, the boundary condition provided by the
experimental setup, which was supposed to be simple support, was a fairly clamped boundary condition for
the aluminum specimens. For the steel specimens, the near simply supported boundary condition was
successfully obtained as intended. That is, the very same knife-edge support provided quite different boundary
conditions for the aluminum and steel specimens because the kinetic conditions of both types of material were
different. The high percentage discrepancy in this case was not caused by experimental uncertainty as of those
in Section 5.1, but was the result of the dissimilar boundary conditions which violated the similarity
requirements. It is concluded that, in practice, the type of material of the model indirectly affects the accuracy
of the scaling law because specimens with different types of material may be supported differently by the same
support.

To confirm that the derived scaling law is applicable for a model and prototype composed of different
materials if their boundary conditions are sufficiently comparable, an additional set of experiments was
performed. The supplementary tests were similar to the experiments shown in Table 6 but boundary
conditions for the specimens were free boundary condition on all edges (FFFF). The specimens used in the
experiment included all four groups of materials with plate dimensions of 300� 200mm2 and 375� 250mm2.
The FFFF boundary condition was set up by hanging the test specimen using a small rope. With this test
setup, the specimens were allowed to freely vibrate in an out-of-plane direction when excited by the impact
hammer. The first three natural frequencies were experimentally determined and assigned as a model or a
prototype similar to the study shown in Table 6. The percentage discrepancies between the scaling and
measuring natural frequencies for the experiment with FFFF boundary conditions are presented in Table 7.
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Table 7

Percentage discrepancies between scaling and measured natural frequencies of FFFF specimens

Model Prototype Specimen size,

a� b (mm2)

FFFF Avg.

Mode1 Mode2 Mode3

Al-A Al-B 300� 200 10.47 �2.39 9.59 7.48

375� 250 14.15 3.53 7.11 8.26

Steel 300� 200 2.86 9.71 4.06 5.54

375� 250 5.71 �3.17 �7.84 5.57

Stainless steel 300� 200 2.28 6.98 9.13 6.13

375� 250 14.66 1.15 �1.53 5.78

Al-B Steel 300� 200 �6.89 12.39 �5.05 8.11

375� 250 �7.40 �6.47 �13.95 9.27

Stainless steel 300� 200 �7.42 9.59 �0.42 5.81

375� 250 0.45 �2.30 �8.06 3.60

Steel Stainless steel 300� 200 �0.57 �2.49 4.87 2.64

375� 250 8.47 4.46 6.84 6.59
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The scaling law was able to predict the natural frequency of the prototype fairly well. From 36 comparisons,
only 5 model–prototype pairs had a percentage error higher than 710%. The averages of absolute percentage
discrepancy for each pair of model and prototype ranged from 2.64% to 9.27%. Unlike the experiments
shown in Table 6, there is no significant difference in percentage error between specimens of the same and
different types of materials. Experimental results from either aluminum or steel models were able to predict the
behavior of the prototypes with comparable accuracy. A good prediction by scaling law is achieved in the
experiment with FFFF boundary conditions because of the similarity of the boundary conditions of the model
and prototype. Without a support, it is assured that the boundary conditions of the model and prototype are
similar, geometrically and kinetically. Thus, the scaling law is applicable for a model and prototype composed
of different materials if the boundary conditions of both systems have sufficient similarity. The boundary
conditions of two systems are said to be identical if they have geometric and kinetic similarities. The same set
of supports may not provide identical boundary conditions for each specimen because of the mismatch of
material properties between specimen and support causing kinetic dissimilarity.

6. Conclusions

This study derives the scaling law and similitude requirements for vibration response of rectangular thin
plates. The scaling law was theoretically verified and found to be exact for a pair of models and prototypes
with complete similarities. To determine the accuracy of the scaling law in practice, an experimental setup was
prepared to accommodate the vibration experiment. The specimen was excited by an impact hammer and
measured for vibration response using an accelerometer. The natural frequencies could be identified from the
peaks of the response in the frequency domain. In the first part of the experiment, the scaling law was applied
to a pair of models and prototypes with the same material. From 108 comparisons, the average percentage
error between the scaling and experimental natural frequencies was 4.90%. This fairly low percentage
discrepancy confirms that scaling law is accurate and practical in engineering applications. The experimental
uncertainty in term of imperfect boundary conditions and specimens is probably the cause of this slight
discrepancy. However, it is noticed that the scaling natural frequency for some cases of SFSF plates did not
correspond well with the measured data. The sources of this error were not only caused by the experiment
uncertainty but also caused by the fairly high degree of dissimilarity between the model and prototype
specimens, i.e. curvature of the test specimens due to two adjacent edges having no support. For specimens
with a combination of these particular boundary conditions, the size effect influenced the accuracy of the
scaling law because of the dissimilarity in plate configuration of the model and prototype. In the second part
of the study, natural frequencies of the prototypes were predicted using model specimens of different
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materials. The data shows that the scaling natural frequencies were not very well matched to the experimental
ones if the model and prototype were composed of different types of materials. In comparison with the
theoretical solutions, it is believed that the boundary conditions of the model and prototype are different,
resulting in a very high percentage discrepancy of the scaling natural frequency. This suggests that boundary
conditions on the test specimens are not only dependent on the geometry of the support but also on the kinetic
conditions of the support. Additional experiments were performed on specimens made of different materials
using FFFF boundary condition to validate the scaling law for model and prototype with identical boundary
conditions and composed of different materials. Without a support, the boundary conditions of the model and
prototype are identical, thus, the accuracy of the scaling law is achieved as expected.

In conclusion, the derived scaling law is practical to employ in engineering applications. From this study,
the discrepancy of the scaling solutions might develop from the uncertainty of the experiment, curvature of the
specimens due to two adjacent free edges, and dissimilar boundary conditions due to a mismatch in the
material properties of the specimen and support. Errors from the uncertainty of the experiment are fewer than
those from other sources and can be kept minimal by carefully setting up the experimental conditions on the
model to match those of the prototype. This type of error is typical in the experimental investigation and
impossible to completely eliminate in practice. Errors from the latter two sources, on the other hand, are the
result of the incomplete similarity conditions between the model and prototype. These causes of error could be
eliminated by ensuring that the plate configurations and boundary conditions of both systems are completely
identical. To utilize the scaling law, precautions should be taken for a specimen with some particular
combinations of boundary conditions where plate configurations might be effected by the size of the test
specimen. Moreover, without a procedure to obtain a complete similarity of boundary conditions of the model
and prototype with different materials, it is strongly recommended that the model is prepared from the same
material as the prototype. It is also worthwhile to further study the possibility of overcoming the difficulties in
utilizing the support on different materials as well as the chance of deriving a scaling law for a
model–prototype pair with different boundary conditions.
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ABSTRACT 

In this study, the vibration correlation technique was introduced to determine the buckling load of rectangular thin plates. 
It is theoretically shown that the natural frequency approaches zero when the applied compressive load approaches the 
buckling load of the plate. To avoid the effects of premature out-of-plane deformation, it is proposed in this study that 
the buckling load is to be identified using the natural frequencies of plates under tensile loading. A set of aluminum 
plates was tested for natural frequencies using an impact test method. Specimens with two types of boundary conditions, 
i.e., CCCC and CCCF, were included in the experiment. The square of the measured natural frequency was plotted 
against the applied load and extrapolated to determine the predicted buckling load. The buckling loads from vibration 
data compare closely with numerical solutions. The average percentage differences between the measured buckling loads 
and the numerical solutions are 1.24 % and -1.14 % for specimens with CCCC and CCCF boundary conditions, 
respectively. In conclusion, the buckling load of rectangular thin plates can be experimentally identified with acceptable 
accuracy using vibration data. This approach is very useful especially for structures with unknown or imperfect boundary 
conditions where analytical or numerical solutions to the problem are not available.    

 

Keywords: Buckling load, vibration, natural frequency, thin plate, experiment 
 

1. INTRODUCTION 

Buckling load is one of the important parameters which should be considered in the design of thin, plate-like structures 
subjected to compressive loading. The stability of plates has been investigated using theoretical, numerical and 
experimental approaches. For experimental studies, identification of the buckling point is an important process, since it 
directly affects the accuracy of the measured buckling load. In an experiment, the buckling load of plates can be 
identified using various kinds of plots, for example: 1) a plot of in-plane loads vs. out-of-plane displacement; 2) a plot of 
in-plane loads vs. end-shortening; 3) a plot of in-plane loads vs. difference of surface strains; and 4) a plot of the ratio of 
out-of-plane displacement to in-plane load vs. out-of-plane displacement [1]. Chai et al. [2] compared the experimental 
buckling load of composite plates with theoretical solutions. The discrepancies between the experimental and theoretical 
solutions ranged between -7 % and +11 %. Tuttle et al. [3] determined buckling loads from plots of applied in-plane load 
vs. out-of-plane displacement of composite panels, and compared the experimental results to numerical predictions 
obtained using a Galerkin method. Although the average percentage error between the measured and predicted buckling 
loads is low, the standard deviation of the percentage error is as high as 15%. The difficulties of identifying the buckling 
load using a static test method were documented. In particular, drawing two lines in the pre-buckling and post-buckling 
regions to identify the buckling point depended on personal judgment, and could be a cause of error.  

There is a need for an alternative approach to experimentally identify the buckling load of a plate. In this paper, the 
vibration correlation technique (VCT) is explored. Lurie and Monica [4] showed that the square of the frequency of the 
lateral vibration of a thin plate with simple supports on all edges is linearly related to the end load. They also conducted 
some experiments on elastically restrained columns, rigid-joint trusses, and thin flat plates. The authors reported that 
VCT was successfully employed to predict the buckling load of only columns and trusses. For flat plates, because of the 
initial curvature, the buckling load cannot be predicted by the proposed method. However, Chailleux et al. [5] later 
showed that with a carefully designed experimental setting, VCT can be used to determine the buckling load with 
satisfactory accuracy.  
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In this research, the relationship between buckling and vibration behavior of thin plates is investigated. The relationship 
between applied in-plane load and the natural frequency of plates is derived from the differential governing equations of 
both problems. The derived relationship, which is applicable to thin plates with any boundary conditions, is verified 
using a numerical method. Because of premature curvature, which is usually detected even before the specimen has 
buckled, it is proposed in this study that the buckling load be determined from the vibration of a plate subjected to tensile 
loading. A test frame, capable of applying tensile and compressive loading to a specimen, was prepared. A series of 
vibration tests was performed to determine the natural frequencies of the plates. The vibration data, along with the 
derived relationship, are used to predict the buckling load. Experimental buckling loads are compared to the numerical 
solutions to verify the proposed technique.   

 

2. RELATIONSHIP BETWEEN VIBRATION AND BUCKLING BEHAVIORS 

Vibration and buckling behaviors of a thin plate are investigated and their relationship is derived in this section. A 
rectangular plate with a dimension of a×b is subjected to a uniform uniaxial loading Nx, as shown in Fig. 1. The buckling 
load of a plate-represented by xN - is the in-plane compressive load Nx at which buckling occurs. For vibration behavior, 

the natural frequencies of a plate can be determined for a specimen with a given Nx. It should be noted that xN  and Nx 

refer to the same in-plane load; however, xN  is the buckling load which must be a compressive load (negative value), 

while Nx is the applied in-plane load which can be either tension or compression. The governing equations for buckling 
and vibration of a thin isotropic plate are: 

    
4 4 4 2

4 2 2 4 2
2 0xNw w w w

Dx x y y x

   
   

    
     (1) 

and 
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    
    

    
,    (2) 

respectively. The relationship between natural frequency and applied in-plane load Nx can be determined by considering 
the governing equations, Eqs. (1) and (2). For a given plate with particular boundary conditions, it is widely known that 
the buckling mode is identical to one of the vibration modes. Specifically, the out-of-plane displacement of the buckled 
plate is the same as the out-of-plane displacement of one of the vibration modes. So, the governing of the buckling 
problem can be rewritten as: 

       1 2 0xL w N L w  ,       (3) 
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Similarly, the governing equation of the vibration of loaded plates is written as: 

         *2
1 2 3 0xL w N L w L w         (4) 

where  3

w
L w

D


 . 

It should be noted that the terms containing derivatives of w are the same for both problems because the buckling mode 
and vibration mode are identical. From Eq. (3), the buckling load of a plate can be written as: 

    
 
 

1

2
x

L w
N

L w
 .         (5) 

Similarly, the natural frequency of a plate, with and without the applied in-plane load Nx  can be written as: 
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and     
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L w

L w
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respectively, where * is the natural frequency of a plate with applied load Nx, and  is the natural frequency of a plate 
without an applied load. From Eqs. (5), (6) and (7), the ratio of the square of the natural frequency of a loaded plate to 
that of an unloaded plate is written as: 

    
2*

1 x

x

N

N




 
  

 
.          (8) 

The buckling load xN and the natural frequency of an unloaded plate  in Eq. (8) are constant for a specific specimen. 

The variables in that equation are the natural frequency of the loaded plate * and the applied in-plane load Nx. Thus, the 

square of the natural frequency *2( ) varies linearly with the applied load Nx. With the buckling load being a negative 

value, it is observed that the natural frequency of the plate increases with the applied tensile load. On the other hand, it 
decreases with the applied compression. Moreover, if the applied load Nx equals the buckling load of the plate, the 
natural frequency *  theoretically equals zero. With this observation, the natural frequencies of the loaded plate can be 

utilized to predict its buckling load by plotting *2 versus the in-plane load Nx. The buckling load can be determined 
from the applied load Nx at which the natural frequency approaches zero. Since this relationship is derived from the 
governing equations, it is applicable to specimens with any boundary conditions. 

 To verify the derived relationship in Eq. (8), a numerical study of the vibration and buckling of a plate was 
performed. A 200x200 mm2 aluminum plate with 2 mm thickness was chosen as a specimen. The plate was assumed to 
be simply supported on the loading edges and clamp supported on the other two edges. The buckling load of this 
specimen was numerically determined using the Ritz method, and found to be -97.323 kN/m with buckling mode 2. 
Similarly, the Ritz method was employed to solve for natural frequencies of the plate subjected to in-plane loads. The 
square of the natural frequencies for the first three modes was plotted versus applied load, as shown in Fig. 2. The 
relationship between *2 and Nx is linear, as expected according to the derived relationship. The predicted buckling load 
can be determined by extrapolating the vibration data to the in-plane load at which the square of the natural frequency 
approaches zero. Trend lines of each vibration mode intercept the Nx axis at a different load level. The lowest 
compressive load is the buckling load, and its corresponding vibration mode shape is the predicted buckling mode. From 
the simulation, the predicted buckling is -97.322 kN/m and the buckling mode is (2, 1). The buckling behaviors 
determined from the vibration data compare closely with the numerical solution. The buckling mode is also similar to the 
corresponding vibration mode shape. Thus, the derived relationship shown in Eq. (8) is theoretically verified.  
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Fig. 1. A rectangular plate subjected to a      

                   uniaxial in-plane load Nx 
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3. EXPERIMENTAL STUDY 

A series of experiments was performed to determine the accuracy and reliability of the proposed technique. A set of 
aluminum plates was used; each plate was uniaxially loaded and tested for natural frequencies. The measured natural 
frequencies and applied loading were plotted, with results similar to those shown in Fig. 2. The predicted buckling load 
was identified using natural frequency data in the tensile-loading range.  

3.1 Test frame 

The test setup, shown in Fig. 3, was specifically designed to accommodate the loading configuration and vibration 
testing. The test frame is capable of applying CCCC and CCCF boundary conditions to the test specimens. Both tensile 
and compressive loads can be applied on the specimens. In-plane loads are applied horizontally using a hydraulic 
cylinder pressurized with a hand pump. The hydraulic cylinder is mounted on the right end frame, which is fixed to the 
left end frame using two guided columns. For a tension test configuration, the ram of the hydraulic cylinder applies a 
compressive force against crosshead #1. Loads are monitored using a load cell mounted between crosshead #1 and the 
hydraulic cylinder. Two linear bearings are embedded within the crossheads such that they can move linearly along two 
guided columns. The applied loading is transferred through two tension rods to crosshead #2. A rectangular thin plate is 
mounted with clamp support between crosshead #2 and crosshead #3. For a tension test configuration, crosshead #3 is 
blocked by two stoppers mounted on the guided columns, as shown in Fig. 3. In the case of a compression test, these 
stoppers are placed next to crosshead #2 to prevent horizontal motion of the crosshead. Crosshead #1 and tension rods 
are removed in a tension test configuration. The unloaded edges of the specimens are clamped by rigid stainless steel 
bars, denoted in Fig. 3 as “clamp support.” These supports are mounted on the support holders, which are tightly 
clamped to the guided columns. Machine screws are used to push the steel supports against the specimen surface. In the 
experiments, the machine screws are finger-tightened until the gaps between the specimen and support are invisible. The 
clamp support on one of the unloaded edges of the specimen is removed so that a free edge is formed for CCCF 
boundary conditions. 
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Fig. 3. Experimental setup of a specimen with CCCC boundary condition. 

 

3.2 Specimens 

The test specimens consisted of six thin plates with nominal dimensions a×b of 300x200, 200x200, and 150x200 mm2. 
For each plate size, there were two specimens with different thicknesses. The specimens were prepared from 6061-T6 
aluminum alloy, with mechanical properties of E = 70 Gpa and v = 0.33. The boundary conditions of the specimens 
included both CCCC and CCCF boundary conditions. The specimen’s dimensions are summarized in the first three 
columns of Table 1. 
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3.3 Experimental procedures and results 

In this study, the natural frequencies of a loaded plate are required data in order to predict the buckling behavior of the 
plate. Vibration testing was performed using an impact test, in which the specimen is excited by an impact hammer while 
the applied impulse is monitored by a dynamic signal analyzer. Acceleration response of the specimen was measured by 
an accelerometer placed on the specimen at a selected location. Acceleration data measured in the time domain were 
processed by a Fast Fourier Transform algorithm using the dynamic signal analyzer to obtain the frequency response 
function (FRF). From the vibration response in the frequency domain, the natural frequencies of the specimen were 
identified from the peak of the response. Vibration mode shape was also obtained from an imaginary part of the response 
function. 

Natural frequencies of the specimen under unloaded, tensile-loaded and compressive-loaded conditions were determined, 
respectively. The square of the natural frequency was plotted against applied in-plane load. A typical relationship 
between *2  and Nx is presented in Fig. 4. Natural frequencies of vibration modes (1, 1), (1, 2) and (1, 3) are included. 
From the plot, the buckling mode of the specimen was determined to be mode (1, 1), since the trend line of this mode 
intersects the Nx axis at the lowest value. It is observed that *2  varies linearly with the applied load in the tensile-loading 
range, as expected. The relationship between both parameters in the compressive-loading range is not as linear as that in 
the tensile-loading range, which is contradicted by the result from the numerical simulation shown in Fig. 2. This 
observation regarding compressive-loading was also reported by Lurie and Monica [4]. It is speculated that the nonlinear 
behavior is a result of a premature curvature which develops before buckling. For this reason, the buckling load was 
determined using only vibration data of the specimen subjected to tensile loading. To determine the buckling load, a 
specimen was reloaded under increased levels of tensile loading. At each load level, a vibration test was performed to 
determine the natural frequency of the loaded plate. Only the natural frequencies of the relevant mode shape, the 
buckling mode, were collected. A plot of *2  versus Nx in the tensile-loading range was generated and extrapolated to 
determine the measured buckling load. Because the measurement of natural frequency is very sensitive to boundary 
conditions, the experiment was repeated 20 times by loosening and re-tightening the machine screws on the clamp 
supports. An average of the measured buckling load is reported as the buckling load obtained from vibration data, as 
shown in columns 5 and 8 of Table 1. 

    

   Table 1. Buckling load in kN of CCCC and CCCF specimens compared to numerical solutions. 

CCCC CCCF Specimen 
No. 

Dimension 
(a×b) mm2 

Thickness, 
mm Numerical 

Solution 
Exp. 

Measurement 
% Diff 

Numerical 
Solution 

Exp. 
Measurement 

% Diff 

1 300 x 200 2.032 27.17 27.77 2.21 7.48 7.67 2.43 
2 300 x 200 2.298 39.29 39.74 1.14 10.82 10.23 -5.52 
3 200 x 200 1.765 21.48 21.36 -0.53 8.96 8.43 -5.95 
4 200 x 200 1.955 29.18 30.03 2.90 12.18 12.07 -0.90 
5 150 x 200 1.745 24.03 24.26 0.94 14.41 14.26 -1.01 
6 150 x 200 1.976 34.90 35.16 0.75 20.92 21.78 4.10 

 

3.4 Data reduction and discussion 

The experimental buckling loads determined from a plot of natural frequencies of a loaded plate are compared with the 
numerical solutions in Table 1. Numerical buckling load and buckling mode are determined using the Ritz method, using 
beam functions as the assumed displacement functions. Buckling modes determined from the experiment correspond 
very well to the numerical solutions. Discrepancies between the experimental buckling load and the numerical solution 
are reported as a percentage difference. As seen in Table 1, the absolute percentage differences are as low as 0.53% and 
as high as 5.95%, with average percentage differences of 1.24% and -1.14% for CCCC and CCCF specimens, 
respectively. It should be noted that each percentage difference shown in Table 1 is an average value from 20 
experiments. The discrepancy of the measured buckling load using vibration data is minimal compared to the 
experimental results using static methods [2, 3]. However, the standard deviation of all 240 measurements is found to be 
5.57%. The distribution of percentage differences from all measurements is plotted as a histogram, and shown in Fig. 5. 
Although the overall average percentage difference is 0.05%, some measured buckling loads deviate from the numerical 
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solutions by a percentage difference as high as  15%. This deviation of the measured buckling is probably a result of 
imperfect and non-identical boundary conditions.                             
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Fig. 4. Plot of the square of natural frequency vs. 

applied load of the 150x200 mm2 specimen with 
CCCF boundary condition.  
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Fig. 5. Histogram of the percentage difference between 

measured and predicted buckling loads 

 

4. CONCLUSIONS 

The relationship between the natural frequency and the buckling load of a rectangular thin plate is investigated in this 
study. The derived relationship is utilized as a technique to identify the buckling load and buckling mode of the structure. 
Due to a premature curvature which usually develops before buckling, the use of vibration data in the tensile-loading 
range, where the premature curvature is negligible, is proposed in this study. To verify the accuracy of the technique, the 
experiment was performed on a test frame where the specimen was loaded and tested for natural frequencies. The 
measured vibration data were plotted against the in-plane load to determine the buckling load and buckling mode. The 
experimental results show that most of the measured buckling loads agree well with numerical solutions. Boundary 
conditions are believed to be a considerable factor in the high percentage difference between the measured and numerical 
buckling loads. In conclusion, the preliminary study demonstrates the accuracy and reliability of using vibration data in 
the tensile-loading range to determine the buckling load. Boundary conditions of the specimen have a considerable effect 
on the precision of the measured buckling load. Additional experiments should be performed on specimens made of 
different materials to obtain more concrete conclusions about the technique.  
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Abstract 

Stability is one of the important failure modes of 
thin-walled structures subjected to compressive loading. 
Besides theoretical and numerical studies, buckling of 
plate problem has been experimentally investigated. In 
this paper, the vibration correlation technique (VCT) is 
introduced as an alternative method to determine the 
buckling load. The relationship between applied in-plane 
load and the natural frequency of plates are derived from 
the differential governing equations of both problems. In 
this technique, square of the natural frequency of flexural 
vibration of plate is plotted against the applied in-plane 
load. It is shown that when the applied load approaches 
the buckling load of plate, the natural frequency of plate 
approaches zero. The square of the natural frequency is 
also linearly related to the applied load. Thus, the 
buckling load can be determined by extrapolating the data 
to the applied load at which natural frequency approaches 
zero. The vibration correlation technique is numerically 
verified by plotting square of natural frequency of loaded 
plate with applied in-plane load. The obtained buckling 
load from the plot is successfully compared with the 
buckling load determined by direct numerical method. 
The Ritz method along with the beam functions is 
employed to determine the natural frequency and the 
buckling load of rectangular isotropic plate with 
combined boundary conditions. Besides buckling load, 
buckling mode can also be determined from vibration 
mode. The specimens used in this study are rectangular 
isotropic plates with simple-clamped-simple-clamped (S-
C-S-C) and simple-clamped-simple-free (S-C-S-F) 
boundary conditions.   
Keywords: Buckling, Vibration, Plate, Vibration 
correlation technique, Ritz method. 
 
1. Introduction 
 Stability is one of the important factors that should be 

considered in design of thin-walled structures subjected 
to compressive loading. Besides buckling of columns and 
shells, buckling of plates is a problem that has been in the 
interest of many structural engineers and researchers. 
Studies in this field include theoretical, numerical, and 
experimental investigations. Identification of the buckling 
point of isotropic rectangular plates with simple support 
on all edges has been studied by Supasak [1]. In that 
study, buckling loads of aluminum plates were identified 
from the experiment using four different methods; i.e. 1) 
a plot of in-plane loads vs. out-of-plane displacement, 2) 
a plot of in-plane loads vs. end-shortening, 3) a plot of in-
plane loads vs. difference of surface strains, and 4) a plot 
of the ratio of out-of-plane displacement to in-plane load 
vs. out-of-plane displacement. Experimental buckling 
loads determined from the first three methods have a 
fairly high percent error compared with the theoretical 
solutions. The last identification method gave the value 
of buckling loads with percent error as high as 69% 
compared with the theoretical solutions. The author also 
indicated the difficulty in identifying the buckling load 
from the plots of measured data. Chai et. al. [2] compared 
experimental buckling load of composite plates with the 
theoretical solutions. The discrepancy between the 
experimental and theoretical solutions was ranged 
between -7 % and +11 %. Tuttle et. al. [3] determined 
buckling loads from plots of applied in-plane load vs. 
out-of-plane displacement of composite panels and 
compared the experiment results to numerical predictions 
obtained from Galerkin method. Although the average 
percent error between the measured and predicted 
buckling loads is very low, the standard deviation of the 
percent error is as high as 15%. This high deviation 
reflects the accuracy of the measurements. Thus, it is 
difficult to experimentally determine the buckling load of 
plates using static test method, since even the smallest 
amount of imperfection of the specimen, loading 
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apparatus, or boundary conditions can have an apparent 
impact on the buckling behavior. Moreover, in the static 
approach, there is a need to draw two lines in the pre-
buckling and post-buckling regions which may be a cause 
of error.   
 There is a need for an alternative approach to 
experimentally identify the buckling load of plate. In this 
paper, the vibration correlation technique (VCT) which is 
a dynamic approach is explored. Lurie and Monica [4] 
shown that square of the frequency of the lateral vibration 
of thin plate with simple supports on all edges is linearly 
related to the end load. They also conducted some 
experiments on elastically restrained columns, rigid-joint 
trusses, and thin flat plates. The authors reported that 
VCT was successfully employed to predict buckling load 
of only columns and truss. For flat plates, because of the 
initial curvature, the buckling load cannot be predicted by 
the proposed method. However, Chailleux et. al. [5] 
showed later that with a careful experiment setting, VCT 
can be used to determine the buckling load with satisfied 
accuracy.  
 In this research, the relationship between buckling 
and vibration behavior of thin plate is investigated. The 
relationship between applied in-plane load and the natural 
frequency of plates are derived from the differential 
governing equations of both problems. The derived 
relationship is verified using a numerical method. This 
relationship also implies that buckling load of plate can 
be obtained from the vibration data of the loaded plates. 
So, an alternative method for buckling load identification 
using dynamic approach is proposed.    
 
2.  Relationship between vibration and buckling  
     behaviors  
 In this study, the vibration and buckling behaviors of 
a rectangular isotropic plate as shown in Fig.1 are 
investigated. The buckling load of plate represented 

by xN  is the in-plane load Nx at which buckling occurs. 

For vibration behavior, the natural frequencies of plate 
can be determined for a specimen with a given tensile or 
compressive load Nx.  

 y 

 x  a 

 b  Nx 

 
 
Figure. 1 A rectangular plate subjected to a uniaxial in-
plane load 
 
 The governing equation for buckling and vibration of 
thin isotropic plate can be written as; 

 
4 4 4 2

4 2 2 4 2
2 xNw w w w

x x y y D x

   
  

    

and 

 
4 4 4 2 *2

4 2 2 4 2
2 0xNw w w w

w
x x y y D x D

    
    

    
,  (2) 

respectively.  
where w = out-of-plane displacement 
   = mass of plate per unit area 

  D =
3

212(1 )

Et


(Plate flexural rigidity) 

       xN = buckling load  

  Nx = applied in-plane load  
        * = natural frequency of the plate with applied  
           in-plane load Nx

 

It should be noted that xN  and Nx refer to the same in-

plane load, however, xN  is the buckling load which must 

be a compressive load (negative value), while Nx is the 
applied in-plane load which can be either tension or 
compression.  
 For a given rectangular plate, the relationship 
between the natural frequency and an applied in-plane 
load Nx can be determined by considering the governing 
equations, Eq.(1 and 2). For a specimen with a given 
boundary conditions, it is widely known that buckling 
mode and vibration mode of the plates are identical. 
Specifically, the out-of-plane displacement of the buckled 
plate is identical to the out-of-plane displacement of one 
of the vibration mode. So, for a given specimen, the 
governing of the buckling problem can be rewritten as. 
     1 2 0xL w N L w        (3) 

where     
4 4

1 4 2 2
2

w w
L w

4

4

w

x x y y

  
  
   

 

   
2

2 2

1 w
L w

D x





 

Similarly, the governing of the vibration of loaded plates 
is written as; 

       *2
1 2 3 0xL w N L w L w      (4) 

where     3

w
L w

D


  

It should be noted that the terms contained derivatives of 
w for both problems are the same because the buckling 
mode and vibration mode are identical. From Eq.(3), the 
buckling load of plate can be written as; 

   
 

1

2
x

L w
N

L w
      (5) 

Similarly, the natural frequency of plate with and without 
the applied in-plane load can be written as; 

     
 

1 2*2

3

xL w N L w

L w



     (6) 

and    
 

12

3

L w

L w
        (7) 

where 
*  is natural frequency of a plate with applied load Nx 

0    (1) 
 is natural frequency of a plate without applied load  
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From Eq.(5-7), ratio of the square of natural frequency of 
the loaded plate to that of the unloaded plate is written as; 

  
2*

1 x

x

N

N




 
  

 
       (8) 

Since buckling load xN  and natural frequency of the 

unloaded plate  is constant for a given specimen, it is 
concluded that square of the natural frequency of the 
loaded plate *2  is linearly varied with the applied load 
Nx. Since this relationship is derived from the governing, 
it is independent of boundary conditions.  
 From the linear relationship between *2 and Nx 
shown in Eq.(8), with the buckling load being a negative 
value, it is notice that the natural frequency of the plate 
increases with the applied tensile load. On the other hand, 
it is decreased with the applied compression. Moreover, if 
the applied load Nx equals the buckling load of the plate, 
the natural frequency *  theoretically equals zero. With 
this observation, ones can utilize the natural frequencies 
of the loaded plate to predict the buckling load of plate by 
plotting *2 versus the in-plane load Nx. The buckling 
load could be determined from the applied load Nx at 
which the natural frequency approaches zero. 
 
3. Numerical investigation 
 To verify the relationship between the natural 
frequency and buckling load of plate, natural frequencies 
of the loaded plate and buckling load of plate are 
determined. The vibration mode and buckling load are 
also investigated. Since the closed form solutions are 
available for all edges simple support (SSSS) specimen 
only, the numerical method is used in this study. Both 
vibration and buckling problems are solved using the Ritz 
method [6]. The total potential energy for the vibration of 
loaded plate can be written as; 
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    (9) 

and the total energy for the buckling problem is represent 
by; 
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2

x
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x

     
                 (10) 

To determine the natural frequency of the loaded plate, 
Eq.(9) is considered by treating Nx as a applied load 
which is known and * is the unknown to be determined. 
For buckling behavior, the total energy in Eq.(10) is used 

with an unknown variables xN . To solve both problems, 

the out-of-plane displacement w is assumed to be; 

                              (11) 
1 1

( , ) ( ) ( )
M N

mn m n
m n

w x y A X x Y y
 

 
Amn are the unknown coefficients representing vibration 
mode or buckling mode. ( ) and ( )m nX x Y y are the basis 

functions satisfied the boundary conditions at x = 0 , x = 
a and y = 0 , y = b, respectively. In this study, beam 
function is chosen as basis functions. For simple support 
on both ends, the function is represented by a well-known 
double sine series. For other boundary conditions, the 
beam functions can be written in form of; [7] 

( ) cos cosh
r r

m mr
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m 
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               (12) 

where  is either X or Y, and r can be x or y. The values 
of m and m depend on the boundary condition of the 
plate. For case of clamp boundary condition on both 
ends, m can be determined from roots of;  
  cos cosh 1

m m
   , 

and m is determined from; 

  
cos cosh

sin sinh
m m

m
m m

 


 





. 

For clamp-free boundary condition where one end is 
clamped and one end has no support, m is determined 
from roots of; 
  cos cosh 1

m m
     

and m is determined from; 

  
cos cosh

sin sinh
m m

m
m m

 


 





. 

The basis functions for the first four modes for the cases 
of clamp-clamp boundary condition and clamp-free 
boundary conditions are plotted as examples in Fig.(1) 
 To solve for the natural frequency and buckling load, 
the total potential energy is determined for each problem 
by substituting the approximate displacement functions 
Eq.(11) into the total potential energy Eq.(9,10), 
respectively. The displacement functions must be 
selected according to the boundary conditions of the 
plate. After performing integrations, the total potential 
energy is written in term of the undetermined coefficients 

Amn and the natural frequency *  or buckling load xN for 

vibration and buckling problems, respectively. According 
to the principle of minimum total potential energy, the 
total potential energy is minimized with respect to the 
unknown coefficients Amn according to; 
  0

mnA





                  (13) 

Eq.(13) is a system of MN linear equations, which can 
be rearranged as a matrix form of generalized eigenvalue 
problems as: 
 *2[ ][ ] [ ][ ] 0A C B C  , for vibration problem, and (14a) 
 [ ][ ] [ ][ ] 0xA C N B C  , for buckling problem.         (14b) 
where [A] and [B] are square matrices whose elements are 
determined from the plate properties. [C] is a column 

matrix of eigenvector Amn. 
*2 and xN are the eigenvalues 

representing square of natural frequency and buckling 
load of plate, respectively. A number of eigenvalues will 
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be obtained after the generalized eigenvalue problem 
equation, Eq.(14), is solved. For vibration problem, each 
eigenvalue is square of the natural frequency of plates. 
However, only the lowest eigenvalue of Eq.(14b) is the 
buckling load which is of interest in buckling problem. 
The corresponding eigenvectors of each is used to 
determine the vibration mode or buckling mode by 
substituting into the displacement function Eq.(11). 
 Before implementing the Ritz method, convergence 
studies was performed to ensure that the number of term 
used in the displacement function is enough to give a 
converged solution. An aluminum rectangular plate is 
used in the convergence study. The mechanical properties 
of aluminum are assumed to be E = 70 GPa, v = 0.3, and 
 = 2707 kg/m3 with plate thickness of 2 mm. The 
convergence of a rectangular plates with a = b = 200 mm, 
and all edge clamp boundary condition is shown in Fig 2. 
It is observed that the buckling load converges when the 
value of m and n in the displacement function equals 5. 
The value of m and n used in this study is 12, i.e. there 
are 144 terms in the displacement function.     
 

 
(a) 

 
(b) 

Figure 1. Displacement functions for (a) clamp-clamp 
  boundary condition and (b) clamp-free  

 boundary conditions. 
   
4. Numerical results 
 In this study, three cases of aluminum plates are 
investigated using a numerical method outlined in the 
previous section. Dimensions, boundary conditions, and 
theoretical bucking load of plate are summarized in Table 
1. The buckling loads are determined from the solution of 
generalized eigenvalue problem, Eq.(14b). This buckling 
load is considered herein as the “theoretical solution.” 
Specimens with two different combinations of boundary 
condition are investigated. For SCSC boundary condition, 
the first letter S and third letter S represent the boundary 
condition on the x = 0 and x = a edges, respectively. 
Similarly, the second and fourth letters represent the 
boundary condition on the y = 0, and y = b edges, 
respectively. To verify the relationship shown in Eq.(8), 
the natural frequency of the loaded plate is determined for 
different applied in-plane loads Nx. The in-plane load can 
be either tension, compression, or no load. A generalized 
eigenvalue problem shown in Eq(14a) is set for the 
specimens with a particular applied load Nx. This applied 
load is treated as a known and constant value. The 
obtained square of natural frequency for each vibration 
mode is plotted against the applied in-plane load as 
shown in Fig. 3-5, for all specimens, respectively.  
 
Table 1. Dimensions and boundary conditions of the  
        specimen 

Specimen 
No. 

Dimension 
a  b (mm2) 

Boundary 
Condition 

Buckling load 

xN , (kN/m)

1 200  200 SCSC -97.323 
2 400  200 SCSC -88.215 
3 200  200 SCSF -21.019 
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Figure 2. Convergence of the buckling load of CCCC  

  aluminum plates  
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Figure 3. Plot of *2 and Nx of specimen No. 1 
 
                                      

0

5

10

15

20

25

30

35

40

-100 -75 -50 -25 0 25 50 75 100

mode 1
mode 2
mode 3
mode 4

2 (106 rad2/s2) 

 Nx (kN/m) 

2=102.543 Nx + 
       9045.82

-88.215 
 

 
Figure 4. Plot of *2
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Figure 5. Plot of *2 and Nx of specimen No. 3 

 
rom Fig 3-5, the relationship between F *2 and Nx is 

linear as expected. It is also shown tha e natural 
frequency is increased as the in-plane load becomes 
higher in the tensile direction (positive Nx). On the other 
hand, the natural frequency approaches zero when the 
applied load is amplified in the compressive direction 
(negative Nx). The plots of *2

t th

 vs. Nx can be used to 
verified the relationship shown i  Eq.(8) by extrapolating 
the value of Nx at which the natural frequency becomes 
zero. The extrapolation can be systematically performed 
by determined the equation representing the relationship 
between *2

n

 and Nx for each mode of vibration and solved 
for Nx fo ro natural frequency. The obtained Nx at zero 
natural frequency of each vibration mode are compared 
with each other. The lowest value of Nx at zero natural 
frequency shown in the figures is the predicted buckling 
load. In the figure, only the equation of *2

r ze

 and Nx of the 
vibration mode with the lowest value of N t zero natural 
frequency is presented. 
 For the SCSC speci

x a

mens with aspect ratios of 1 and 
, it2  is found that the predicted buckling loads are -97.322 

and -88.215 kN/m, respectively, which are practically 
identical to the theoretical ones. The buckling mode for 
specimen No. 1 is mode 2 since the plot of mode 2 
vibration intersects the applied load axis before other 
modes. With different aspect ratio, the predicted buckling 
mode for specimen No. 2 is mode 3. Predicted buckling 
modes for both cases are agreed with the solutions 
obtained from the buckling problem. Fig.6 shows the 
vibration mode corresponding to the vibration data shown 
in Fig.4. The theoretical buckling mode for specimen 
No.2 which is mode 3 is presents in Fig.7. Clearly, the 
predicted bucking mode using vibration data matches the 
theoretical solution very well. Besides specimen with 
SCSC boundary conditions, a SCSF specimen is also 
investigated. It is found that the derived relationship 
between *2 and Nx can be used to predicted the buckling 
load with ery good accuracy. The predicted buckling 
load for the case of SCSF specimen is -21.020 kN/m 
compared with the theoretical solution of -21.019 kN/m. 

and Nx of specimen No. 2 
 

 v

The buckling mode is also very well predicted.  
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Figure 6. Vibration mode shapes of specime

  
Figure 7. Buckling mode of specimen No.2 

 
 
 

. Conclusion 
This research investigates the vibration response of 

gular plates subjected to uniform in-plane 
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load. By considering the governing equations of the 
vibration and buckling problems, it is shown that square 
of the natural frequency of the loaded plate is linearly 
varied with the applied load. The natural frequency is 
increased with the tensile load and decrease with the 
compressive load. This relationship is determined without 
a need to solve the differential governing equations, so it 
is applicable for plates with any boundary conditions. It is 
also shown that the square of the nature frequency 
approaches zero when the in-plane load approaches the 

buckling load. The derived relationship is verified by 
theoretically solving the vibration and buckling problems 
of specimens with combinations of boundary conditions. 
The Ritz method is employed to determine natural 
frequency of the loaded plate and buckling load of plate. 
In the process, vibration mode shape and buckling mode 
are also obtained. From the study, the predicted buckling 
load and mode from the vibration data are corresponded 
to the theoretical solution very well.  
 The derived relationship between sq

 

na ral frequency and the applied load can be used as an 
alternative method of identifying the buckling load 
experimentally. The advantage of dynamic approach over 
the static approach is that, in the dynamic approach, there 
is no need to drawn lines in the pre-buckling and post-
buckling region. So, the error from human judgment can 
be eliminated. For future study, the derived relationship 
should be verified with the measurement data.  
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	การโก่งงอเป็นการเสียหายโหมดหนึ่งของโครงสร้างแผ่นบางที่รับภาระกด โดยทั่วไปค่าภาระการโก่งงอหาได้จากกราฟของภาระในแนวระนาบกับพารามิเตอร์ของการเปลี่ยนรูปเช่น ระยะการเคลื่อนที่นอกระนาบ  การศึกษานี้ใช้เทคนิคความสัมพันธ์ของการสั่นสะเทือนในการหาค่าภาระการโก่งงอของโครงสร้างแผ่นบางสี่เหลี่ยมผืนผ้าโดยอ้อม  จากการเปรียบเทียบสมการครอบคลุมของปัญหาการโก่งงอและปัญหาการสั่นสะเทือน สามารถแสดงให้เห็นว่าความถี่ธรรมชาติของการสั่นสะเทือนแปรผันตรงกับภาระบนระนาบที่ให้  นอกจากนั้นยังพบอีกว่าความถี่ธรรมชาติจะมีค่าเป็นศูนย์เมื่อภาระกดที่ให้มีค่าเข้าใกล้ภาระการโก่งงอ  จากการศึกษาที่ผ่านมาพบว่าทันทีที่มีภาระกดกระทำกับโครงสร้าง โครงสร้างจะมีระยะการเคลื่อนที่นอกระนาบเนื่องจากความไม่สมบูรณ์ของโครงสร้าง  เพื่อที่จะหลีกเลี่ยงผลของการเคลื่อนที่นอกระนาบก่อนเวลาอันควร การศึกษานี้เสนอให้หาค่าภาระการโก่งงอจากความถี่ธรรมชาติของแผ่นบางที่รับภาระดึง  ค่าภาระการโก่งงอสามารถหาได้จากการประมาณค่านอกช่วงของข้อมูลการสั่นสะเทือนไปยังค่าภาระในระนาบที่ค่ากำลังสองของค่าความถี่ธรรมชาติมีค่าเป็นศูนย์  การทดลองเพื่อตรวจสอบความแม่นยำของวิธีที่เสนอในการศึกษานี้ทำโดยใช้ชุดทดลองที่สร้างขึ้นเฉพาะ  การทดลองหาค่าความถี่ธรรมชาติของชิ้นงานภายใต้ภารระแนวเดียวทำโดยวิธีการเคาะ  ชิ้นงานที่ใช้ในการทดลองเป็นอะลูมินัมและเหล็กกล้าไร้สนิมที่มีการจับยึดแบบ  CCCC, CCCF และ CFCF ตามลำดับ  ค่าภาระการโก่งงอหาจากกราฟกำลังสองของความถี่ธรรมชาติที่วัดได้กับภาระในแนวระนาบ  ค่าภาระการโก่งงอจากข้อมูลการสั่นสะเทือนสอดคล้องกับผลเฉลยเชิงเลขอย่างดี  สำหรับชิ้นงานที่มีการจับยึดที่เหมาะสม เปอร์เซ็นต์ความแตกต่างเฉลี่ยของภาระการโก่งงอจากเทคนิคความสัมพันธ์ของการสั่นสะเทือนกับค่าที่ได้จากผลเฉลยเชิงเลขมีค่าเท่ากับ -0.18 % และส่วนเบี่ยงแบนมาตรฐานเท่ากับ 5.05 %  โดยสรุปแล้ว สามารถหาค่าภาระการโก่งงอของแผ่นบางรูปสี่เหลี่ยมผืนผ้าจากข้อมูลการสั่นสะเทือนได้  โดยค่าที่ได้มีความแม่นยำเป็นที่ยอมรับได้  วิธีการนี้มีประโยชน์โดยเฉพาะกับโครงสร้างที่ไม่ทราบเงื่อนไขขอบเขตหรือมีเงื่อนไขขอบเขตที่ไม่สมบูรณ์ ซึ่งปัญหาเหล่านี้ไม่มีผลเฉลยแม่นตรงหรือผลเฉลยเชิงเลข
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