

บทคัดย่อ

ในเมทริกซ์ของพอลิเมอร์และน้ำ จุดเยือกแข็งของน้ำลดต่ำลงอาจเนื่องมาจากน้ำแข็งถูกกักในรูพรุนของพอลิเมอร์หรืออันตรกิริยาระหว่างน้ำและพอลิเมอร์ วัตถุประس่งค์ของงานวิจัยชิ้นนี้ ได้แก่ การศึกษากระบวนการลดจุดเยือกแข็ง / ลดลงของน้ำแข็งดังกล่าวโดย ดิฟเฟอร์เรนเชียล สแกนนิ่ง แครอตินิเตอร์ อุณหภูมิต่ำ (sub-ambient DSC) พอลิเมอร์ทางเภสัชกรรมที่ใช้ศึกษา ประกอบด้วย พอลิแซคราเรด์ ได้แก่ โซเดียมแอลิจเนท (SA) แบงโซเดียมไกลโคลา (SSG) แบงมันสำปะหลังพร้อมก่อเจล (PS) รวมทั้งอนุพันธ์ของเซลลูโลส ได้แก่ ไฮดรอกซิโปรปีเมทิลเซลลูโลส (HPMC) โซเดียมคาร์บอเนตมิลเซลลูโลส (SCMC) และ ครอสอะมิลโลสโซเดียม (CCS) ศึกษาลักษณะของตัวอย่างโดยกล้องจุลทรรศน์อิเลคทรอนแบบส่อง粒粒 และ เครื่องเลี้ยวเบนรังสีเอกซ์ ใช้การคุณชั้นในโตรเจนทำการหานาด และการกระจายขนาดรูพรุนระดับกลางบนผิวตัวอย่าง ทำการเตรียมตัวอย่างโดยให้ตัวอย่างออยู่ในบรรณาการที่มีความชื้นสัมพัทธ์สูง (ความชื้นสัมพัทธ์ร้อยละ 85-100 % อุณหภูมิ $30.0 \pm 0.2^\circ$ ซ 10 วัน) และผสมกับน้ำปริมาณมากเกินพอก (hydrogels) จากนั้น วิเคราะห์ตัวอย่างด้วย sub-ambient DSC วงจร อุณหภูมิ ระหว่าง 25 และ -150° ซ ที่ อัตราเร็ว 5.00° /นาที วัดสัดส่วนปริมาตรของตัวอย่าง hydrogels โดยเทคนิคการกระเจิงของแสง และ วัดระดับความชื้นในตัวอย่างโดยเครื่องชั่งความชื้น พบว่า พอลิเมอร์ตัวอย่างที่ศึกษาส่วนใหญ่อยู่ในรูปอสัญญาณ ณ บรรณาการความชื้นสัมพัทธ์สูง น้ำที่อยู่ด้วยกันกับตัวอย่างทั้งหมดยกเว้น PS และ HPMC สามารถเยือกแข็งได้ 2 ส่วน ได้แก่ ที่อุณหภูมิที่ต่ำกว่าจุดเยือกแข็งปกติ (bound water) และ ที่จุดเยือกแข็งปกติ (bulk water) การลดลงของจุดเยือกแข็งของ bound water อาจเป็นเพราะอันตรกิริยาระหว่างน้ำและพอลิเมอร์ตามแบบจำลองของ Flory หรือ น้ำถูกกักอยู่ในโครงร่างพอลิเมอร์ซึ่งเป็นไปตามผลของ Gibb-Thomson สารละลายพอลิเมอร์ตามแบบจำลองของ Flory สามารถประยุกต์เข้ากับข้อมูลสัดส่วนปริมาตรและอุณหภูมิหลอมเหลวที่ได้จากสัญญาณ DSC ของตัวอย่าง hydrogels ได้อย่างเป็นผลสำเร็จ โดยพบพารามิเตอร์อันตรกิริยาของ Flory (χ_1) ระหว่าง 0.520 และ 0.847 สังเกตได้ว่า χ_1 ยิ่งต่ำ อุณหภูมิเยือกแข็งของ bound water ยิ่งลดลง กล่าวคือ อันตรกิริยาสำหรับน้ำยิ่งแข็งแรง การวิเคราะห์รูปร่างสัญญาณ DSC ของ bound water โดยคอมพิวเตอร์ ทำให้สามารถแยก bound water บนผิวของ SA และ SSG ในบรรณาการความชื้นสัมพัทธ์สูงออกเป็น 2 ส่วน ได้แก่ ส่วนที่เกี่ยวกับอันตรกิริยาระหว่างพอลิเมอร์และน้ำ และ ส่วนที่ถูกกักอยู่ในรูพรุนซึ่งสามารถวิเคราะห์ความพรุนแบบความร้อนได้สำเร็จ โดยไดร์คิวเมลลี่ \pm ส่วนเบี้ยงบนมาตรฐานของ hydro-pores สำหรับ ตัวอย่าง hydrogels ของ SA และ SSG เท่ากับ 17.19 ± 0.39 และ 13.03 ± 0.54 นาโนเมตร ตามลำดับซึ่งขนาดดังกล่าวสามารถเทียบเคียงได้กับรูพรุนบนผิวนานาคลาสที่วัดได้จากการคุณชั้นแก๊สในโตรเจน ขนาดของ hydro-pores อาจเป็นองค์ประกอบที่สำคัญสำหรับการควบคุมการปลดปล่อยตัวยาผ่าน hydrogel โดยเฉพาะอย่างยิ่งสำหรับยาที่มีโมเลกุลขนาดใหญ่

Abstract

In a polymer-water matrix, freezable water is depressed due to either porosity confinement or interaction. The aim of the study was to examine water crystallization / melting depression by sub-ambient differential scanning calorimetry. Polysaccharides including sodium alginate (SA), sodium starch glycolate (SSG), and pregelatinized potato starch (PS) as well as cellulose derivatives including hydroxypropylmethyl cellulose (HPMC), sodium carboxymethyl cellulose (SCMC), and croscarmellose sodium (CCS) were employed. The morphology of dry samples was examined using the electron scanning microscopy and the powdered X-ray diffractometry. Mesopore size distribution for each of the samples was determined by nitrogen adsorption. The pre-treated with ambient humidity (85-100% relative humidity, at $30.0 \pm 0.2^\circ\text{C}$ for 10 days) and with water in excess (hydrogels) samples were subjected to a cycle of $25 - -150^\circ\text{C}$ -cooling-heating at $5.00^\circ\text{C}/\text{min}$ rate. The volume fractions of hydrogels were measured by light scattering technique and the equilibrium moisture contents of samples were determined using a moisture balance. It was found that the major portion of polymeric materials under study was amorphous. All samples but PS and HPMC with ambient humidity as well as water in excess presented freezable water in two distinct fractions namely bound water where crystallizing / melting temperature was depressed and bulk water. It was postulated that the melting point depression of bound water on polymer surfaces may be either due to the specific interaction between water and functional sites on

Polymeric chains modeled by Flory or water held within hydro-pores in structural network formed by swollen polymers which its melting point being depressed by Gibbs-Thomson effect. The volume fraction-melting temperature data derived from endotherms of hydrogels were successfully fitted to Flory's model. The Flory's interaction parameters (χ_1) were found to vary between 0.520 and 0.847. It was observed that the smaller the value of χ_1 , the larger melting was depressed, i.e., stronger affinity for water. With the aid of in-house computer software for shape analysis, the bound water fraction on the surfaces of SA and SSG equilibrated with ambient humidity could be separated to 2 sub-peaks, i.e., the minor and major ones corresponded to the interaction and pore confinement, respectively. Thermoporometry was successfully applied to the latter peak. The hydro-pore radii expressed as geometric means \pm standard deviations of SA and SSG hydrogels was estimated to be 17.19 ± 0.39 nm and 13.03 ± 0.54 nm, respectively which were comparable with what were determined by nitrogen adsorption. It is suggested that the hydro-pore radii may be an important factor when it comes to hydrogel control release of the drug especially in a large molecular size.