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Abstract

Project code: RMU 4880021
Project title: The correlations between vibration of in-plane loaded composite
plates and their buckling load

Investigator: ~ Pairod Singhatanadgid Chulalongkorn University
E-mail address: Pairod.S@chula.ac.th
Project period: 2005-2008

Buckling is an important failure mode of thin-walled structures subjected to
compressive loading. Usually, plots of an applied compressive load versus a
deformation parameter such as out-of-plane displacement or in-plane strains have
been employed as a tool to identify the buckling load. In this study, a method utilizing
the vibration correlation technique is introduced as an indirect method to determine a
buckling load of rectangular thin plates. By comparing the governing equations of
buckling and vibration problems, it is theoretically shown that square of the natural
frequency of flexural vibration of plate is linearly varied with the applied in-plane
load. Moreover, the natural frequency approaches zero when the applied compressive
load approaches the buckling load of plate. Due to plate’s imperfections, several
studies showed that out-of-plane displacement is typically observed as soon as the in-
plane compressive load is applied. To avoid the effects of premature out-of-plane
deformation, it is proposed in this study that the buckling load be identified using the
natural frequencies of plates under tensile loading. The buckling load is determined
from an extrapolation of the vibration data to the in-plane load at which square of the
natural frequency approaches zero. An experimental investigation using a custom-
made test frame was conducted to verify the accuracy of the proposed method. A set
of specimens under a uniaxial loading condition was tested for natural frequencies
using an impact test method. Aluminum and stainless steel specimens with CCCC,
CCCF and CFCF boundary conditions were included in the experiment. The measured
buckling load was determined from the plot of the square of a measured natural
frequency versus an in-plane load. The buckling loads from the measured vibration
data match the numerical solutions very well. For specimens with well-defined
boundary conditions, the average percentage difference between buckling loads from
VCT and numerical solutions is -0.18 % with a standard deviation of 5.05 %. In
conclusion, buckling load of rectangular thin plates can be experimentally identified
with acceptable accuracy using the vibration data in the tensile loading region. This
approach is very useful especially for structures with unknown or imperfect boundary
conditions where analytical or numerical solutions to the problem are not available.



Executive Summary

Buckling of thin-walled structures is one of the important topics in the field of
structural engineering. Buckling problem of thin plates can be investigated using
theoretical, numerical or experimental approaches. Usually, experimental study is
conducted to validate theoretical or numerical solutions. Several studies reported a
moderately high degree of discrepancy of experimental buckling loads compared with
theoretical or numerical solutions. Imperfection of plate and boundary condition of the
specimens are frequently mentioned as sources of the inconsistency. Additionally,
techniques used to identify buckling load are also referred as a candidate source of
discrepancy. In the experiment, the buckling load of plates can be identified using
various kinds of plots; for example: 1) a plot of in-plane loads vs. out-of-plane
displacement; 2) a plot of in-plane loads vs. end-shortening; and 3) a plot of in-plane
loads vs. difference of surface strains. These static methods utilize the change of the
slope of the curve in pre-buckling and post-buckling regions to identify buckling load.
The difficulties of identifying the buckling load using a static test method is that there
is a need to draw two lines in the pre-buckling and post-buckling regions to identify
the buckling point. The obtained buckling load using these techniques depends on
personal judgment, and could be a cause of error. So, there is a requirement to
investigate an alternative method. In this study, vibration parameter of thin plate is
utilized along with vibration correlation technique to determine buckling load and
mode of thin plate. The project classifies into three mains sections; verifying the
accuracy of vibration measurement, deriving the relationship between vibration and

buckling behaviors, and verifying the derived relationship using experimental method.



In the first part, the similitude theory is employed to vibration of plate
problems. This similitude theory is used to derive the scaling law which is used as a
tool to verify the accuracy of the measured natural frequency. The scaling law is used
because of the difficulty of setting the boundary condition of the test specimens such
that they are similar to the theoretical boundary conditions. The experimental results
showed that most of the experimental natural frequencies of the prototypes match
those of from the scaling law. Uncertainties of the experiments in boundary condition
and thickness are believed to be the sources of the discrepancy. Therefore, with a
careful experimental setup, the measured natural frequency is efficiently accurate and

reliable to use as a data for buckling load identification.

The second part of the project is to derive the relationship between vibration
and bucking behavior of plates. By considering the governing equations of the
vibration and buckling problems, it is shown that square of the natural frequency of
the loaded plate is linearly varied with the applied load. The natural frequency is
increased with the tensile load and decrease with the compressive load. This
relationship is determined without a need to solve the differential governing equations,
so it is applicable for plates with any boundary conditions. It is also shown that the
square of the nature frequency approaches zero when the in-plane load approaches the
buckling load. The derived relationship is verified by theoretically solving the
vibration and buckling problems of specimens with combinations of boundary
conditions. The Ritz method is employed to determine natural frequency of the loaded
plate and buckling load of plate. In the process, vibration mode shape and buckling
mode are also obtained. From the study, the predicted buckling load and mode from

the vibration data are corresponded to the theoretical solution very well.



Vi

In the final part of the project, experimental verification was performed on a
custom-made compression test frame. The test frame is capable of applying a uniform
tensile and compressive load to a rectangular specimen, and supporting the specimen
with clamped and free boundary conditions. Specimen was loaded and tested for
natural frequencies. Both aluminum and stainless steel specimen with CCCC, CCCF
and CFCF boundary conditions are included in the specimen. The measured vibration
data is plotted against the in-plane load to determine the buckling load and buckling
mode. Square of the measured natural frequency is linearly varied with the applied
load as expected. The experimental results show that all buckling modes obtained
from VCT agree with numerical solutions very well, while most of the measured
buckling loads conform to the numerical solutions. Buckling loads of CCCC stainless
steel specimens were not well indicated using the proposed technique. The
imperfection of boundary conditions of this group of specimens is believed to be a
considerable factor in the high percentage difference between the measured and
numerical buckling loads. If the experiments of stainless steel specimens with CCCC
boundary condition are excluded, the average of the percent difference between
measured buckling loads and numerical solutions is -0.18% with the standard
deviation of 5.05%. The experimental study demonstrates the accuracy and reliability
of using vibration data in the tensile-loading range to determine the buckling load.
Boundary conditions of the specimen have a considerable effect on the precision of
the measured buckling load. The proposed technique of identifying buckling load of
plate has an advantage over the static methods for the fact that this method does not

need human’s judgment to draw two lines in the pre- and post- buckling regions.
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Chapter 1. Introduction

Buckling load is one of the important parameters which should be considered in
the design of thin or slender structures subjected to compressive loading. Buckling
behavior of several engineering structures such as columns, plates, frames, and shells has
been continuously investigated in the past several decades. Among several types of
structure, a thin plate is one of the most important types of structure used in engineering
applications. Mainly, the stability problem of plate is investigated using theoretical,
numerical and experimental approaches. The theoretical method is applicable to a limited
type of problems where a closed-form solution is possible. For more complicated
structures, the numerical methods such as a finite element method are required. Solutions
from both theoretical and numerical methods are generally verified with the experimental
results. Experimental method involves in a number of costly and time consuming
processes, however, imperfections and complicated effects of the problem are naturally
included. For an experimental study of buckling of plate, identification of the buckling
point is an important process, since it directly affects the accuracy of the measurement. In
the experiment, the buckling load of plates can be identified using various kinds of plots;
for example: 1) a plot of in-plane loads vs. out-of-plane displacement; 2) a plot of in-
plane loads vs. end-shortening; and 3) a plot of in-plane loads vs. difference of surface
strains. These methods which may be classified as static methods utilize the change of the
slope of the curve in pre-buckling and post-buckling regions to identify buckling load.
However, these approaches have a drawback for the fact that it is required to draw two
lines in the pre- and post- buckling regions to get the buckling load. Drawing these lines
might be a cause of error due to human bias. So, there is a need to explore an alternative

method of buckling load identification.



In this study, the relationship between buckling and vibration behavior of thin
plates is investigated. The relationship between applied in-plane load and the natural
frequency of plates is derived from the differential governing equations of both problems.
The derived relationship, which is applicable to thin plates with any boundary conditions,
is numerically verified by simulating a plot of the derived relationship. Because of the
premature curvature, which is usually detected even before the specimen has buckled, it is
proposed in this study that the buckling load be determined from the vibration data of a
plate subjected to tensile loading. A test frame, capable of applying tensile and
compressive loading to a specimen, was prepared. A series of vibration tests was
performed to determine the natural frequencies of the plates. The vibration data, along
with the derived relationship, are used to predict the buckling load. Experimental
buckling loads are compared to the numerical solutions to verify the proposed technique.
In this study, numerical solutions is served as benchmark solutions, and determined using
the Ritz method using beam functions as basis function.

In summary, objectives of this study may be itemized as follows:

1. To derive the relationship between vibration and buckling of plate in order to use
the vibration data to identify the buckling load

2. To verify the accuracy of vibration measurement and determine the cause of error
that might encounter during the experiment

3. To determine the buckling load of plate using vibration correlation technique

using vibration data in the tensile loading range.

In this report, literature reviews concerning buckling and vibration of thin plate,
similitude concept, and vibration correlation technique used to identify buckling load are
presented in chapter 2. The fundamental concepts of mechanics of composite plates are

outlined in the next chapter. Chapter 4 presents a study on an accuracy of the vibration



measurement. Scaling law for vibration a thin plate problem used as a concept for
vibration experiment is described. The experiment demonstrated accuracy of vibration
measurement is outlined in the second half of the chapter. The next chapter presents the
vibration correlation technique used to identify buckling load of plates. The relationship
between vibration parameter and buckling parameter is derived and verified with the
known solutions. This technique is employed in chapter 6 where experimental study is
explained. Experimental setup, specimens and experimental procedures are described
along with extensive experimental result. This report concludes in chapter 7 with some
discussions and conclusions of the present study. The outputs of the project are also

presented in the Appendix at the end of this report.



Chapter 2. Literature Review

This chapter gives a review of previous studies on some topics related to this
research project. The general buckling behaviors of thin plate are described in the first
part of this chapter, including reviews of the studies available in the literature. Then, the
similitude theory and scaling law for vibration problem are presented. Finally, the

vibration correlation technique used in bucking problem is outlined and reviewed.

2.1 Buckling of plate

Besides tensile or compression failures, buckling is another mode of failure that
involves stability of structures. It usually happens in slender elements such as beams,
columns, or plates. This study focuses on buckling of plates; so only plate structures are
of interest herein. A panel subjected to uniaxial or biaxial compressive loading will
buckle if compressive stress at any point is sufficiently high. A plate under compression-
tension biaxial loading may also buckle. Buckling phenomenon may even arise from
more complicated loading conditions such as non-uniform tensile loading, shear loading,

moisture, or exposure to elevated temperatures.

The buckling phenomenon can be described from a plot of the out-of-plane
displacement at a specific point, usually at the point of maximum out-of-plane
displacement, against in-plane load. In classical linear buckling theory, when in-plane
load increases from zero, out-of-plane displacements are assured to remain zero until the
critical load is reached. Buckling of plates can be investigated using analytical and
numerical analysis. Analytical solution of the buckling of composite plates requires a

solution of the governing equations. These equations are only solvable in a few simple



cases, such as a specially orthotropic rectangular plate with simply supported boundary
conditions. A closed-form solution for a specially orthotropic plate, i.e. either
unidirectional or a symmetric cross-ply panels, is thoroughly derived by Whitney [1].
Mode shape transitions are also graphically presented. Several studies on buckling of
composite plates using the Ritz method are available. In 1986, Lagace et al. [2] employed
the Ritz method to study the effect of mechanical couplings on buckling behavior. They
concluded that those mechanical couplings, especially stretching-bending couplings,
cause out-of-plane displacement prior to buckling in unsymmetric laminates. This
phenomenon significantly reduces the critical buckling load. An experimental verification
was also performed. The Ritz method was demonstrated, by Narita and Leissa [3], to be
accurate for symmetric laminates if enough number of terms (more than 100 terms) were
used. A double sine series was used to approximate the out-of-plane displacement.
Convergence studies and contour plots of buckling mode shape were also presented.
However, the in-plane displacements were ignored in the strain energy function. Similar
approximate function and analysis method were used by Chai and Hoon [4] to study the
buckling of generally laminated plates. The results agreed with the exact solution for
symmetric crossply, antisymmetric crossply, and antisymmetric angle-ply. The effect of
mechanical couplings, D1s and D, on buckling load was shown to be an important factor

in the analysis.

There have been several experimental studies on buckling of composite plates
using different measurement techniques appeared during the past two decades. Chai,
Hoon, and Chin [5] experimentally confirmed the buckling behavior determined from the
Ritz method using laser-based holography and strain gauges. Chai, Banks, and Rhodes [6]
used a linear variable differential transformer (LVDT) to measure the out-of-plane

deflection to study the buckling of simply supported plates under uniaxial loading. The



results correlated well with finite element solutions and other available studies [7, 8].
Discrepancies between -7% and 11% of experimentally determined buckling loads were
reported. Another experimental method for monitoring out-of-plane displacement is the
shadow moiré technique. This experiment method was used by Tuttle, Singhatanadgid,
and Hinds [9] to observe the whole-field out-of-plane deflections of composite plates
under tension-compression biaxial loading. Experimental buckling modes were well
compared with predictions obtained numerically based on the Galerkin method. As
expected, buckling loads increased as the transverse tensile loads were increased. Almost
all of the previous studies indicated several difficulties in setting up the experimental
conditions, such as loading conditions and boundary conditions, which are comparable to
the conditions assumed in the analysis. These factors are the common sources of

discrepancy between measurement and prediction.

2.2 Similitude theory and scaling law

The similitude theory has been applied to many problems in the field of structural
engineering, including vibration and buckling problems of plates. Simitses [10] applied
similitude transformation to the bending, buckling, and vibration of laminated plates. The
derived scaling laws were successfully employed to the problem with appropriate
similarity requirements between model and prototype systems. Rezaeepazhand et al. [11]
demonstrated a procedure for deriving a scaling law for the frequency response of
laminated plates. Both Simitses and Rezaeepazhand derived scaling laws from the closed-
form solutions of the problems. Alternatively, scaling laws can be derived directly from
the governing equation of the problems. In references [12-14], the authors derived the
scaling laws for the vibration and buckling behaviour of laminated rectangular plates. In

those studies, similitude transformation was applied to the governing equations of the



problems directly. Besides the scaling law, the similarity requirements were also
obtained. An advantage of this approach is that a solution of the governing equations is
not required. The obtained scaling laws were verified with the theoretical solution and
found to be exact for complete similitude cases. Partial similitude cases were also
investigated and recommended. It was also found that the scaling laws were independent
of boundary conditions. This implies that, for a problem with complicated boundary
conditions, the behavior of the prototype can be predicted from the experimental results
of the corresponding scaled model given that the boundary conditions of both systems are
identical. This concept is especially beneficial for problems where the boundary
conditions cannot be numerically modeled in the numerical solutions but can be built in

the scaled model.

In addition to a simple-supported rectangular thin plate, the similitude theory was
moreover applied to the elastically restrained flat plates subjected to dynamic loads by
Wu [15]. The author showed that the geometric, kinematic and dynamic similarities must
be satisfied to assure the complete similitude. A similar concept was also applied to the
dynamic analysis of rectangular plates under a moving load line [16]. Both complete and
partial similitude cases were presented. An agreement between the theoretical vibration
response of the full-scale prototype and the prediction from the solution of the scale
model was obtained. Wu et al. [17] employed the similitude concept with a more complex
structure where a scale model and the scaling law were utilized to determine the vibration

characteristics of a full-size crane structure.

2.3 Vibration correlation technique
Buckling load is one of the important parameters which should be
considered in the design of thin or slender structures subjected to compressive loading.

Buckling behavior of several engineering structures such as columns, plates, frames, and



shells has been continuously investigated in the past several decades. Among several
types of structure, a thin plate is one of the most important types of structure used in
engineering applications. Mainly, the stability problem of plate is investigated using
theoretical, numerical and experimental approaches. The theoretical method is applicable
to a limited type of problems where a closed-form solution is possible. For more
complicated structures, the numerical methods such as a finite element method are
required. Solutions from both theoretical and numerical methods are generally verified
with the experimental results. Experimental method involves in a number of costly and
time consuming processes, however, imperfections and complicated effects of the
problem are naturally included. For an experimental study of buckling of plate,
identification of the buckling point is an important process, since it directly affects the
accuracy of the measurement. In the experiment, the buckling load of plates can be
identified using various kinds of plots; for example: 1) a plot of in-plane loads vs. out-of-
plane displacement; 2) a plot of in-plane loads vs. end-shortening; and 3) a plot of in-
plane loads vs. difference of surface strains. These methods which may be classified as
static methods utilize the change of the slope of the curve in pre-buckling and post-
buckling regions to identify buckling load. The plots mentioned above and other static
methods are properly summarized in Ref. [18]. There are several studies employed the
static methods to identify the buckling load of plates. Chai et al.[19] verified the
theoretical buckling load of composite plates using the experimental method. Buckling
load was determined from the intersection of the tangents drawn in the pre-buckling and
post-buckling slopes of the load versus membrane strain curve. The discrepancies
between the experimental and theoretical solutions between -7 % and +11 % were
reported. Tuttle et al. [20] determined buckling loads of composite panels from the plots

of applied in-plane load vs. out-of-plane displacement, and compared the experimental



results to numerical predictions obtained using a Galerkin method. Although the average
percentage error between the measured and predicted buckling loads is low, the standard
deviation of the percentage error is as high as 15%. The difficulties of identifying the
buckling load using a static test method were documented. In particular, drawing two
lines in the pre-buckling and post-buckling regions to identify the buckling point
depended on personal judgment, and could be a cause of error. To use the experimental
result as a benchmark solution, the method used to identify buckling load must be
accurate and reliable.

There is a need for an alternative approach to experimentally identify the buckling
load of a plate. In this paper, the vibration correlation technique (VCT) is explored and
modified to determine buckling load of a plate. The VCT is a nondestructive testing
utilizing the measured vibration data. This concept has been applied to buckling problems
in the past with a variety of amount of success. Lurie and Monica [21] showed that the
square of the frequency of the lateral vibration of a thin plate with simple supports on all
edges is linearly related to the end load. They also conducted some experiments on
elastically restrained columns, rigid-joint trusses, and thin flat plates. The authors
reported that VCT was successfully employed to predict the buckling load of only
columns and trusses. For flat plates, because of the initial curvature, the buckling load
cannot be predicted by the proposed method. However, Chailleux et al. [22] later showed
that with a carefully designed experimental setting, VCT can be used to determine the
buckling load with satisfactory accuracy. The experimental dynamical curved is linear in
the low load region, such that it is possible to extrapolate the data to obtain the buckling
load. Segall and Springer [23] proposed a dynamic method to determine linear buckling
loads of elastic rectangular plates. With an integral equation representation of the elastic

stability, the proposed technique does not require the application of an in-plane load. A
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few studies [24-26] concerning the use of vibration data to investigate buckling behavior

can be found in the literature.



Chapter 3. Mechanics of composite material

In this chapter, fundamental principles of mechanics of composite materials are
summarized. The basic equations of theory of composite plate are reviewed. Then, the

governing equations of buckling and vibration problems are derived.

3.1 Mechanic of composite plate

Fig. 3.1 shows the x-y-z coordinate system used in developing the laminates
anisotropic plate. The midplane of the plate lies on the x-y plane of the coordinate system.
The displacements at any points in x, y, and z directions, are u, v, w respectively. The

following assumptions are made:

1) The plate is composed of orthotropic laminae bonded together with arbitrary
directions of orthotropic axes measured with respect to x-y plane.

2) The thickness of the plate, h is much smaller than the length and width of the plate.

3) The displacements u, v, and w are small compared to the thickness.

4) The in-plane strains &, &, and yy are small compared to unity.

5) The transverse normal strain, & is negligible.

6) The transverse shear strains j;, and j; are negligible.

7) Tangential displacements u, and v are linear function of z.

8) Each orthotropic lamina obeys Hooke’s law.

9) The plate thickness is constant.

10) There is no shear stress, 7, and 7, on the surface z = +h/2

Fig 3.1 Coordinate system for laminated plate.
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According to assumption 5 and 7, the displacements at an arbitrary point are
described as
u(xy,z) = u*(x.y)+ zF(x.y)

v(xy.2) = vi(x.y)+ zF,(xy)
w(x,y.z) = w(x,y)

(3.1)

where u°andv’are the in-plane displacements of the mid-plane in x and y direction,

respectively. w’is the transverse displacement of the mid-plane which is independent of

coordinate z, as assumed in assumption 5.

Using strain-displacement relationship, it can be shown that;

ou
& =—=§&, tIK,

oX
g, :Zv: £ + 1K, (3.2)
y
_u +—=y. +1K
}/xy ay ax j/xy Xy
where &7, ¢; and y; are the strains at the mid-plane which can be written as;
o OU°
& =
OX
o AN (3.3)
g = oy
o O’)UO + avo
T = oy T ox
KK, ,and/cXy are the curvatures of the mid-plane surface which can be written as;
_ Jw
i ox?
_ W (3.4)
y &yZ
2
Kk, = 5 oW
oxoy

From Eq.(3.2) and the lamina stress-strain relationship, stresses in the laminated plate can

be written as
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O, 611 612 616 ‘9: +IK,
Oyr = Qi Qz Que 5; t+iK, (3.5)
Tay )y Q16 st Qee K ]/:y +ik,,

where [6]kis the property of the kth lamina which is depended on the orientation of the
orthotropic axes of each ply.

The stresses in laminated plate are related to the applied forces and moments as;

(NX, N, ny)z (ax,ay,rxy)kdz

N‘é_'—.m\:r

(3.6)

(an M, Mxy)z (O‘X,O'y,TXy)kZdZ

I
N‘:_'—.N\:'

where (o, ,0,,0,,), = stresses in the kth lamina
(NX, N,, ny) = applied forces per unit length.
(M,.M,, M, )= applied moments per unit length.

h = laminate thickness

Substitute stresses from Eq.(3.5) into Eq.(3.6), perform the integration and rewrite

in form of matrix,

NX _A11 A12 A16 B11 BlZ BlB | g;)
NY A12 Azz AlG BlZ Bzz Bze ‘9;)
ny _ Ais A Ags Bis By By | |7 (3.7)
M, B, By, Bs Dy Dy, Dy | |& X
My BlZ Bzz Bze D12 Dzz Dze K,
Mxy | Bis B Bs Dis Dy Dgs K,y

where (A,,B,,D,)= [(Q,), (Lz,2*)dz

N‘\jt—.,\g\:

Eq.(3.7), a so-called “constitutive equation” relates the applied forces and

moments to the strains and curvatures of laminated plate.
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3.2 The Buckling of Plate Governing Equations

The governing equations for buckling of a plate under in-plane loading can be
derived by considering the infinitesimal element of plate as shown in Fig. 3.2. Fig. 3.2(a)
shows the in-plane stress resultants, and the moment resultants. The transverse shear
stress resultants are shown in Fig. 3.2(b). Since the buckled plate is under a static
condition, the summation of forces along x and y direction must be equal to zero and can

be written as;

JN
N, Ny (3.8)
OX oy
ON, . ON, _ (3.9)
oy OX

Under buckling conditions, the in-plane stress resultants, Ny, Ny, and Nyy, will not
lie on the x-y plane as shown in Fig. 3.2(a). Thus, the summation of forces in the z
direction has to include the effects of these in-plane stress rotations. By summing of
forces in the z direction and summing moments about the x and y axes, it can be shown

that;

2 oM oM > 2
é)MZX+2 L 2y+Nxé’V;/+2NXy oW +Nyé’vg+q(x,y)=0 (3.10)
OX oxoy oy OX OX2y oy

Egs.(3.8)-(3.10) are the equations of motion in term of stress and moment
resultants. The equations of motion in term of displacements which are more convenient
to implement in further derivation can be determined by substituting the constitutive
equation, EQ.(3.7), and strain displacement relations, Eq.(3.3), into the equations of

motion in term of stress and moment resultants. Eq.(3.8)-(3.10) become;

e e e oV oV’ A
+2 + + LA, + *
A11 BV A16 P Age é’yz A16 X2 (A12 Aee)é,xé,y A26 é;yz (3.11)
_B ow 3B ﬂ_(Blz_f_ZBGG) ow —B%ango

Lokt TR axoy OxAY? ay°
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2 U o Ofyzvo
A16 +(A12 Aee Aze Aee 0,, 2 Aze Azz V2
y (3.12)
ﬁ?’ 53 lw lw
—B———(By +2866) — 3B, 7 Bp——= 0
ox* oy OXoY oy
o'w o'w o'w Zall olw
D11W+4D16M+2(D12+2D66)0,,X270,,y2+4 ZGM—F 227)/4
a?:uo 0»-)3uo 53U0 53U0 Of)3vo
-B,——-3B,————(B, +2B,)———B,, ——— B, ——
11 é,xg 16 é’ zé,y ( 12 66) axayz 26 O,,yg 16 é,x3 (313)
0*)3 [o] 0')3\/0 0»‘)3\/0 Of)ZW
(B 2866) ﬁy 26 ﬁxﬁyz _Bzz é,yg =q(x,y)+NX +
2 2
2N oW N o'W

+
Yoxoy 7oy’

In the case of a simply supported, symmetric laminate (Bj;; = 0) plate, the out-of-
plane displacement, w disappears in the first two equations of motion. Only the last
equation which contains the w term will be considered in the buckling analysis. If only in-

plane loads, Ny and Ny, are applied, Eq.(3.13) becomes;

2
D. 9V 4p OW +2(D,, +2D,) §:W2+4D26 ﬁws
X“y oxay (3.14)

" ooxd 3oy
2 2
+D2254‘1V=NX5"2V+NyﬁV;’
oy OX oy

More specifically, the Dis and term Dy terms are zero for a specially orthotropic

plate. The governing equation reduces to;

2 2
Dllﬂi"+2(D12+2Dee) {WZJFD TW_\ TW,  TW (3.15)
OX OX“oy

22 ﬁy‘l - X ﬁXZ y ayZ
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(@)

oN Xy N dx
J’_
dy N Xy + —ﬂx dx X X

(b)

Fig 3.2 Stress and moment resultants on the edges of the rectangular plate.

3.3 Buckling of a Specially Orthotropic Plate

Buckling of a specially orthotropic plate is the simplest case compared to other
kinds of composite plates. Uniform tension Ny and compression Ny are applied to a
specially orthotropic plate as shown in Fig. 3.3. The behavior of this plate is governed by

Eq. (3.15). For a simply supported plate, the boundary conditions can be written as;
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2 2
W=MX=—D11?'2V_D12?’!20 Onx=0orx=a
X y
2 2
w=M =-D aw é’W:o Ony=0ory=b

y 12ﬁ_ zzé,iyz

X

LLLL

111111111
TTTTTITT

TTITT

< Db 5

Fig. 3.3 Uniform compression, Ny, and tension, Ny, loads

To solve Equation (3.15), it is assumed that the solution satisfies all boundary

conditions such that;
w(x,y)=A sinn];[)(sinnzy (3.16)

where ; Amn is the maximum out-of-plane displacement of plate.

m, n are positive integer number which represent the mode shapes
exhibited by the buckled plate.

Substituting the assumed solution, Eq.(3.16), into the governing equation (3.15)
and making some simplifications, the buckling load Ny can be related to the transverse

tension loading, Ny as follows;
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o0 o201 o0 (2)]

N, = 2 (3.17)
1+ R(a”)
bm

where the load ratio, R = ::Ilv

X

The load ratio is negative for tension-compression biaxial loading and equals to
zero for uniaxial loading. For a given value of Ny, there are infinite values of Ny which
satisfy Eq.(3.17). The critical buckling load is the lowest value of Ny. The mode shape is

determined from the corresponding values of m and n.

In the case of uniaxial or tension-compression biaxial loading, the buckling load
always corresponds to n=1 since there are second and fourth orders of n in the numerator
but only second orders in the denominator. This leads to the conclusion that the mode
shape in the direction along y-axis is a half sine curve. In contrast, m is not necessarily

equal to 1 for the lowest value of Ny. It depends on the value of Dj; and load ratio R.

3.4 The Vibration of Plate Governing Equations

Using the equilibrium equations similar to the buckling problem, the governing
equation for free transverse vibration of specially orthotropic plate can be written as [27];
o'W o'W o'W o*W (3.18)

D11W+2(D12+2D66)0”X20”y2 +D22 é’y“ +p0 &tz =0

where W is the displacement in the out-of-plane direction, p,is the mass density of the

specimen, and D is the plate bending stiffness.

Assuming that the out-of-plane displacement is separable as a function of position

and time, the governing equation is reduced to

4
D, Y ow=0 (3.19)

o'w o'w
Ge)éxzé,yz + 22 §y4

D“WJF 2(D,, +2D
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where w is function of x and y only, i.e. w = w (X,y), and o is the frequency of the

vibration.

The vibration equation, Eg. (3.19), can be solved if the boundary conditions of the

plate are known. For simple-supported plates, the analytical closed form solution is

4

2 4
W = z 7 [Dllm4 +2(Dy, +2D66)(%] +Dy, (Ej J (3.20)

Po b

where om, are natural frequency of the plate in Hz, a and b are plate width and length,

respectively, h is specimen thickness, m and n are positive integer.



Chapter 4. Accuracy of vibration measurement

This chapter focuses on the accuracy of vibration measurement. To use the
vibration data to identify the bucking load, it must be certain that the measured vibration

parameters are reliable and accurate.
4.1 Introduction

The vibration parameter requires to used in the buckling load identification is the
natural frequency of the structure. This parameter can be measured using an impact
testing. The objective of this chapter is to determine the accuracy of vibration
measurement. Instead of comparing the measured natural frequency with the theoretical
solution, this study utilizes the scaling law as a tool in the experimental study because it is
very difficult to setup the experiment such that the boundary condition is similar to the
theoretical one. By using the scaling law, it is certain that the boundary conditions of the

model and prototype are very similar, if not identical.

The scaling law has been utilized in many engineering applications. The principle
provides a powerful tool for engineers and scientists to replicate the behavior of the
prototype using an appropriate scaled model. Similitude theory can be stated as [28]; “the
sufficient and necessary condition of similitude between two systems is that the
mathematical model of the one be related by a bi-unique transformation to that of the
other.” For a prototype of interest, a scaled replica can be built to duplicate the behavior
of the full-scale system. The experimental results on the model can be utilized to predict
the behavior of the prototype. The similitude concept is thus very useful, especially, for
problems with either a complex domain or complicated boundary conditions for which
numerical solutions are not sufficiently accurate, if possible. If the prototype is perfectly

replicated, the experiment result on the model can be scaled to predict the behavior of the
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prototype with sufficient accuracy.

In this study, the scaling law for vibration problem is employed to predict the
natural frequency of the prototype. This natural frequency is then compared with the
experimental measurement. With this approach, the accuracy and reliability of the

vibration measurement is determined.
4.2 Scaling law for vibration of plate

Although the natural frequencies of thin plates with combinations of simple
support, clamped support or free boundary conditions are available, they may not be
practically appropriate for engineering structures which accurate natural frequencies are
required. The boundary conditions of practical structures are usually non-classical ones
such as elastically restrained or imperfect boundary conditions which are not easily
modeled because the level of restraining is unknown. This is where the scaling law can be
utilized to determine the vibration behavior of the structure or prototype of interest using
the experimental results of the scaled model. The scaled model is either a scaled-down or
scaled-up test specimen having complete similarity with the real structure. Although the
boundary conditions of the prototype are not exactly known, they can be modeled in the
scaled model using similar supports. Thus, the experimental results from the
corresponding test specimen along with the scaling law can be used to predict the
vibration behavior of the prototype. The derivation of the scaling law for vibration

behavior is briefly derived in this section.

The scaling law for the vibration of rectangular isotropic plates is derived from the
governing equation by comparing the governing equations of the model with that of the

prototype. From both equations, the similitude invariant term, which leads to the scaling
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law, is obtained. Let the variables of the prototype and their corresponding model

variables be related to each other as follows:

=CXw ¥, =C)¥n, w,=C,w,, D, =C,D,,

xm? p w''m p

w, —C w,,and p, =C p,,

®“m?

where subscripted p refers to the prototype system and subscripted m refers to the model
system, and C; are the scaling factors of the i parameters. To derive the similitude
invariant, the governing equations of the model and prototype are written as the

following:

4 4 4 2
aa:gm " aizvaVCZ ’ éayvzm - wlgpm W =0 4.1

Cw a4Wm CW a4Wm Cw 84 CWCPCW a)mpm

Su O Wy | =0. 4.2
C! ox, ~CXC?oxioy: C;‘ 6ym C, D, ™ 4.2)

m

It should be noted that Eq.(4.2) can be written in the same form as Eq.(4.1) with subscript
“p” instead of subscript “m.” However, the scaling factors are utilized so that the
governing equations of both systems can be compared and simplified. Comparing both
equations, the vibration behavior of the model and of the prototype are similar if groups
of the scaling factors in Eq.(4.2) are all equal. This implies that Eq.(4.2) can be reduced to

Eq.(4.1) when the scaling factor groups are canceled out. Thus, the similitude requirement

is obtained as

2, (4.3)

By assuming that the model and prototype have a geometric similarity (Cx = Cy = C5 =

Cyp), the similarity requirement is simplified to
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CC,Ci

o~p

c 1, (4.4)

Eq.(4.4) is the similitude invariant of the vibration behavior of rectangular plates. This

invariant can be reduced to the scaling law of plate natural frequency as

4
o? = @’Cy Dnpn (4.5)
by oy

This scaling law relates the natural frequencies of the model to that of the
corresponding prototype. The derived scaling law is valid for a model-prototype pair with
complete geometric similarity, i.e. C, = Cy or both systems having the same aspect ratio.
The scaling law can be verified with the theoretical solution shown in the previous
section. The scaling law for the natural frequency of rectangular plate is verified,
theoretically. The derived scaling law is applicable to a model and prototype pair with the

same aspect ratio, although they are made of different materials.

4.3. Experimental study

4.3.1 Experimental setup

Several samples of thin rectangular plates were tested to determine their first three
natural frequencies. The specimens were composed of aluminum, structural steel and
stainless steel rectangular thin plates. The boundary conditions of the test panels were a
combination of the knife-edge support and free boundary conditions. The knife-edge
support was employed to simulate the theoretically simple supported boundary condition.
Schematic drawings of the specimens’ dimensions and boundary conditions are shown in
Figure 4.1. The boundary of specimen supported by the knife-edge constraint is
designated as “S,” while the free supported edge is represented by “F.” The boundary

conditions of the specimens used in this study were SSSS, SFSS, SFSF, and SSFF, as
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shown in the figure. The first and second letters represent the boundary condition on the y
= 0 and y = b edges, respectively. Similarly, the last two letters symbolize the boundary
conditions on the other edges. The specimens were mounted in the test setup and
equipped with an impact hammer and an accelerometer as shown in Figure 4.2. The
knife-edge support replicating the simply supported boundary condition was enforced by
two stainless steel bars coupled on the specimen. The steel bars were machined in an
inclined direction to form a knife-edge. With this support, the specimens were
intentionally allowed to freely rotate but any out-of-plane displacement was restrained.
The knife-edge supports were fixed with steel boxes with a number of machine screws.
Additional machine screws were also used to push the knife-edge supports against the
specimen surface. The assembly of steel boxes and knife-edge supports was also tested
for natural frequency to confirm that their natural frequencies were not in the range of

those of the specimens.

S F
S S S S
SSSS SFSS y
S s
F s b
a X
S F F F
SFSF SSFF
s S

Figure 4.1 Schematic drawings of the rectangular test specimens
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Impact hammer Accelerometer

Specimen Knife-edge support Steel Box

Figure 4.2 Experimental setup with accelerometer and impact hammer

The vibration test for natural frequency was performed using an impact test [29,
30]. Briefly, the specimens were excited by an impact hammer while the applied impulse
was monitored by a dynamic signal analyzer. An accelerometer was placed on the
specimen at a selected location to measure the plate response in terms of acceleration. It is
recommended that the accelerometer should not be set on the node line of the vibration to
avoid a low response signal. If the node line is unknown or uncertain, more than one
measurement is recommended. In the present study, several pretests were conducted to
determine a suitable location of the accelerometer. Besides the applied impulse from the
impact hammer, the acceleration responses from the accelerometer were collected by a
dynamic signal analyzer. The accelerations were recorded five times from five excitations
of the impact hammer. These five sets of the acceleration data measured in the time

domain were processed by a Fast Fourier Transform (FFT) algorithm using the dynamic
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signal analyzer to obtain the response in the frequency domain. From the vibration
response in the frequency domain, the natural frequencies of the specimen were identified
from the peak of the response. Theoretically, there are infinite numbers of natural
frequency; however, only the first three modes are of interest in this study. Figure 4.3
shows examples of the vibration response measured in the frequency domain obtained
from the dynamic signal analyzer for a 300x300 mm? aluminum plate with various
boundary conditions. The measured natural frequencies in Hz for the first three modes of
the specimen with SSSS boundary conditions are 149.0, 293.5, and 322.5 Hz,
respectively. A response similar to those of shown in Figure 3 can be obtained from
experiments with excitation and accelerometer located at various positions. Ideally, the
measured natural frequencies are independent of the location of either excitation or
accelerometer. From the experiments, varying the position of excitation and the location
of the response measurement has a minimal effect on the measured natural frequencies. In
this study, a minimum of 5 experiments were performed for each specimen and the

experimental natural frequency was determined from the average of each measurement.
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Figure 4.3 Vibration response in frequency domain of 300x300 mm? aluminum plate
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4.3.2 Experimental results

A set of the experiments were conducted in this study. The test specimens were
nine aluminum plates with aspect ratios (a/b) of 1, 1.5, and 2 and a specimen nominal
width b of 200, 250, and 300 mm, respectively. The natural frequencies of all the
specimens with four combinations of boundary conditions were experimentally

determined and used to validate the accuracy of the measurement.

The measured natural frequencies for the SSSS aluminum plates with nine
different dimensions are presented in Table 4.1. In the table, the test specimens are
classified into three groups: rectangular plates with aspect ratios of 1, 1.5, and 2. The
experimental data showed that the natural frequencies decreased with plate size. Similar
experimental results were obtained for aluminum specimens with other boundary
conditions but are not presented here. The specimens shown in Table 4.1 were assumed to
be a model or a prototype and used to validate the scaling law, as shown in Table 4.2.
From the three specimens with an aspect ratio of 1, three pairs of models and prototypes
were assigned to the test specimens. As shown in column 2 and 3 of Table 4.2, a 200x200
mm? specimen was set as a model and used to model the 300x300 mm? prototype
specimen. The other two model-prototype pairs were a 250x250 mm? model with
200x200 mm? prototype and a 300x300 mm? model with 250x250 mm? prototype.
Specimens with aspect ratios of 1.5 and 2 were also assigned as models or prototypes in
the same approach. In Table 4.2, column 5 and column 6 are the measured natural
frequencies of the model and prototype, respectively. The next column labeled as

“ gy Presents the scaling natural frequencies of the prototypes. These scaling natural

frequencies were determined from the scaling law shown in Eq.(4.5) using the measured

natural frequencies of the model in column 5. The experimental and scaling natural
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frequencies shown in column 6 and 7, respectively, were compared with each other. The
percentage discrepancy of the scaling natural frequency shown in the last column was

determined according to

Weafing — O
% Dis = —=29 B 100%. (4.6)
a)Exp.

Table 4.1 Measured natural frequencies of the SSSS aluminum specimens

Aspect S_pecimen Natural Frequency (Hz)
Ratio Slzr%rﬁ,;() ° 1 Mode 2" Mode 3" Mode
200x200 309.8 676.9 729.6
1 250x250 196.7 409.0 444.6
300x300 148.8 293.2 321.8
300x200 221.2 376.3 580.7
15 375x250 150.5 255.4 376.6
450x300 99.6 171.4 257.4
400x200 199.6 256.2 425.2
2 500x250 132.4 173.6 275.5
600x300 90.1 117.8 193.4

Most of the comparisons show a good agreement between the scaling and
measured natural frequency. The average of the absolute values of percentage
discrepancy for experiment on all 27 model-prototype pairs is 3.30% with a standard
deviation of 4.05%. The minimum and maximum percentage discrepancies are -7.47%
and +8.93%, respectively, while more than half of the comparisons have a percentage
discrepancy within £3%. There was no significant difference in percentage discrepancy
for each vibration mode or plate aspect ratio. The causes of discrepancy between the

scaling and measured natural frequencies are probably related to the imperfections of the
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boundary conditions and specimens. As described in the previous section, knife-edge
supports of the test setup were controlled by several machine screws. In the experiments,
the machine screws were tightened until the gaps between the specimen and support were
invisible. Although it was desired to obtain identical boundary conditions for the model
and its prototype, it was expected that the boundary conditions for each experiment would
not be perfectly identical. Besides the imperfect boundary conditions, imperfections of
specimens such as nonuniform thickness and the existence of plate curvature might be the
cause of discrepancy between the scaling and measured behaviors. These two causes of
error are classified as an experimental uncertainty which is typical in experimental study

and is very difficult to completely eliminate.
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'Dsg)t?gt Model Prototype | Mode | Model " Proat)otype D
Exp Scaling oDis

1 309.8 148.8 137.7 747

200200 | 300x300 2 676.9 293.2 300.8 261

3 729.6 321.8 324.3 0.77

1 196.7 309.8 307.3 -0.79

1 250x250 | 200x200 2 409.0 676.9 639.1 -5.59
3 444.6 729.6 694.7 -4.79

1 148.8 196.7 214.3 8.93

300x300 | 250x250 2 293.2 409.0 422.2 3.23

3 321.8 444.6 463.4 4.23

1 221.2 99.6 98.3 -1.29

300x200 | 450x300 2 376.3 171.4 167.2 242

3 580.7 257.4 258.1 027

1 150.5 221.2 235.2 6.31

1.5 375x250 | 300x200 2 255.4 376.3 399.1 6.05
3 376.6 580.7 588.4 1.33

1 99.6 150.5 143.4 -4.70

450x300 | 375x250 2 171.4 255.4 246.8 -3.36

3 257.4 376.6 370.7 -1.58

1 199.6 90.1 88.7 -1.54

400x200 | 600x300 2 256.2 117.8 113.9 -3.34

3 425.2 193.4 189.0 -2.29

1 132.4 199.6 206.9 3.64

2 500x250 | 400x200 2 173.6 256.2 271.3 5.87
3 275.5 425.2 430.5 1.24

1 90.1 132.4 129.7 201

600x300 | 500x250 2 117.8 173.6 169.6 -2.29

3 193.4 275.5 278.5 1.09

Another three comparable studies were performed on the same test specimens

with boundary conditions of SFSS, SFSF, and SSFF. An inconsistency between the
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scaling and measured natural frequencies of all comparisons in terms of percentage
discrepancy is shown in Table 4.3. The last two rows of the table show the average of
absolute values of percentage discrepancy and the standard deviation of the percentage
discrepancy, respectively. The overall average and standard deviations of the percentage
discrepancy were 4.90% and 6.46%, respectively. The histogram in Figure 4.4 represents
the frequency distribution of the percentage discrepancy which revealed that the
distribution of the percentage discrepancy closely resembles a normal distribution and the
percentage discrepancies of 95 from 108 comparisons were in the range of + 10 %.
However, percentage errors for some pairs of model and prototype were slightly higher,
especially for the experiments on the SFSF specimens. Eight values of percentage
discrepancy from the experiments on this boundary condition resulted in a percentage
discrepancy higher than +10%, compared with only four values and one value for SSFF
and SFSS cases, respectively. The average of the absolute percentage discrepancy for
SFSF specimens was 7.47% which is higher than those of other boundary conditions. The
higher percentage discrepancy of the scaling law observed in specimens with SFSF
boundary conditions was probably caused by the particular characteristics of these
boundary conditions. For SFSF specimens, the free boundary condition was imposed on
two adjacent edges of the plate, i.e. two adjacent edges were free to move, as shown in
Figure 4.1. As a result, the specimen with this combination of boundary conditions tended
to be slightly curved at the free corner because of its own weight. The degree of non-
flatness of the test specimens was probably different for specimens with different
dimensions, that is, the size effect had an influence on the accuracy of the scaling law in
this case. So, the model and prototype with these boundary conditions did not have a
complete similarity, resulting in a slightly higher percentage discrepancy for these

specific boundary conditions.



33

Table 4.3 Percentage discrepancy between scaling and measured natural frequencies

Aspect | Model | Prototype SSSS SFSS
Ratio Model | Mode2 | Mode3 | Model | Mode2 | Mode3
200x200 | 300x300 | -7.47 2.61 0.77| -0.86 | 3.75 0.06
1 250x250 | 200x200 -0.79 -5.59 -479 | 291 -2.62 2.19
300x300 | 250x250 8.93 3.23 423 | -1.98 -1.03 -2.20
300x200 | 450x300 -1.29 -2.42 027 | 7.26 2.83 6.84
15 |375x250 | 300x200 | 6.31| 6.05| 1.33|-11.91 | -850 | -5.50
450x300 | 375x250 -4.70 -3.36 -1.58 | 5.84 6.28 -0.95
400x200 | 600x300 -1.54 -3.34 -229 | 394 2.75 2.57
2 500x250 | 400x200 3.64 5.87 1.24 | 2.06 1.00 -0.46
600x300 | 500x250 | -2.01| -2.29 1.09| -5.73 | -3.64 | -2.06

Average 3.30 3.62

Standard deviation 4.05 4.63

Table 4.3 Percentage discrepancy between scaling and measured natural frequencies

(Continued)

Aspect | Model | Prototype SFSF SSFF
Ratio Model | Mode2 | Mode3 | Model | Mode2 | Mode3
200x200 | 300x300 | -5.56 -2.12 -4.52 3.55 2.80 2.05
1 250x250 | 200x200 | 1.37 0.45 -0.58 0.89 -4.90 -0.19
300x300 | 250x250 | 4.46 1.72 5.35 -4.28 2.30 -1.83
300%x200 | 450x300 | -17.74 | -10.07 | -10.96 | -9.00 | -15.54 | -0.86
15 |375x250 | 300x200 | 1341 | 6.00 | 541 | 7.06 | 542 | 3.5
450x300 | 375%x250 | 7.19 4.90 6.54 2.64 1231 | -221
400x200 | 600x300 | -11.22 | -14.29 | -9.69 | -6.24 | -12.66 | -6.07
2 500x250 | 400x200 | -6.78 | -1.55 2.48 -3.51 8.36 5.92
600x300 | 500x250 | 20.84 | 1851 8.06 10.54 5.67 0.52

Average 7.47 5.20

Standard deviation 9.46 6.64
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Figure 4.4 Histogram of the percentage discrepancy between scaling and measured

natural frequencies.

4.4 Conclusions

From the experimental study, the scaling law provided reasonable accuracy for
modeling a prototype using a model with different dimensions. Uncertainties of the
experiments in boundary condition and thickness are believed to be the sources of the
discrepancy. To obtain a decent prediction from the scaling law, the experiment on the
model specimen should be carefully performed to assure near-complete, if not perfectly
complete, similarity with the prototype. Therefore, with a careful experimental setup, the
measured natural frequency is efficiently accurate and reliable to use as a data for

buckling load identification.



Chapter 5. Vibration correlation technique

In this chapter, the derived scaling law for buckling of rectangular composite
plates is verified with the experiment results. A compressive test frame was designed and
built to conduct a buckling test. The specimens which are classified as models and
prototypes were tested for buckling load using a plot of applied load vs. out-of-plane
displacement. The experimental buckling load of the model was substituted into the
scaling law to predict the similitude buckling load of the prototype which was then
compared to the experimental one. ldeally, the similitude and experimental buckling

loads are identical if all of the similarity requirements are satisfied.

5.1 Relationship between natural frequency and buckling load

In this part, the relationship between buckling and vibration behavior of thin plate
is investigated. The relationship between applied in-plane load and the natural frequency
of plates are derived from the differential governing equations of both problems. The
derived relationship is verified using a numerical method. This relationship also implies
that buckling load of plate can be obtained from the vibration data of the loaded plates.
So, an alternative method for buckling load identification using dynamic approach is
proposed.

In this study, the vibration and buckling behaviors of a rectangular composite
plate as shown in Fig. 5.1 are investigated. The buckling load of plate represented by N,
is the in-plane load Ny at which buckling occurs. For vibration behavior, the natural

frequencies of plate can be determined for a specimen with a given tensile or compressive

load N,.



36

N
7

LU
T

a X~

Figure 5.1 A rectangular plate subjected to a uniaxial in-plane load

The governing equation for buckling and vibration of thin isotropic plate can be

written as;
o'w o'w o'w o’w o'w — J*w
Cus o+ 4P a5+ D +2D0) s 2 440 5 5w + P g N5 =0 G
and
o'w o'w o'w o’w o'w o*w .
D, =7 +4Ds 0y +2(D,, +2D66)ax2—ay2+4D26 Ewra D,, v NS = Po w=0 (5.2)

respectively.
where w = Out-of-plane displacement
p = Mass of plate per unit area
D = Plate flexural rigidity)
N, = Buckling load
Ny = Applied in-plane load
o = natural frequency of the plate with applied in-plane load Ny
It should be noted that N, and Ny refer to the same in-plane load, however, N is the

buckling load which must be a compressive load (negative value), while Ny is the applied

in-plane load which can be either tension or compression.
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For a given rectangular plate, the relationship between the natural frequency and an
applied in-plane load Ny can be determined by considering the governing equations,
Eqg.(5.1 and 5.2). For a specimen with a given boundary conditions, it is widely known
that buckling mode and vibration mode of the plates are identical. Specifically, the out-of-
plane displacement of the buckled plate is identical to the out-of-plane displacement of
one of the vibration mode. So, for a given specimen, the governing of the buckling

problem can be rewritten as.

L (w)-N,L,(w)=0 (5.3)
4 4 4 2 4
where L, (w)=D, 22140, <% 12D, +20,)-2 % 44D, T W +p, W
K Ky 2y 2% x
o*w
L2 (W) = O’XZ

Similarly, the governing of the vibration of loaded plates is written as;

L (w)-N,L, (w)-o”L,(w)=0 (5.4)
where L, (w)=pw
It should be noted that the terms contained derivatives of w for both problems are the

same because the buckling mode and vibration mode are identical. From Eqg.(5.3), the

buckling load of plate can be written as;

N, = L (w) (5.5)

© L(w)

Similarly, the natural frequency of plate with and without the applied in-plane load can be

written as;

o = L (W) -N, L (W) (5.6)

L (w)
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and @’ =ﬂ (5.7)

Ly (w)
where " is natural frequency of a plate with applied load Ny and w is natural frequency
of a plate without applied load. From Eq.(5.7), ratio of the square of natural frequency of

the loaded plate to that of the unloaded plate is written as;
*\2
[“’—} _1- N (5.8)

Since buckling load N, and natural frequency of the unloaded plate @ is constant for a

given specimen, it is concluded that square of the natural frequency of the loaded plate
o” is linearly varied with the applied load Ny. Since this relationship is derived from the
governing, it is independent of boundary conditions.

From the linear relationship betweenw™?and N, shown in Eq.(5.8), with the
buckling load being a negative value, it is notice that the natural frequency of the plate
increases with the applied tensile load. On the other hand, it is decreased with the applied
compression. Moreover, if the applied load Ny equals the buckling load of the plate, the
natural frequency @ theoretically equals zero. With this observation, ones can utilize the
natural frequencies of the loaded plate to predict the buckling load of plate by plotting

o versus the in-plane load N,. The buckling load could be determined from the applied

load N at which the natural frequency approaches zero.

5.2 Numerical validation

To numerically verify the VCT and the derived relationship shown in Eqg. (5.8), a
numerical simulation of the vibration and buckling of a plate was performed. The Ritz
method with characteristic beam functions was used to solve the buckling and vibration

problems. Detail information about the Ritz method which is beyond the scope of this
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paper can be found in Ref.[31-36]. A 2-mm-thick aluminum plate with a dimension axb
of 400x200 mm? was chosen as a specimen. The plate was assumed to be simply
supported on the loading edges and clamped supported on the other two edges. The
buckling load of this specimen was numerically determined, and found to be 88.216
KN/m with buckling mode (3, 1). The buckling mode of this specimen is graphically
shown in Fig.5.2. This numerical solution serves as the theoretical solution for this
simulation, and is used to validate the buckling load from VCT. Buckling load and mode
determined from VCT requires the vibration data, i.e. natural frequencies and vibration
mode shapes, of the plate subjected to in-plane loading. These vibration parameters of the
loaded plated were also simulated from the Ritz method. The applied in-plane load was
increased step by step in both tensile and compressive loading range. The square of the
natural frequencies for the first six modes was plotted versus applied load, as shown in

Fig. 5.3. The mode shape of each vibration mode is shown in Fig. 5.4. The relationship

between @>and Ny of a particular vibration mode is linear, as expected according to the
derived relationship. The predicted buckling load can be determined by extrapolating the
vibration data to the in-plane load at which the square of the natural frequency approaches
zero. Trend lines of each vibration mode intercept the Ny axis at a different load level. The
lowest compressive load is the buckling load, and its corresponding vibration mode shape
is the predicted buckling mode. In this simulation, the predicted buckling is 88.216 KN/m
and the buckling mode is mode (3, 1). VCT predicted buckling mode as mode (3, 1)
because the trend line of this vibration mode intersects Ny axis at the lowest load
compared to those of other vibration modes. The buckling load determined from the
vibration data compares perfectly with the numerical solution. Similarly, the buckling
mode determined from VCT is also identical to the buckling mode of the numerical

solution. In conclusion, the squares of natural frequencies are linearly varied with the



40

applied in-plane load as expected from the relationship shown in Eq.(5.8). The natural
frequency approaches zero as the in-plane compressive load approaches the buckling load
of plate. The numerical simulation showed that buckling behaviors of a thin plate are very
well predicted using VCT. The concept of using vibration parameters to identify buckling
load and mode is theoretically verified. However, experimental study is required to

determine the accuracy and reliability of the technique.
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Figure 5.2 Buckling mode determined from the buckling problem
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Figure 5.3 Square of the natural frequencies of an aluminum plate vs. applied loading.
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Figure 5.4 Vibration mode shapes of the first six vibration mode.
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Chapter 6. Experimental study

Although the relationship between vibration and buckling behaviors of a thin plate
is theoretically confirmed, the applicability of VCT as an experimental technique used to
identify buckling load is needed to be investigated. A series of experiments was
performed to determine the accuracy and reliability of the proposed technique. A set of
aluminum and stainless steel plates was used; each plate was uniaxially loaded on a
custom-made test frame. The experiment was then performed on the loaded specimens to
determine natural frequencies and vibration mode shape. The vibration data was obtained
for the specimens subjected to both tensile and compressive loading. The measured
natural frequencies and applied loading were then plotted, with results similar to those
shown in Fig. 3. The predicted buckling load was identified using the VCT, i.e. the

relationship derived previously.

6.1 Experiment arrangement

The test setup, shown in Fig. 6.1, was specifically designed to accommodate the
loading configurations and vibration testing. The test frame is capable of applying both
clamped and free boundary conditions to the specimens. The simple supported boundary
condition is not included in the experiment because it is difficult to obtain a perfect
simple support comparing with other two conventional boundary conditions. Both tensile
and compressive loads can be applied on the specimens. In-plane loads are applied
horizontally using a hydraulic cylinder pressurized with a hand pump. The hydraulic
cylinder is mounted on the right end frame, which is fixed to the left end frame using two
guided columns. A rectangular thin plate is mounted on the loading edges with clamped
support between crosshead #2 and crosshead #3. For a tensile testing configuration as
shown in Fig. 6.1, the hydraulic ram applies a compressive force against crosshead #1.

Loads are monitored using a load cell mounted between crosshead #1 and the hydraulic
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cylinder. Two linear bearings are embedded within the crossheads such that they can
move linearly along two guided columns. The applied loading on crosshead #1 is
transferred through two tension rods to crosshead #2. So, crosshead #2 is pushed and
trend to move to the left hand side. On the contrary, crosshead #3 is blocked by two
stoppers mounted on the guided columns, as shown in figure. With this loading
configuration, a specimen which is clamped between crosshead #2 and crosshead #3 is
stretched when the compressive load is applied by the hydraulic ram. In the case of a
compressive testing, the test frame shown in Fig. 6.1 has to be modified as the following.
Crosshead #1 and the tension rods are removed in the compressive testing configuration.
Two stoppers which are used to block crosshead #3 in the tensile testing configuration are
moved to the left-hand side of crosshead #2 to prevent the horizontal motion of the
crosshead. A compressive load from the hydraulic ram is applied directly on crosshead
#3, in this loading configuration. With this setup, the specimen is uniformly compressed
between crosshead #2 and crosshead #3. So, the designed test frame is capable of
applying both tensile and compressive loads to a thin plate with changeable loading

configurations.
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Left end Frame Right end frame

Clamped support  Support holder  Stopper Load cell

Hydraulic

Crosshead #2 Tension rod Guided Crosshead #3  ypsshead #1 cylinder

Column

Figure 6.1 Experimental setup of a specimen with CCCC boundary condition

Besides the loading mechanism, the test frame is also equipped with restrained
devices to apply desired boundary conditions to the test samples. In Fig. 6.1, the clamped
boundary conditions of the specimen are enforced by 20-mm.-thick rigid stainless steel
bars, denoted as “clamped support.” For the unloaded edges, the clamped supports are
mounted on the support holders, which are tightly clamped to the guided columns.
Similarly, the rigid stainless steel bars are placed in the slot of the crossheads to assemble
a clamped support on the loaded edges. On both loaded and unloaded edges, machine
screws are used to push the steel supports against the specimen surface. To obtain a
clamped support, machine screws are finger-tightened until the gap between the specimen
and support is invisible. A clamped support on the unloaded edges of the specimen can be
removed such that a free edge is formed on those boundaries. With the described

constraint mechanism, the boundary conditions of a specimen are clamped support on the
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loaded edges (on x = 0 and x = a), and either clamped or free edges on the unloaded edges

(ony=0andy=h)

6.2 Specimens and boundary conditions

A series of experiment was performed on twelve thin isotropic plates with CCCC,
CCCF and CFCF boundary conditions. The symbol “C” represents a clamped boundary
condition, while “F” stands for a free boundary condition. The first and third letters
symbolize the boundary condition on x = 0 and x = a, respectively. Similarly, the
boundary conditions on 'y = 0 and y = b are represented by the second and forth letters,
respectively. The specimens were prepared from 6061-T6 aluminum alloy and stainless
steel AISI 304. The physical and mechanical properties of both materials are presented in
Table 6.1. Nominal dimensions axb of the specimen are 300x200, 200x200, and 150x200
mm?. For each plate size, there were two specimens with different thicknesses. So, there
were a total of six aluminum specimens and six stainless steel specimens. The aluminum
and stainless steel specimens’ dimensions are summarized in the first three columns of
Table 6.2 and Table 6.3, respectively. It should be noted that the actual size of a specimen
is slightly larger than the nominal size because a small portion on the boundary of the
specimen is clamped by the rigid stainless steel bar, and is not regarded as an effective
area. The schematic dimensions of the specimens are presented in Fig. 6.2. A specimen
was originally prepared to be a CCCC specimen. The width and height of the specimen
are 40 mm larger than those of the nominal dimensions. A 20-mm-width area on all four
edges is an area to be clamped by the support. In the schematic of a CCCC specimen
shown in Fig. 6.2, the effective area or nominal area of the specimen is represented by a
clear area of axb, whereas the dashed area is an area to be clamped by the support. After

an experiment on a CCCC specimen is concluded, a clamped area on one of the unloaded
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edges is cut off to form a CCCF specimen. So, the actual size of a CCCF specimen is
slightly smaller than a CCCC specimen with the same nominal size. Finally, the other
clamped area on the unloaded edges is removed to obtain a CFCF specimen. Thus,

specimens with an equal nominal size but different boundary conditions are actually the

same specimen.

Table 6.1 Properties of materials used in the experiments.

Modulus of Poisson | Densit
Material Elasticity, E ratio. v (k /n?é)p
(GPa) ’ g
Aluminum 6061-T6 70 0.33 2700
Stainless steel AlISI 304 193 0.30 8000
y y y
R "z -}(/ ]
[ ¥
g b é b g i E
[ b
? 4
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CCcCcC CCCF CFCF

Figure 6.2 Nominal and actual dimensions of the specimens.

6.3 Experiment procedures and data reduction

In this study, the natural frequencies of a loaded plate are required data in order to
predict the buckling behavior of the plate. Vibration testing was performed using an
impact test, in which the specimen was excited by an impact hammer while the applied
impulse was monitored by a dynamic signal analyzer. Acceleration response of the
specimen was measured by an accelerometer placed on the specimen at a selected

location. Acceleration data measured in the time domain were processed by a Fast Fourier
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Transform algorithm using the dynamic signal analyzer to obtain the frequency response
function (FRF). From the vibration response in the frequency domain, the natural
frequencies of the specimen were identified from the peak of the response. Vibration
mode shape was also obtained from an imaginary part of the response function. An
overview of the vibration testing and modal analysis is beyond the scope of this paper;
and the interested reader is referred to the articles by Avitabile [37]. Typical magnitude

and imaginary part of the frequency response function are shown in Fig. 6.3.
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Figure 6.3. Magnitude and imaginary parts of the frequency response of the CCCC

stainless specimen No. 2 without an in-plane load.

The experiment on a specimen was composed of two parts. The first part of the
experiment was performed to verify the relationship shown in Eq.(5.8) and to determine

the buckling mode of the plate. The specimen in this part of the experiment was loaded in
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both tensile and compressive loading range. Natural frequencies of the specimen under
unloaded, tensile-loaded and compressive-loaded conditions were determined,
respectively. The square of the natural frequency was plotted against applied in-plane
load. A typical relationship between @™ and Ny is presented in Fig. 6.4 which is the
vibration behavior an aluminum specimen No.3 with CCCF boundary condition. Natural
frequencies of vibration modes (1, 1), (1, 2) and (2, 1) are included in the plot. Numbers
representing a vibration mode stand for a number of curves of an out-of-plane
displacement in the x and y directions, respectively. Vibration mode shape is determined
from the imaginary parts of the frequency response from several experiments. A plot of
each mode shape is presented in Fig. 6.5. A symbol “-” and “+” represent the out-of-plane
displacement in the different direction, and “0” indicate a zero displacement or a node
line on the specimens. From Fig. 6.4, the buckling mode of the specimen was determined

to be mode (1, 1), since the trend line of this mode intersects the Ny axis at the lowest

value. It is observed that o™ varies linearly with the applied load in the tensile-loading
range, as expected. The relationship between both parameters in the compressive-loading
range is not as linear as the relationship in the tensile-loading range. This nonlinear
relationship in the compressive-loading range was also observed in other specimens, and
was also reported by Lurie and Monica [21]. This behavior is contradicted by the result
from the numerical simulation shown in Fig. 5.3. It is speculated that the nonlinear
behavior is a result of a premature curvature which develops before buckling of the
specimen. For this reason, the buckling load was determined using only vibration data of
the specimen subjected to tensile loading. So, the second part of the experiment
emphasizes on determination of the buckling load. After plotting the relationship of
@ vs. Ny similar to Fig. 6.4 and determining the buckling mode, the specimen was

reloaded under increased levels of tensile loading. At each load level, a vibration test was
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performed to determine the natural frequency of the loaded plate. Only the natural

frequencies of the relevant mode shape, i.e. the buckling mode, were collected. A plot of

@ versus Ny in the tensile-loading range was generated and extrapolated to determine
the measured buckling load. Because the measurement of natural frequency is very
sensitive to boundary conditions, the experiment was repeated 20 times by loosening and
re-tightening the machine screws on the clamped supports. An average of the measured
buckling load is reported as the buckling load obtained from VCT.
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Figure 6.4 Plot of @™ vs. Ny of the aluminum specimen No.3 with CCCF boundary

condition.
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Figure 6.5 Vibration mode shapes of the experiments shown in Fig. 6.4

6.4 Experimental results and discussions.

All twelve specimens were tested to determine natural frequencies for each
vibration mode. For each vibration mode, square of the natural frequency was plotted
against an applied load to determine buckling load and buckling mode.

6.4.1 Buckling Mode

Experimental buckling mode is determined from the vibration mode whose trend
line intersects the Ny-axis at the lowest load level. For all specimens, buckling modes
determined from the experiment correspond very well to the numerical solutions. The
plots of @™?vs. Ny of all specimens are similar to that of the aluminum specimen No.3
which is shown in Fig. 8. The relationship between both parameters is linear through out
the tensile loading range and the low-load compressive loading range. In the high-load
range, most of the experimental result showed that squares of the natural frequency are
not linearly varied with the in-plane load. In Fig. 6.4, the nonlinear behavior is observed

when the applied compressive load is higher than 30 kN/m, approximately. To investigate
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the cause of this nonlinear behavior, the maximum out-of-plane displacement of the
specimen subjected to compressive loading was measured and plotted, as shown in Fig.
6.6. From the figure, it is noticed that the out-of-plane displacement is observed as soon
as the compressive load is applied. In the low-load range, i.e. Ny is lower than 25 kKN/m,
the measured out-of-plane displacement is less than 0.3 mm. The out-of-plane
displacement is pronounced when the applied load approaches 30 kN/m. From linear
buckling theory, the out-of-plane displacement is not existed before the specimen has
buckled. So, this out-of-plane displacement is considered as a premature deformation in
the experiment which reflects the imperfections of the specimen or the test setup. The in-
plane compressive load level at which the square of natural frequency begins to be
nonlinear corresponds very well with the load level where the out-of-plane displacement
of the specimen is well-defined. Other specimens also exhibited a similar correlation
between the load level where a distinct out-of-plane displacement is observed and the

load level where a nonlinear behavior between @?and N, is observed. It is reasonable to

draw a conclusion that @™ is not linearly varied with the in-plane load in the high
compressive loading region because of the premature out-of-plane displacement
developed in that load region. Therefore, the proposal to use the vibration data in the

tensile loading range to identify buckling load is justified.
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Figure 6.6 Plot of applied load vs. out-of-plane displacement of the specimen shown in

Fig.6.4

6.4.2 Buckling load

The buckling loads determined from VCT for aluminum and stainless steel
specimens are compared with the numerical solutions in Table 6.2 and 6.3, respectively.
The experimental buckling load is determined from a plot of vibration data in the tensile
loading range. In Table 6.2 and 6.3, dimensions of the specimens are presented in the first
three columns. The next three columns compare experimental buckling loads of CCCC
specimens with numerical solutions which are used as benchmark solutions. The last six
columns show the experimental results of CCCF and CFCF specimens. It should be noted
herein that the experimental result of the stainless steel specimen no.6 with CFCF is
inapplicable because the specimen was permanently bended during the compressive test.
It should be noted that each experimental buckling load presented in the tables is an
average value from a set of 20 experiments. The discrepancy of the experimental buckling
load from the benchmark solution is presented as percentage difference as shown in the

column denoted by “% Diff.” An average and standard deviation of the percent difference
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between experimental and numerical solutions of specimens with the same boundary
conditions is shown in the bottom of the tables. Since the experimental buckling loads
shown in the Tables are an average value from 20 experiments, standard deviations
shown in the last row are calculated from 120 experiments for each set of boundary
condition, except stainless steel specimens with CFCF boundary conditions which have
only 100 experiments. For aluminum specimens shown in Table 6.2, the percent
difference of the measured buckling loads from the benchmarks varies from -5.95 % to
4.10 % . However, the averages of the percent discrepancy for specimens with the same
boundary conditions shown at the bottom of the table are lower than +2 %. It is also
observed that the average percent difference is independent of sizes, thickness and
boundary conditions of the specimen. In general, the buckling load of an aluminum
specimen obtained from VCT match the numerical solution very well. On the other hand,
measured buckling loads of stainless steel plates are not as well agreed with the numerical
ones. From Table 6.3, percent discrepancies of the measured buckling loads of CCCF and
CFCF specimens are comparable to those of aluminum plates. The average percent
differences of buckling load for both boundary conditions are less than 1%. However, an
average percent different of 11.41 % for CCCC specimens is fairly high compared with
those of other experiments. It is also noticed that the measured buckling load of a thicker
plate deviates from the expected solution more than that of the thinner one. Specifically,
the percent differences of the thicker plates (specimen No. 2, 4 and 6) which vary from
13.45% to 16.15% are higher than those of the thinner plates (specimen No. 1, 3 and 5)

which are less than 10%.



Table 6.2 Buckling load in kKN/m of aluminum specimens compared to numerical solutions.

CCCC CCCF CFCF

Specimen Dimensior; Thickness, "Numerical EXp. % | Numerical EXp. % | Numerical EXp. %

No. (axb) mm mm )
Solution | Measurement | Diff Solution | Measurement | Diff Solution | Measurement | Diff
1 300 x 200 2.032 113.198 115.7014 2.21 | 34.01854 34.84576 2.43 | 23.52831 24.09362 2.40
2 300 x 200 2.298 163.727 165.6002 1.14 | 49.20334 46.57304 -5.35 | 34.03061 34.19524 0.48
3 200 x 200 1.765 89.483 89.01088 -0.53 | 40.72324 38.30099 -5.95 | 34.89764 33.70079 -3.43
4 200 x 200 1.955 121.604 125.1282 2.90 | 55.34119 54.84334 -0.90 | 47.42444 46.76728 -1.39
5 150 x 200 1.745 100.1397 101.0814 0.94 65.48127 64.8182 -1.01 | 60.17814 57.05806 -5.18
6 150 x 200 1.976 145.4055 146.4931 0.75 | 95.08054 08.98151 4.10 | 87.38025 84.51399 -3.28
Average 1.24 -1.11 -1.73
Standard deviation 4.44 6.30 3.38




Table 6.3 Buckling load in kN/m of stainless steel specimens compared to numerical solutions.

) ) ) ) CCcCC CCCF CFCF
Specimen | Dimension | Thickness, i i i
) Numerical EXxp. % | Numerical Exp. % | Numerical Exp. %
No. (axb) mm mm

Solution | Measurement | Diff Solution | Measurement | Diff Solution | Measurement | Diff
1 300 x 200 1.173 58.79079 62.52427 6.35 | 18.04255 | 18.9684477 | 5.13 | 12.27434 12.044275 -1.87
2 300 x 200 1.389 97.61622 112.625 15.38 | 29.67785 | 28.4294318 | -4.21 | 20.38031 20.558505 0.87
3 200 x 200 1.110 60.0928 64.64974 7.58 27.517 28.3914568 | 3.18 | 23.51676 23.63024 0.48
4 200 x 200 1.389 117.748 133.5815 13.45 | 53.91863 | 55.1761545 | 2.33 | 46.0803 46.689305 1.32
5 150 x 200 1.124 72.25424 79.15339 9.55 47.4231 48.327375 1.91 | 4354222 | 44.1669325 1.43
6 150 x 200 1.406 141.423 164.2616 16.15 | 92.82115 | 87.3316045 | -5.91 | 85.22511 N/A N/A
Average 11.41 0.40 0.45
Standard deviation 6.23 5.95 3.76
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Imperfection of boundary conditions

From the experimental results of CCCC stainless steel specimens, it is speculated
that the boundary condition of those specimens is significantly deviated from the
theoretical one. For a clamped support, the specimen should be fixed with zero out-of-
plane displacement and zero slope on the boundary. After a careful consideration, it was
hypothesized that the supports on the unloaded edges were vulnerable to be a cause of
imperfection. These supports are restrained by two support holders which are clamped on
the guided columns, as shown in Fig. 5. Preferably, the support holder may not rotate
around the guided column, such that the specimen is tightly clamped by the clamped
supports. However, if the bending moment on the specimen’s edge is sufficiently high,
the support holder could be rotated by the reaction moment, resulting in a movement of
the support in the out-of-plane direction. As a result, imperfection of the clamped
boundary condition can be observed by monitoring the movement of the support bar on
the unloaded edge. An additional measurement was conducted on both aluminum and
stainless steel specimens to investigate the perfection of the clamped boundary condition.
Specimens number 1 and 2 were mounted on the test frame and loaded with tensile
loading, similar to that of the vibration test to determine natural frequencies. A dial
indicator was placed in the middle of a clamped support to monitor the motion of the
support after the specimen was loaded with tensile loading. A Plot of the displacement in
the out-of-plane direction of the support versus applied tension is presented in Fig. 11. In
an ideal world, this displacement should not be existed at any load levels. However, this
displacement could be detected if (a) the specimen is not perfectly flat, or (b) the tensile
load is not uniformly applied. It should also be noted that nominal sizes of specimen No.
1 and 2 are identical but specimen No. 1 is thinner than specimen No. 2. It is clearly seen

that displacements of the support on the stainless steel plates are considerably higher than
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those of on the aluminum plates. Furthermore, the displacement measured on a thinner
plate is less than those of on a thicker plate. This out-of-plane displacement of the support
indicates the imperfection of that support. So, with the test frame used in this study, it can
be concluded that aluminum specimens are supported by a better clamped boundary
condition on the unloaded edges than those of the stainless steel specimens. Similarly, a
clamped support on a thinner specimen is closed to an ideal boundary condition than that
of on a thicker specimen. Although all specimens are clamped with the same supports and
comparable clamping force, they are probably not subjected to similar boundary
conditions because of the difference of the plate’s bending stiffness. Bending stiffness of
a stainless steel plate is higher than that of an aluminum plate, so does a thicker plate
comparing with a thinner plate. Because of the imperfections of plates and loading
conditions, such as pre-existed curvatures and uniformity of tensile loading, a specimen
has a tendency to move in the out-of-plane direction. With an ideal boundary condition,
all of this motion will be suppressed by the clamped support. It is confirmed in the
additional measurement that the support can not perfectly restrain the specimen, as shown
in Fig. 6.7. Specimens with lower stiffness, i.e. aluminum plates and thinner plates, are
supported with a better clamped boundary condition. Thus, buckling loads of CCCC
stainless steel specimens are not well predicted compared with those of other specimens
because boundary conditions of these specimens are significantly diverged from an ideal
boundary condition. In addition, a support on thinner specimens (specimen No. 1, 3 and
5) assembles a near-ideal boundary condition than that of the thicker ones. This remark is
supported by the plot in Fig. 6.7, and justifies the obtained percent differences of the
CCCC stainless steel specimens.

An imperfection of the clamped support, i.e., rotation of the support holder is

encountered only on the unloaded edges. The clamped supports on the loaded edges are
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mounted in crossheads #2 and #3 which are only allowed to move along two guided
columns. With the described arrangement, both crossheads can not be rotated as long as
the guided column remains straight, so the supports on these edges closely assemble an
ideal clamped boundary condition. Therefore, the boundary conditions of the CFCF
specimens were well setup, and the buckling loads of CFCF specimens are very well
identified using VCT. For CCCF boundary conditions, although one of the unloaded
edges is supported with a clamped boundary condition, experimental buckling loads from
VCT still match the numerical solutions very well. The unloaded edges on CCCF
specimens are clamped on one side and free on the other side. The free edge of these
specimens is allowed to deform or bend; consequently, the bending moment on the other

unloaded edges is probably not high enough to nullify a clamped boundary condition.

Displacement of a clamped support (x0.01mm)
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Figure 6.7 Plot of support displacement vs. in-plane tension of CCCC specimens

It is noticed from the experimental results that all of the measured buckling loads
of CCCC stainless steel specimens are higher than the theoretical ones, i.e. percent
differences are positive. This observation is contradicted by the fact that the specimen is

not perfectly clamped, so its buckling load should be lower than that of the numerical
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solution. However, this contradiction is rational because the measured buckling load is
obtained from the measured vibration data. Because of the diverged boundary conditions,
the specimen is not perfectly restrained, so its boundary condition is somewhat between
simple support and clamped support. Thus, the measured natural frequencies of the
specimens subjected to tensile load are lower than those of the perfectly clamped
specimen. The degree of divergence of the boundary conditions is greater when the

specimen is loaded with higher in-plane load. As a result, the slope of the trend line of

@*vs. Ny is lower than expected and the intersection of the trend line with Ny-axis is
further away from the origin than it should be. Therefore the buckling load obtained from
VCT using vibration data in the tensile loading region is higher than the theoretical one.
In conclusion, specimens used in this study are supported with either a clamped
support or free boundary condition. The clamped boundary conditions on the loaded
edges as well as the free boundary conditions on the unloaded edges were very well set
up. Imperfection of the clamped boundary condition on the unloaded edge was
minimized if the boundary condition on the other edge was free boundary condition. The
imperfection of the support was also decreased on an aluminum specimen because of the
lower plate’s stiffness. With these remarks, only CCCC stainless steel plates were not
well supported with an intended clamped boundary condition. This observation clarifies
the fact that the measured buckling loads of these specimens from VCT are diverged from
the numerical solutions. Buckling loads of other sets of specimens are accurately

indicated using the proposed technique.

Derivation the buckling load
Although the average percent differences of the measured buckling loads from the

numerical solutions are very low for most of the experiments with properly-prepared
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boundary conditions. The standard deviations of the percent differences for each group of
the specimens are, on the other hand, fairly high. The standard deviation for specimens
with the same material and boundary condition is shown in the last row of Table 6.2 and
6.3. Unlike an average of the percent discrepancy, the standard deviations in each case of
the experiments are not noticeably different. For CCCC and CCCF specimens, the
standard deviations of the percent difference are varied from 4% to 6.5% for both
materials. The standard deviations of CFCF specimens are 3.38% and 3.76 % for
aluminum and stainless steel plates, respectively. These deviations are moderately less
than those of the specimens with CCCC and CCCF boundary conditions. The standard
derivation of the percent difference indicates the precision or repeatability of the
measurements. In the experiment, to obtain a buckling load, a specimen was clamped by
tightening machine screws and tested for natural frequencies under an increasing tensile
loading. Then, the supports on the specimen was loosened and retightened again for the
next experiment. So, it is noticed that boundary conditions of the specimen for each
measurement are not identical. Additional tests were conducted by repeating the
experiment without loosening the machine screws, i.e. the same boundary conditions
were maintained. The measured buckling loads were not significantly different.
Therefore, a measured buckling load of one experiment deviates from those of other
experiments because of the nonidentical boundary condition between each experiment. It
is also notice that the boundary condition on the unloaded edges of a CFCF specimen is
free or unsupported. So, the boundary condition on these edges is identical for all
experiments. Accordingly, the boundary conditions of CFCF specimens are deviated from
an experiment to another experiment less than those of specimens with other boundary
condition. So, the standard deviations of percent difference of CFCF specimens are fairly

less than those of the specimens with other boundary conditions.
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The distribution of the percent differences of the experiments with proper-setting
boundary conditions is presented as a histogram shown in Fig. 12. The experimental
results of CCCC stainless steel plates are not included in the plot because of their ill-
defined boundary conditions. There are a total of 580 comparisons between the measured
and numerical buckling loads. It is seen that the histogram assemble a very symmetric
bell curve with the tip of the curve right around 0%. The average percent difference from
580 comparisons is -0.18% with the standard deviation of 5.05%. A total of 397
comparisons, or approximately 68%, have percent difference between measured and
numerical buckling loads within £5%. In conclusion, the accuracy of using VCT with
vibration data in the tensile loading region to identify a buckling load of plates is very
well demonstrated. The precision or repeatability of the technique is fairly acceptable,
given the fact that the boundary conditions of the specimen for each experiment in this
study are not exactly identical. In practice, the precision of using the VCT can be kept at
maximum if the boundary conditions of the specimen are suitably arranged. The
advantage of using VCT is that the technique is applicable for specimens with any
boundary conditions. As long as the specimen is supported in the vibration test in the
same manner as that of in the buckling problem, the buckling load obtained from the VCT

should be accurate and precise without knowing the boundary conditions of the specimen.
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6.5 Conclusions
The relationship between the natural frequency and the buckling load of a

rectangular thin plate is developed in this study. It is shown that the square of natural
frequency of a loaded plate is linearly varied with the in-plane load. By comparing the
governing equations of both problems, the natural frequency of the plate decreases to be
zero when the applied in-plane load approaches the buckling load of plate. The derived
relationship is utilized as a technique to identify the buckling load and buckling mode of
the structure. Due to a premature curvature which usually develops before buckling, the
use of vibration data in the tensile-loading range, where the premature curvature is
negligible, is proposed in this study. To verify the accuracy of the technique, the
experiment was performed on a test frame in which the specimen was loaded and tested
for natural frequencies. Both aluminum and stainless steel specimen with CCCC, CCCF
and CFCF boundary conditions are included in the specimen. The measured vibration

data is plotted against the in-plane load to determine the buckling load and buckling
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mode. Square of the measured natural frequency is linearly varied with the applied load
as expected. The experimental results show that all buckling modes obtained from VCT
agree with numerical solutions very well, while most of the measured buckling loads
conform to the numerical solutions. Buckling loads of CCCC stainless steel specimens
were not well indicated using the proposed technique. The imperfection of boundary
conditions of this group of specimens is believed to be a considerable factor in the high
percentage difference between the measured and numerical buckling loads. If the
experiments of stainless steel specimens with CCCC boundary condition are excluded,
the average of the percent difference between measured buckling loads and numerical
solutions is -0.18% with the standard deviation of 5.05%. The obtained percent difference
assembles a bell-shape normal distribution. The standard deviation of the percent
difference is fairly high because of the variation of the boundary conditions from one
experiment to another experiment. In conclusion, the experimental study demonstrates the
accuracy and reliability of using vibration data in the tensile-loading range to determine
the buckling load. Boundary conditions of the specimen have a considerable effect on the
precision of the measured buckling load. The proposed technique of identifying buckling
load of plate has an advantage over the static methods for the fact that this method does
not need human’s judgment to draw two lines in the pre- and post- buckling regions.
However, the boundary conditions of the specimen must be carefully set to get an
accurate and precise measurement. The measured natural frequency of the specimen is
sensitive to the boundary conditions and, hence, is a critical parameter in applying VCT

to buckling of plate problem.



Chapter 7. Discussions and Conclusions

Buckling is one of the important failure modes of thin-walled structures,
especially structures subjected to compressive load. There are mainly three approaches
used to determine buckling load; i.e. analytical, numerical, or experimental approaches. In
this project the experimental method is investigated. Several studies available in the
literature compared experimental results with theoretical or numerical ones, and found a
moderately high degree of discrepancy. Imperfection of plate and boundary condition of
the experiment specimens are frequently cited as sources of the inconsistency. Also, the
methods used to identify buckling load can be a source of discrepancy between the
experimental result and the prediction. Usually, the static method, which is a plot some
parameters such as out-of-plane displacement versus an in-plane load, requires some
human judgments. That is it needs to draw two lines in the pre- and post- buckling
regions to obtain the buckling load. Drawing these two lines could be a cause of error of
the experimental buckling load. So, there is a need for an alternative approach of buckling
load identification. In this study, a VCT is proposed as a technique which used the
measured vibration data to identify buckling point of the structures. It is hypothesized that
this approach might improve the accuracy of the measurement because there is no need to

draw a line in the process so human error is avoided.

Since VCT utilizes the vibration data, the measured natural frequency need to be
certain and reliable, unless the obtained buckling load is vulnerable to further critical
error. Thus, in the first part of the study, the accuracy of vibration measurement is
investigated. Because of the difficulty of setting up the theoretical boundary conditions,
the scaling law is employed to predict the natural frequency of the prototype using the

measured vibration data from the model. It is concluded that the vibration measurement is
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satisfactorily accurate to further use in buckling load problem. Boundary conditions of the
specimens are proved to be the most significant factor which can affect the measured

natural frequency.

The second part of the study is focused on using VCT to identify the buckling
load and mode of rectangular thin plate. The relationship between the natural frequency
and the buckling load of a rectangular thin plate is developed. By comparing the
governing equations of both problems, the natural frequency of the plate decreases to be
zero when the applied in-plane load approaches the buckling load of plate. It is shown
that the square of natural frequency of a loaded plate is linearly varied with the in-plane
load. The derived relationship is utilized as a technique to identify the buckling load and
buckling mode of the structure. Because of a premature curvature which usually develops
before the specimen has buckled, the use of natural frequency in the tensile-loading range,
where the premature curvature is negligible, is proposed in this study. The experimental
investigation was performed to determine the accuracy and reliability of the technique. A
test frame which can apply both tensile and compressive loads to the specimen was
prepared and used in the experimental study. The measured vibration data is plotted
against the in-plane load to determine the buckling load and buckling mode. Square of the
measured natural frequency is linearly varied with the applied load as expected. The
experimental results show that all buckling modes obtained from VCT agree with
numerical solutions very well, while most of the measured buckling loads conform to the
numerical solutions. There are some cases of the experiment that the measured buckling
loads from VCT are not well agreed with the benchmark solution because the boundary
conditions of the specimens are not closed to the ideal case. The experiment demonstrates
the accuracy and reliability of using vibration data in the tensile-loading range to

determine the buckling load. Similar to the case of vibration study, boundary conditions
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of the specimen have a considerable effect on the precision of the measured buckling

load.

The proposed VCT used to identify buckling load of plate has an advantage over
the static methods for the fact that this method does not need human’s judgment to draw
two lines in the pre- and post- buckling regions. This technique is also appropriate for
structures with imperfection or unknown boundary conditions. However, the boundary
conditions of the specimen in vibration experiment must be carefully set to get an
accurate and precise measurement. The measured natural frequency of the specimen is
sensitive to the boundary conditions and, hence, is a critical parameter in applying VCT

to buckling of plate problem.
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Abstract

This study investigates the use of a vibration correlation technique (VCT) to
identify the buckling load of a rectangular thin plate. It is proposed that the buckling load
is determined experimentally using the natural frequencies of plates under tensile loading.
A set of rectangular plates was tested for natural frequencies using an impact test method.
Aluminum and stainless steel specimens with CCCC, CCCF and CFCF boundary
conditions were included in the experiment. The measured buckling load was determined
from the plot of the square of a measured natural frequency versus an in-plane load. The
buckling loads from the measured vibration data match the numerical solutions very well.
For specimens with well-defined boundary conditions, the average percentage difference
between buckling loads from VCT and numerical solutions is -0.18 % with a standard
deviation of 5.05 %. The proposed technique using vibration data in the tensile loading
region is proven to be an accurate and reliable method which might be used to identify the

buckling load of plates. Unlike other static methods, this correlation approach does not
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require to draw lines in the pre-buckling and post-buckling regions, thus, bias in data
interpretation is avoided.

Keywords: buckling load, vibration, natural frequency, thin plate, experiment

1. Introduction

Buckling load is one of the important parameters which should be considered in
the design of thin or slender structures subjected to compressive loading. Buckling
behavior of several engineering structures such as columns, plates, frames, and shells has
been continuously investigated in the past several decades. Among several types of
structure, a thin plate is one of the most important types of structure used in engineering
applications. Mainly, the stability problem of plate is investigated using theoretical,
numerical and experimental approaches. The theoretical method is applicable to a limited
type of problems where a closed-form solution is possible. For more complicated
structures, the numerical methods such as a finite element method are required. Solutions
from both theoretical and numerical methods are generally verified with the experimental
results. Experimental method involves in a number of costly and time consuming
processes, however, imperfections and complicated effects of the problem are naturally
included. For an experimental study of buckling of plate, identification of the buckling
point is an important process, since it directly affects the accuracy of the measurement. In
the experiment, the buckling load of plates can be identified using various kinds of plots;
for example: 1) a plot of in-plane loads vs. out-of-plane displacement; 2) a plot of in-
plane loads vs. end-shortening; and 3) a plot of in-plane loads vs. difference of surface
strains. These methods which may be classified as static methods utilize the change of the
slope of the curve in pre-buckling and post-buckling regions to identify buckling load.
The plots mentioned above and other static methods are properly summarized in Ref. [1].

There are several studies employed the static methods to identify the buckling load of
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plates. Chai et al.[2] verified the theoretical buckling load of composite plates using the
experimental method. Buckling load was determined from the intersection of the tangents
drawn in the pre-buckling and post-buckling slopes of the load versus membrane strain
curve. The discrepancies between the experimental and theoretical solutions between -7
% and +11 % were reported. Tuttle et al. [3] determined buckling loads of composite
panels from the plots of applied in-plane load vs. out-of-plane displacement, and
compared the experimental results to numerical predictions obtained using a Galerkin
method. Although the average percentage error between the measured and predicted
buckling loads is low, the standard deviation of the percentage error is as high as 15%.
The difficulties of identifying the buckling load using a static test method were
documented. In particular, drawing two lines in the pre-buckling and post-buckling
regions to identify the buckling point depended on personal judgment, and could be a
cause of error. To use the experimental result as a benchmark solution, the method used to
identify buckling load must be accurate and reliable.

There is a need for an alternative approach to experimentally identify the buckling
load of a plate. In this paper, the vibration correlation technique (VCT) is explored and
modified to determine buckling load of a plate. The VCT is a nondestructive testing
utilizing the measured vibration data. This concept has been applied to buckling problems
in the past with a variety of amount of success. Lurie and Monica [4] showed that the
square of the frequency of the lateral vibration of a thin plate with simple supports on all
edges is linearly related to the end load. They also conducted some experiments on
elastically restrained columns, rigid-joint trusses, and thin flat plates. The authors
reported that VCT was successfully employed to predict the buckling load of only
columns and trusses. For flat plates, because of the initial curvature, the buckling load

cannot be predicted by the proposed method. However, Chailleux et al. [5] later showed
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that with a carefully designed experimental setting, VCT can be used to determine the
buckling load with satisfactory accuracy. The experimental dynamical curved is linear in
the low load region, such that it is possible to extrapolate the data to obtain the buckling
load. Segall and Springer [6] proposed a dynamic method to determine linear buckling
loads of elastic rectangular plates. With an integral equation representation of the elastic
stability, the proposed technique does not require the application of an in-plane load. A
few studies [7-9] concerning the use of vibration data to investigate buckling behavior can
be found in the literature.

In this study, the relationship between buckling and vibration behavior of thin
plates is investigated. The relationship between applied in-plane load and the natural
frequency of plates is derived from the differential governing equations of both problems.
The derived relationship, which is applicable to thin plates with any boundary conditions,
is numerically verified by simulating a plot of the derived relationship. Because of the
premature curvature, which is usually detected even before the specimen has buckled, it is
proposed in this study that the buckling load be determined from the vibration data of a
plate subjected to tensile loading. A test frame, capable of applying tensile and
compressive loading to a specimen, was prepared. A series of vibration tests was
performed to determine the natural frequencies of the plates. The vibration data, along
with the derived relationship, are used to predict the buckling load. Experimental

buckling loads are compared to the numerical solutions to verify the proposed technique.

2. Relationship between natural frequency and buckling load
The vibration correlation technique utilizes the relationship between vibration
parameters and buckling parameters. If the relationship between both parameters is

established, the buckling behavior can be determined from the known or measured
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vibration parameters. In this section, vibration and buckling behaviors of a thin plate are
investigated and their relationship is derived. As shown in Fig. 1, a rectangular plate with
a dimension of axb, and subjected to a uniform uniaxial loading Ny is a system of interest.
For a buckling problem, an applied in-plane load Ny is always a compressive load. The
desired parameters to be determined are buckling load and buckling mode. The buckling

load of a plate — represented by N, — is the in-plane compressive load Ny at which

buckling occurs, while the buckling mode is the out-of-plane configuration w of the
buckled plate. In addition, natural frequencies and vibration mode shapes are two
parameters to be determined in a vibration problem. The natural frequencies of a plate can

be determined for a specimen with a given Ny. It should be noted that N, and Ny refer to
the same in-plane load; however, N, is the buckling load which must be a compressive

load (negative value), while Ny is the applied in-plane load which can be either tension or
compression in the vibration problem. To derive the relationship between both
phenomena, the governing equations of both problems are considered. The governing

equations for buckling and vibration of a thin isotropic plate are written as:

4 4 4 T A2
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respectively. For a given plate with particular boundary conditions, it is widely known
that the buckling mode is identical to one of the vibration modes. Specifically, the out-of-
plane displacement of the buckled plate is the same as the out-of-plane displacement of
one of the vibration modes. So, the governing equation of the buckling problem can be

rewritten as:
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L, (w)-N,L,(w)=0, 3)
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Similarly, the governing equation of the vibration of loaded plates is written as:

L, (w)—-N,L, (w)-™L,(w)=0 (4)

where I_3(W):p—[\)N.

It should be noted that the terms containing derivatives of w are the same for both
problems because the buckling mode and vibration mode are identical. From Eq. (3), the

buckling load of a plate can be written as:

g LW
=T (5)

N—"

Similarly, the natural frequency of a plate, with the applied in-plane load N, can be

determined from Eq. (4), and written as:

o L, (w)—N,L,(w)
Lw)

(6)

where o' is the natural frequency of a plate with applied load Ny. It is noticed that the
natural frequency of plate varies with the in-plane loading. For an unloaded plate, the

natural frequency is easily described as:

L (w)
where @ is the natural frequency of a plate without an applied load. By dividing Eq. (5)
by Eq.(6) and utilizing Eq.(7), the ratio of the square of the natural frequency of a loaded

plate to that of an unloaded plate is written as:

[%j SR ®)
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From the relationship shown in Eq.(8), the buckling load N, and the natural frequency of
an unloaded plate @ may be considered as a constant for a specific specimen. The
variables in that equation are the natural frequency of the loaded plate " and the applied
in-plane load Ny. Thus, the square of the natural frequency () varies linearly with the

applied load Ny. With the buckling load being a negative value, it is observed that the
natural frequency of the plate increases with the applied tensile load. On the other hand, it
decreases with the applied compression. Moreover, if the applied load Ny equals the
buckling load of the plate, the natural frequency @ theoretically equals zero. With this
observation, the natural frequencies of the loaded plate can be utilized to predict its
buckling load by plotting o> versus the in-plane load Ny. The buckling load can be
determined from the applied load Ny at which the natural frequency approaches zero.
Since this relationship is derived from the governing equations, it is applicable to
specimens with any boundary conditions. Besides conventional boundary conditions, this
relationship is also applicable for thin plates with unknown or imperfect boundary
conditions. As long as the vibration data is obtained from the specimen with boundary
conditions of interest, the buckling load determined using VCT will be the buckling load
of the specimen with those boundary conditions.

To numerically verify the VCT and the derived relationship shown in Eqg. (8), a
numerical simulation of the vibration and buckling of a plate was performed. The Ritz
method with characteristic beam functions was used to solve the buckling and vibration
problems. Detail information about the Ritz method which is beyond the scope of this
paper can be found in Ref.[10-15]. A 2-mm-thick aluminum plate with a dimension axb
of 400x200 mm? was chosen as a specimen. The plate was assumed to be simply
supported on the loading edges and clamped supported on the other two edges. The

buckling load of this specimen was numerically determined, and found to be 88.216
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kN/m with buckling mode (3, 1). The buckling mode of this specimen is graphically
shown in Fig.2. This numerical solution serves as the theoretical solution for this
simulation, and is used to validate the buckling load from VCT. Buckling load and mode
determined from VCT requires the vibration data, i.e. natural frequencies and vibration
mode shapes, of the plate subjected to in-plane loading. These vibration parameters of the
loaded plated were also simulated from the Ritz method. The applied in-plane load was
increased step by step in both tensile and compressive loading range. The square of the
natural frequencies for the first six modes was plotted versus applied load, as shown in

Fig. 3. The mode shape of each vibration mode is shown in Fig. 4. The relationship

between o*and N, of a particular vibration mode is linear, as expected according to the
derived relationship. The predicted buckling load can be determined by extrapolating the
vibration data to the in-plane load at which the square of the natural frequency approaches
zero. Trend lines of each vibration mode intercept the Ny axis at a different load level. The
lowest compressive load is the buckling load, and its corresponding vibration mode shape
is the predicted buckling mode. In this simulation, the predicted buckling is 88.216 kN/m
and the buckling mode is mode (3, 1). VCT predicted buckling mode as mode (3, 1)
because the trend line of this vibration mode intersects Ny axis at the lowest load
compared to those of other vibration modes. The buckling load determined from the
vibration data compares perfectly with the numerical solution. Similarly, the buckling
mode determined from VCT is also identical to the buckling mode of the numerical
solution. In conclusion, the squares of natural frequencies are linearly varied with the
applied in-plane load as expected from the relationship shown in Eg. (8). The natural
frequency approaches zero as the in-plane compressive load approaches the buckling load
of plate. The numerical simulation showed that buckling behaviors of a thin plate are very

well predicted using VCT. The concept of using vibration parameters to identify buckling
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load and mode is theoretically verified. However, experimental study is required to

determine the accuracy and reliability of the technique.

3. Experimental Arrangement

Although the relationship between vibration and buckling behaviors of a thin plate
is theoretically confirmed, the applicability of VCT as an experimental technique used to
identify buckling load is needed to be investigated. A series of experiments was
performed to determine the accuracy and reliability of the proposed technique. A set of
aluminum and stainless steel plates was used; each plate was uniaxially loaded on a
custom-made test frame. The experiment was then performed on the loaded specimens to
determine natural frequencies and vibration mode shape. The vibration data was obtained
for the specimens subjected to both tensile and compressive loading. The measured
natural frequencies and applied loading were then plotted, with results similar to those
shown in Fig. 3. The predicted buckling load was identified using the VCT, i.e. the
relationship derived previously.
Test frame

The test setup, shown in Fig. 5, was specifically designed to accommodate the
loading configurations and vibration testing. The test frame is capable of applying both
clamped and free boundary conditions to the specimens. The simple supported boundary
condition is not included in the experiment because it is difficult to obtain a perfect
simple support comparing with other two conventional boundary conditions. Both tensile
and compressive loads can be applied on the specimens. In-plane loads are applied
horizontally using a hydraulic cylinder pressurized with a hand pump. The hydraulic
cylinder is mounted on the right end frame, which is fixed to the left end frame using two

guided columns. A rectangular thin plate is mounted on the loading edges with clamped



81

support between crosshead #2 and crosshead #3. For a tensile testing configuration as
shown in Fig. 5, the hydraulic ram applies a compressive force against crosshead #1.
Loads are monitored using a load cell mounted between crosshead #1 and the hydraulic
cylinder. Two linear bearings are embedded within the crossheads such that they can
move linearly along two guided columns. The applied loading on crosshead #1 is
transferred through two tension rods to crosshead #2. So, crosshead #2 is pushed and
trend to move to the left hand side. On the contrary, crosshead #3 is blocked by two
stoppers mounted on the guided columns, as shown in figure. With this loading
configuration, a specimen which is clamped between crosshead #2 and crosshead #3 is
stretched when the compressive load is applied by the hydraulic ram. In the case of a
compressive testing, the test frame shown in Fig. 5 has to be modified as the following.
Crosshead #1 and the tension rods are removed in the compressive testing configuration.
Two stoppers which are used to block crosshead #3 in the tensile testing configuration are
moved to the left-hand side of crosshead #2 to prevent the horizontal motion of the
crosshead. A compressive load from the hydraulic ram is applied directly on crosshead
#3, in this loading configuration. With this setup, the specimen is uniformly compressed
between crosshead #2 and crosshead #3. So, the designed test frame is capable of
applying both tensile and compressive loads to a thin plate with changeable loading
configurations.

Besides the loading mechanism, the test frame is also equipped with restrained
devices to apply desired boundary conditions to the test samples. In Fig.5, the clamped
boundary conditions of the specimen are enforced by 20-mm.-thick rigid stainless steel
bars, denoted as “clamped support.” For the unloaded edges, the clamped supports are
mounted on the support holders, which are tightly clamped to the guided columns.

Similarly, the rigid stainless steel bars are placed in the slot of the crossheads to assemble
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a clamped support on the loaded edges. On both loaded and unloaded edges, machine
screws are used to push the steel supports against the specimen surface. To obtain a
clamped support, machine screws are finger-tightened until the gap between the specimen
and support is invisible. A clamped support on the unloaded edges of the specimen can be
removed such that a free edge is formed on those boundaries. With the described
constraint mechanism, the boundary conditions of a specimen are clamped support on the
loaded edges (on x = 0 and x = a), and either clamped or free edges on the unloaded edges
(ony=0andy=Dh)
Test specimens

A series of experiment was performed on twelve thin isotropic plates with CCCC,
CCCF and CFCF boundary conditions. The symbol “C” represents a clamped boundary
condition, while “F” stands for a free boundary condition. The first and third letters
symbolize the boundary condition on x = 0 and x = a, respectively. Similarly, the
boundary conditions ony =0 and y = b are represented by the second and forth letters,
respectively. The specimens were prepared from 6061-T6 aluminum alloy and stainless
steel AISI 304. The physical and mechanical properties of both materials are presented in
Table 1. Nominal dimensions axb of the specimen are 300x200, 200x200, and 150x200
mm?. For each plate size, there were two specimens with different thicknesses. So, there
were a total of six aluminum specimens and six stainless steel specimens. The aluminum
and stainless steel specimens’ dimensions are summarized in the first three columns of
Table 2 and Table 3, respectively. It should be noted that the actual size of a specimen is
slightly larger than the nominal size because a small portion on the boundary of the
specimen is clamped by the rigid stainless steel bar, and is not regarded as an effective
area. The schematic dimensions of the specimens are presented in Fig. 6. A specimen was

originally prepared to be a CCCC specimen. The width and height of the specimen are 40
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mm larger than those of the nominal dimensions. A 20-mm-width area on all four edges is
an area to be clamped by the support. In the schematic of a CCCC specimen shown in
Fig. 6, the effective area or nominal area of the specimen is represented by a clear area of
axb, whereas the dashed area is an area to be clamped by the support. After an
experiment on a CCCC specimen is concluded, a clamped area on one of the unloaded
edges is cut off to form a CCCF specimen. So, the actual size of a CCCF specimen is
slightly smaller than a CCCC specimen with the same nominal size. Finally, the other
clamped area on the unloaded edges is removed to obtain a CFCF specimen. Thus,
specimens with an equal nominal size but different boundary conditions are actually the
same specimen.
Testing procedures

In this study, the natural frequencies of a loaded plate are required data in order to
predict the buckling behavior of the plate. Vibration testing was performed using an
impact test, in which the specimen was excited by an impact hammer while the applied
impulse was monitored by a dynamic signal analyzer. Acceleration response of the
specimen was measured by an accelerometer placed on the specimen at a selected
location. Acceleration data measured in the time domain were processed by a Fast Fourier
Transform algorithm using the dynamic signal analyzer to obtain the frequency response
function (FRF). From the vibration response in the frequency domain, the natural
frequencies of the specimen were identified from the peak of the response. Vibration
mode shape was also obtained from an imaginary part of the response function. An
overview of the vibration testing and modal analysis is beyond the scope of this paper;
and the interested reader is referred to the articles by Avitabile [16]. Typical magnitude

and imaginary part of the frequency response function are shown in Fig. 7.
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The experiment on a specimen was composed of two parts. The first part of the
experiment was performed to verify the relationship shown in Eq.(8) and to determine the
buckling mode of the plate. The specimen in this part of the experiment was loaded in
both tensile and compressive loading range. Natural frequencies of the specimen under
unloaded, tensile-loaded and compressive-loaded conditions were determined,

respectively. The square of the natural frequency was plotted against applied in-plane

load. A typical relationship between ™ and N, is presented in Fig. 8 which is the
vibration behavior an aluminum specimen No.3 with CCCF boundary condition. Natural
frequencies of vibration modes (1, 1), (1, 2) and (2, 1) are included in the plot. Numbers
representing a vibration mode stand for a number of curves of an out-of-plane
displacement in the x and y directions, respectively. Vibration mode shape is determined
from the imaginary parts of the frequency response from several experiments. A plot of
each mode shape is presented in Fig. 9. A symbol “-” and “+” represent the out-of-plane
displacement in the different direction, and “0” indicate a zero displacement or a node
line on the specimens. From Fig. 8, the buckling mode of the specimen was determined to

be mode (1, 1), since the trend line of this mode intersects the Ny axis at the lowest value.

It is observed that »™ varies linearly with the applied load in the tensile-loading range, as
expected. The relationship between both parameters in the compressive-loading range is
not as linear as the relationship in the tensile-loading range. This nonlinear relationship in
the compressive-loading range was also observed in other specimens, and was also
reported by Lurie and Monica [4]. This behavior is contradicted by the result from the
numerical simulation shown in Fig. 3. It is speculated that the nonlinear behavior is a
result of a premature curvature which develops before buckling of the specimen. For this
reason, the buckling load was determined using only vibration data of the specimen

subjected to tensile loading. So, the second part of the experiment emphasizes on
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determination of the buckling load. After plotting the relationship of @™ vs. N, similar to
Fig. 8 and determining the buckling mode, the specimen was reloaded under increased
levels of tensile loading. At each load level, a vibration test was performed to determine

the natural frequency of the loaded plate. Only the natural frequencies of the relevant

mode shape, i.e. the buckling mode, were collected. A plot of @™ versus Ny in the tensile-
loading range was generated and extrapolated to determine the measured buckling load.
Because the measurement of natural frequency is very sensitive to boundary conditions,
the experiment was repeated 20 times by loosening and re-tightening the machine screws
on the clamped supports. An average of the measured buckling load is reported as the

buckling load obtained from VCT.

4. Experimental results and discussions.

All twelve specimens were tested to determine natural frequencies for each
vibration mode. For each vibration mode, square of the natural frequency was plotted
against an applied load to determine buckling load and buckling mode.

4.1 Buckling Mode

Experimental buckling mode is determined from the vibration mode whose trend

line intersects the Ny-axis at the lowest load level. For all specimens, buckling modes

determined from the experiment correspond very well to the numerical solutions. The

plots of @™ vs. Ny of all specimens are similar to that of the aluminum specimen No.3
which is shown in Fig. 8. The relationship between both parameters is linear through out
the tensile loading range and the low-load compressive loading range. In the high-load
range, most of the experimental result showed that squares of the natural frequency are
not linearly varied with the in-plane load. In Fig. 8, the nonlinear behavior is observed

when the applied compressive load is higher than 30 kN/m, approximately. To investigate
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the cause of this nonlinear behavior, the maximum out-of-plane displacement of the
specimen subjected to compressive loading was measured and plotted, as shown in Fig.
10. From the figure, it is noticed that the out-of-plane displacement is observed as soon as
the compressive load is applied. In the low-load range, i.e. Ny is lower than 25 kN/m, the
measured out-of-plane displacement is less than 0.3 mm. The out-of-plane displacement
is pronounced when the applied load approaches 30 kN/m. From linear buckling theory,
the out-of-plane displacement is not existed before the specimen has buckled. So, this
out-of-plane displacement is considered as a premature deformation in the experiment
which reflects the imperfections of the specimen or the test setup. The in-plane
compressive load level at which the square of natural frequency begins to be nonlinear
corresponds very well with the load level where the out-of-plane displacement of the
specimen is well-defined. Other specimens also exhibited a similar correlation between
the load level where a distinct out-of-plane displacement is observed and the load level

where a nonlinear behavior between @™ and Ny is observed. It is reasonable to draw a

conclusion that @™ is not linearly varied with the in-plane load in the high compressive
loading region because of the premature out-of-plane displacement developed in that load
region. Therefore, the proposal to use the vibration data in the tensile loading range to

identify buckling load is justified.

4.2 Buckling load

The buckling loads determined from VCT for aluminum and stainless steel
specimens are compared with the numerical solutions in Table 2 and 3, respectively. The
experimental buckling load is determined from a plot of vibration data in the tensile
loading range. In Table 2 and 3, dimensions of the specimens are presented in the first

three columns. The next three columns compare experimental buckling loads of CCCC
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specimens with numerical solutions which are used as benchmark solutions. The last six
columns show the experimental results of CCCF and CFCF specimens. It should be noted
herein that the experimental result of the stainless steel specimen no.6 with CFCF is
inapplicable because the specimen was permanently bended during the compressive test.
It should be noted that each experimental buckling load presented in the tables is an
average value from a set of 20 experiments. The discrepancy of the experimental buckling
load from the benchmark solution is presented as percentage difference as shown in the
column denoted by “% Diff.” An average and standard deviation of the percent difference
between experimental and numerical solutions of specimens with the same boundary
conditions is shown in the bottom of the tables. Since the experimental buckling loads
shown in the Tables are an average value from 20 experiments, standard deviations
shown in the last row are calculated from 120 experiments for each set of boundary
condition, except stainless steel specimens with CFCF boundary conditions which have
only 100 experiments. For aluminum specimens shown in Table 2, the percent difference
of the measured buckling loads from the benchmarks varies from -5.95 % to 4.10 % .
However, the averages of the percent discrepancy for specimens with the same boundary
conditions shown at the bottom of the table are lower than £2 %. It is also observed that
the average percent difference is independent of sizes, thickness and boundary conditions
of the specimen. In general, the buckling load of an aluminum specimen obtained from
VCT match the numerical solution very well. On the other hand, measured buckling
loads of stainless steel plates are not as well agreed with the numerical ones. From Table
3, percent discrepancies of the measured buckling loads of CCCF and CFCF specimens
are comparable to those of aluminum plates. The average percent differences of buckling
load for both boundary conditions are less than 1%. However, an average percent

different of 11.41 % for CCCC specimens is fairly high compared with those of other
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experiments. It is also noticed that the measured buckling load of a thicker plate deviates
from the expected solution more than that of the thinner one. Specifically, the percent
differences of the thicker plates (specimen No. 2, 4 and 6) which vary from 13.45% to
16.15% are higher than those of the thinner plates (specimen No. 1, 3 and 5) which are
less than 10%.

4.2.1 Imperfection of boundary conditions

From the experimental results of CCCC stainless steel specimens, it is speculated
that the boundary condition of those specimens is significantly deviated from the
theoretical one. For a clamped support, the specimen should be fixed with zero out-of-
plane displacement and zero slope on the boundary. After a careful consideration, it was
hypothesized that the supports on the unloaded edges were vulnerable to be a cause of
imperfection. These supports are restrained by two support holders which are clamped on
the guided columns, as shown in Fig. 5. Preferably, the support holder may not rotate
around the guided column, such that the specimen is tightly clamped by the clamped
supports. However, if the bending moment on the specimen’s edge is sufficiently high,
the support holder could be rotated by the reaction moment, resulting in a movement of
the support in the out-of-plane direction. As a result, imperfection of the clamped
boundary condition can be observed by monitoring the movement of the support bar on
the unloaded edge. An additional measurement was conducted on both aluminum and
stainless steel specimens to investigate the perfection of the clamped boundary condition.
Specimens number 1 and 2 were mounted on the test frame and loaded with tensile
loading, similar to that of the vibration test to determine natural frequencies. A dial
indicator was placed in the middle of a clamped support to monitor the motion of the
support after the specimen was loaded with tensile loading. A Plot of the displacement in

the out-of-plane direction of the support versus applied tension is presented in Fig. 11. In
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an ideal world, this displacement should not be existed at any load levels. However, this
displacement could be detected if (a) the specimen is not perfectly flat, or (b) the tensile
load is not uniformly applied. It should also be noted that nominal sizes of specimen No.
1 and 2 are identical but specimen No. 1 is thinner than specimen No. 2. It is clearly seen
that displacements of the support on the stainless steel plates are considerably higher than
those of on the aluminum plates. Furthermore, the displacement measured on a thinner
plate is less than those of on a thicker plate. This out-of-plane displacement of the support
indicates the imperfection of that support. So, with the test frame used in this study, it can
be concluded that aluminum specimens are supported by a better clamped boundary
condition on the unloaded edges than those of the stainless steel specimens. Similarly, a
clamped support on a thinner specimen is closed to an ideal boundary condition than that
of on a thicker specimen. Although all specimens are clamped with the same supports and
comparable clamping force, they are probably not subjected to similar boundary
conditions because of the difference of the plate’s bending stiffness. Bending stiffness of
a stainless steel plate is higher than that of an aluminum plate, so does a thicker plate
comparing with a thinner plate. Because of the imperfections of plates and loading
conditions, such as pre-existed curvatures and uniformity of tensile loading, a specimen
has a tendency to move in the out-of-plane direction. With an ideal boundary condition,
all of this motion will be suppressed by the clamped support. It is confirmed in the
additional measurement that the support can not perfectly restrain the specimen, as shown
in Fig. 11. Specimens with lower stiffness, i.e. aluminum plates and thinner plates, are
supported with a better clamped boundary condition. Thus, buckling loads of CCCC
stainless steel specimens are not well predicted compared with those of other specimens
because boundary conditions of these specimens are significantly diverged from an ideal

boundary condition. In addition, a support on thinner specimens (specimen No. 1, 3 and
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5) assembles a near-ideal boundary condition than that of the thicker ones. This remark is
supported by the plot in Fig. 11, and justifies the obtained percent differences of the
CCCC stainless steel specimens.

An imperfection of the clamped support, i.e., rotation of the support holder is
encountered only on the unloaded edges. The clamped supports on the loaded edges are
mounted in crossheads #2 and #3 which are only allowed to move along two guided
columns. With the described arrangement, both crossheads can not be rotated as long as
the guided column remains straight, so the supports on these edges closely assemble an
ideal clamped boundary condition. Therefore, the boundary conditions of the CFCF
specimens were well setup, and the buckling loads of CFCF specimens are very well
identified using VCT. For CCCF boundary conditions, although one of the unloaded
edges is supported with a clamped boundary condition, experimental buckling loads from
VCT still match the numerical solutions very well. The unloaded edges on CCCF
specimens are clamped on one side and free on the other side. The free edge of these
specimens is allowed to deform or bend; consequently, the bending moment on the other
unloaded edges is probably not high enough to nullify a clamped boundary condition.

It is noticed from the experimental results that all of the measured buckling loads
of CCCC stainless steel specimens are higher than the theoretical ones, i.e. percent
differences are positive. This observation is contradicted by the fact that the specimen is
not perfectly clamped, so its buckling load should be lower than that of the numerical
solution. However, this contradiction is rational because the measured buckling load is
obtained from the measured vibration data. Because of the diverged boundary conditions,
the specimen is not perfectly restrained, so its boundary condition is somewhat between
simple support and clamped support. Thus, the measured natural frequencies of the

specimens subjected to tensile load are lower than those of the perfectly clamped
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specimen. The degree of divergence of the boundary conditions is greater when the
specimen is loaded with higher in-plane load. As a result, the slope of the trend line of
o> vs. Ny is lower than expected and the intersection of the trend line with Ny-axis is
further away from the origin than it should be. Therefore the buckling load obtained from
VCT using vibration data in the tensile loading region is higher than the theoretical one.

In conclusion, specimens used in this study are supported with either a clamped
support or free boundary condition. The clamped boundary conditions on the loaded
edges as well as the free boundary conditions on the unloaded edges were very well set
up. Imperfection of the clamped boundary condition on the unloaded edge was
minimized if the boundary condition on the other edge was free boundary condition. The
imperfection of the support was also decreased on an aluminum specimen because of the
lower plate’s stiffness. With these remarks, only CCCC stainless steel plates were not
well supported with an intended clamped boundary condition. This observation clarifies
the fact that the measured buckling loads of these specimens from VCT are diverged from
the numerical solutions. Buckling loads of other sets of specimens are accurately

indicated using the proposed technique.

4.2.1 Derivation the buckling load

Although the average percent differences of the measured buckling loads from the
numerical solutions are very low for most of the experiments with properly-prepared
boundary conditions. The standard deviations of the percent differences for each group of
the specimens are, on the other hand, fairly high. The standard deviation for specimens
with the same material and boundary condition is shown in the last row of Table 2 and 3.
Unlike an average of the percent discrepancy, the standard deviations in each case of the

experiments are not noticeably different. For CCCC and CCCF specimens, the standard
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deviations of the percent difference are varied from 4% to 6.5% for both materials. The
standard deviations of CFCF specimens are 3.38% and 3.76 % for aluminum and stainless
steel plates, respectively. These deviations are moderately less than those of the
specimens with CCCC and CCCF boundary conditions. The standard derivation of the
percent difference indicates the precision or repeatability of the measurements. In the
experiment, to obtain a buckling load, a specimen was clamped by tightening machine
screws and tested for natural frequencies under an increasing tensile loading. Then, the
supports on the specimen was loosened and retightened again for the next experiment. So,
it is noticed that boundary conditions of the specimen for each measurement are not
identical. Additional tests were conducted by repeating the experiment without loosening
the machine screws, i.e. the same boundary conditions were maintained. The measured
buckling loads were not significantly different. Therefore, a measured buckling load of
one experiment deviates from those of other experiments because of the nonidentical
boundary condition between each experiment. It is also notice that the boundary condition
on the unloaded edges of a CFCF specimen is free or unsupported. So, the boundary
condition on these edges is identical for all experiments. Accordingly, the boundary
conditions of CFCF specimens are deviated from an experiment to another experiment
less than those of specimens with other boundary condition. So, the standard deviations of
percent difference of CFCF specimens are fairly less than those of the specimens with
other boundary conditions.

The distribution of the percent differences of the experiments with proper-setting
boundary conditions is presented as a histogram shown in Fig. 12. The experimental
results of CCCC stainless steel plates are not included in the plot because of their ill-
defined boundary conditions. There are a total of 580 comparisons between the measured

and numerical buckling loads. It is seen that the histogram assemble a very symmetric
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bell curve with the tip of the curve right around 0%. The average percent difference from
580 comparisons is -0.18% with the standard deviation of 5.05%. A total of 397
comparisons, or approximately 68%, have percent difference between measured and
numerical buckling loads within +5%. In conclusion, the accuracy of using VCT with
vibration data in the tensile loading region to identify a buckling load of plates is very
well demonstrated. The precision or repeatability of the technique is fairly acceptable,
given the fact that the boundary conditions of the specimen for each experiment in this
study are not exactly identical. In practice, the precision of using the VCT can be kept at
maximum if the boundary conditions of the specimen are suitably arranged. The
advantage of using VCT is that the technique is applicable for specimens with any
boundary conditions. As long as the specimen is supported in the vibration test in the
same manner as that of in the buckling problem, the buckling load obtained from the VCT

should be accurate and precise without knowing the boundary conditions of the specimen.

5. Conclusions

The relationship between the natural frequency and the buckling load of a
rectangular thin plate is developed in this study. It is shown that the square of natural
frequency of a loaded plate is linearly varied with the in-plane load. By comparing the
governing equations of both problems, the natural frequency of the plate decreases to be
zero when the applied in-plane load approaches the buckling load of plate. The derived
relationship is utilized as a technique to identify the buckling load and buckling mode of
the structure. Due to a premature curvature which usually develops before buckling, the
use of vibration data in the tensile-loading range, where the premature curvature is
negligible, is proposed in this study. To verify the accuracy of the technique, the

experiment was performed on a test frame in which the specimen was loaded and tested
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for natural frequencies. Both aluminum and stainless steel specimen with CCCC, CCCF
and CFCF boundary conditions are included in the specimen. The measured vibration
data is plotted against the in-plane load to determine the buckling load and buckling
mode. Square of the measured natural frequency is linearly varied with the applied load as
expected. The experimental results show that all buckling modes obtained from VCT
agree with numerical solutions very well, while most of the measured buckling loads
conform to the numerical solutions. Buckling loads of CCCC stainless steel specimens
were not well indicated using the proposed technique. The imperfection of boundary
conditions of this group of specimens is believed to be a considerable factor in the high
percentage difference between the measured and numerical buckling loads. If the
experiments of stainless steel specimens with CCCC boundary condition are excluded,
the average of the percent difference between measured buckling loads and numerical
solutions is -0.18% with the standard deviation of 5.05%. The obtained percent difference
assembles a bell-shape normal distribution. The standard deviation of the percent
difference is fairly high because of the variation of the boundary conditions from one
experiment to another experiment. In conclusion, the experimental study demonstrates the
accuracy and reliability of using vibration data in the tensile-loading range to determine
the buckling load. Boundary conditions of the specimen have a considerable effect on the
precision of the measured buckling load. The proposed technique of identifying buckling
load of plate has an advantage over the static methods for the fact that this method does
not need human’s judgment to draw two lines in the pre- and post- buckling regions.
However, the boundary conditions of the specimen must be carefully set to get an
accurate and precise measurement. The measured natural frequency of the specimen is
sensitive to the boundary conditions and, hence, is a critical parameter in applying VCT

to buckling of plate problem.



95

ACKNOWLEDGEMENTS
This research is supported by the Thailand Research Fund under project grant No.

RMU4880021.

REFERENCES

[1] Singer J, Arbocz J, Weller, T. Buckling experiments: experimental methods in
buckling of thin-walled structures Vol. 1. Chichester, UK: John Wiley & Sons, 1992.

[2] Chai GB, Banks WM, Rhodes J. An experimental study on laminated panels in
compression. Composite Structures 1991;19(1):67-87.

[3] Tuttle M, Singhatanadgid P, Hinds G. Buckling of composite panels subjected to
biaxial loading. Experimental Mechanics 1999;39(3):191-201.

[4] Lurie H, Monica S. Lateral vibrations as related to structural stability. Journal of
Applied Mechanics1952;19:195-204.

[5] Chailleux A, Hans Y, Verchery G. Experimental study of the buckling of laminated
composite columns and plates. International Journal of Mechanical Sciences
1975;17:489-498.

[6] Segall A, Springer GS. A dynamic method for measuring the critical loads of elastic
flat plates. Experimental Mechanics 1986;26(4):354-359.

[7] Souza MA, Assaid LMB. A new technique for the prediction of buckling loads from
nondestructive vibration tests. Experimental Mechanics 1991;31(2):93-97.

[8] Go CG, Lin YS, Khor EH. Experimental determination of the buckling load of a
straight structural member by using dynamic parameters. Journal of Sound and

Vibration 1997;205(3):257-264.



96

[9] Go CG, Liou CD. Experimental determination of the buckling load of a flat plate by
the use of dynamic parameters. Structural Engineering and Mechanics 2000;9(5):483-
490.

[10] Ding Z. Natural frequencies of rectangular plates using a set of static beam functions

in Rayleigh-Ritz method. Journal of Sound and Vibration 1996;189(1):81-87.

[11] Rajalingham C, Bhat RB, Xistris GD. Vibration of rectangular plates using plate
characteristic functions as shape functions in the Rayleigh-Ritz method. Journal of
Sound and Vibration 1996;193(2):497-509.

[12] Lee JM, Chung JH, Chung TY. Free vibration analysis of symmetrically laminated
composite rectangular plates. Journal of Sound and Vibration 1997;199(1):71-85.

[13] Wang G, Wereley NM, Chang DC. Analysis of bending vibration of rectangular
plates using two-dimensional plate modes. Journal of Aircraft 2005;42(2):542-550.

[14] Timarci T, Aydogdu M. Buckling of symmetric cross-ply square plates with various
boundary conditions. Composite Structures 2005;68(4):381-389.

[15] Ni QQ, Xie J, and lwamoto M. Buckling analysis of laminated composite plates with
arbitrary edge supports. Composite Structures 2005;69(2):209-217.

[16] Avitabile P, Experimental Modal Analysis: A Simple Non-Mathematical

Presentation. Sound and Vibration 2001;35(1):20-31.

L
T

a

Figure 1. A rectangular plate subjected to a uniaxial in-plane load Ny
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Figure 5. Experimental setup of a specimen with CCCC boundary condition subjected to tensile loading.
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Table 1. Properties of materials used in the experiments.

Modulus of Poisson | Density, o
Material Elasticity, E : 3
(GPa) ratio, v (kg/m?)
Aluminum 6061-T6 70 0.33 2700
Stainless steel AlISI 304 193 0.30 8000




Table 2. Buckling load in kN/m of aluminum specimens compared to numerical solutions.

CCCC CCCF CFCF

Specimen Dimensiog Thickness, ["Numerical EXp. % | Numerical EXp. % | Numerical EXp. %

No. |(axb)mm?| mm | . | . | .
Solution | Measurement | Diff Solution | Measurement | Diff Solution | Measurement | Diff
1 300 x 200 2.032 113.198 115.7014 2.21 | 34.01854 34.84576 2.43 | 23.52831 24.09362 2.40
2 300 x 200 2.298 163.727 165.6002 1.14 | 49.20334 46.57304 -5.35 | 34.03061 34.19524 0.48
3 200 x 200 1.765 89.483 89.01088 -0.53 | 40.72324 38.30099 -5.95 | 34.89764 33.70079 -3.43
4 200 x 200 1.955 121.604 125.1282 2.90 | 55.34119 54.84334 -0.90 | 47.42444 46.76728 -1.39
5 150 x 200 1.745 100.1397 101.0814 0.94 | 65.48127 64.8182 -1.01 | 60.17814 57.05806 -5.18
6 150 x 200 1.976 145.4055 146.4931 0.75 | 95.08054 08.98151 4.10 | 87.38025 84.51399 -3.28
Average 1.24 -1.11 -1.73
Standard deviation 4.44 6.30 3.38




Table 3. Buckling load in kN/m of stainless steel specimens compared to numerical solutions.

) _ ) _ CCcCC CCCF CFCF
Specimen | Dimension | Thickness, i i i
) Numerical Exp. % | Numerical Exp. % | Numerical Exp. %
No. (axb) mm mm

Solution | Measurement | Diff | Solution | Measurement | Diff | Solution | Measurement | Diff
1 300 x 200 1.173 58.79079 62.52427 6.35 | 18.04255 | 18.9684477 | 5.13 | 12.27434 12.044275 -1.87
2 300 x 200 1.389 97.61622 112.625 15.38 | 29.67785 | 28.4294318 | -4.21 | 20.38031 20.558505 0.87
3 200 x 200 1.110 60.0928 64.64974 7.58 27.517 28.3914568 | 3.18 | 23.51676 23.63024 0.48
4 200 x 200 1.389 117.748 133.5815 13.45 | 53.91863 | 55.1761545 | 2.33 | 46.0803 46.689305 1.32
5 150 x 200 1.124 72.25424 79.15339 9.55 | 47.4231 48.327375 | 191 | 43.54222 | 44.1669325 1.43
6 150 x 200 1.406 141.423 164.2616 16.15 | 92.82115 | 87.3316045 | -5.91 | 85.22511 N/A N/A
Average 11.41 0.40 0.45
Standard deviation 6.23 5.95 3.76
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Abstract

A scaling law for the vibration response of rectangular plates along with a similarity requirement was derived and
validated with the experimental results in this study. The scaling law was derived from the governing equation of the
problem and was found to be exact after verifying with a closed-form solution. An experimental investigation was
conducted on several model and prototype specimens using an impact test method. The natural frequencies of the models
were substituted into the scaling law to obtain the scaling natural frequencies of the prototypes, which were then compared
with the measured natural frequencies. In the first part of the study, a total of nine aluminum rectangular plates with
various boundary conditions were tested for natural frequencies to determine the size effect on the accuracy of the scaling
law. From a total of 108 comparisons, the average percentage discrepancy of the scaling natural frequencies was 4.90%
with a standard deviation of 6.45%. Therefore, the scaling law is satisfactorily accurate for a pair of models and prototypes
of the same material but of different size. The other part of the study involved the investigation of the material’s effect on
the accuracy of the scaling law. The experimental results showed that, unlike theoretical verification, using model and
prototype systems with different materials resulted in an erroneous scaling natural frequency. The predicted natural
frequency was inaccurate in this case because the boundary conditions enforced by the supports on the models and
prototypes of different materials were significantly different. Consequently, the similarity requirement between the model
and prototype is violated in the case of this study. With an additional experiment, the scaling law was found to be
practically accurate for model-prototype pairs of different materials if their similitude requirements were fulfilled. The
possible sources of discrepancy of the scaling natural frequency include uncertainties of the experiment, incomplete
similarity of plate configurations and non-identical boundary conditions between the prototype and its model.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The similitude concept has been utilized in many engineering applications. The principle provides a
powerful tool for engineers and scientists to replicate the behavior of the prototype using an appropriate
scaled model. Similitude theory can be stated as [1]; “the sufficient and necessary condition of similitude
between two systems is that the mathematical model of the one be related by a bi-unique transformation to
that of the other.” For a prototype of interest, a scaled replica can be built to duplicate the behavior of the

*Corresponding author. Tel.: +6622186595; fax: +6622522889.
E-mail address: Pairod.S@chula.ac.th (P. Singhatanadgid).
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full-scale system. The experimental results on the model can be utilized to predict the behavior of the
prototype. The similitude concept is thus very useful, especially, for problems with either a complex domain or
complicated boundary conditions for which numerical solutions are not sufficiently accurate, if possible. If the
prototype is perfectly replicated, the experiment result on the model can be scaled to predict the behavior of
the prototype with sufficient accuracy.

The similitude theory has been applied to many problems in the field of structural engineering, including
vibration and buckling problems of plates. Simitses [2] applied similitude transformation to the bending,
buckling, and vibration of laminated plates. The derived scaling laws were successfully employed to the
problem with appropriate similarity requirements between model and prototype systems. Rezacepazhand
et al. [3] demonstrated a procedure for deriving a scaling law for the frequency response of laminated plates.
Both Simitses and Rezaeepazhand derived scaling laws from the closed-form solutions of the problems.
Alternatively, scaling laws can be derived directly from the governing equation of the problems. In Refs. [4-6],
the authors derived the scaling laws for the vibration and buckling behavior of laminated rectangular plates.
In those studies, similitude transformation was applied to the governing equations of the problems directly.
Besides the scaling law, the similarity requirements were also obtained. An advantage of this approach is that
a solution of the governing equations is not required. The obtained scaling laws were verified with the
theoretical solution and found to be exact for complete similitude cases. Partial similitude cases were also
investigated and recommended. It was also found that the scaling laws were independent of boundary
conditions. This implies that, for a problem with complicated boundary conditions, the behavior of the
prototype can be predicted from the experimental results of the corresponding scaled model given that
the boundary conditions of both systems are identical. This concept is especially beneficial for problems where
the boundary conditions cannot be numerically modeled in the numerical solutions but can be built in the
scaled model.

In addition to a simple-supported rectangular thin plate, the similitude theory was moreover applied to the
elastically restrained flat plates subjected to dynamic loads by Wu [7]. The author showed that the geometric,
kinematic and dynamic similarities must be satisfied to assure the complete similitude. A similar concept was
also applied to the dynamic analysis of rectangular plates under a moving load line [§]. Both complete and
partial similitude cases were presented. An agreement between the theoretical vibration response of the full-
scale prototype and the prediction from the solution of the scale model was obtained. Wu et al. [9] employed
the similitude concept with a more complex structure where a scale model and the scaling law were utilized to
determine the vibration characteristics of a full-size crane structure.

In past studies, the scaling laws were usually verified using analytical or numerical solutions. An exact
agreement between the scaled solutions and theoretical solutions is always achieved for complete similitude
cases. This so-called numerical experiment demonstrates that the derived scaling laws are accurate
theoretically. However, its accuracy is not necessarily guaranteed when it is applied to practical engineering
problems. In the present study, the scaling law for the vibration response of thin isotropic plates was therefore
verified using experimental results of the model and prototype systems. The scaling law for the natural
frequency of rectangular aluminum plates was derived and used to predict the natural frequency of the
prototype system utilizing the experimental results of the model system. The accuracy of the scaling law was
determined by comparing the scaled natural frequencies with the measured ones. The limitations of employing
the scaling law for the vibration of thin plate problems are given along with some precautions in setting up the
experiment on the model system.

2. Natural frequency of rectangular plates

The classical differential governing equation for the vibration of isotropic rectangular thin plates can be
written as [10]

Wy, LWy Wy p PWry 0

ox* 0x20)? oy D or N

where W is the displacement in the out-of-plane direction, p is the mass density per unit area of the specimen,

and D is the flexural rigidity of the plate. Assuming that the out-of-plane displacement is separable as a

0, (1)
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function of position and time, i.e. W(x,y,t) = w(x,y)T(t), the governing equation is reduced to

o*w o*w o*'w o
ox4 ox20y2 oyt D

where w is function of x and y only and w is the natural frequency of the vibration.

With given boundary conditions, the vibration governing equation, Eq. (2), can be solved using either an
analytical or numerical method. For simple-supported plates, the analytical closed-form solution is possible by
assuming the out-of-plane displacement of the vibrated plate in the form of

w =0, 2)

w(X, ) = Wy sin mrx sin n%’ 3)
a

where a and b are the dimensions of plate in the x and y directions, respectively. By substituting the assumed
displacement function w(x,y) into the governing equation, the natural frequency of the plate is obtained and

written as
n D , & ,
Wpn = %2 ;( + » n- |, 4

where w,,,,, are the natural frequencies of the plate in Hz, m and n are positive integers. It should be noted that,
for plates with other boundary conditions, the natural frequencies are not available in the form of exact
analytical expression. The numerical or finite element methods are required for specimens with clamped or free
boundary conditions.

3. Scaling law for the vibration of plate

Although the natural frequencies of thin plates with combinations of simple support, clamped support or
free boundary conditions are available, they may not be practically appropriate for engineering structures
where accurate natural frequencies are required. The boundary conditions of practical structures are usually
non-classical ones such as elastically restrained or imperfect boundary conditions, which are not easily
modeled because the level of restraining is unknown. This is where the scaling law can be utilized to determine
the vibration behavior of the structure or prototype of interest using the experimental results of the scaled
model. The scaled model is either a scaled-down or scaled-up test specimen having complete similarity with the
real structure. Although the boundary conditions of the prototype are not exactly known, they can be modeled
in the scaled model using similar supports. Thus, the experimental results from the corresponding test
specimen along with the scaling law can be used to predict the vibration behavior of the prototype. The
derivation of the scaling law for vibration behavior is briefly derived in this section.

The scaling law for the vibration of rectangular isotropic plates is derived from the governing equation,
Eq. (2), by comparing the governing equations of the model with that of the prototype. From both equations,
the similitude invariant term, which leads to the scaling law, is obtained. Let the variables of the prototype and
their corresponding model variables be related to each other as follows:

Xp=CxXmy Yy =CVp, Wp=CyWp, Dp=CpDp,
wp = Cywy, and Pp = Cpppm>
where subscripted p refers to the prototype system and subscripted m refers to the model system, and C; are the

scaling factors of the i parameters. To derive the similitude invariant, the governing equations of the model
and prototype are written as the following:

o*w,, o*w,, *w,, wfn Om 0 5)
- Wm =Y,
oxh ox2,0y2, oyt D,

m

C, *w, ¢, o'w, C,%w, CC,C,akp,
_464+2 T2 0202 L ok Wi = 0. ©)
Cx xm Cx Cy xm Y m Cy V m CD D m
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It should be noted that Eq. (6) can be written in the same form as Eq. (5) with subscript “p”’ instead of

subscript “m.”” However, the scaling factors are utilized so that the governing equations of both systems can

be compared and simplified. Comparing both equations, the vibration behavior of the model and of the

prototype are similar if groups of the scaling factors in Eq. (6) are all equal. This implies that Eq. (6) can be

reduced to Eq. (5) when the scaling factor groups are canceled out. Thus, the similitude requirement is
obtained as

1 1 1 Cc,
T T T :
¢t ac o ¢ Op

X

(7

By assuming that the model and prototype have a geometric similarity (Cy = C, = C, = Cp), the similarity
requirement is simplified to

ce,ch_

Cp

Eq. (8) is the similitude invariant of the vibration behavior of rectangular plates. This invariant can be
reduced to the scaling law of plate natural frequency as

1. (®)

4
wf, = wﬁq (o D%. 9)
bypp

This scaling law relates the natural frequencies of the model to that of the corresponding prototype. The
derived scaling law is valid for a model-prototype pair with complete geometric similarity, i.e. C, = C, or both
systems having the same aspect ratio. The scaling law can be verified with the theoretical solution shown in the
previous section. As shown in Table 1, rectangular aluminum plates with 5 = 250 mm and an aspect ratio, a/b,
of 1-3.5 are selected as models and used to predict the natural frequencies of the stainless steel prototypes with
a width b of 200 and 300 mm, respectively. The model plates are assumed to be Al6061-T6 with £ = 68.9 GPa,
v = 0.35, density = 2.71 x 10°kg/m?>, and plate thickness # = 2mm, while the prototypes are stainless steel
with E =193 GPa, v = 0.27, density = 7.86 x 10°kg/m’, and plate thickness # = 2mm. The fundamental
natural frequencies of the models determined from the analytical solution, Eq. (4), are shown in column 2.
These natural frequencies are substituted into the scaling law to predict the scaling natural frequencies of the
prototypes, as presented in the “wscaling” columns. The scaling frequencies are verified by the theoretical
solutions shown in column 3 and 5. The data confirms that the natural frequencies determined from the
scaling law and those from the closed-form solutions are identical.

Therefore, the scaling law for the natural frequency of rectangular plate is verified, theoretically. The
derived scaling law is applicable to a model and prototype pair with the same aspect ratio, although they are
made of different materials. However, it is not assured that the scaling law will be accurate in real applications.
The objective of the present study was therefore to validate the scaling law with the experiment results. Thus,
vibration experiment was performed to determine the natural frequencies of the model and prototype

Table 1
The fundamental natural frequencies in Hz for Al6061-T6 specimens

Aspect ratio (a/b) Aluminum model Stainless steel prototype
b =250mm

b =200 mm b = 300 mm

WTheory WScaling WTheory WScaling
1.0 156.2 233.4 2333 103.7 103.7
1.5 112.8 168.5 168.5 74.9 74.9
2.0 97.6 145.9 145.8 64.8 64.8
2.5 90.6 1354 1354 60.2 60.2
3.0 86.8 129.6 129.6 57.6 57.6

3.5 84.5 126.2 126.2 56.1 56.1
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specimens. The measured natural frequencies of the models were then substituted into the scaling law to
predict the natural frequencies of the prototypes. Subsequently, the scaling frequencies of the prototype were
compared with the measured ones to determine the accuracy of the derived scaling law.

4. Experimental setup

Several samples of thin rectangular plates were tested to determine their first three natural frequencies. The
specimens were composed of aluminum, structural steel and stainless steel rectangular thin plates. The
boundary conditions of the test panels were a combination of the knife-edge support and free boundary
conditions. The knife-edge support was employed to simulate the theoretically simple-supported boundary
condition. Schematic drawings of the specimens’ dimensions and boundary conditions are shown in Fig. 1.
The boundary of specimen supported by the knife-edge constraint is designated as ““S,” while the free
supported edge is represented by ““F.”” The boundary conditions of the specimens used in this study were SSSS,
SFSS, SFSF, and SSFF, as shown in the figure. The first and second letters represent the boundary condition
on the y = 0 and b edges, respectively. Similarly, the last two letters symbolize the boundary conditions on the
other edges. The specimens were mounted in the test setup and equipped with an impact hammer and an
accelerometer as shown in Fig. 2. The knife-edge support replicating the simply supported boundary condition
was enforced by two stainless steel bars coupled on the specimen. The steel bars were machined in an inclined
direction to form a knife-edge. With this support, the specimens were intentionally allowed to freely rotate but
any out-of-plane displacement was restrained. The knife-edge supports were fixed with steel boxes with a
number of machine screws. Additional machine screws were also used to push the knife-edge supports against
the specimen surface. The assembly of steel boxes and knife-edge supports was also tested for natural
frequency to confirm that their natural frequencies were not in the range of those of the specimens.

The vibration test for natural frequency was performed using an impact test [11,12]. Briefly, the specimens
were excited by an impact hammer while the applied impulse was monitored by a dynamic signal analyzer. An
accelerometer was placed on the specimen at a selected location to measure the plate response in terms of
acceleration. It is recommended that the accelerometer should not be set on the node line of the vibration to
avoid a low response signal. If the node line is unknown or uncertain, more than one measurement is
recommended. In the present study, several pretests were conducted to determine a suitable location of the
accelerometer. Besides the applied impulse from the impact hammer, the acceleration responses from the
accelerometer were collected by a dynamic signal analyzer. The accelerations were recorded five times from
five excitations of the impact hammer. These five sets of the acceleration data measured in the time domain
were processed by a fast Fourier transform (FFT) algorithm using the dynamic signal analyzer to obtain the
response in the frequency domain. From the vibration response in the frequency domain, the natural

S F
S S S S
SSSS SESS y
S S
F S b
7 X
S F F F
SESF SSFF
S S

Fig. 1. Schematic drawings of the rectangular test specimens.
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Impact hammer Accelerometer

P

Fig. 2. Experimental setup with accelerometer and impact hammer.

Steel Box

Specime Knife-edge support

frequencies of the specimen were identified from the peak of the response. Theoretically, there are infinite
numbers of natural frequency; however, only the first three modes are of interest in this study. Fig. 3 shows
examples of the vibration response measured in the frequency domain obtained from the dynamic signal
analyzer for a 300 x 300 mm? aluminum plate with various boundary conditions. The measured natural
frequencies in Hz for the first three modes of the specimen with SSSS boundary conditions are 149.0, 293.5,
and 322.5 Hz, respectively. A response similar to those of shown in Fig. 3 can be obtained from experiments
with excitation and accelerometer located at various positions. Ideally, the measured natural frequencies are
independent of the location of either excitation or accelerometer. From the experiments, varying the position
of excitation and the location of the response measurement has a minimal effect on the measured natural
frequencies. In this study, a minimum of 5 experiments were performed for each specimen and the
experimental natural frequency was determined from the average of each measurement.

5. Experimental results

Two sets of the experiment were conducted in this study to determine the accuracy of the scaling law
using experimental measurements in two cases, i.e. (a) aluminum model and prototype of different sizes and
(b) equal-size model-prototype pairs composed of different materials. The former part of the study was
designed to investigate the size effect, while the material effect was studied in the latter part. To examine the
size effect, the test specimens were nine aluminum plates with aspect ratios (a/b) of 1, 1.5, and 2 and a
specimen nominal width b of 200, 250, and 300 mm, respectively. The natural frequencies of all the specimens
with four combinations of boundary conditions were experimentally determined and used to validate the
scaling law. The other set of experiments involved tests on four groups of specimens, i.e. two groups of
aluminum, a group of structural steel and a group of stainless steel. The dimensions of the specimens in this set
of experiments were 300 x 200 mm? and 375 x 250 mm?>.

5.1. Size effect

For the first part of the experiment, the measured natural frequencies for the SSSS aluminum plates with
nine different dimensions are presented in Table 2. In the table, the test specimens are classified into three
groups: rectangular plates with aspect ratios of 1, 1.5, and 2. The experimental data showed that the natural
frequencies decreased with plate size. Similar experimental results were obtained for aluminum specimens with
other boundary conditions but are not presented here. The specimens shown in Table 2 were assumed to be a
model or a prototype and used to validate the scaling law, as shown in Table 3. From the three specimens with
an aspect ratio of 1, three pairs of models and prototypes were assigned to the test specimens. As shown in
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Table 2

Measured natural frequencies of the SSSS aluminum specimens

113
321

Aspect ratio

Specimen size, a X b
(mm?)

Natural frequency (Hz)

1st mode 2nd mode 3rd mode
1 200 x 200 309.8 676.9 729.6
250 x 250 196.7 409.0 444.6
300 x 300 148.8 293.2 321.8
L5 300 x 200 221.2 376.3 580.7
375 % 250 150.5 255.4 376.6
450 x 300 99.6 171.4 257.4
2 400 x 200 199.6 256.2 425.2
500 x 250 132.4 173.6 275.5
600 x 300 90.1 117.8 1934
Table 3
The measured and scaling natural frequencies for the SSSS aluminum specimens
Aspect ratio Model Prototype Mode Model Prototype
WExp Scaling %Dis
1 200 x 200 300 x 300 1 309.8 148.8 137.7 —7.47
2 676.9 293.2 300.8 2.61
3 729.6 321.8 3243 0.77
250 x 250 200 x 200 1 196.7 309.8 307.3 -0.79
2 409.0 676.9 639.1 —5.59
3 444.6 729.6 694.7 —4.79
300 x 300 250 x 250 1 148.8 196.7 214.3 8.93
2 293.2 409.0 4222 3.23
3 321.8 444.6 463.4 4.23
1.5 300 x 200 450 x 300 1 221.2 99.6 98.3 -1.29
2 376.3 171.4 167.2 —2.42
3 580.7 257.4 258.1 0.27
375 x 250 300 x 200 1 150.5 221.2 235.2 6.31
2 255.4 376.3 399.1 6.05
3 376.6 580.7 588.4 1.33
450 x 300 375 x 250 1 99.6 150.5 143.4 —4.70
2 171.4 255.4 246.8 —3.36
3 257.4 376.6 370.7 —1.58
2 400 x 200 600 x 300 1 199.6 90.1 88.7 —1.54
2 256.2 117.8 113.9 —3.34
3 4252 193.4 189.0 -2.29
500 x 250 400 x 200 1 132.4 199.6 206.9 3.064
2 173.6 256.2 271.3 5.87
3 275.5 4252 430.5 1.24
600 x 300 500 x 250 1 90.1 132.4 129.7 —2.01
2 117.8 173.6 169.6 -2.29
3 193.4 275.5 278.5 1.09

column 2 and 3 of Table 3, a 200 x 200 mm? specimen was set as a model and used to model the 300 x 300 mm?
prototype specimen. The other two model-prototype pairs were a 250 x 250 mm? model with 200 x 200 mm?
prototype and a 300 x 300 mm? model with 250 x 250 mm? prototype. Specimens with aspect ratios of 1.5 and
2 were also assigned as models or prototypes in the same approach. In Table 3, columns 5 and 6 are the
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measured natural frequencies of the model and prototype, respectively. The next column labeled as “wscating
presents the scaling natural frequencies of the prototypes. These scaling natural frequencies were determined
from the scaling law shown in Eq. (9) using the measured natural frequencies of the model in column 5. The
experimental and scaling natural frequencies shown in columns 6 and 7, respectively, were compared with each
other. The percentage discrepancy of the scaling natural frequency shown in the last column was determined
according to

WScaling — WExp

%Dis = x 100%. (10)

WExp

Most of the comparisons show a good agreement between the scaling and measured natural frequency. The
average of the absolute values of percentage discrepancy for experiment on all 27 model-prototype pairs is
3.30% with a standard deviation of 4.05%. The minimum and maximum percentage discrepancies are
—7.47% and +8.93%, respectively, while more than half of the comparisons have a percentage discrepancy
within +3%. There was no significant difference in percentage discrepancy for each vibration mode or plate
aspect ratio. The causes of discrepancy between the scaling and measured natural frequencies are probably
related to the imperfections of the boundary conditions and specimens. As described in the previous section,
knife-edge supports of the test setup were controlled by several machine screws. In the experiments, the
machine screws were tightened until the gaps between the specimen and support were invisible. Although it
was desired to obtain identical boundary conditions for the model and its prototype, it was expected that the
boundary conditions for each experiment would not be perfectly identical. Besides the imperfect boundary
conditions, imperfections of specimens such as non-uniform thickness and the existence of plate curvature
might be the cause of discrepancy between the scaling and measured behaviors. These two causes of error are
classified as an experimental uncertainty, which is typical in experimental study and is very difficult to
completely eliminate.

Another three comparable studies were performed on the same test specimens with boundary conditions of
SFSS, SFSF, and SSFF. An inconsistency between the scaling and measured natural frequencies of all
comparisons in terms of percentage discrepancy is shown in Table 4. The last two rows of the table show the
average of absolute values of percentage discrepancy and the standard deviation of the percentage
discrepancy, respectively. The overall average and standard deviations of the percentage discrepancy were
4.90% and 6.46%, respectively. The histogram in Fig. 4 represents the frequency distribution of the
percentage discrepancy, which revealed that the distribution of the percentage discrepancy closely resembles a
normal distribution and the percentage discrepancies of 95 from 108 comparisons were in the range of +10%.
However, percentage errors for some pairs of model and prototype were slightly higher, especially for the
experiments on the SFSF specimens. Eight values of percentage discrepancy from the experiments on this

Table 4
Percentage discrepancy between scaling and measured natural frequencies

Aspect Model Prototype SSSS SFSS SFSF SSFF
ratio

Model Mode2 Mode3 Model Mode2 Mode3 Model Mode2 Mode3 Model Mode2 Mode3

1 200 x 200 300 x 300 —7.47 2.61 0.77 —-0.86 3.75 0.06 —-556 -—-2.12 —452 355 2.80 2.05
250 x 250 200x200 —0.79 =559 —4.79 291 =2.62 2.19 1.37 045 —0.58 0.89 —490 —0.19
300 x 300 250 x 250  8.93 3.23 423  —-198 —-1.03 =220 4.46 1.72 535 —4.28 230 —1.83

1.5 300 x 200 450 x 300 —1.29 —2.42 0.27 726 2.83 684 —17.74 —10.07 —1096 —9.00 —1554 —0.86
375 %250 300 %200  6.31 6.05 1.33 —11.91 -850 —5.50 13.41 6.00 541 7.06 542 3.15
450 x 300 375%x250 —4.70 —-3.36 —1.58 584 628 —0.95 7.19 4.90 6.54 2.64 12.31 =221

2 400 x 200 600 x 300 —1.54 —-3.34 -2.29 394 275 257 —11.22 —1429 -9.69 —-6.24 —12.66 —6.07
500 x 250 400 x 200  3.64 5.87 1.24 206 1.00 —0.46 —6.78 —1.55 248 —3.51 836 592
600 x 300 500 x250 —-2.01 —2.29 1.09 —-573 -3.64 -2.06 20.84  18.51 8.06 10.54 5.67  0.52

Average 3.30 3.62 7.47 5.20
Standard deviation 4.05 4.63 9.46 6.64
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Fig. 4. Histogram of the percentage discrepancy between scaling and measured natural frequencies.

boundary condition resulted in a percentage discrepancy higher than +10%, compared with only four values
and one value for SSFF and SFSS cases, respectively. The average of the absolute percentage discrepancy for
SFSF specimens was 7.47%, which is higher than those of other boundary conditions. The higher percentage
discrepancy of the scaling law observed in specimens with SFSF boundary conditions was probably caused by
the particular characteristics of these boundary conditions. For SFSF specimens, the free boundary condition
was imposed on two adjacent edges of the plate, i.e. two adjacent edges were free to move, as shown in Fig. 1.
As a result, the specimen with this combination of boundary conditions tended to be slightly curved at the free
corner because of its own weight. The degree of non-flatness of the test specimens was probably different for
specimens with different dimensions, that is, the size effect had an influence on the accuracy of the scaling law
in this case. So, the model and prototype with these boundary conditions did not have a complete similarity,
resulting in a slightly higher percentage discrepancy for these specific boundary conditions.

Therefore, from the experimental study in the first part, the scaling law provided reasonable accuracy for
modeling a prototype using a model with different dimensions. Uncertainties of the experiments in boundary
condition and thickness are believed to be the sources of the discrepancy. To obtain a decent prediction from
the scaling law, the experiment on the model specimen should be carefully performed to assure near-complete,
if not perfectly complete, similarity with the prototype. The specimen size might slightly affect the precision of
the scaling law in case of SFSF specimens because the flatness of the model and prototype cannot be
maintained.

5.2. Material effect

The second part of the study was to determine the applicability of using a model with one type of material to
predict the vibration behavior of the prototype made from another type of material. Four types of specimen
including two types of aluminum specimen; called herein Aluminum-A and Aluminum-B, and the other two
groups of steel and stainless steel specimens were tested. All specimens are commercially available in form of
sheet metal. They were prepared and machined to the nominal dimensions of 300 x 200 mm? and
375 x 250 mm°. The physical and mechanical properties of all the materials were experimentally determined
and are presented in Table 5. It should be noted that the mechanical properties of Aluminum-A and
Aluminum-B are more or less comparable and so are the properties of steel and stainless steel. Therefore, a
total of eight thin plates were tested in this part of the study. Since material effect was investigated in this
study, only specimens of the same size were assigned as a model-prototype pair. All specimens with four
different boundary conditions were tested for the first three natural frequencies. The test results were then
assigned as experimental natural frequencies of the model or the prototype. The accuracy of the scaling law
was determined by comparing the scaling and experimental natural frequencies in the same manner as the
previous study. Lists of the percentage discrepancies between both natural frequencies are shown in Table 6.
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Table 5
Properties of materials used in the second part of the experiments

Material Thickness (mm) Mass density per area Modulus of elasticity Poisson ratio
(kg/m?) (GPa)

Aluminum-A 1.81 5.10 62.3 0.316

Aluminum-B 1.42 3.63 58.0 0.320

Steel 1.95 15.29 197.0 0.346

Stainless steel 1.48 11.23 200.0 0.327

Table 6

Percentage discrepancies between scaling and measured natural frequencies demonstrating the material effect

Model Prototype Specimen size, SSSS SFSS SFSF SSFF Avg.
ax b (mm?)

Model Mode2 Mode3 Model Mode2 Mode3 Model Mode2 Mode3 Model Mode2 Mode3

Al-A  Al-B 300 x 200 —11.61 —4.67 —5.15 14.40 6.51 6.67 —11.72 6.12 —1.85 4.55 1.51 536  6.68
375 %250 —1239 —-1.71 -3.65 3.74 —428 -2.67 —8.44 -7.61 5.06  0.62 282 -1.77 456

Steel 300 x 200 19.58 16.51 1994 36.13 23.16 2586 12.02  7.30  12.12 2456 1497 19.69 19.32

375 %250 26.84 27.68 18.63 21.57 14.04 18.60 1994 745 1624 3347 2087 2396 20.77

Stainless steel 300 x 200 22.11 2380 22.48 3408 27.18 29.63 12.37 11.87 19.42 3350 22.67 2991 24.09

375 %250 27.03 3271 24.02 2371 2023 22.16 17.06 13.24 2482 3432 28.02 21.06 24.03

Al-B  Steel 300 x 200 3529 2222 2645 1899 15.63 17.99 2689 1.12 1423 19.14 1326 13.61 18.74
375 x 250 4477 2990 23.13 17.19 19.14 21.85 3099 16.30 10.64 32.65 17.55 2620 24.19

Stainless steel 300 x 200 38.15 29.87 29.13 17.20 1941 21.52 27.28 542 21.67 27.69 20.84 2330 23.46

375 %250 4499 3501 28.72 19.25 25.61 25.51 27.85 2256 18.81 33.49 2451 2324 27.46

Steel ~ Stainless steel 300 x 200 2,11 6.26 212 —1.51 3.26 2.99 031 4.26 6.51 7.18 6.69 8.53 431
375 x 250 0.15 394 454 1.76 5.43 3.00 —240 539 7.38  0.64 592 234 357

The first two columns of the table are materials of the model and prototype, respectively, with the specimen
dimensions shown in column 3. The next twelve columns indicate the percentage discrepancies between the
scaling and measured natural frequencies. The last column shows the averages of absolute percentage
discrepancy for each pair of model and prototype. Clearly, the degree of discrepancy was separated into two
groups; the lower one and the higher one. The scaling natural frequencies were well correlated with the
measured ones for model-prototype pairs with the same type of material, i.e. a pair of Aluminum-A and
Aluminum-B or a pair of steel and stainless steel. The averages of absolute percentage discrepancy for these
model-prototype pairs were in the range of 3.57-6.68%. On the contrary, the scaling natural frequencies did
not match the corresponding experimental results well for a pair of model and prototype with different types
of material, for example, the Aluminum-A model and steel prototype or the Aluminum-B model and stainless
steel prototype. The average percentage discrepancies varied from 18.74% to 27.46%. These fairly high
percentage discrepancies are contradictory to the theoretical validation of the scaling law, shown in Table 1. It
is proved that the scaling law is theoretically precise although both model and prototype are composed of
different materials. These high percentage discrepancies can be explained by considering the boundary
conditions provided by the experimental setup. Although aluminum or steel plates were restrained by the same
knife-edge supports, they were probably not subjected to similar boundary conditions because of the
difference between the stiffness of the knife-edge supports and the stiffness of the test specimens. The knife-
edge supports which were used to simulate the simply supported boundary condition were made of stainless
steel with an elastic modulus of about 200 GPa. Because of the comparable stiffness, when steel or stainless
steel specimens were mounted on the knife-edge support, an approximate simple support was achieved,
supposedly. On the other hand, it would seem that a near-clamped support was obtained for the experiments
of the aluminum plates due to the mismatch in stiffness between the specimen and the support. This hypothesis
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can be tested by comparing the experimental results of the SSSS specimens with the theoretical solutions, as
shown in Fig. 5. The experimental natural frequencies of all eight specimens with knife-edge supports on all
edges, i.e. SSSS specimens, were plotted and compared with the theoretical solutions. In the figure, the
experimental natural frequencies of the first three vibration modes of both 300 x 200 mm? and 375 x 250 mm?
specimens with different materials are shown, labeled as “Exp’. The theoretical natural frequencies of the
specimens with all edges simple supported and all edges clamped were also plotted, labeled as “Theory
(SSSS)” and “Theory (CCCC),” respectively. Obviously, all of the experimental natural frequencies of the
aluminum specimens (both Aluminum-A and Aluminum-B) were close to the theoretical solutions of the
CCCC specimens. In contrast, the experimental results of the steel and stainless steel specimens closely
approximated to the theoretical solutions of the SSSS specimens. Because of the greater stiffness of the
support, the aluminum specimens were probably not allowed to rotate as much as the steel specimens were,
although they were constrained by the same supports. Therefore, the boundary condition provided by the
experimental setup, which was supposed to be simple support, was a fairly clamped boundary condition for
the aluminum specimens. For the steel specimens, the near simply supported boundary condition was
successfully obtained as intended. That is, the very same knife-edge support provided quite different boundary
conditions for the aluminum and steel specimens because the kinetic conditions of both types of material were
different. The high percentage discrepancy in this case was not caused by experimental uncertainty as of those
in Section 5.1, but was the result of the dissimilar boundary conditions which violated the similarity
requirements. It is concluded that, in practice, the type of material of the model indirectly affects the accuracy
of the scaling law because specimens with different types of material may be supported differently by the same
support.

To confirm that the derived scaling law is applicable for a model and prototype composed of different
materials if their boundary conditions are sufficiently comparable, an additional set of experiments was
performed. The supplementary tests were similar to the experiments shown in Table 6 but boundary
conditions for the specimens were free boundary condition on all edges (FFFF). The specimens used in the
experiment included all four groups of materials with plate dimensions of 300 x 200 mm? and 375 x 250 mm®.
The FFFF boundary condition was set up by hanging the test specimen using a small rope. With this test
setup, the specimens were allowed to freely vibrate in an out-of-plane direction when excited by the impact
hammer. The first three natural frequencies were experimentally determined and assigned as a model or a
prototype similar to the study shown in Table 6. The percentage discrepancies between the scaling and
measuring natural frequencies for the experiment with FFFF boundary conditions are presented in Table 7.
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Fig. 5. Experimental and theoretical natural frequencies of the SSSS specimens.
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Table 7
Percentage discrepancies between scaling and measured natural frequencies of FFFF specimens

Model Prototype Specimen size, FFFF Avg.

a x b (mm?)
Model Mode2 Mode3

Al-A Al-B 300 x 200 10.47 —2.39 9.59 7.48

375 x 250 14.15 3.53 7.11 8.26

Steel 300 x 200 2.86 9.71 4.06 5.54

375 x 250 5.71 -3.17 —7.84 5.57

Stainless steel 300 x 200 2.28 6.98 9.13 6.13

375 %250 14.66 1.15 —1.53 5.78

Al-B Steel 300 x 200 —6.89 12.39 —5.05 8.11

375 x 250 —7.40 —6.47 —13.95 9.27

Stainless steel 300 x 200 —7.42 9.59 —0.42 5.81

375 x 250 0.45 —2.30 —8.06 3.60

Steel Stainless steel 300 x 200 —0.57 —2.49 4.87 2.64

375 x 250 8.47 4.46 6.84 6.59

The scaling law was able to predict the natural frequency of the prototype fairly well. From 36 comparisons,
only 5 model-prototype pairs had a percentage error higher than +10%. The averages of absolute percentage
discrepancy for each pair of model and prototype ranged from 2.64% to 9.27%. Unlike the experiments
shown in Table 6, there is no significant difference in percentage error between specimens of the same and
different types of materials. Experimental results from either aluminum or steel models were able to predict the
behavior of the prototypes with comparable accuracy. A good prediction by scaling law is achieved in the
experiment with FFFF boundary conditions because of the similarity of the boundary conditions of the model
and prototype. Without a support, it is assured that the boundary conditions of the model and prototype are
similar, geometrically and kinetically. Thus, the scaling law is applicable for a model and prototype composed
of different materials if the boundary conditions of both systems have sufficient similarity. The boundary
conditions of two systems are said to be identical if they have geometric and kinetic similarities. The same set
of supports may not provide identical boundary conditions for each specimen because of the mismatch of
material properties between specimen and support causing kinetic dissimilarity.

6. Conclusions

This study derives the scaling law and similitude requirements for vibration response of rectangular thin
plates. The scaling law was theoretically verified and found to be exact for a pair of models and prototypes
with complete similarities. To determine the accuracy of the scaling law in practice, an experimental setup was
prepared to accommodate the vibration experiment. The specimen was excited by an impact hammer and
measured for vibration response using an accelerometer. The natural frequencies could be identified from the
peaks of the response in the frequency domain. In the first part of the experiment, the scaling law was applied
to a pair of models and prototypes with the same material. From 108 comparisons, the average percentage
error between the scaling and experimental natural frequencies was 4.90%. This fairly low percentage
discrepancy confirms that scaling law is accurate and practical in engineering applications. The experimental
uncertainty in term of imperfect boundary conditions and specimens is probably the cause of this slight
discrepancy. However, it is noticed that the scaling natural frequency for some cases of SFSF plates did not
correspond well with the measured data. The sources of this error were not only caused by the experiment
uncertainty but also caused by the fairly high degree of dissimilarity between the model and prototype
specimens, i.e. curvature of the test specimens due to two adjacent edges having no support. For specimens
with a combination of these particular boundary conditions, the size effect influenced the accuracy of the
scaling law because of the dissimilarity in plate configuration of the model and prototype. In the second part
of the study, natural frequencies of the prototypes were predicted using model specimens of different
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materials. The data shows that the scaling natural frequencies were not very well matched to the experimental
ones if the model and prototype were composed of different types of materials. In comparison with the
theoretical solutions, it is believed that the boundary conditions of the model and prototype are different,
resulting in a very high percentage discrepancy of the scaling natural frequency. This suggests that boundary
conditions on the test specimens are not only dependent on the geometry of the support but also on the kinetic
conditions of the support. Additional experiments were performed on specimens made of different materials
using FFFF boundary condition to validate the scaling law for model and prototype with identical boundary
conditions and composed of different materials. Without a support, the boundary conditions of the model and
prototype are identical, thus, the accuracy of the scaling law is achieved as expected.

In conclusion, the derived scaling law is practical to employ in engineering applications. From this study,
the discrepancy of the scaling solutions might develop from the uncertainty of the experiment, curvature of the
specimens due to two adjacent free edges, and dissimilar boundary conditions due to a mismatch in the
material properties of the specimen and support. Errors from the uncertainty of the experiment are fewer than
those from other sources and can be kept minimal by carefully setting up the experimental conditions on the
model to match those of the prototype. This type of error is typical in the experimental investigation and
impossible to completely eliminate in practice. Errors from the latter two sources, on the other hand, are the
result of the incomplete similarity conditions between the model and prototype. These causes of error could be
eliminated by ensuring that the plate configurations and boundary conditions of both systems are completely
identical. To utilize the scaling law, precautions should be taken for a specimen with some particular
combinations of boundary conditions where plate configurations might be effected by the size of the test
specimen. Moreover, without a procedure to obtain a complete similarity of boundary conditions of the model
and prototype with different materials, it is strongly recommended that the model is prepared from the same
material as the prototype. It is also worthwhile to further study the possibility of overcoming the difficulties in
utilizing the support on different materials as well as the chance of deriving a scaling law for a
model-prototype pair with different boundary conditions.
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ABSTRACT

In this study, the vibration correlation technique was introduced to determine the buckling load of rectangular thin plates.
It is theoretically shown that the natural frequency approaches zero when the applied compressive load approaches the
buckling load of the plate. To avoid the effects of premature out-of-plane deformation, it is proposed in this study that
the buckling load is to be identified using the natural frequencies of plates under tensile loading. A set of aluminum
plates was tested for natural frequencies using an impact test method. Specimens with two types of boundary conditions,
i.e., CCCC and CCCF, were included in the experiment. The square of the measured natural frequency was plotted
against the applied load and extrapolated to determine the predicted buckling load. The buckling loads from vibration
data compare closely with numerical solutions. The average percentage differences between the measured buckling loads
and the numerical solutions are 1.24 % and -1.14 % for specimens with CCCC and CCCF boundary conditions,
respectively. In conclusion, the buckling load of rectangular thin plates can be experimentally identified with acceptable
accuracy using vibration data. This approach is very useful especially for structures with unknown or imperfect boundary
conditions where analytical or numerical solutions to the problem are not available.

Keywords: Buckling load, vibration, natural frequency, thin plate, experiment

1. INTRODUCTION

Buckling load is one of the important parameters which should be considered in the design of thin, plate-like structures
subjected to compressive loading. The stability of plates has been investigated using theoretical, numerical and
experimental approaches. For experimental studies, identification of the buckling point is an important process, since it
directly affects the accuracy of the measured buckling load. In an experiment, the buckling load of plates can be
identified using various kinds of plots, for example: 1) a plot of in-plane loads vs. out-of-plane displacement; 2) a plot of
in-plane loads vs. end-shortening; 3) a plot of in-plane loads vs. difference of surface strains; and 4) a plot of the ratio of
out-of-plane displacement to in-plane load vs. out-of-plane displacement [1]. Chai et al. [2] compared the experimental
buckling load of composite plates with theoretical solutions. The discrepancies between the experimental and theoretical
solutions ranged between -7 % and +11 %. Tuttle et al. [3] determined buckling loads from plots of applied in-plane load
vs. out-of-plane displacement of composite panels, and compared the experimental results to numerical predictions
obtained using a Galerkin method. Although the average percentage error between the measured and predicted buckling
loads is low, the standard deviation of the percentage error is as high as 15%. The difficulties of identifying the buckling
load using a static test method were documented. In particular, drawing two lines in the pre-buckling and post-buckling
regions to identify the buckling point depended on personal judgment, and could be a cause of error.

There is a need for an alternative approach to experimentally identify the buckling load of a plate. In this paper, the
vibration correlation technique (VCT) is explored. Lurie and Monica [4] showed that the square of the frequency of the
lateral vibration of a thin plate with simple supports on all edges is linearly related to the end load. They also conducted
some experiments on elastically restrained columns, rigid-joint trusses, and thin flat plates. The authors reported that
VCT was successfully employed to predict the buckling load of only columns and trusses. For flat plates, because of the
initial curvature, the buckling load cannot be predicted by the proposed method. However, Chailleux et al. [5] later
showed that with a carefully designed experimental setting, VCT can be used to determine the buckling load with
satisfactory accuracy.

*Pairod.s@chula.ac.th; phone 66 2 218-6595; fax 66 2 252-2889
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In this research, the relationship between buckling and vibration behavior of thin plates is investigated. The relationship
between applied in-plane load and the natural frequency of plates is derived from the differential governing equations of
both problems. The derived relationship, which is applicable to thin plates with any boundary conditions, is verified
using a numerical method. Because of premature curvature, which is usually detected even before the specimen has
buckled, it is proposed in this study that the buckling load be determined from the vibration of a plate subjected to tensile
loading. A test frame, capable of applying tensile and compressive loading to a specimen, was prepared. A series of
vibration tests was performed to determine the natural frequencies of the plates. The vibration data, along with the
derived relationship, are used to predict the buckling load. Experimental buckling loads are compared to the numerical
solutions to verify the proposed technique.

2. RELATIONSHIP BETWEEN VIBRATION AND BUCKLING BEHAVIORS

Vibration and buckling behaviors of a thin plate are investigated and their relationship is derived in this section. A
rectangular plate with a dimension of axb is subjected to a uniform uniaxial loading Ny, as shown in Fig. 1. The buckling

load of a plate-represented by N, - is the in-plane compressive load N, at which buckling occurs. For vibration behavior,
the natural frequencies of a plate can be determined for a specimen with a given N,. It should be noted that N, and N,

refer to the same in-plane load; however, N, is the buckling load which must be a compressive load (negative value),
while N, is the applied in-plane load which can be either tension or compression. The governing equations for buckling
and vibration of a thin isotropic plate are:

4 4 4 N_ 2
and

o'w o'w  &'w N, o*w w’p

— 22—+
o' Ty oyt D a2 D

w=0, (2)

respectively. The relationship between natural frequency and applied in-plane load N, can be determined by considering
the governing equations, Egs. (1) and (2). For a given plate with particular boundary conditions, it is widely known that
the buckling mode is identical to one of the vibration modes. Specifically, the out-of-plane displacement of the buckled
plate is the same as the out-of-plane displacement of one of the vibration modes. So, the governing of the buckling
problem can be rewritten as:

L1(W)_N_x|-2(w):0’ (3)
o*w o'w  o'w 1 6*w

+ + and L, (w)=— .
ot oaxPoyt oyt - (W) D ox?

where L (w)=

Similarly, the governing equation of the vibration of loaded plates is written as:
L (w)-N,L, (w)-w?L,(w)=0 4)
where Lg(w):p—[\)N.

It should be noted that the terms containing derivatives of w are the same for both problems because the buckling mode
and vibration mode are identical. From Eq. (3), the buckling load of a plate can be written as:

’\_l _ Li(W) (5)

toL(w)

Similarly, the natural frequency of a plate, with and without the applied in-plane load N, can be written as:
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and W = @)

respectively, where o is the natural frequency of a plate with applied load N,, and  is the natural frequency of a plate
without an applied load. From Egs. (5), (6) and (7), the ratio of the square of the natural frequency of a loaded plate to
that of an unloaded plate is written as:

o\ . N,
Clle K

The buckling load N, and the natural frequency of an unloaded plate @ in Eq. (8) are constant for a specific specimen.

The variables in that equation are the natural frequency of the loaded plate »"and the applied in-plane load N,. Thus, the
square of the natural frequency (o) varies linearly with the applied load N,. With the buckling load being a negative

value, it is observed that the natural frequency of the plate increases with the applied tensile load. On the other hand, it
decreases with the applied compression. Moreover, if the applied load N, equals the buckling load of the plate, the

natural frequency " theoretically equals zero. With this observation, the natural frequencies of the loaded plate can be

utilized to predict its buckling load by plotting @ versus the in-plane load N,. The buckling load can be determined
from the applied load N, at which the natural frequency approaches zero. Since this relationship is derived from the
governing equations, it is applicable to specimens with any boundary conditions.

To verify the derived relationship in Eq. (8), a numerical study of the vibration and buckling of a plate was
performed. A 200x200 mm? aluminum plate with 2 mm thickness was chosen as a specimen. The plate was assumed to
be simply supported on the loading edges and clamp supported on the other two edges. The buckling load of this
specimen was numerically determined using the Ritz method, and found to be -97.323 kN/m with buckling mode 2.
Similarly, the Ritz method was employed to solve for natural frequencies of the plate subjected to in-plane loads. The
square of the natural frequencies for the first three modes was plotted versus applied load, as shown in Fig. 2. The
relationship between @' and N, is linear, as expected according to the derived relationship. The predicted buckling load
can be determined by extrapolating the vibration data to the in-plane load at which the square of the natural frequency
approaches zero. Trend lines of each vibration mode intercept the N, axis at a different load level. The lowest
compressive load is the buckling load, and its corresponding vibration mode shape is the predicted buckling mode. From
the simulation, the predicted buckling is -97.322 kN/m and the buckling mode is (2, 1). The buckling behaviors
determined from the vibration data compare closely with the numerical solution. The buckling mode is also similar to the
corresponding vibration mode shape. Thus, the derived relationship shown in Eq. (8) is theoretically verified.
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Fig. 1. A rectangular plate subjected to a -97.322  In-plane load Ny (kN/m)
uniaxial in-plane load Ny Fig. 2. Square of the natural frequencies of an aluminum plate

vs. applied loading.
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3. EXPERIMENTAL STUDY

A series of experiments was performed to determine the accuracy and reliability of the proposed technique. A set of
aluminum plates was used; each plate was uniaxially loaded and tested for natural frequencies. The measured natural
frequencies and applied loading were plotted, with results similar to those shown in Fig. 2. The predicted buckling load
was identified using natural frequency data in the tensile-loading range.

3.1 Test frame

The test setup, shown in Fig. 3, was specifically designed to accommodate the loading configuration and vibration
testing. The test frame is capable of applying CCCC and CCCF boundary conditions to the test specimens. Both tensile
and compressive loads can be applied on the specimens. In-plane loads are applied horizontally using a hydraulic
cylinder pressurized with a hand pump. The hydraulic cylinder is mounted on the right end frame, which is fixed to the
left end frame using two guided columns. For a tension test configuration, the ram of the hydraulic cylinder applies a
compressive force against crosshead #1. Loads are monitored using a load cell mounted between crosshead #1 and the
hydraulic cylinder. Two linear bearings are embedded within the crossheads such that they can move linearly along two
guided columns. The applied loading is transferred through two tension rods to crosshead #2. A rectangular thin plate is
mounted with clamp support between crosshead #2 and crosshead #3. For a tension test configuration, crosshead #3 is
blocked by two stoppers mounted on the guided columns, as shown in Fig. 3. In the case of a compression test, these
stoppers are placed next to crosshead #2 to prevent horizontal motion of the crosshead. Crosshead #1 and tension rods
are removed in a tension test configuration. The unloaded edges of the specimens are clamped by rigid stainless steel
bars, denoted in Fig. 3 as “clamp support.” These supports are mounted on the support holders, which are tightly
clamped to the guided columns. Machine screws are used to push the steel supports against the specimen surface. In the
experiments, the machine screws are finger-tightened until the gaps between the specimen and support are invisible. The
clamp support on one of the unloaded edges of the specimen is removed so that a free edge is formed for CCCF
boundary conditions.

Left end Frame

Clamp support  Support holder Right end frame

Stopper
-

Load cell

Hydraulic
cylinder

Crosshead #2  Tension ~ Guided Crosshead #3 Crosshead #1
rod Column

Fig. 3. Experimental setup of a specimen with CCCC boundary condition.

3.2 Specimens

The test specimens consisted of six thin plates with nominal dimensions axb of 300x200, 200x200, and 150x200 mm?.
For each plate size, there were two specimens with different thicknesses. The specimens were prepared from 6061-T6
aluminum alloy, with mechanical properties of E = 70 Gpa and v = 0.33. The boundary conditions of the specimens
included both CCCC and CCCF boundary conditions. The specimen’s dimensions are summarized in the first three
columns of Table 1.
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3.3 Experimental procedures and results

In this study, the natural frequencies of a loaded plate are required data in order to predict the buckling behavior of the
plate. Vibration testing was performed using an impact test, in which the specimen is excited by an impact hammer while
the applied impulse is monitored by a dynamic signal analyzer. Acceleration response of the specimen was measured by
an accelerometer placed on the specimen at a selected location. Acceleration data measured in the time domain were
processed by a Fast Fourier Transform algorithm using the dynamic signal analyzer to obtain the frequency response
function (FRF). From the vibration response in the frequency domain, the natural frequencies of the specimen were
identified from the peak of the response. Vibration mode shape was also obtained from an imaginary part of the response
function.

Natural frequencies of the specimen under unloaded, tensile-loaded and compressive-loaded conditions were determined,
respectively. The square of the natural frequency was plotted against applied in-plane load. A typical relationship
between »™ and N, is presented in Fig. 4. Natural frequencies of vibration modes (1, 1), (1, 2) and (1, 3) are included.
From the plot, the buckling mode of the specimen was determined to be mode (1, 1), since the trend line of this mode
intersects the N, axis at the lowest value. It is observed that w™ varies linearly with the applied load in the tensile-loading
range, as expected. The relationship between both parameters in the compressive-loading range is not as linear as that in
the tensile-loading range, which is contradicted by the result from the numerical simulation shown in Fig. 2. This
observation regarding compressive-loading was also reported by Lurie and Monica [4]. It is speculated that the nonlinear
behavior is a result of a premature curvature which develops before buckling. For this reason, the buckling load was
determined using only vibration data of the specimen subjected to tensile loading. To determine the buckling load, a
specimen was reloaded under increased levels of tensile loading. At each load level, a vibration test was performed to
determine the natural frequency of the loaded plate. Only the natural frequencies of the relevant mode shape, the
buckling mode, were collected. A plot of ™ versus N, in the tensile-loading range was generated and extrapolated to
determine the measured buckling load. Because the measurement of natural frequency is very sensitive to boundary
conditions, the experiment was repeated 20 times by loosening and re-tightening the machine screws on the clamp
supports. An average of the measured buckling load is reported as the buckling load obtained from vibration data, as
shown in columns 5 and 8 of Table 1.

Table 1. Buckling load in kN of CCCC and CCCF specimens compared to numerical solutions.

Specimen . . . CCCC CCCF
No. Dlmensmr; Thickness, Numerical Exp. o [ Numerical Exp. or M
(axb) mm mm Solution | Measurement % Diff Solution Measurement % Diff
1 300 x 200 2.032 27.17 27.77 2.21 7.48 7.67 2.43
2 300 x 200 2.298 39.29 39.74 1.14 10.82 10.23 -5.562
3 200 x 200 1.765 21.48 21.36 -0.53 8.96 8.43 -5.95
4 200 x 200 1.955 29.18 30.03 2.90 12.18 12.07 -0.90
5 150 x 200 1.745 24.03 24.26 0.94 14.41 14.26 -1.01
6 150 x 200 1.976 34.90 35.16 0.75 20.92 21.78 4.10

3.4 Data reduction and discussion

The experimental buckling loads determined from a plot of natural frequencies of a loaded plate are compared with the
numerical solutions in Table 1. Numerical buckling load and buckling mode are determined using the Ritz method, using
beam functions as the assumed displacement functions. Buckling modes determined from the experiment correspond
very well to the numerical solutions. Discrepancies between the experimental buckling load and the numerical solution
are reported as a percentage difference. As seen in Table 1, the absolute percentage differences are as low as 0.53% and
as high as 5.95%, with average percentage differences of 1.24% and -1.14% for CCCC and CCCF specimens,
respectively. It should be noted that each percentage difference shown in Table 1 is an average value from 20
experiments. The discrepancy of the measured buckling load using vibration data is minimal compared to the
experimental results using static methods [2, 3]. However, the standard deviation of all 240 measurements is found to be
5.57%. The distribution of percentage differences from all measurements is plotted as a histogram, and shown in Fig. 5.
Although the overall average percentage difference is 0.05%, some measured buckling loads deviate from the numerical
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solutions by a percentage difference as high as + 15%. This deviation of the measured buckling is probably a result of
imperfect and non-identical boundary conditions.
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Fig. 4. Plot of the square of natural frequency vs. Fig. 5. Histogram of the percentage difference between
applied load of the 150x200 mm? specimen with measured and predicted buckling loads
CCCF boundary condition.

4. CONCLUSIONS

The relationship between the natural frequency and the buckling load of a rectangular thin plate is investigated in this
study. The derived relationship is utilized as a technique to identify the buckling load and buckling mode of the structure.
Due to a premature curvature which usually develops before buckling, the use of vibration data in the tensile-loading
range, where the premature curvature is negligible, is proposed in this study. To verify the accuracy of the technique, the
experiment was performed on a test frame where the specimen was loaded and tested for natural frequencies. The
measured vibration data were plotted against the in-plane load to determine the buckling load and buckling mode. The
experimental results show that most of the measured buckling loads agree well with numerical solutions. Boundary
conditions are believed to be a considerable factor in the high percentage difference between the measured and numerical
buckling loads. In conclusion, the preliminary study demonstrates the accuracy and reliability of using vibration data in
the tensile-loading range to determine the buckling load. Boundary conditions of the specimen have a considerable effect
on the precision of the measured buckling load. Additional experiments should be performed on specimens made of
different materials to obtain more concrete conclusions about the technique.
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Abstract

Stability is one of the important failure modes of
thin-walled structures subjected to compressive loading.
Besides theoretical and numerical studies, buckling of
plate problem has been experimentally investigated. In
this paper, the vibration correlation technique (VCT) is
introduced as an alternative method to determine the
buckling load. The relationship between applied in-plane
load and the natural frequency of plates are derived from
the differential governing equations of both problems. In
this technique, square of the natural frequency of flexural
vibration of plate is plotted against the applied in-plane
load. It is shown that when the applied load approaches
the buckling load of plate, the natural frequency of plate
approaches zero. The square of the natural frequency is
also linearly related to the applied load. Thus, the
buckling load can be determined by extrapolating the data
to the applied load at which natural frequency approaches
zero. The vibration correlation technique is humerically
verified by plotting square of natural frequency of loaded
plate with applied in-plane load. The obtained buckling
load from the plot is successfully compared with the
buckling load determined by direct numerical method.
The Ritz method along with the beam functions is
employed to determine the natural frequency and the
buckling load of rectangular isotropic plate with
combined boundary conditions. Besides buckling load,
buckling mode can also be determined from vibration
mode. The specimens used in this study are rectangular
isotropic plates with simple-clamped-simple-clamped (S-

C-S-C) and simple-clamped-simple-free  (S-C-S-F)
boundary conditions.
Keywords: Buckling, Vibration, Plate, Vibration

correlation technique, Ritz method.

1. Introduction
Stability is one of the important factors that should be

considered in design of thin-walled structures subjected
to compressive loading. Besides buckling of columns and
shells, buckling of plates is a problem that has been in the
interest of many structural engineers and researchers.
Studies in this field include theoretical, numerical, and
experimental investigations. Identification of the buckling
point of isotropic rectangular plates with simple support
on all edges has been studied by Supasak [1]. In that
study, buckling loads of aluminum plates were identified
from the experiment using four different methods; i.e. 1)
a plot of in-plane loads vs. out-of-plane displacement, 2)
a plot of in-plane loads vs. end-shortening, 3) a plot of in-
plane loads vs. difference of surface strains, and 4) a plot
of the ratio of out-of-plane displacement to in-plane load
vs. out-of-plane displacement. Experimental buckling
loads determined from the first three methods have a
fairly high percent error compared with the theoretical
solutions. The last identification method gave the value
of buckling loads with percent error as high as 69%
compared with the theoretical solutions. The author also
indicated the difficulty in identifying the buckling load
from the plots of measured data. Chai et. al. [2] compared
experimental buckling load of composite plates with the
theoretical solutions. The discrepancy between the
experimental and theoretical solutions was ranged
between -7 % and +11 %. Tuttle et. al. [3] determined
buckling loads from plots of applied in-plane load vs.
out-of-plane displacement of composite panels and
compared the experiment results to numerical predictions
obtained from Galerkin method. Although the average
percent error between the measured and predicted
buckling loads is very low, the standard deviation of the
percent error is as high as 15%. This high deviation
reflects the accuracy of the measurements. Thus, it is
difficult to experimentally determine the buckling load of
plates using static test method, since even the smallest
amount of imperfection of the specimen, loading



apparatus, or boundary conditions can have an apparent
impact on the buckling behavior. Moreover, in the static
approach, there is a need to draw two lines in the pre-
buckling and post-buckling regions which may be a cause
of error.

There is a need for an alternative approach to
experimentally identify the buckling load of plate. In this
paper, the vibration correlation technique (VCT) which is
a dynamic approach is explored. Lurie and Monica [4]
shown that square of the frequency of the lateral vibration
of thin plate with simple supports on all edges is linearly
related to the end load. They also conducted some
experiments on elastically restrained columns, rigid-joint
trusses, and thin flat plates. The authors reported that
VCT was successfully employed to predict buckling load
of only columns and truss. For flat plates, because of the
initial curvature, the buckling load cannot be predicted by
the proposed method. However, Chailleux et. al. [5]
showed later that with a careful experiment setting, VCT
can be used to determine the buckling load with satisfied
accuracy.

In this research, the relationship between buckling
and vibration behavior of thin plate is investigated. The
relationship between applied in-plane load and the natural
frequency of plates are derived from the differential
governing equations of both problems. The derived
relationship is verified using a numerical method. This
relationship also implies that buckling load of plate can
be obtained from the vibration data of the loaded plates.
So, an alternative method for buckling load identification
using dynamic approach is proposed.

2. Relationship between vibration and buckling
behaviors
In this study, the vibration and buckling behaviors of
a rectangular isotropic plate as shown in Fig.l are
investigated. The buckling load of plate represented

by l\_lX is the in-plane load N, at which buckling occurs.

For vibration behavior, the natural frequencies of plate
can be determined for a specimen with a given tensile or
compressive load N,.

y

Ll
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Figure. 1 A rectangular plate subjected to a uniaxial in-
plane load

The governing equation for buckling and vibration of
thin isotropic plate can be written as;
4 4 4 NI 2
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and
o'w o'w  d'w N, o'w o”p
+ "2
ox*  oxPey? oy D ox2 D
respectively.
where w = out-of-plane displacement
p = mass of plate per unit area
et
12(1-v2)
N, = buckling load
Ny = applied in-plane load
" = natural frequency of the plate with applied
in-plane load N,

It should be noted that N_X and N, refer to the same in-

w=0, ()

D=

(Plate flexural rigidity)

plane load, however, NX is the buckling load which must

be a compressive load (negative value), while N, is the
applied in-plane load which can be either tension or
compression.

For a given rectangular plate, the relationship
between the natural frequency and an applied in-plane
load N, can be determined by considering the governing
equations, Eq.(1 and 2). For a specimen with a given
boundary conditions, it is widely known that buckling
mode and vibration mode of the plates are identical.
Specifically, the out-of-plane displacement of the buckled
plate is identical to the out-of-plane displacement of one
of the vibration mode. So, for a given specimen, the
governing of the buckling problem can be rewritten as.

L (w)—=N,L, (w)=0 (3)
4 4 4
where _ow, , 0w  ow
Ll (W) 6)(4 + 2 8X28y2 + ay4
1 6*w
L, (w) = D X2

Similarly, the governing of the vibration of loaded plates
is written as;

L, (W)= N, L, (W)~ &L, (w) =0 ©

W
L, (w) =2
It should be noted that the terms contained derivatives of
w for both problems are the same because the buckling
mode and vibration mode are identical. From Eq.(3), the
buckling load of plate can be written as;

Nx _ Ll(W) (5)
L, (w)

Similarly, the natural frequency of plate with and without

the applied in-plane load can be written as;

where

w*z _ Ll(w)_ NxLZ (W) 6

Lw) ©

d oot 7
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where
o is natural frequency of a plate with applied load Ny
w is natural frequency of a plate without applied load



From Eq.(5-7), ratio of the square of natural frequency of
the loaded plate to that of the unloaded plate is written as;

o N,
(w] S ®)

X

Since buckling load NX and natural frequency of the

unloaded plate w is constant for a given specimen, it is
concluded that square of the natural frequency of the
loaded plate ™ is linearly varied with the applied load
Ny. Since this relationship is derived from the governing,
it is independent of boundary conditions.

From the linear relationship betweenw™and N
shown in Eq.(8), with the buckling load being a negative
value, it is notice that the natural frequency of the plate
increases with the applied tensile load. On the other hand,
it is decreased with the applied compression. Moreover, if
the applied load N, equals the buckling load of the plate,
the natural frequency @ theoretically equals zero. With
this observation, ones can utilize the natural frequencies
of the loaded plate to predict the buckling load of plate by
plotting @ versus the in-plane load N,. The buckling
load could be determined from the applied load N, at
which the natural frequency approaches zero.

3. Numerical investigation

To verify the relationship between the natural
frequency and buckling load of plate, natural frequencies
of the loaded plate and buckling load of plate are
determined. The vibration mode and buckling load are
also investigated. Since the closed form solutions are
available for all edges simple support (SSSS) specimen
only, the numerical method is used in this study. Both
vibration and buckling problems are solved using the Ritz
method [6]. The total potential energy for the vibration of
loaded plate can be written as;

o557 oo 52525
ox" oy oxoy
+N, (%\;\Ij - po*W J dxdy ©)

and the total energy for the buckling problem is represent
by;

-4 o{58 53 e[ 5552

+N, (?XNJZ } dxdy (10)

To determine the natural frequency of the loaded plate,
Eq.(9) is considered by treating N, as a applied load
which is known and " is the unknown to be determined.
For buckling behavior, the total energy in Eq.(10) is used
with an unknown variables N, . To solve both problems,

the out-of-plane displacement w is assumed to be;
M N
WX, y) =D D" A X, OV, (Y) (11)

m=1 n=1

Ann are the unknown coefficients representing vibration
mode or buckling mode. X (x) and Y, (y) are the basis
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functions satisfied the boundary conditionsatx =0, x =
aandy = 0,y = b, respectively. In this study, beam
function is chosen as basis functions. For simple support
on both ends, the function is represented by a well-known
double sine series. For other boundary conditions, the
beam functions can be written in form of; [7]

/1mr /1mr
gom(r):;/m cos L 7 cosh L
Ar Ar
+sin| - | —sinh| - (12)
L L

where ¢ is either X or Y, and r can be x or y. The values
of s, and A, depend on the boundary condition of the
plate. For case of clamp boundary condition on both
ends, A, can be determined from roots of;

cos /1m cosh /1m =1,

and y, is determined from;
cosA_ —cosh A
m m

m- sind_ +sinh A4

m m
For clamp-free boundary condition where one end is
clamped and one end has no support, A, is determined

from roots of;
cosA_cosh A
m m

7

=1

and y, is determined from;
cosA_ +cosh A
_ m m
m  sinA_—sinh A
m m
The basis functions for the first four modes for the cases
of clamp-clamp boundary condition and clamp-free
boundary conditions are plotted as examples in Fig.(1)

To solve for the natural frequency and buckling load,
the total potential energy is determined for each problem
by substituting the approximate displacement functions
Eqg.(11) into the total potential energy Eq.(9,10),
respectively. The displacement functions must be
selected according to the boundary conditions of the
plate. After performing integrations, the total potential
energy is written in term of the undetermined coefficients

A, and the natural frequency @™ or buckling load N_X for

vibration and buckling problems, respectively. According
to the principle of minimum total potential energy, the
total potential energy is minimized with respect to the
unknown coefficients Amnaccording to;
a g (13)
oA,
Eq.(13) is a system of MxN linear equations, which can
be rearranged as a matrix form of generalized eigenvalue
problems as:
[Al[C]- «?[B][C]=0, for vibration problem, and (14a)
[AJ[C]+ N, [B][C] =0, for buckling problem. (14b)

where [A] and [B] are square matrices whose elements are
determined from the plate properties. [C] is a column

matrix of eigenvector Ay,. @™?and N, are the eigenvalues

representing square of natural frequency and buckling
load of plate, respectively. A number of eigenvalues will

I




be obtained after the generalized eigenvalue problem
equation, Eq.(14), is solved. For vibration problem, each
eigenvalue is square of the natural frequency of plates.
However, only the lowest eigenvalue of Eq.(14b) is the
buckling load which is of interest in buckling problem.
The corresponding eigenvectors of each is used to
determine the vibration mode or buckling mode by
substituting into the displacement function Eq.(11).

Before implementing the Ritz method, convergence
studies was performed to ensure that the number of term
used in the displacement function is enough to give a
converged solution. An aluminum rectangular plate is
used in the convergence study. The mechanical properties
of aluminum are assumed to be E = 70 GPa, v = 0.3, and
p = 2707 kg/m® with plate thickness of 2 mm. The
convergence of a rectangular plates with a = b =200 mm,
and all edge clamp boundary condition is shown in Fig 2.
It is observed that the buckling load converges when the
value of m and n in the displacement function equals 5.
The value of m and n used in this study is 12, i.e. there
are 144 terms in the displacement function.

mode 3

|

mode 4 mode 2 mode 1

(@)
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mode 4 mode3 modeld mode 1

L]

(b)
Figure 1. Displacement functions for (a) clamp-clamp
boundary condition and (b) clamp-free
boundary conditions.

4. Numerical results

In this study, three cases of aluminum plates are
investigated using a numerical method outlined in the
previous section. Dimensions, boundary conditions, and
theoretical bucking load of plate are summarized in Table
1. The buckling loads are determined from the solution of
generalized eigenvalue problem, Eq.(14b). This buckling
load is considered herein as the “theoretical solution.”
Specimens with two different combinations of boundary
condition are investigated. For SCSC boundary condition,
the first letter S and third letter S represent the boundary
condition on the x = 0 and x = a edges, respectively.
Similarly, the second and fourth letters represent the
boundary condition on the y = 0, and y = b edges,
respectively. To verify the relationship shown in Eq.(8),
the natural frequency of the loaded plate is determined for
different applied in-plane loads Ny. The in-plane load can
be either tension, compression, or no load. A generalized
eigenvalue problem shown in Eq(14a) is set for the
specimens with a particular applied load N,. This applied
load is treated as a known and constant value. The
obtained square of natural frequency for each vibration
mode is plotted against the applied in-plane load as
shown in Fig. 3-5, for all specimens, respectively.

Table 1. Dimensions and boundary conditions of the

specimen
Specimen | Dimension Boundary [Buckling load
No. axb(mm?) | Condition | {§  (kN/m)
1 200 x 200 SCSC -97.323
2 400 x 200 SCSC -88.215
3 200 x 200 SCSF -21.019
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Figure 2. Convergence of the buckling load of CCCC
aluminum plates

o (x10° rad?/s?)
120 4

© mode 1

o mode 2 100 1

A mode 3

| «’=182.298 N, + 17741.803

-125 -l# -75 -50 -25 0 25 50 75 100 125

-97.322
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o (x10° rad?/s?)

40

- 35
o mode 1

O mode 2 30

@?=102.543 N, +
9045.82

amode3| 25
X mode 4 20

-88.215 N, (kN/m)

Figure 4. Plot of @™ and N, of specimen No. 2
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Figure 5. Plot of @ and N, of specimen No. 3

From Fig 3-5, the relationship between @?and N, is
linear as expected. It is also shown that the natural
frequency is increased as the in-plane load becomes
higher in the tensile direction (positive N,). On the other
hand, the natural frequency approaches zero when the
applied load is amplified in the compressive direction
(negative N,). The plots of @™vs. N, can be used to
verified the relationship shown in Eq.(8) by extrapolating
the value of N, at which the natural frequency becomes
zero. The extrapolation can be systematically performed
by determined the equation representing the relationship
between w™and N, for each mode of vibration and solved
for N, for zero natural frequency. The obtained N, at zero
natural frequency of each vibration mode are compared
with each other. The lowest value of N, at zero natural
frequency shown in the figures is the predicted buckling
load. In the figure, only the equation of »™and N, of the
vibration mode with the lowest value of N, at zero natural
frequency is presented.

For the SCSC specimens with aspect ratios of 1 and
2, it is found that the predicted buckling loads are -97.322
and -88.215 kN/m, respectively, which are practically
identical to the theoretical ones. The buckling mode for
specimen No. 1 is mode 2 since the plot of mode 2
vibration intersects the applied load axis before other
modes. With different aspect ratio, the predicted buckling
mode for specimen No. 2 is mode 3. Predicted buckling
modes for both cases are agreed with the solutions
obtained from the buckling problem. Fig.6 shows the
vibration mode corresponding to the vibration data shown
in Fig.4. The theoretical buckling mode for specimen
No.2 which is mode 3 is presents in Fig.7. Clearly, the
predicted bucking mode using vibration data matches the
theoretical solution very well. Besides specimen with
SCSC boundary conditions, a SCSF specimen is also
investigated. It is found that the derived relationship
between ®?and N, can be used to predicted the buckling
load with very good accuracy. The predicted buckling
load for the case of SCSF specimen is -21.020 kN/m
compared with the theoretical solution of -21.019 kN/m.
The buckling mode is also very well predicted.



Mode 3 Mode 4

Figure 6. Vibration mode shapes of specimen No.2

Figure 7. Buckling mode of specimen No.2

5. Conclusion

This research investigates the vibration response of
isotropic rectangular plates subjected to uniform in-plane
load. By considering the governing equations of the
vibration and buckling problems, it is shown that square
of the natural frequency of the loaded plate is linearly
varied with the applied load. The natural frequency is
increased with the tensile load and decrease with the
compressive load. This relationship is determined without
a need to solve the differential governing equations, so it
is applicable for plates with any boundary conditions. It is
also shown that the square of the nature frequency
approaches zero when the in-plane load approaches the
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buckling load. The derived relationship is verified by
theoretically solving the vibration and buckling problems
of specimens with combinations of boundary conditions.
The Ritz method is employed to determine natural
frequency of the loaded plate and buckling load of plate.
In the process, vibration mode shape and buckling mode
are also obtained. From the study, the predicted buckling
load and mode from the vibration data are corresponded
to the theoretical solution very well.

The derived relationship between square of the
natural frequency and the applied load can be used as an
alternative method of identifying the buckling load
experimentally. The advantage of dynamic approach over
the static approach is that, in the dynamic approach, there
is no need to drawn lines in the pre-buckling and post-
buckling region. So, the error from human judgment can
be eliminated. For future study, the derived relationship
should be verified with the measurement data.
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