

รายงานวิจัยฉบับสมบูรณ์

โครงการ: สภาวะเหล็กสะสมในร่างกายกับการดำเนินโรคในเด็กติดเชื้อเอชไอวีที่มี ภูมิคุ้มกันบกพร่องระดับปานกลาง

โดย รองศาสตราจารย์นายแพทย์ ภพ โกศลารักษ์

สัญญาเลขที่ RMU4880034

รายงานวิจัยฉบับสมบูรณ์

โครงการ: สภาวะเหล็กสะสมในร่างกายกับการดำเนินโรคในเด็กติดเชื้อเอชไอวีที่มีภูมิคุ้มกัน บกพร่องระดับปานกลาง

> ผู้วิจัย รองศาสตราจารย์นายแพทย์ ภพ โกศลารักษ์ สังกัด ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

สหับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย และสำนักงานคณะกรรมการอุดมศึกษา

กิตติกรรมประกาศ

ผู้วิจัยขอขอบคุณ

- สำนักงานกองทุนสนับสนุนการวิจัยและสำนักงานคณะกรรมการอุดมศึกษาในการสนับสนุน ทุนวิจัย
- National Institutes of Health ประเทศสหรัฐอเมริกา ที่อนุญาตให้ทำการศึกษาย่อยใน การศึกษาใหญ่ (PREDICT study) ซึ่งเป็นการหาระยะเวลาเริ่มยาต้านไวรัสที่เหมาะสม ในเด็กติดเชื้อ เอชไอวีที่มีภูมิคุ้มกันต่ำปานกลาง และอนุญาตให้ใช้ข้อมูลและผลการตรวจทางห้องปฏิบัติการพื้นฐาน ในการร่วมวิเคราะห์ข้อมูลได้
 - ทีมงานของโรงพยาบาลต่างๆใน PREDICT study ได้แก่
 - 1. โรงพยาบาลนครพิงค์
 - 2. สถาบันบำราศนราดูร
 - 3. โรงพยาบาลศรีนครินทร์
 - 4. โรงพยาบาลพระปกเกล้า
 - 5. โรงพยาบาลเชียงรายประชานุเคราะห์
 - 6. โรงพยาบาลสมเด็จพระบรมราชเทวี ณ ศรีราชา
 - 7. The HIV Netherlands Australia Thailand Research (HIVNAT) Collaboration Thai Red Cross AIDS Research Centre
 - 8. National Pediatric Hospital, Phnom Penh, Cambodia
 - 9. Social Health Clinic, National Center for HIV/AIDS, Dermatology and
 - STDs#2, Phnom Penh, Cambodia
 - อาสาสมัครและผู้ปกครองที่มีส่วนร่วมในโครงการนี้ ทุกท่าน

Abstract: Project Code- RMU4880034

Iron status in HIV-infected children with moderate immune suppression

Kosalaraksa P*, Lumbiganon P*, Bunupuradah T**, Puthanakit T**, Engchanil C***,

Ruxrungtham K**, PREDICT study team

*Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand

**HIV-NAT Thai Red Cross AIDS Research Center, Bangkok, Thailand

***Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,

Thailand

E-mail: pkosalaraksa@yahoo.com Project Period: 3 years (29 July 2005 – 28 July 2008)

Introduction: Abnormal iron metabolism can adversely affect the immune system. Few

studies have been reported about the iron overload in advanced HIV-infected adults but not

in children.

Objective: To evaluate the prevalence of anemia and the association of iron status on HIV

disease progression in moderately immune-suppressed HIV-infected children.

Patients and Methods: The antiretroviral-naïve HIV-infected children aged 1-12 years, CD4+

T-lymphocyte (CD4) 15%-24% and no active infections were enrolled after informed consent

from caregivers. The clinical characteristics, iron studies, C-reactive protein, CD4, and

plasma HIV-RNA were collected as a baseline evaluation and every 6 months. Hemoglobin

typing was performed at week12.

Results: Three hundred children were enrolled in this study, 42.3% were male with mean

age of 6.3 years. The mean body weight and height were 17.9 kg, 106.7 cm, respectively.

The mean CD4 and HIV RNA level were 19.8% and 4.6 log10 copies/mL. The iron study

revealed 178/298 had anemia and 7/283 (2.5%) had iron deficiency anemia. No significant

correlations were observed among serum ferritin and baseline %CD4+ or HIV RNA level.

Discussion: We found that the prevalence of iron deficiency anemia in this study was not

high which was similar to normal children in northeast of Thailand. Most of anemia cases

were mild and might be due to other causes such as anemia of chronic diseases or

micronutrient deficiency.

Conclusion: The prevalence of anemia in HIV children with moderate immune suppression

was 60%, only 2.5% caused by iron deficiency. The long-term follow-up is essential to

determine the association between the iron status and HIV disease progression.

Keywords: HIV, iron status, children, ferritin

Suggestion for future research:

- 1. Evaluate other causes of anemia in children such as micronutrient deficiency or anemia of chronic diseases.
- 2. There were few reports about the increase of hemoglobin A2 after treatment with zidovudine (ZDV). In this study, we tried to determine the prevalence and magnitude of thalassemia and hemoglobinopathy to explain other causes of anemia. The hemoglobin typing was done at week 12 of study to reduce the amount of blood volume to be drawn at baseline. Unfortunately, we found that the hemoglobin typing in the immediate arm (receive ARV at beginning) had trend to increase in hemoglobin A2 (HbA2). This increasing in HbA2 resulted in confusion in the interpretion of beta-thalassemia trait. This might cause from zidovudine in antiretroviral regimen. There were very few reports about this phenomenon in 1-2 patients. The large study should be performed to proof this event. This is important for the interpretation of beta-thalassemia trait and may result in the treatment of thalassemia in the future if we can find drug to switch on hemoglobin A2.

บทคัดย่อ รหัสโครงการ: RMU4880034

สภาวะเหล็กสะสมในร่างกายกับการดำเนินโรคในเด็กติดเชื้อเอชไอวีที่มีภูมิคุ้มกันบกพร่อง ระดับปานกลาง

ภพ โกศลารักษ์*, ผกากรอง ลุมพิกานนท์*, ต่อศักดิ์ ปุณณุปูรต**, ธันยวีร์ ภูธนกิจ**, จุฬาพรรณ อิ้ง จะนิล***, เกียรติ รักษ์รุ่งธรรม** และทีม PREDICT study

- *ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น
- **ศูนย์ประสานความร่วมมือระหว่าง ไทย ออสเตรเลีย เนเธอร์แลนด์ เพื่อการวิจัยทางคลินิกด้านโรค เอดส์กรุงเทพมหานคร
- ***ภาควิชาจุลวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

อีเมล์: <u>pkosalaraksa@yahoo.com</u> ระยะเวลาโครงการ: 3 ปี (29 ก.ค. 2548 – 28 ก.ค. 2551)

บทน้ำ: ความผิดปกติทางเมตาบอลิสมของเหล็กในร่างกายมีผลกระทบต่อระบบภูมิคุ้มกันของ ร่างกาย มีบางรายงานภาวะเหล็กเกินในผู้ใหญ่ที่ติดเชื้อเอชไอวีที่มีภูมิคุ้มกันบกพร่องรุนแรง แต่ไม่มี ข้อมูลในเด็ก

วัตถุประสงค์: เพื่อศึกษาความชุกของภาวะซีดและความสัมพันธ์ของภาวะเหล็กสะสมต่อการดำเนิน โรคของเด็กติดเชื้อเอชไอวีที่มีภูมิคุ้มกันต่ำปานกลาง

วิธีการศึกษา: อาสาสมัครคือเด็กติดเชื้อเอชไอวี อายุ 1-12 ปีที่ไม่เคยได้รับยาต้านไวรัสเอชไอวี มี CD4+ T-lymphocyte ร้อยละ15-24 และไม่มีการติดเชื้ออื่นๆแบบเฉียบพลันสามารถเข้าร่วมโครงการ โดยมีเก็บข้อมูลทางคลินิก ภาวะเหล็กสะสมในร่างกาย C-reactive protein, CD4 และ HIV-RNA ใน เลือดที่แรกที่เข้าโครงการและทุก 6 เดือน รวมทั้งตรวจ hemoglobin typing ในสัปดาห์ที่12 ผลการศึกษา: เด็ก 300 รายที่เข้าร่วมโครงการ เป็นเพศชายร้อยละ 42.3 อายุเฉลี่ย 6.3 ปี น้ำหนัก และส่วนสูงเฉลี่ย 17.9 กิโลกรัมและ 106.7 เซนติเมตรตามลำดับ ค่าเฉลี่ยของซีดีสี่และระดับเอชไอวี ในเลือดคือร้อยละ 19.8 และ 4.6 log10 copies/mL ตามลำดับ พบว่าเด็กมีภาวะซีดร้อยละ60 (178/298) แต่เข้าเกณฑ์การวินิจฉัยภาวะซีดจากภาวะขาดเหล็กร้อยละ 2.5 (7/283) ไม่พบ ความสัมพันธ์ระหว่างระดับเฟอร์ริตินในเลือดกับร้อยละของซีดีสี่หรือระดับเอชไอวีในเลือดแรกรับ อภิปราย: จากการศึกษานี้พบว่ามีความชุกของภาวะซีดจากการขาดเหล็กไม่สูง ซึ่งใกล้เคียงกับ รายงานในเด็กที่ไม่ติดเชื้อเอชไอวีในภาคตะวันออกเฉียงเหนือของประเทศไทย เด็กส่วนใหญ่มีภาวะ ซีดไม่รุนแรง ซึ่งอาจเกิดจากสาเหตุอื่นๆเช่นภาวะซีดจากโรคเรื้อรังหรือขาดสารอาหารรอง เป็นต้น สรุป: พบความชุกของภาวะซีดในเด็กติดเชื้อเอชไอวีที่มีภูมิต้านทานในระดับต่ำปานกลางร้อยละ60 แต่เป็นภาวะซีดที่เกิดจากการขาดเหล็กในร่างกายกับการดำเนินโรคของการติดเชื้อเอชไอวี

คำหลัก: เอชไอวี เหล็ก เด็ก เฟอร์ริติน

Suggestion for future research:

- 1. ควรมีการประเมินสาเหตุของภาวะซีดในเด็กที่ติดเชื้อเอชไอวี เช่นการขาดสารอาหารรองหรือภาวะ ซีดจากการโรคเรื้อรัง
- 2. มีบางรายงานกล่าวถึงการเพิ่มขึ้นของฮีโมโกลบิน A2 หลังการรักษาด้วยยา zidovudine ใน การศึกษานี้มีการตรวจ hemoglobin typing เพื่อหาความชุกของ thalassemia และ hemoglobinopathy เพื่ออธิบายสาเหตุอื่นที่ทำให้เกิดภาวะซีดได้ การตรวจในสัปดาห์ที่ 12 หลังเข้า โครงการ เพื่อลดปริมาณเลือดที่ต้องเจาะในช่วงเริ่มเข้าโครงการ ทำให้เด็กในกลุ่มเริ่มยาทันทีได้รับยา zidovudine ไปแล้ว และพบว่ามีแนวโน้มที่จะมี HbA2 สูงขึ้น ซึ่งอาจก่อให้เกิดปัญหาในการแปลผล พาหะของโรคธาลัสซีเมียชนิดเบตาได้ ซึ่งรายงานในอดีตเป็นเพียงการสังเกตเพียง 1-2 ราย จึงควรมี การทำการศึกษาอย่างเป็นระบบในตัวอย่างผู้ป่วยที่มากขึ้นเพียงพิสูจน์ปรากฏการณ์นี้ ซึ่งนอกจากมี ความสำคัญในการแปลผลการเป็นพาหะของโรคธาลัสซีเมียชนิดเบตาแล้ว ในอนาคตอาจเป็นแนวทาง ในการรักษาธาลัสซีเมีย ถ้าสามารถหายาที่สามารถกระตุ้นให้สร้าง HbA2 เพิ่มมากขึ้น

เนื้อหางานวิจัย

Introduction:

Theoretical considerations and experiments in the laboratory suggest that the alteration of iron stores may have an adverse effect on immunity. Cellular iron homeostasis is important in immune function and both iron deficiency and iron overload seem to exert subtle effects on the immune system by altering the proliferation of T- and B-lymphocytes. Moreover, iron status may also be important to the immune responses of cells of the mononuclear-phagocyte system. Iron-loaded macrophages seem to have a reduced cytotoxic potential towards intracellular pathogens. It is possible that altered immune function related to imbalances of iron metabolism might be especially a problem in HIV-infected patients. However, most of the clinical studies performed in severely immunosuppressed HIV-infected patients and could not provide conclusive evidence for a relationship between iron status and the progression of HIV infection.

Low iron storage in HIV-infected children caused by many factors, including reduced dietary intake, the quality of dietary iron and altered iron absorption ^{17,18}. In contrast, many of these children could also have normal or high iron storage due to the anemia of chronic diseases (ACD). Inflammatory cytokines released during chronic diseases inhibits erythropoiesis, blunt the erythropoietin response, reduce red blood cell survival and prevent the release of iron from the reticuloendothelial system ^{19,20}.

Moreover, the relative contribution of iron status to the anemia and to antiretroviral therapy in HIV-infected children in developing countries has not been well characterized. The altered immune function related to imbalances of iron metabolism may be especially a problem in HIV-infected children. The association between the disease progression and iron status needs to be verified. Therefore, the prospective study in less immunologic suppression, such as moderately immunosuppressed HIV-infected children, may provide better understanding about the iron status, prevalence of iron deficiency anemia and the correlation among iron status, anemia, immunological, virological and disease progression.

Objective:

- 1) To study the iron status at baseline and during the course of HIV-infection starting from moderate immunosuppression
 - 2) To study the prevalence of iron deficiency anemia at baseline
- 3) To study the concordance between viral load or CD4+ T-lymphocyte and serum ferritin at baseline and during the course of HIV-infection

Materials and Methods:

This is a prospective, cross-sectional substudy performed on 300 clinically stable, antiretroviral naïve, HIV-infected children. The main study "PREDICT" is an open labeled, randomized study to compare starting antiretroviral therapy when CD4 is 15-24% or starting when CD4 falls below 15% in children with HIV infection and moderate immune suppression. All of these children continue attending the HIV clinic in Thailand and Cambodia.

Children are considered eligible for inclusion if they are

- 1) HIV-infected children 1-12 years of age,
- 2) CD4 percentage between 15%-24%, CDC clinical class A or B,
- 3) no acute illness or febrile episode in the preceding 7 days nor hospitalized in the preceding 14 days

Children are excluded if they were

- 1) acutely ill,
- 2) previous ARV therapy other than that used to prevent mother-to-child HIV transmission,
 - 3) hemoglobin < 9.0 g/dL, and
 - 4) on cytotoxic chemotherapy or whole body radiation therapy.

About half are randomized to get antiretroviral therapy and the rest are deferred for antiretroviral therapy. This study was approved by the Ethics Committee, Khon Kaen University. Caregivers were informed and written consent was obtained before starting screening. Due to the strict inclusion criteria, the enrollment period was 96 weeks. Children were diagnosed and classified into clinical and immunological categories according to CDC criteria²¹. All children would be followed up for 144 weeks.

The baseline parameters such as age, sex, clinical category, immunological status (absolute CD4+/percentage) were collected. For laboratory investigations, the complete blood count (CBC), CD4+ T-lymphocyte count, plasma HIV-RNA, and serum ferritin were checked at baseline and every 24 weeks. The iron studies and serum C-reactive protein (CRP) were performed every 48 weeks. The iron studies included serum iron (SI), total iron binding capcity (TIBC), and transferring saturation. Due to thalassemia is the endemic genetic disease in Thailand and Cambodia, this might interfere with the interpretation of iron status in children. Therefore, we performed the hemoglobin typing, dichlorophenolindophenol (DCIP) precipitation test, and osmotic fragility test to identify the hemoglobinopathy and thalassemia.

Serum ferritin levels were determined in samples using the commercially available Vitros Ferritin Reagent (Ortho-Clinical Diagnostics, Johnson & Johnson Company,

USA) quantitative test. Reference ranges for normal ferritin levels are 7-140 ug/L. In addition, CRP levels were determined in 16 randomly selected patients with low baseline ferritin levels and in 15 randomly selected patients with high baseline ferritin levels in plasma collected at HAART initiation. CRP concentration was measured using the CRP (Latex) Ultra Sensitive Assay (Roche Diagnostic Systems, Basel, Switzerland). Reference limits were between 2.0 and 3.6 mg/L.

For the iron study, the total iron binding capacity (TIBC) was calculated using the formula: TIBC (μ g/dI) = (Transferrin × 200) ÷ 8 ^{8,10}. Transferrin saturation (TS) was determined as follows: TS = (Plasma iron concentration ÷ TIBC) × 100 ¹⁶. Results were compared to locally derive normal age-related values. The following definitions were used in the analysis (i) iron depletion: ferritin < 10 μ g/L, (ii) iron-deficient erythropoiesis: ferritin < 10 μ g/L and at least 3 of the following criteria: Fe < 8.8 μ mol/L, TIBC > 71.6 μ mol/L, TS < 10%, MCV less than normal age-related values and MCH less than normal age-related values, and (iii) iron deficiency anemia (IDA): criteria for iron-deficient erythropoiesis plus Hb less than the normal age-related range ^{22,23}.

Primary endpoint

The primary endpoint is the abnormal iron status defined as:

- serum ferritin < 10 μg/L or > 140 μg/L

Secondary endpoint

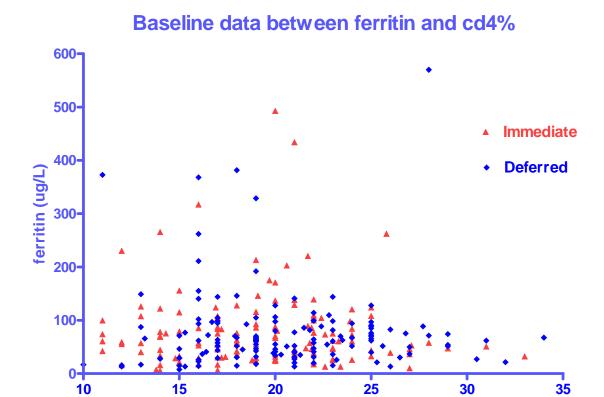
- concordance among iron status, CD4, and viral load
- percentage of the iron deficiency anemia
- percentage of opportunistic infection

Results: Three hundred children were enrolled in this study, 42.3% were male with mean age of 6.3 ± 2.9 years. The mean (SD) body weight and height were 17.9 (6.9) kg, 106.7 (17.8) cm, respectively. The mean CD4 and HIV RNA level were 19.8 ± 4.8% and 4.6 ± 0.6 log10 copies/mL (Table I). This study demonstrated the abnormal iron study more than 3 parameters, abnormal iron study with anemia for 30.5% and 21.5% respectively (Table II, III). Only 5 children had low serum ferritin (< 10 μg/L) but 4 were iron deficiency anemia (1.4%). Only 8.0% (15/187) of children had high CRP level more than 10 mg/L. With the new cut off point of serum ferritin (<50 μg/L) in children who had high serum CRP (> 10 mg/L), we could identify 3 more cases of iron deficiency anemia. The overall result demonstrated that 178/298 (60%) children had anemia and 7/283 (2.5%) children had protocol-defined iron deficiency anemia (IDA). Fifty five percent (128/234) of children had hemoglobinopathy,

mainly hemoglobin E and 1.3% (3/234) had thalassemia disease. No significant correlations were observed among serum ferritin and baseline CD4 percentage or plasma HIV RNA level (Figure I, II). For the change of median serum ferritin during the follow-up period, there was slightly declined in its value.

Table I: Baseline data in both groups

Baseline data	Immediate	Deferred	Total	p- value
	n =150	n =150	n =300	
Sex				
male : female	72:78	55:95	127:173	
Age (years)				
mean <u>+</u> S.D.	6.1 <u>+</u> 2.8	6.5 <u>+</u> 2.9	6.3 <u>+</u> 2.9	NS
median (IQR)	6.3(3.6-8.1)	6.4(4.2-8.7)	6.4(3.9-8.4)	
Height (cms)				
mean <u>+</u> S.D.	105.6 <u>+</u> 18.1	107.9 <u>+</u> 17.5	106.7 <u>+</u> 17.8	NS
median (IQR)	106.5(90-120)	108(94-121)	107.3(92.8-120.0)	
Body weight (kgs)				
mean <u>+</u> S.D.	17.7(7.2)	18.1(6.5)	17.9(6.9)	NS
median (IQR)	16.1 (12.5-21.0)	17.0(13.5-21.5)	16.5 (13.0-21.5)	
Clinical classification				
N	3(2.0%)	2(1.3%)	5 (1.7%)	
Α	97(64.7%)	97(64.7%)	194(64.7%)	
В	50(33.3%)	51(34.0%)	101(33.7%)	
	n=149	n=150	n=299	
Absolute CD4+				
T- lymphocyte				
(cell/cu.mm.)				
mean <u>+</u> S.D.	708.9 <u>+</u> 425.4	697.0 <u>+</u> 340.7	703.0 <u>+</u> 384.7	NS
median (IQR)	620(423-851)	613.9(460-846)	618(433-847)	
CD4+ T-lymphocyte				
percentage (%)				
mean <u>+</u> S.D.	19.2 <u>+</u> 4.9	20.4 <u>+</u> 4.5	19.8 <u>+</u> 4.8	0.05
median (IQR)	19.0(16.0-22.0)	20.0(17.2-23.2)	20.0(16.9-23.0)	
	n=140	n=141	n=281	
Plasma HIV-RNA (log)				
mean <u>+</u> S.D.	4.7 <u>+</u> 0.6	4.5 <u>+</u> 0.6	4.6 <u>+</u> 0.6	0.04
median (IQR)	4.9(4.3-5.0)	4.6(4.2-5.0)	4.8(4.3-5.0)	


Table II: Baseline hematologic and iron parameters in both groups

Baseline data	Immediate	Deferred	Total	p-
				value
	n = 148	n = 150	n = 298	
Hemoglobin (g/dL)				
mean <u>+</u> S.D.	11.1 <u>+</u> 1.1	11.3 <u>+</u> 1.1	11.2 <u>+</u> 1.1	0.016
median (IQR)	11.0(10.3-11.7)	11.5(10.6-12.0)	11.2(10.5-11.9)	
Mean corpuscular				
volume (MCV, fl)				
mean <u>+</u> S.D.	72.6 <u>+</u> 7.9	74.2 <u>+</u> 7.6	73.4 <u>+</u> 7.8	NS
median (IQR)	74.0(68.0-78.0)	75.9(69.8-78.5)	75.0(69.0-78.4)	
	n = 148	n = 149	n = 297	
Mean corpuscular				
hemoglobin (pg)				
mean <u>+</u> S.D.	23.8 <u>+</u> 2.9	24.4 <u>+</u> 3.0	24.0 <u>+</u> 3.0	NS
median (IQR)	24.0(21.9-26.0)	24.9(22.6-26.7)	24.5(22.0-26.3)	
	n = 138-141	n = 140-141	n = 279-281	
Serum iron (µmol/L)				
mean <u>+</u> S.D.				
median (IQR)	10.3 <u>+</u> 5.8	11.8 <u>+</u> 5.3	11.1 <u>+</u> 5.6	0.003
	9.0(6.2-12.9)	11.5(8.1-15.1)	10.4(7.2-13.9)	
Total iron binding				
capacity (TIBC,				
μmol/L)				
mean <u>+</u> S.D.	54.2 <u>+</u> 13.7	53.4 <u>+</u> 14.1	53.8 <u>+</u> 13.9	NS
median (IQR)	51.6(43.2-63.7)	50.2(42.4-62.1)	50.7(42.9-63.0)	
Transferrin saturation				
(%)				
mean <u>+</u> S.D.	19.7 <u>+</u> 11.4	23.5 <u>+</u> 11.5	21.6 <u>+</u> 11.6	0.002
median (IQR)	16.8(12.0-26.1)	23.2(15.0-31.0)	20.0(13.0-29.0)	
	n=142	n=141	n=283	
Serum ferritin (µg/L)				
mean <u>+</u> S.D.	79.5 <u>+</u> 78.4	77.2 <u>+</u> 76.6	78.3 <u>+</u> 77.4	
median (IQR)	57.6(33.7-98.1)	62.1(36.0-88.7)	60.1(34.9-90.3)	NS

Table III: Interpretation of iron study result and iron deficiency anemia in both group

		D ()	-
Hematologic and iron	Immediate	Deferred	Total
parameters			
	n = 104-137	n = 109-139	n = 214-276
Serum ferritin < 10 μg/L	4	1	5
Low hemoglobin (Hb) by age	95	83	178
Low MCV by age	127	124	251
Low MCH age	71	63	134
Serum iron < 8.8 µmol/L	69	43	112
TIBC > 71.6 µmol/L	22	18	40
Transferrin saturation < 10%	32	17	49
Abnormal ≥ 3 iron parameters	50	35	85
Low Hb + abnormal ≥ 3 iron	36	24	60
parameters			
Low ferritin +Low Hb	4	1	5
Low ferritin + Low Hb +	3	1	4
abnormal ≥ 3 iron parameters			
(iron deficiency anemia)			
Serum C-reactive protein	11	4	15
(CRP) > 10 mg/L (n=187)			
Serum CRP ≥ 10 mg/L + Low	2	1	3
Hb + Ferritin <50 + abnormal ≥			
3 iron parameters			

Figure I: Correlation between baseline serum ferritin and baseline CD4+ T-lymphocyte percentage (n=283)

cd4%

Figure II: Correlation between baseline serum ferritin and baseline HIV-RNA (log)

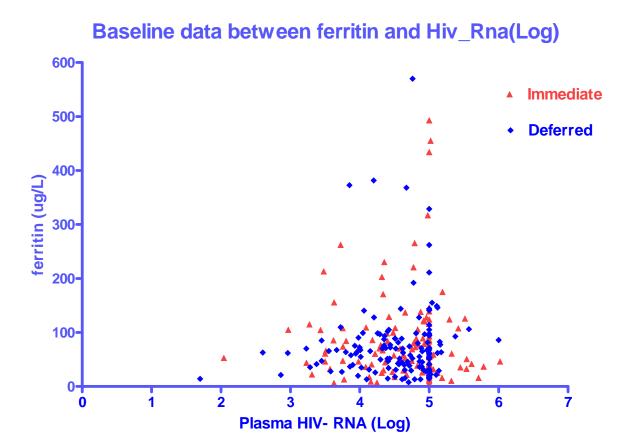
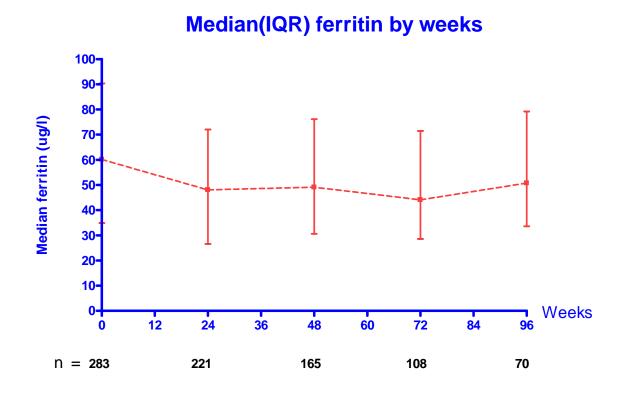



Figure III: The change of median serum ferritin during follow-up

Discussion:

This study, we found the low prevalence of iron deficiency anemia (2.5%) which was comparable with the study in school-age normal children in the northeast of Thailand (4.6%)²⁴. Due to the diagnosis of iron deficiency anemia in this study mainly depended on the low serum ferritin. One confounding factor that needed to be controlled was the acute infection or inflammatory state which could result in the increase of serum ferritin. In this study, we enrolled the HIV-infected children with moderate immunosuppression who normally had low incidence of opportunistic infections and excluded children with acutely ill. Moreover, we examined serum CRP to reconfirm whether these children had other acute infection. From this additional testing, we found that only 8.0% (15/187) of children had high CRP level more than 10 mg/L. As previous study showed that acute infection could result in the increase of serum CRP up to 50 mg/L²⁵, in those cases, we increased the new cut off serum ferritin value from less than 10 mg/L to less than 50 mg/L to define the iron deficiency status. By this new definition, we found only 3 more cases of IDA. The other possibility might be from the criteria that we excluded children who had hemoglobin less that 9 g/dL out. However, there was only one from 455 screened children was excluded from this anemic

criteria. Therefore, this low prevalence of iron deficiency anemia should truly represent the iron status in HIV-infected children with moderate immunosuppression in northeast Thailand. From this data, the iron supplementation should not be routinely given in this population. Other causes of anemia might be from the anemia of chronic diseases or micronutrient deficiency which needed to be further studies.

In this study, we found no correlation between baseline serum ferritin and baseline CD4 percentage or HIV RNA level. However, we found the declining trend of median serum ferritin level during follow-up period (FigureIII). From the study in adults, the ferritin level was significantly declined after antiretroviral treatment ²⁶. Therefore, we postulated that the serum ferritin levels should should decrease in antiretroviral treatment group while increase in the deferred ARV treatment group during the disease progression. We need to stress that a half of children in this study were on antiretroviral therapy. If we separately analyze the ferritin level in the immediate and deferred ARV treatment group, we may see clearer trend of this change. The faster and greater CD4 response to HAART was also demonstrated in Thai HIV-infected adult with low serum ferritin level after the structured treatment of HAART ²⁶.

The potential beneficial effect of iron deficiency on immunological recovery after initiation of HAART should be looked for in the children with ARV treatment group in this study. Due to the unable to separately analyzed data in each group before the end of main study, the concordance between serum ferritin and viral load or CD4+ T-lymphocyte and at baseline and during the course of HIV infection need to be verified after the end of the main study (PREDICT).

Conclusion: The prevalence of iron deficiency anemia in HIV children with moderate immune suppression was not high. Most of anemia was mild and might cause by other factors which needed to be further evaluated. The long-term follow-up is essential to determine the association between the iron status and HIV disease progression.

References:

- Means RT Jr, Krantz SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 1992; 80:1639-47.
- 2. Brock JH, Mulero V. Cellular and molecular aspects of iron and immune function. Proc Nutr Soc 2000; 59:537-40.
- 3. Weiss G, Wachter H, Fuchs D. Linkage of cell-mediated immunity to iron metabolism. Immunol Today 1995; 16:495-500.
- 4. Weiss G, Fuchs D, Hausen A et al. Iron modulates interferon-gamma effects in the human myelomonocytic cell line THP-1. Exp Hematol 1992; 20:605-10.
- Huber C, Batchelor JR, Fuchs D et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferongamma. J Exp Med 1984; 160:310-6.
- Weiss G, Werner-Felmayer G, Werner ER, Grunewald K, Wachter H, Hentze MW. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 1994; 180:969-76.
- 7. Alford CE, King TE Jr, Campbell PA. Role of transferrin, transferrin receptors, and iron in macrophage listericidal activity. J Exp Med 1991; 174:459-66.
- 8. Ellaurie M, Rubinstein A. Ferritin levels in pediatric HIV-1 infection. Acta Paediatr 1994; 83:1035-7.
- Karupiah G, Harris N. Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. J Exp Med 1995; 181:2171-9.
- 10. Fielding J. Iron. Cook JD. Methods in Hematology. Churchill Livingstone, 1980: 15-43.
- Salhi Y, Costagliola D, Rebulla P et al. Serum ferritin, desferrioxamine, and evolution of HIV-1 infection in thalassemic patients. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 18:473-8.
- Salmon-Ceron D, Fontbonne A, Saba J et al. Lower survival in AIDS patients receiving dapsone compared with aerosolized pentamidine for secondary prophylaxis of Pneumocystis carinii pneumonia. Study Group. J Infect Dis 1995; 172:656-64.
- Jacobus DP. Randomization to iron supplementation of patients with advanced human immunodeficiency virus disease--an inadvertent but controlled study with results important for patient care. J Infect Dis 1996; 173:1044-5.
- 14. Weinberg GA. Iron overload as a mechanism for the lowered survival in AIDS patients receiving dapsone-iron protoxalate for secondary prophylaxis of Pneumocystis

- carinii pneumonia. J Infect Dis 1996; 174:241-2.
- 15. Delanghe JR, Langlois MR, Boelaert JR et al. Haptoglobin polymorphism, iron metabolism and mortality in HIV infection. AIDS 1998; 12:1027-32.
- Burtis CAAER. Tietz Textbook of Clinical Chemistry. 2 edition. Philidelphia: WB Saunders, 1986.
- 17. Olivares M, Walter T, Hertrampf E, Pizarro F. Anaemia and iron deficiency disease in children. Br Med Bull 1999; 55:534-43.
- 18. Castaldo A, Tarallo L, Palomba E et al. Iron deficiency and intestinal malabsorption in HIV disease. J Pediatr Gastroenterol Nutr 1996; 22:359-63.
- Coyle TE. Hematologic complications of human immunodeficiency virus infection and the acquired immunodeficiency syndrome. Med Clin North Am 1997; 81:449-70.
- 20. Allen UD, King SM, Gomez MP et al. Serum immunoreactive erythropoietin levels and associated factors amongst HIV-infected children. AIDS 1998; 12:1785-91.
- 1994 revised guidelines for the performance of CD4+ T-cell determinations in persons with human immunodeficiency virus (HIV) infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 1994; 43(RR-3):1-21.
- 22. Wharton BA. Iron deficiency in children: detection and prevention. Br J Haematol 1999; 106:270-80.
- 23. Cook JD. Defining optimal body iron. Proc Nutr Soc 1999; 58:489-95.
- 24. Thurlow RA, Winichagoon P, Green T, et al. Only a small proportion of anemia in northeast Thai schoolchildren is associated with iron deficiency. Am J Clin Nutr 2005; 82:380-7.
- 25. Cazzola M. Genetic disorders of iron overload and the novel "ferroportin disease". Haematologica 2003; 88:721-2.
- 26. Boom J, Kösters E, Duncombe C, et al. Ferritin levels during structured treatment interruption of highly active antiretroviral therapy. HIV Medicine 2007; 8:388-95.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

1. เนื่องจากการล่าช้าในการนำอาสาสมัครเข้าโครงการหลักและเพิ่งครบจำนวนไปไม่นาน ประกอบ กับการไม่อนุญาตให้วิเคราะห์และนำเสนอข้อมูลเกี่ยวกับการดำเนินโรคแยกระหว่างกลุ่มที่ได้รับยา ต้านไวรัสกับกลุ่มที่รอยังไม่เริ่มยาในทันที ทำให้สามารถรายงานเพียงสภาวะเหล็กสะสมในร่างกาย และความชุกของภาวะซีดในเด็กกลุ่มนี้ก่อน ขณะนี้กำลังดำเนินการเขียนบทความ ซึ่งคาดว่าจะเสร็จ และส่งตีพิมพ์ในเดือนเมษายน 2552 ใน Pediatric Infectious Disease Journal และเมื่อติดตามผล จนจบโครงการวิจัยหลัก จะสามารถวิเคราะห์ดูความสัมพันธ์ระหว่างภาวะเหล็กสะสมกับการดำเนิน โรคและการเปลี่ยนแปลงของภาวะเหล็กสะสมในร่างกายกับการรักษาด้วยยาต้านไวรัสเอชไอวี ซึ่ง สามารถตีพิมพ์ผลงานวิจัยนี้ได้อีกอย่างน้อย 2 ฉบับ ซึ่งผู้รับทุนจะแจ้งในทราบเมื่อได้รับการตีพิมพ์ ต่อไป

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เมื่อพบว่าเด็กที่มีเชื้อเอชไอวีส่วนใหญ่มีภาวะเหล็กสะสมในร่างกายเพียงพอ ทำให้มีหลักฐานลบ ล้างความเชื่อที่ว่าเด็กเหล่านี้มักขาดอาหารและขาดเหล็กและมักมีการให้เหล็กเสริมในเด็กเหล่านี้ ซึ่ง อาจเกิดโทษได้ ดังนั้นข้อมูลนี้อาจเป็นประโยชน์ในการออกนโยบายหรือแนวทางการดูแลเด็กเหล่านี้ ต่อไป รวมทั้งประหยัดค่าใช้จ่ายในการให้ธาตุเหล็กเสริม
- 3. ได้เสนอผลงานในที่ประชุมวิชาการ 4th International AIDS Society on HIV Pathogenesis, Treatment and Prevention. เรื่อง Prevalence of anemia and impact of iron status in HIV infected children with moderate immunosuppression ที่เมือง Sydney, Australia ระหว่างวันที่ 22-25 กรกฎาคม 2550