บทคัดย่อ

ในงานนี้ได้มีการพัฒนาเทคนิคใหม่เพื่อการแยกเรียกว่า การแยกแบบไร้เยื่อ เลือกผ่าน ซึ่งเหมาะอย่างยิ่งสำหรับการนำมาประยุกต์กับเทคนิควิเคราะห์แบบไหล ซึ่ง การแยกแบบไร้เยื่อเลือกผ่านนั้น ได้พัฒนาขึ้นสำหรับทั้งการแพร่ของแก๊ส และสำหรับการ แปลงสารให้เป็นไอระเหยก่อนแล้วจึงทำการแพร่เพื่อแยก ซึ่งในงานนี้นั้นได้ออกแบบการ ทดลอง และพัฒนาให้เห็นเป็นรูปธรรมถึงการนำเอาหลักการแยกแบบใหม่นี้มาใช้กับการ วิเคราะห์แบบไหล ซึ่งเหมาะจะเป็นเทคนิคการวัดที่รวดเร็วและแม่นยำ อีกทั้งได้ทำการ พิสูจน์ให้เห็นชัดเจนว่าการถ่ายเทมวลของแก๊สในระบบไร้เยื่อเลือกผ่านนั้นสูงกว่าเมื่อใช้ เยื่อเลือกผ่าน ซึ่งการเลือกปฏิกิริยาเคมีที่จำเพาะเจาะจงในการทำไอระเหยนั้นจะเพิ่ม ความจำเพาะเจาะจงของสารที่จะทำการวิเคราะห์ได้อย่างดี

ได้พัฒนาระบบขึ้นมาทั้งสิ้น 3 ระบบด้วยกันที่มีการนำการแยกแบบไร้เยื่อเลือก ผ่าน มาใช้ ซึ่งทุกระบบก็ได้พิสูจน์ให้เห็นประสิทธิภาพของการแยกชนิดนี้ เช่น การ วิเคราะห์เอทานอลในเครื่องดื่มแอลกอฮอล์ การวิเคราะห์สารคาร์บอเนตในของเหลวและ ของแข็ง และ การวิเคราะห์การปนเปื้อนสารหนู นอกจากนี้ยังได้ทำการศึกษาการแยก ชนิดเดิมที่มีการใช้เยื่อเลือกผ่าน เรียกว่า เพอแวพอเรชั่นด้วย เพื่อให้มีประสบการณ์และ เพื่อจะได้ทำการเปรียบเทียบกับการแยกชนิดไร้เยื่อเลือกผ่านที่ได้พัฒนาขึ้น ซึ่งพบว่าใน กรณีการวิเคราะห์ไอโอไดด์โดยแปลงเป็นไอโอดีนแก๊ส ก่อนเพื่อทำการแยกแก๊สนั้นไม่ เหมาะสมกับเทคนิคใหม่ที่พัฒนาขึ้น ซึ่งพบว่าหลักการเพอแวพอเรชั่นนั้นจะเหมาะสมกว่า ในกรณีการวัดไอโอไดด์ในเม็ดวิตามินรวม

Abstract

Project code: RMU4880038

Project title: Formation of volatile compounds for selectivity in analysis

with design of gas collection unit

Investigator: Duangjai Nacapricha (Ph. D.)

Assistant Professor

Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University,

Rama 6 Road, Bangkok 10400

Email address: scdnc@mahidol.ac.th and dnacapricha@gmail.com

Project period: 29 July 2005 to 28 July 2008

This work was carried out to develop a new separation technique suitable for flow analysis called 'membraneless technique'. The membraneless technique was developed for gas diffusion or for evaporation of gas in order to separate analyte from the matrix. This work has demonstrated that the principle of membraneless (for gas diffusion and for vaporization) is practical especially when coupled with flow analysis for increasing the throughput and precision. It has been proved that the mass transfer efficiency is greater without use of membrane. Nontheless, specificity of the separation is still achievable from selective chemical reaction for vaporization process.

In this work, three systems have been set up and demonstrated for the efficacy of the membraneless principle. The systems include analyses of ethanol in alcoholic drink, carbonate in liquid and solid sample and arsenic contamination. Beside, investigation of a membrane based technique called 'pervaporation' was carried out for gaining experience and for comparison with our current membraneless system. It was found for iodine analysis that pervaporation is a better of technique than the membraneless technique. A new method for determination of iodide using pervaporation was developed for analysis of multivitamin tablets.

Future work, could be further investigation for utilize the principle of membraneless vaporization for making a portable kit for wine analysis.

Keywords: membraneless, vaporization, gas diffusion, pervaporization